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Abstract

A set of nonnegative matrices M = {M1, M2, . . . , Mk} is called primitive if there exist indices
i1, i2, . . . , im such that Mi1

Mi2
. . . Mim

is positive (i.e. has all its entries > 0). The length of the
shortest such product is called the exponent of M. The concept of primitive sets of matrices comes
up in a number of problems within control theory, non-homogeneous Markov chains, automata
theory etc. Recently, connections between synchronizing automata and primitive sets of matrices
were established. In the present paper, we significantly strengthen these links by providing
equivalence results, both in terms of combinatorial characterization, and computational aspects.

We study the maximal exponent among all primitive sets of n×n matrices, which we denote by
exp(n). We prove that limn→∞

log exp(n)
n = log 3

3 , and moreover, we establish that this bound leads
to a resolution of the Černý problem for carefully synchronizing automata. We also study the set
of matrices with no zero rows and columns, denoted by NZ, due to its intriguing connections to
the Černý conjecture and the recent generalization of Perron-Frobenius theory for this class. We
characterize computational complexity of different problems related to the exponent of NZ matrix
sets, and present a quadratic bound on the exponents of sets belonging to a special subclass.
Namely, we show that the exponent of a set of matrices having total support is bounded by
2n2 − 5n + 5.
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1 Introduction

A nonnegative matrix M of size n × n is called primitive if Mk is positive (i.e. has all its
entries larger than zero) for a positive integer k. This notion was introduced by Frobenius in
1912 during the development of so-called Perron-Frobenius theory. This theory has found
numerous applications since then: in the theory of Markov chains, economics, population
modelling, centrality measures in networks, see [21, Chapter 8] for an introduction to the
topic. Motivated by various applications Protasov and Voynov introduced the following
generalization of this notion to sets of matrices [26]: a finite set of (entrywise) nonnegative
matrices M = {M1, M2, . . . , Mk} is called primitive if Mi1

Mi2
. . . Mim

is (entrywise) positive
for some indices i1, i2, . . . , im ∈ [1, k]. The length of the shortest such product is called the
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exponent exp (M) of M. We will denote the value of the largest exponent among all sets of
n × n matrices by exp(n). For example, the matrix set M in Fig 1 is primitive, since the
product M1M2M1M2 is entrywise positive, and its exponent is equal to 4. Since the actual
values of positive entries of matrices in M do not influence the exponent, in the rest of our
paper we will implicitly assume that entries of all matrices are equal to 0 or 1. Moreover,
we assume that the product AB of two matrices of size n × n is also a (0, 1)-matrix that is
defined as follows1: AB[i, j] = 1 if

∑

k A[i, k]B[k, j] > 0, and AB[i, j] = 0 otherwise.
Primitive sets of matrices received a lot of attention for different reasons. We refer the

reader to the introduction in [4] for the account of applications of primitive matrix sets to
stochastic control theory and to the consensus problem. The connections to contractive
matrix families and scrambling matrices are given in detail in [26, Section 5]. Primitive
sets of matrices further arise in the study of time-inhomogeneous Markov chains [14], and
are of importance in mathematical ecology [19]. Furthermore, primitive sets of matrices
are tightly related to boolean networks, which are widely used in biology to model gene
regulatory networks. A special class of boolean networks – disjunctive networks, can be seen
as a set matrices over the Boolean semiring. While researchers in theoretical biology are
mostly interested in the attractors and the limit cycles for different types of update schedules,
see for example [12], we are mainly interested whether it is possible and how fast one can
achieve the all-one state. The subfamily of nonnegative matrices that have no zero rows
and columns, denoted by NZ, will be of major interest to us for the following reasons. A
matrix M is called irreducible if for every i, j there exists a positive integer m such that
Mm[i, j] > 0. A set of k ≥ 1 matrices M is irreducible if the matrix

∑k
i=1 Mi is irreducible.

As usual, we will denote by ei the ith vector of the canonical basis in R
n, the ith entry

of ei is one, all the others are zeros. We say that a matrix M acts as a permutation on a
partition V1, V2, . . . , Vm of the vectors of the canonical basis if there exists a permutation σ

such that for all i, ViM belongs to the subspace spanned by Vσ(i). A classical theorem of
Perron-Frobenius theory states that an irreducible matrix M is primitive if and only if there
is no partition V1, . . . , Vm of the canonical basis vectors for m > 1 such that M acts as a
permutation on V1, . . . , Vm. Protasov and Voynov generalized this theorem to sets of matrices
belonging to NZ [26]: an irreducible set of matrices belonging to NZ is primitive if and only
if there is no partition V1, . . . , Vm for m > 1 such that every M ∈ M acts as a permutation
on V1, . . . , Vm. Thus, the class of primitive matrices belonging to NZ can be viewed as the
right class for Perron-Frobenius-type theory of matrix sets. This characterization also leads
to an efficient algorithm that decides whether a set of matrices belonging to NZ is primitive.

1.1 Synchronizing automata

A deterministic finite state automaton A is a triple2 〈Q, Σ, δ〉, where Q is a finite set of
states, Σ is a finite set of input symbols called the alphabet, and δ is a transition function
δ : Q × Σ → Q. The image of a state q under the action of a word w is denoted by q · w.
An automaton A is called synchronizing if there exist a word w and a state f such that
for every state q we have q · w = f . Any such word is called a synchronizing or reset word.
The length of the shortest such word is called the reset threshold rt(A ) of A . Synchronizing
automata naturally appear in different areas of research. For example, they were used to
model sensorless parts orienting problems: given a part and a set of available actions that

1 Formally speaking, we consider the matrices over the Boolean semiring.
2 The classical definition also involves an initial and a set of final states. Since they don’t play any role in

our considerations, we will omit them.
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can change its spatial orientation, find a sequence of actions that would bring the part to
a desired orientation independently of the initial position [22]. Clearly, if we consider an
automaton A with the set of spatial orientations as the set of states, and the available actions
as letters, then the “orienting sequence” corresponds to a synchronizing word of A . We refer
the reader to [28] for the survey of main results and other applications. A recent account
of applications of synchronizing automata in group theory can be found in [2]. Persisting
interest of the research community to the topic is also driven by one of the most famous open
problems in automata theory. Namely, the Černý conjecture states that the reset threshold
of an n-state automaton is at most (n − 1)2 [6, 7]. This bound is reached by the n-state
Černý automaton Cn, see [28, p. 18], but despite intensive efforts of researchers, the best
upper bound n3−n

6 was obtained more than 30 years ago in [9, 25] and independently in [18].
The notion of a synchronizing automaton can be generalized in three different ways to

nondeterministic automata [16]. We will focus our attention on the most relevant for us. An
automaton A is a partial automaton if the transition function δ is partial, i.e. there might
be undefined transitions for some pairs of states and letters. A partial automaton is carefully
synchronizing if there exist a word w and a state f such that q · w is defined and equal to f

for every state q. Any such word is called a carefully synchronizing word. The length of the
shortest such word we will denote by car(A ). We will denote by car(n) the maximum of
car(A ) among all n-state partial automata. Essentially, carefully synchronizing automata
model the problem of bringing a simple finite-state device to a known state with a single
input sequence, while avoiding undefined transitions, which are undesirable or can break the
device. In matrix terms, it amounts to consider a set of matrices with at most one 1-entry
per row, and to ask for a product with one (entrywise) positive column.

1.2 Our contributions

Our results can be informally arranged into three different groups. The contributions of the
first group significantly improve the understanding of the relationships between primitive
sets of matrices and synchronizing automata. The work within this framework started in [1],
where well-known examples of primitive matrices with large exponent were used to construct
series of automata with relatively large reset thresholds, so-called “slowly synchronizing
automata”. In [4] it was shown that a f(n) bound on the reset threshold of n-state automata
implies a 2f(n) + n − 1 bound on the exponent of NZ matrix sets. We significantly improve
these results. We show that the growth rate of exp(n) is equal to Θ(car(n)). Thus, in a
certain sense, the study of the exponents of sets of matrices is equivalent to the study of
carefully synchronizing automata. We also formulate an analogous result for primitive NZ

matrix sets. Namely, we introduce a special class of automata C such that the growth rate of
the reset thresholds of automata in this class is equivalent to the growth rate of the exponents
of NZ matrix sets. We propose and formalize a new open question of whether a quadratic
bound on expNZ(n) leads to a breakthrough on the Černý conjecture.

The contributions of the second group are of combinatorial nature. Our main result
states that limn→∞

log exp(n)
n = log 3

3 , and equivalently, limn→∞
log car(n)

n = log 3
3 . From the

automata theory point of view our contribution can be seen as the resolution of the Černý-like
problem for the carefully synchronizing automata. From the point view of matrix theory,
our result is a generalization of the classical theorem by Wielandt that the exponent of a
single matrix is at most (n − 1)2 + 1, see for example [15, Corollary 8.5.9]. It also answers
the question of establishing the growth rate of exp(n) posed in [4]. Another contribution in
this group is a partial result for NZ matrix sets. Recall that a matrix M has total support if
every non-zero element mi,j of M lies on a positive diagonal, i.e. for every i, j ∈ [1, n] such
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that mi,j > 0 there exists a permutation σ with the following properties: σ(i) = j and for
every k ∈ [1, n] we have mk,σ(k) > 0. We prove that the exponent of a set of matrices having
total support is bounded by 2n2 − 5n + 5. In the proof we utilize the well-known theorem by
Kari that the reset threshold of an Eulerian automaton is bounded by n2 − 3n + 3. This
result suggests that the bounds for other classes of synchronizing automata might be used to
obtain upper bounds on the exponent in the special classes of NZ matrix sets.

The contributions of the last group are related to the computational complexity of finding
the exponent of an NZ matrix set. Given a set of two matrices belonging to NZ and possibly
an integer k encoded in binary, we establish the exact computational complexity of the
following problems:

1. the problem of deciding whether exp(M) ≤ k is NP -complete;
2. the problem of deciding whether exp(M) = k is DP -complete;
3. the problem of computing exp(M) is FP NP [log]-complete.
Furthermore, we show that unless P = NP , for every positive ε there is no polynomial-time
algorithm that computes the exponent of an NZ matrix set with the approximation ratio
n1−ε, even in the case of only three matrices in the set. These results are based on a single
relatively simple reduction from automata with a sink state to sets of matrices belonging to
NZ.

The paper is organized as follows. Section 2 deals with the primitive sets of matrices in
the general case. We show that exp(n) = Θ(car(n)) and prove that limn→∞

log exp(n)
n = log 3

3 .
Section 3 is devoted to the NZ matrix sets. In subsection 3.1 we introduce the class C such
that expNZ(n) = Θ(rtC(n)). We also present a quadratic bound on the exponent of a set of
matrices having total support. In subsection 3.2 we deal with the complexity issues related
to the computation of the exponent of NZ matrix sets.

2 The general case

Recall that we denote the value of the largest exponent among all n × n matrices by exp(n).
The growth rate of exp(n) is one of the most basic questions one can ask about the sets of
primitive matrices. Furthermore, an upper bound on exp(n) gives a bound on the running
time of the straightforward algorithm that decides whether a given set of matrices is primitive:
we iterate through all the possible products of length up to exp(n) and check, whether they
contain a positive matrix. Since the problem is NP -hard [4, Theorem 6], such a simple
algorithm might be the best we can hope for. The best known bounds on exp(n) were
presented in [4, Theorem 10]:

◮ Theorem 1. If M consists of m matrices of size n × n then exp(M) ≤ 2n2

. Moreover, if
m ≥ 4, then for all ε > 0 there exists a sequence of positive integers n1, n2, . . . , tending to

infinity such that ((1 − ε)e)
√

nk/2 ≤ exp(nk).

Recall that we denote the maximum of car(A ) among all n-state automata A by car(n).
In the upcoming theorem we are going to show that exp(n) grows asymptotically as car(n).
Thus, we can utilize the known bounds on car(n) to infer the bounds on exp(n). Furthermore,
in the next subsection we will be able to significantly improve the known upper bound on
car(n), and equivalently, on exp(n). Before stating the theorem we require one last definition.
Given a (partial or complete) automaton A , an adjacency matrix Mℓ of a letter ℓ is defined
as follows: Mℓ[i, j] = 1 if i · ℓ = j, and Mℓ[i, j] = 0 otherwise. In Fig. 1 the matrix M1 is an
adjacency matrix of the letter m1.
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M =







M1 =





0 1 0

0 1 1

0 0 1
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0 0 0

0 1 1

1 1 0
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m1, m2

m1, m2

m2

m2
m1

m1

Figure 1 The matrix set M and the corresponding non-deterministic automaton M .

◮ Theorem 2. Let exp(n) be the maximum value of the exponent among all sets of n × n

matrices. Let car(n) be the maximum value of car(A ) among all n-state partial automata
A , then exp(n) = Θ(car(n)).

Proof. The proof of the first part of the theorem is inspired by [4, Theorem 16]. While,
in [4], the result was restricted to NZ matrices, we extend it here to all primitive sets of
matrices. Furthermore, we make it deterministic, which will be crucial for Theorem 8. Let
us consider an arbitrary primitive set of matrices M = {M1, . . . , Mk}. We are going to show
now that exp(M) ≤ 2 car(n) + n − 1, which implies exp(n) = O(car(n)). We will achieve
this by presenting products P, Q, R of matrices in M with the following properties:

1. the ith column of P is positive for some i and the length of P is at most car(n);
2. the jth row of R is positive for some j and the length of R is at most car(n);
3. Q[i, j] > 0 and the length of Q is at most n − 1.
These properties clearly imply that PQR is positive and the length of PQR is at most
2 car(n) + n − 1. Thus, exp(M) ≤ 2 car(n) + n − 1.

We will construct the product P by utilizing a partial automaton A defined as follows: a
partial function ϕ : [1, n] → [1, n] is a letter of A if and only if there is a matrix M ∈ M
with the properties: for all i, if ϕ(i) is defined, M [i, ϕ(i)] > 0, otherwise the ith row has no
positive entries. First, we are going to show that A is carefully synchronizing, then we will
use the shortest carefully synchronizing word of A to obtain the matrix product P .

We construct a carefully synchronizing word of A with the help of an auxiliary non-
deterministic automaton M defined in the following manner: the set of states of M is
equal to [1, n]; for each matrix Mi ∈ M we add a letter mi such that Mi is the adjacency
matrix of mi, see Fig. 1. It is straightforward to verify that for every s, t, p1, . . . , pℓ we have
Mp1

Mp2
. . . Mpℓ

[s, t] > 0 if and only if there is a path from s to t in M labelled by the word
mp1

mp2
. . . mpℓ

. Since M is primitive, there exists a positive product of matrices in M.
Therefore, there exists a word w such that for every pair of states of M there is a path
between them labelled by w.

It remains to show that the word w can be transformed to a carefully synchronizing word
of A . Let us fix a state t ∈ [1, n]. There are paths π1, . . . , πn in M labelled by w and for
every s the path πs goes from the state s to the state t. Furthermore, we can impose an
additional property on these paths. Namely, if at a step h paths πx and πy are in the same
state, then their continuations coincide. Indeed, let πx = π′

xvπ′′
x and πy = π′

yvπ′′
y . Then

we can substitute the path πy with the path π′
yvπ′′

x , which still goes from y to t and it is
labelled by w. Observe now, that the paths π1, . . . , πn can be easily treated as paths leading
to the state t in the partial automaton A : by construction for each letter m of M and states
vi1

, vi2
, . . . vip

with a property vix
∈ δM (ix, m) for x ∈ [1, p], there exists a letter ℓ of A such

that δA (ix, ℓ) = vix
for each x ∈ [1, p]; due to this fact and the unique continuation property
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of the paths, we conclude that there exists a word w′ over the alphabet of A that labels the
paths from every state to the state t in A . Thus, A is carefully synchronizing.

Let w = w1w2 . . . wh be the shortest carefully synchronizing word of A . It is easy to see
that a product W1W2 . . . Wh contains a column of ones, where Wx is the adjacency matrix
of wx for x ∈ [1, h]. Since for every x ∈ [1, h] there is matrix Ax ∈ M such that Wx ≤ Ax

we obtain a product P = A1A2 . . . Af with the properties: P has a column of ones and its
length is bounded by car(n).

The product R is constructed in the same manner by applying the reasoning of the
previous paragraphs to a matrix set MT = {MT | M ∈ M}. The resulting product RT

has a column of ones and the length at most car(n). The existence of the product Q easily
follows from the fact that M is strongly connected (otherwise the set of matrices M is not
primitive). Thus, for every pair of states i, j there exists a path of length at most n − 1 that
bring i to j.

Now, given a carefully synchronizing n-state automaton A with the reset threshold equal
to car(n) we will construct a primitive set of matrices M such that car(A ) ≤ exp(M). It
will imply exp(n) = Ω(car(n)). Let e be a row vector of 1’s, and ek be a row vector with the
only non-zero entry equal to 1 at position k. Let E = {eT

k e | k ∈ [1, n]}. The set of matrices
M is defined as a union M′ ∪ E , where M′ is a set of the adjacency matrices of letters of the
partial automaton A . Since A is carefully synchronizing, there is a product P of matrices in
M′ such that the ith column is positive for some i. If we multiply P by the matrix eT

k e ∈ E
on the right, we obtain a positive matrix product. Thus, M is primitive.

It remains to show that car(A ) ≤ exp(M). Let W be the shortest positive product of
matrices in M. Note, that W contains at least one matrix from E , since every product of
matrices in M′ contains at most one 1 in each row. Let W = UEV , where the product U

doesn’t contain matrices from E and E ∈ E . Observe that U contains a positive column.
Otherwise, W will have a zero row due to the presence of a zero row in UE. Therefore, the
length of the product U is at least car(A ) and we obtain the desired inequality. ◭

◮ Corollary 3. The growth rate of exp(n) is O(n24
n
3 ) and Ω(3

n
3 ).

Proof. The first part of the claim follows from the result of Zs. Gazdag et al. [11, Theorem
3]: car(n) = O(n24

n
3 ). Thus, exp(n) = Θ(car(n)) = O(n24

n
3 ). The second part follows from

the result of Martyugin [20]. He constructed a series of carefully synchronizing automata
with the length of the shortest carefully synchronizing word equal to Ω(3

n
3 ). Thus, exp(n) =

Ω(3
n
3 ). ◭

2.1 Improving the upper bound on the exponent

The goal of this section is to significantly improve the bound on exp(n) and, equivalently,
on car(n). We will present a new upper bound on the length of the shortest carefully
synchronizing word by modifying constructions from [11].

Recall that a partition of a set Q is a collection {Q1, Q2, . . . , Qk} of pairwise disjoint
non-empty sets whose union is equal to Q. Given a partition P = {Q1, Q2, . . . , Qk} of Q, a
set S ⊆ Q is called a transversal of Q with respect to the partition P if for each Qi ∈ P there
is a unique s ∈ S such that s ∈ Qi. A set S ⊆ Q is a partial transversal with respect to P if
for each Qi ∈ P there is at most one s ∈ S such that s ∈ Qi.

◮ Example 4. For a partition {{1, 2}, {3, 4}, {5}} of {1, 2, 3, 4, 5} the sets {1, 3, 5} and
{1, 4, 5} are transversals and {1, 3} and {5} are partial transversals. The set {1, 2} is neither
transversal, nor partial transversal.
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Let Q be an n-element set and P be an arbitrary partition. We will denote by T(P) the
number of different transversals with respect to P and by T

ℓ(P) the number of different
partial transversals of size ℓ. Let Tk(n) be the largest value of T(P) among all partitions P

of Q into k parts. Similarly, let T
ℓ
k(n) be the largest value of Tℓ(P) among all partitions P of

Q into k parts. If the value of n is clear from the context, then we will often write Tk and
T

ℓ
k to simplify notation. We will make use of the following bounds on Tk(n) and T

ℓ
k(n):

◮ Lemma 5. 1. Tk(n) ≤ 2n−k for k ∈ [1, n].
2. Tk(n) ≤ 23k−n3n−2k for n

3 ≤ k ≤ n
2 .

3. Tk(n) ≤ 3
n
3 for k ≤ n

3 .

4. T
k−j
k (n) ≤

(

n
j

)

Tk(n) for j ∈ [0, k − 1].

Proof. 1. It is the statement of Proposition 5 in [11].
2. Let P be a partition of Q into k parts such that T(P) = Tk(n), where n

3 ≤ k ≤ n
2 . If

di is the size of the ith part of P, then it is easy to see that Tk(n) =
∏k

i=1 di. Observe
that for any i, j we have dj − di < 2. Otherwise, by moving an element from the jth
part to the ith part of the partition P, we will increase the number of transversals:
(di + 1)(dj − 1) = didj + (dj − di − 1) > didj . Therefore, for a given range of values k,
every di is equal to 2 or 3. Let x be the number of di’s equal to 2, then k − x is the
number of di’s equal to 3. Since 2x + 3(k − x) = n, we derive that x = 3k − n, and the
desired bound follows.

3. Let P be a partition of Q into k parts such that T(P) = Tk(n), where k ≤ n
3 . If di is the

size of the ith part of P, then by the inequality of arithmetic and geometric means we
have

Tk(n) =

k
∏

i=1

di ≤
(

∑k
i=1 di

k

)k

=
(n

k

)k

.

Let us bound the right hand side. Note that ∂
∂k (n

k )k = (ln( n
k ) − 1)(n

k )k. For k ≤ n
3 , we

have ln( n
k ) − 1 > 0. Therefore, the largest value of the function ( n

k )k is achieved at k = n
3 .

Thus, Tk(n) ≤ ( n
k )k ≤ 3

n
3 .

4. Let P be a partition of Q into k parts such that T
k−j(P) = T

k−j
k (n) and let di be the

size of the ith part of P.

T
k−j
k (n) =

∑

|I|=k−j

∏

i∈I

di ≤
(

k

k − j

) k
∏

i=1

di =

(

k

j

) k
∏

i=1

di ≤
(

n

j

)

Tk(n).

◭

◮ Theorem 6. Let exp(n) be the maximum value of the exponent among all sets of n × n

matrices. Let car(n) be the maximum value of car(A ) among all n-state partial automata
A , then limn→∞

log exp(n)
n = log 3

3 , and equivalently limn→∞
log car(n)

n = log 3
3 .

Proof. We will show that car(n) is at most (3 + ε)n/3 for any ε > 0 once n > n(ε) for some
threshold n(ε). Since car(n) is Ω(3

n
3 ) by [20], the statement limn→∞

log car(n)
n = log 3

3 will
clearly follow. Due to Theorem 2 we will have the same statement for exp(n).

Let A be a carefully synchronizing n-state partial automaton with the set of states Q. We
will construct a carefully synchronizing word u1 of A via the following iterative procedure:

(a) Let un−1 be a letter that is defined on every state q ∈ Q and satisfies |Q · un−1| < |Q|,
where | · | denotes the cardinality of a set. Since A is carefully synchronizing, there exists
at least one such letter.
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(b) Choose a positive integer ℓ < k. Let uk−ℓ be a word of the form

uk−ℓ = uktk
kuktk−1

k uk . . . tk−ℓ+1
k uk,

where the words tk−s+1
k are defined iteratively for s ∈ [1, ℓ]: tk−s+1

k is the shortest word
such that uktk

k . . . tk−s+1
k uk is defined on every state and |Q · uktk

k . . . tk−s+1
k uk| ≤ k − s.

Note, that the word uk−ℓ is well-defined, since at every step the set of possible words for
tk−s+1
k contains carefully synchronizing words of A . Our procedure further ensures that

|Q · uk| ≤ k for every k. Thus, u1 is indeed a carefully synchronizing word. Our goal now
is to bound the length of u1. The bound on car(n) presented in [11] was obtained using
the presented procedure with the parameter ℓ ultimately fixed to 1. By choosing for every
ε > 0 a sufficiently large ℓ satisfying certain conditions, we get a significant improvement.
We proceed by bounding the length of intermediate words uk. To simplify the presentation
and without loss of generality, we will further assume that n is divisible by 6ℓ.

1. n
2 ≤ k ≤ n − 1. For these values of k we uniformly put ℓ = 1. The proof of this case is
presented in [11, Proposition 7], which we repeat here for convenience. We are going to
show that |uk| ≤ (n − k)2n−k−1 by induction. Note, that |un−1| = 1. Let uk−1 = uktk

kuk.
The word uk gives rise to a partition P of Q into k parts as follows: a pair of states p, q

belongs to the same part of P if p · uk = q · uk. Observe that if tk
k = x1x2 . . . xm, where

x1, . . . , xm are letters, then the set Q·ukx1 . . . xi is a transversal with respect to P for every
i ∈ [1, m−1]. Indeed, if it is not the case for some i′, then the word ukx1 . . . xi′uk satisfy the
conditions (b) of our procedure and it is shorter than uk−1, which is impossible. Therefore,
the length of tk

k is bounded by T(P). By lemma 5 we conclude |tk
k| ≤ Tk(n) ≤ 2n−k.

Therefore, |uk−1| ≤ 2|uk| + |tk
k| ≤ 2(n − k)2n−k−1 + 2n−k = (n − k + 1)2n−k, which

completes the induction. Observe, that for k = n
2 we have |u n

2
| ≤ n

2 2
n
2 .

2. n
3 ≤ k < n

2 . For each ε > 0 we will choose the value of ℓ at the end of the proof,
independent of n and k. As before, the word uk gives rise to a partition P of Q into k

parts as follows: a pair of states p, q belongs to the same part of P if p · uk = q · uk. Let us
fix s ∈ [1, ℓ] and let tk−s+1

k = x1x2 . . . xm, where x1, . . . , xm are letters. By construction,
for every i ∈ [1, m−1] the cardinality of the set Si = Q ·uktk

kuk . . . tk−s
k ukx1 . . . xi is equal

to k − s + 1. Furthermore, Si is a partial transversal with respect to P. Indeed, if it is not
the case, then |Si · uk| ≤ k − s and the length of tk−s+1

k is not minimal. Therefore, the
length of tk−s+1

k is bounded by the number of partial transversals Tk−s+1(P) ≤ T
k−s+1
k (n).

Using this bound for all s ∈ [1, ℓ] and part 4 of lemma 5 we obtain

|uk−ℓ| ≤ (ℓ + 1)|uk| +

((

n

0

)

+

(

n

1

)

+ . . . +

(

n

ℓ − 1

))

Tk = (ℓ + 1)|uk| + p(n)Tk,

for some polynomial p(n) of degree ℓ − 1. Note, that part 3 of lemma 5 can be rewritten

as Tn
2

−j ≤ 2
n
2

(

9
8

)j
for j ∈ [0, n

6 ]. Applying this inequality and the inequality for |uk−ℓ|
n
6ℓ times we derive:

|u n
3

| ≤ |u n
2

|(ℓ + 1)
n
6ℓ + Tn

2
p(n)(ℓ + 1)

n
6ℓ

−1 + Tn
2

−ℓp(n)(ℓ + 1)
n
6ℓ

−2

+ Tn
2

−2ℓp(n)(ℓ + 1)
n
6ℓ

−3 + . . . + Tn
3

+2ℓp(n)(ℓ + 1) + Tn
3

+ℓp(n)

≤ n

2
2

n
2 (ℓ + 1)

n
6ℓ + 2

n
2 p(n)(ℓ + 1)

n
6ℓ

−1 + 2
n
2

(

9

8

)ℓ

p(n)(ℓ + 1)
n
6ℓ

−2

+ 2
n
2

(

9

8

)2ℓ

p(n)(ℓ + 1)
n
6ℓ

−3 + . . . + 2
n
2

(

9

8

)
n
6

−2ℓ

p(n)(ℓ + 1) + 2
n
2

(

9

8

)
n
6

−ℓ

p(n).
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By choosing ℓ large enough, such that it satisfies ( 9

8
)ℓ

ℓ+1 > 1, we ensure that every term,
starting from the second one, is majorated by the last term. Thus,

|u n
3

| ≤ n

2
2

n
2 (ℓ + 1)

n
6ℓ +

n

6ℓ
2

n
2

(

9

8

)
n
6

−ℓ

p(n) ≤ 2
n
2

(

9

8

)
n
6 (n

2
+

n

6ℓ
p(n)

)

≤ 3
n
3 q(n),

for another polynomial q(n).
3. 1 ≤ k < n

3 . Since limℓ→∞(ℓ + 1)1/ℓ = 1, for every ε > 0 we can choose ℓ such that
(ℓ + 1)1/ℓ < 1 + ε

3 . In the same way as before, we derive

|u1| ≤ |u n
3

|(ℓ + 1)
n
3ℓ + Tn

3
p(n)(ℓ + 1)

n
3ℓ

−1 + Tn
3

−ℓp(n)(ℓ + 1)
n
3ℓ

−2

+ . . . + T1p(n)

≤ 3
n
3 q(n)(ℓ + 1)

n
3ℓ + 3

n
3 p(n)(ℓ + 1)

n
3ℓ

−1 + 3
n
3 p(n)(ℓ + 1)

n
3ℓ

−2

+ . . . + 3
n
3 p(n) ≤ 3

n
3 (ℓ + 1)

n
3ℓ r(n) < 3

n
3

(

1 +
ε

3

)
n
3

= (3 + ε)
n
3 ,

where r(n) is a polynomial. The last inequality holds for large enough n.
◭

3 Sets with no zero rows nor zero columns

3.1 Bounds on the exponent

A quadratic lower bound on the exponents of sets of matrices belonging to NZ was obtained
in [4, Corollary 20]. A first cubic upper bound n3+n2−4n+2

2 was given in [29, Theorem
1]3. The proof relies on standard linear algebraic techniques. This bound was improved
in [4, Corollary 18] to n3+2n−3

3 . The proof is based on the following fact: a bound f(n) for
the reset thresholds of synchronizing automata implies a bound O(f(n)) for the exponents
of NZ matrix sets [4, Theorem 17]. In this subsection we will extend this result and present
a quadratic bound for a special class of NZ matrix sets.

We denote by expNZ(n) the maximal exponent among all primitive matrix sets belonging
to NZ. In order to state a theorem for expNZ(n), analogous to theorem 2, we will introduce
a new class of automata C defined as follows. An automaton A with the set of states [1, n]

over an alphabet Σ belongs to C if there exists a partition of Σ into Σ1, Σ2, . . . , Σk such that
for every i ∈ [1, k] we have:

1. for each state q there exists a state p and a letter ℓ ∈ Σi such that p · ℓ = q;
2. for every choice of states q1, . . . , qn such that j · ℓj = qj for some ℓj ∈ Σi, there exists a

letter ℓ ∈ Σi with the property j · ℓ = qj for all j ∈ [1, n].
In other words, for each i, every state is reachable from somewhere by a letter in Σi, and
given a list of transformations of states by letters in Σi, we can find a letter in Σi that
performs all the transformations at once.

◮ Example 7. The Černý automaton Cn equipped with an identity letter c belongs to C. The
required partition is Σ1 = {a, c} and Σ2 = {b}. Clearly, the reset threshold is not changed
with the addition of the letter c.

3 At the discussion of the connections with the Černý conjecture the author refers to a wrong bound,
see [13] for a discussion.
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◮ Theorem 8. Let expNZ(n) be the maximum value of the exponent among all sets of NZ

matrices of size n × n. Let rtC(n) be the largest reset threshold among n-state automata in
C, then expNZ(n) = Θ(rtC(n)).

Proof. In order to show that expNZ(n) is O(rtC(n)) we will reuse the reduction from primitive
sets of matrices to partial automata presented in the first part of theorem 2. Let M be a
primitive set of NZ matrices. It can be reduced to partial automata A and B such that
exp(M) ≤ car(A ) + car(B) + n − 1. Since M is an NZ matrix set, we conclude that the
automata A and B are complete. Thus, their carefully synchronizing words are ordinary
synchronizing words. Furthermore, the automata A and B belong to C. Indeed, every letter
of these automata was obtained from a matrix in M or MT . In order to obtain the desired
partition, we group a pair of letters together if and only if they were derived from the same
matrix. It is a straightforward check that both conditions on the partition are satisfied.

For the other direction, given an automaton A ∈ C we will construct a set of NZ matrices
M such that rt(A ) ≤ exp(M). It will imply that expNZ(n) = Ω(rtC(n)). Let Σ1, . . . , Σk be
the partition of the letters of A . A set of matrices M consists of matrices Mi =

∑

ℓ∈Σi
Aℓ,

where Aℓ is the adjacency matrix of the letter ℓ. Clearly, each Mi is an NZ matrix due to
the first property of the partition and the fact that A is complete. The second property
ensures that rt(A ) ≤ exp(M), since every primitive word of M can be transformed into a
synchronizing word of A as in the proof of theorem 2. ◭

◮ Problem 9. Improve the bounds O(n3) and Ω(n2) on the growth rate of rtC(n) and,
equivalently, expNZ(n). In particular, is there a constant K such that rtC(n) < Kn2?

This problem can be settled in different ways. On one hand, one can show that problem 9 is
as hard as the Černý conjecture. There are not many natural problems equivalent to it and
the problem of bounding expNZ(n) is a good candidate for this purpose. On the other hand,
a quadratic bound for expNZ(n) is clearly of interest by itself.

In the remainder of this subsection we will present an upper bound on the exponent of a
set of matrices from a special class. A matrix M has total support if every non-zero element
mi,j of M lies on a positive diagonal, i.e. for every i, j ∈ [1, n] such that mi,j > 0 there exists
a permutation σ with the following properties: σ(i) = j and for every k ∈ [1, n] we have
mk,σ(k) > 0. The class of matrices with total support received a lot of attention in the past.
For example, it appears in the necessary and sufficient condition for the convergence of the
classical Sinkhorn-Knopp method for matrix scaling, see [27]. Another characterization is
related to a class of doubly stochastic matrices. A square matrix M is called doubly stochastic
if the entries are nonnegative and the sum of elements in each row and column is equal to 1.
A matrix M is said to have a doubly stochastic pattern if there exists a doubly stochastic
matrix D such that for all i, j it holds D[i, j] > 0 if and only if M [i, j] > 0. A famous result
of Perfect and Mirsky [24] states that a matrix M has total support if and only if M has
a doubly stochastic pattern, see [5, Theorem 9.2.1] for a modern and much more general
treatment of the problem. Now we are ready to state our result.

◮ Theorem 10. If each matrix of a primitive set M has total support, then the exponent of
M is at most 2n2 − 5n + 5, where n × n is the size of matrices in M.

Proof. We will modify the reduction presented in the first part of theorem 2 from a primitive
set of matrices M to partial automata A , B in order to prove the statement. By the
aforementioned result of Perfect and Mirsky we conclude that for every matrix M ∈ M there
exists a doubly stochastic matrix D1 such that for every i, j we have M [i, j] > 0 if and only
if D1[i, j] > 0. It is not hard to see that we can further assume that D1 has only rational
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entries. Therefore, there exists h and a matrix DM with nonnegative integer elements such
that the sum of entries in each row and column is equal to h, and M [i, j] > 0 if and only if
DM [i, j] > 0 for all i, j. We will define the automaton A as follows. For each matrix M ∈ M
we add a function ϕ : [1, n] → [1, n] as a letter of A multiple times. Namely, we treat ϕ(·) as
∏n

i=1 DM [i, ϕ(i)] different letters of the automaton A . Let B be an automaton obtained
from a matrix set MT in the same manner. Similarly to the proofs of theorems 2 and 8
we can conclude that the automata A and B are complete and synchronizing, moreover,
exp(M) ≤ rt(A ) + rt(B) + n − 1.

Now we are going to show that the automaton A is Eulerian, i.e. the in-degree of each
state is equal to its out-degree. Let ΣM be the set of letters generated from a matrix M ∈ M
and h be the row (and column) sum of DM . It is not hard to see that by the definition of A

the size of ΣM is hn. Furthermore, the number of letters from ΣM that move a state i to
a state j is equal to DM [i, j]hn−1. Thus, the number of incoming edges to j labelled by a
letter from ΣM is equal to

∑

i DM [i, j]hn−1 = hn, which is equal to the size of ΣM . Since the
alphabet of A is ∪M∈MΣM and for every ΣM the number of incoming and outgoing edges
labelled by ΣM coincide, we conclude that the automaton A is Eulerian. The same reasoning
allow us to conclude that the automaton B is also Eulerian. By the famous result of Kari
about the reset thresholds of Eulerian automata [17] we have rt(A ), rt(B) ≤ n2 − 3n + 3.
Thus, the exponent of the matrix set M is at most 2(n2 − 3n + 3) + n − 1 = 2n2 − 5n + 5. ◭

3.2 Computation and approximation of the exponent

In this subsection we will focus on the problem of computing the exponent of a set of NZ

matrices. Our results rely on the following lemma:

◮ Lemma 11. For every synchronizing automaton A with a sink state there exists a set of
NZ matrices M constructible in polynomial time such that exp(M) = rt(A ) + 1.

Proof. If the number of states of A is equal to 1, then M can be an arbitrary set of matrices
with the exponent equal to 2. For example, M = {( 1 1

1 0 )}. In all the other cases we construct
the matrix set M as follows. Since A is synchronizing, it has a unique sink state, which we
denote by s. Let M′ be the set of adjacency matrices of letters of A . The matrix set M
consists of matrices in M′ modified in such a way that the sth row of every matrix is positive,
i.e. M = {M ′ + eT

s e | M ′ ∈ M′}, where e stands for a row vector of 1’s, and es stands for a
row vector with the only non-zero entry equal to 1 at position s. Since the automaton A

is complete, we conclude that every matrix M ∈ M has no zero rows. Furthermore, each
column of M has a positive element at position s. Thus, the set of matrices M belongs
to NZ. Now we will demonstrate that the set M is primitive. Since the automaton A is
synchronizing there exists a product P ′ of matrices from M′ with a positive column. Due
to the fact that for every letter ℓ of A one has s · ℓ = s, we conclude that the only positive
entry in the sth row of P ′ is located at position s. Thus, the sth column of P ′ is positive.
Altering each matrix M ′ of the product P ′ to a matrix M ∈ M with the property M ′ ≤ M

we obtain a product P of matrices from M with the positive sth column. Now multiply
by any matrix M ∈ M to get a positive product PM . Thus, the set M is primitive and
exp(M) ≤ rt(A ) + 1.

It remains to show that exp(M) ≥ rt(A ) + 1. Let P = M1M2 . . . Mm be the shortest
positive product of matrices in M. Let P ′ = M ′

1M ′
2 . . . M ′

m be the corresponding product of
matrices in M′, where Mi and M ′

i differ only in the sth row. For each row i 6= s there exists
the largest hi such that the ith row of Phi

= M1M2 . . . Mhi
contains a unique positive entry.

Due to the fact that the ith row of Phi+1 has several positive entries and the structure of
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matrices in M we conclude that the unique positive entry occupies the position s in the ith
row of Phi

. Therefore, the only positive entry in the ith row of P ′
hi

is located at position
s. Since for every row the value of hi is strictly less than m, we conclude that the product
P ′

m−1 has a positive column s. It implies that rt(A ) ≤ m − 1. Rearranging, we obtain the
desired inequality exp(M) ≥ rt(A ) + 1. ◭

The computational complexities of problems related to computation of reset thresholds
and synchronizing words were extensively studied. Now we will leverage lemma 11 to easily
obtain a large body of results on the computation and approximation of the exponents of NZ

matrix sets. We assume that the reader is familiar with computational complexity theory.
All the missing definitions can be found in the book by Arora and Barak [3]. Recall that DP

stands for a class of all languages of the form L = L1 \ L2 with L1, L2 ∈ NP . Note, that
DP is a superclass of both NP and coNP . Thus, the hardness result that we are going to
obtain applies for both classes. The class DP is contained in P NP [log] – the class of problems
solvable by a deterministic polynomial-time Turing machine that can use logarithmic number
of queries to an oracle for an NP -complete problem. It is generally believed that the inclusion
is proper. We will denote by FP NP [log] the functional analogue of P NP [log]. For a function
f(n) : N → R we say that an algorithm approximates the exponent within a factor f(n) if
for every set M of matrices of size n × n the value V returned by the algorithm satisfies
exp(M) ≤ V ≤ f(n) exp(M).

◮ Theorem 12. Given a set M of three n × n matrices belonging to NZ and possibly a
positive integer k encoded in binary.

1. The problem of deciding whether exp(M) ≤ k is NP -complete.

2. The problem of deciding whether exp(M) = k is DP -complete.

3. The problem of computing exp(M) is FP NP [log]-complete.

4. For every constant ε > 0 it is NP -hard to approximate exp(M) within a factor n1−ε.

Proof. The hardness results for these problems follow from the corresponding statements
about the reset thresholds of synchronizing automata with a sink state and lemma 11.
Eppstein [8] proved that it is NP -hard to decide whether rt(A ) ≤ k, where k is given
in binary. Olschewski and Ummels [23, Theorem 1] shown that it is DP -hard to decide
whether rt(A ) = k. The same authors [23, Theorem 4] also proved that the problem
of computing rt(A ) is FP NP [log]-hard. A recent breakthrough by Gawrychowski and
Straszak [10, Theorem 16] states that for every constant ε > 0 it is NP -hard to approximate
rt(A ) within a factor n1−ε. Moreover, only automata with a sink state were utilized in all
reductions presented by the aforementioned authors. In the proof presented by Gawrychowski
and Straszak [10, Theorem 16] the number of letters A is equal to three, while in all the
other reductions automata with only two-letters were utilized.

It remains to show that the stated problems belong to the corresponding classes:

1. Since exp(M) is bounded by a low-degree polynomial p(n), e.g. p(n) = n3+2n−3
3 by [4,

Corollary 18], it suffices to guess a positive product of matrices from M of length
min{p(n), k}. Verification for every such product can be done in polynomial time. Thus,
the problem belongs to NP .

2. It is easy to see that exp M = k if and only if exp M ≤ k and exp M ≤ k − 1 does not
hold. Since the problem of deciding whether exp(M) ≤ k belongs to NP , we conclude
that the problem of deciding whether exp(M) = k belongs to DP .
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3. The algorithm from FP NP [log] that computes exp(M) is a simple binary search algorithm
that uses logarithmic number of queries to the oracle for the NP -complete problem
exp(M) ≤ k. Recall that the exponent of M is bounded by a polynomial p(n) = n3+2n−3

3 .
Thus, in log p(n) iterations we can establish precise value of exp(M).

◭

4 Conclusion

The goal of our work was to emphasize, and leverage, the fact that several problems about
primitive sets of matrices are in some sense equivalent to problems about synchronizing
automata. More precisely, we related the bounds on the exponents and the lengths of the
shortest carefully synchronizing words in the general case, and the exponents and reset
thresholds in the case of matrices without zero rows and columns. Furthermore, we utilized
these connections to easily establish the exact complexity classes of different problems
concerning the computation of the exponent of a set of matrices belonging to NZ. Thus, we
believe that the joint research effort on both topics at the same time can lead to substantial
progress on some of the most desperate problems in both fields at the same time. We left a
quadratic upper bound on the exponent of an NZ matrix set as an open problem, and whether
its existence brings any implication for the Černý conjecture. Our future work includes
the search for matrix counterparts of special classes of automata, which have quadratically
bounded reset threshold. These statements will be analogous to our result on primitive sets
of matrices having total support.
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