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In the present paper we show that Hall algebras of finitary exact categories

behave like quantum groups in the sense that they are generated by inde-

composable objects. Moreover, for a large class of such categories, Hall al-

gebras are generated by their primitive elements, with respect to the natural

comultiplication, even for nonhereditary categories. Finally, we introduce

certain primitively generated subalgebras of Hall algebras and conjecture

an analogue of “Lie correspondence” for those finitary categories.
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1. Introduction

It is well-known that quantum groups are not groups, but rather Hopf algebras,
which are similar to enveloping algebras of Lie algebras. Hall–Ringel algebras
HA of finitary exact categories can be regarded, from many points of view, as
generalizations of quantum groups. One aspect of this analogy is the following
striking result, which we failed to find in the literature.

Theorem 1.1. The Hall algebra HA of any finitary exact category A is generated

by isomorphism classes of indecomposable objects in A .
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We prove a refinement of this theorem (Theorem 2.4), which is an analogue of
the Poincaré–Birkhoff–Witt property for HA , in §4.3.

However, isomorphism classes of indecomposable objects are not the most
efficient as a generating set. For example, if A is the representation category of a
(valued) Dynkin quiver Q, then indecomposables correspond to all positive roots
of the simple Lie algebra associated with Q, while HA can be generated by simple
objects (in other words, indecomposables corresponding to simple roots of the
Lie algebra). Having this in mind, we introduce minimal generating sets for HA ,
namely, primitive elements, which generalize these simple root generators.

More precisely, for any finitary exact category A , the Hall algebra HA has a
natural coproduct1 :HA→HA ⊗̂HA whose image may lie in a suitable completion
of the tensor square of HA . Note, however, that the multiplication and 1 are
not always compatible, that is, 1 need not be a homomorphism of algebras. The
compatibility is guaranteed by Green’s theorem (see [Green 1995]) for all hereditary

cofinitary (so that 1 is an “honest” comultiplication rather than a topological one)
abelian categories A (see Definition 2.11). This includes all categories repk Q

of finite dimensional representations over a finite field k of an acyclic (valued)
quiver Q. In a remarkable paper, Sevenhant and Van den Bergh [2001] proved that
for A = repk Q the Hall algebra HA is a Nichols algebra in an appropriate braided
tensor category (see §2.6 for details) and, in particular, is generated by its space of
primitive elements

VA = {v ∈ HA :1(v)= v⊗ 1+ 1⊗ v}.

We extend this result to a much larger class of categories that we refer to
as profinitary categories. We introduce profinitary categories in terms of their
Grothendieck monoids (denoted ŴA for an exact category A , see §2.3 for precise
definitions) by requiring that groups of morphisms between any two objects and all
Grothendieck equivalence classes are finite. By definition, HA is naturally graded
by ŴA and if A is profinitary, all homogeneous components (HA )γ , γ ∈ ŴA are
finite dimensional.

The class of profinitary categories is large enough. For instance, it includes the
abelian category R− fin of all finite R-modules M (i.e., finite abelian groups with
R-action) for a finitary unital ring R, as defined in [Ringel 1990a, §1]. This includes
all finitely generated (over Z) unital rings. Moreover, if A is profinitary, then so is
any full subcategory B ⊂ A closed under extensions. The following is the main
result of the present work.

Main Theorem 1.2. For any profinitary and cofinitary exact category A , the Hall

algebra HA is generated by the space VA of its primitive elements. Moreover, VA

is minimal in the sense that a nonzero element of VA cannot be expressed as a sum

of products of elements of VA .
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We prove Main Theorem 1.2 in §6.4.
Based on the second assertion of Main Theorem 1.2, we can introduce quasi-

Nichols algebras as both algebras and coalgebras minimally generated by their
primitive elements (see Definition 2.17 for details). In particular, it is easy to see
(cf. Lemma 2.25) that any Nichols algebra is quasi-Nichols. It is noteworthy that
the minimality of VA has the following nice consequence for constructing primitive
elements in HA : once we find a subspace U of VA such that U generates HA as
an algebra, we must stop because U is the space of all primitive elements in HA .

Remark 1.3. Similarly to Grothendieck groups, exact functors induce canonical ho-
momorphisms of Grothendieck monoids. However, even for full embeddings, such
homomorphisms need not be injective. On the other hand, unlike the Grothendieck
group, the Grothendieck monoid always separates simple objects of the category.
For instance, if A is the category of k-representations of the quiver Q = 1→ 2
with dimension vectors (n, 2n), n ∈ Z≥0, then K0(A )∼= Z, but ŴA is an additive
monoid generated by β1, β2 subject to the relations β1 + β2 = 2β1 = 2β2. The
canonical homomorphism ŴA → K0(A ) is given by β1 7→ 1, β2 7→ 1 and thus is
not injective (see §3.4 for details.) It should also be noted that in this example ŴA

is not a submonoid of the Grothendieck monoid of the category repk Q since in
Ŵrepk Q both simple objects of A belong to the same class.

A nice property of profinitary categories is that their Hall algebras always contain
primitive elements. If A is profinitary, then its Grothendieck monoid admits a
natural partial order and is generated by its minimal elements with respect to that
order (Proposition 2.12). Moreover, for γ minimal the corresponding homogeneous
component (HA )γ of HA is one-dimensional and primitive.

Quite surprisingly, for a profinitary category, cofinitarity is a simple property of
its Grothendieck monoid. We say that a monoid Ŵ is locally finite if for all γ ∈ Ŵ,
the set {(α, β) ∈ Ŵ×Ŵ : α+β = γ } is finite.

Theorem 1.4. A profinitary exact category A is cofinitary if and only if ŴA is

locally finite.

We prove this theorem in §5.3. As a corollary, we obtain two classes of categories
for which profinitarity implies cofinitarity.

Corollary 1.5. (a) Any full exact subcategory of a profinitary abelian category is

cofinitary.

(b) Any profinitary exact category whose Grothendieck monoid is finitely generated

is cofinitary.

This corollary is proven in §5.3. Based on the above, we propose the following
conjecture.
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Conjecture 1.6. For any profinitary exact category A , its Grothendieck monoid ŴA

is locally finite.

By Theorem 1.4, any category as in the above conjecture is also cofinitary.
This conjecture is nontrivial since there exist profinitary exact categories A for

which any ambient abelian category A (which always exists, see, e.g., [Bühler
2010; Keller 1990]) is not profinitary, and the monoid ŴA need not be finitely
generated.

Main Theorem 1.2 and Corollary 1.5(a) imply the following theorem.

Theorem 1.7. If A is a profinitary hereditary abelian category, then HA is a

Nichols algebra (see Definition 2.23) of the (braided) space VA of its primitive

elements.

We prove a refined version of this statement (Theorem 2.26) in §7.2.
The case when A = repk Q where Q is a finite acyclic (valued) quiver was

established in [Sevenhant and Van Den Bergh 2001, Theorem 1.1], which inspired
the present work. If A is the category of nilpotent representations of k[x] for a
finite field k, then Theorem 1.7 recovers the classical result of Zelevinsky [1981]
that the Hall–Steinitz algebra is a Hopf algebra (see, e.g., §3.1 for details). More
generally, it is well-known that the category repk Q for any finite valued quiver Q is
hereditary (see [Gabriel 1973; Hubery 2007]). Therefore, Theorem 1.7 is applicable
to such a category as well, that is, Hrepk Q is a Nichols algebra. In particular, so is
the Hall algebra of the category of finite dimensional modules of the free algebra
in n generators over k.

Furthermore, by definition, VA is graded by ŴA , that is, VA =
⊕

γ∈Ŵ(VA )γ , so
γ ∈ ŴA with (VA )γ 6= 0 can be thought of as “simple roots” of A . Given γ ∈ Ŵ+

A
,

define its multiplicity mγ by

(1-1) mγ := # Ind Aγ − dimQ(VA )γ ,

where Ind Aγ = Ind A ∩ Iso Aγ . This definition is justified by the following
proposition.

Proposition 1.8. Let A be a profinitary cofinitary exact category. Then mγ ≥ 0 for

all γ ∈ Ŵ+
A

.

We prove a more precise version of this result (Proposition 2.20) in §6.5. In
particular, Proposition 1.8 implies that if Ind Aγ = ∅ then (VA )γ = 0, that is,
we should look for primitive elements only in those graded components where
indecomposables live. Moreover, if Ind A is finite, then obviously VA is finite
dimensional and we have an efficient procedure for computing it (see §3).

The term “multiplicity” is justified by the following result, which is an immediate
consequence of reformulations [Hua 2000, Theorem 4.1; Deng and Xiao 2003,
§4.1] of the famous Kac conjecture [Kac 1980], proved in [Hausel 2010].



PRIMITIVELY GENERATED HALL ALGEBRAS 291

Theorem 1.9. Let Q be an acyclic quiver, gQ be the corresponding Kac–Moody

algebra and A = repk(Q) where k is a finite field with q elements. Then for any

γ ∈ ŴA one has:

(a) mγ > 0 if and only if γ is a nonsimple positive root of gQ ; in that case,
mγ = dim(gQ)γ , that is mγ is the multiplicity of the root γ in gQ .

(b) (VA )γ = 0 unless γ is simple or imaginary.

(c) For any imaginary root γ of gQ , dimQ(VA )γ = pγ (q) where pγ ∈ xQ[x].

In view of Theorem 1.9(c) and results of [Sevenhant and Van Den Bergh 2001]
we define real simple roots of A to be elements γ ∈ ŴA for which dimQ(VA )γ = 1
and imaginary simple roots of A to be those γ ∈ ŴA with dimQ(VA )γ ≥ 2. For a
profinitary category A we show (Lemma 5.3) that all minimal elements of ŴA \{0}
are real simple roots.

In fact, the consideration of examples suggests that a stronger version of this
statement holds.

Conjecture 1.10. Let A be a profinitary and cofinitary exact category. Then each

simple imaginary root of A has nonzero multiplicity.

Clearly, Theorem 1.9 verifies this conjecture when A = repk(Q) for any finite
acyclic quiver Q. We provide more supporting evidence in §3. In those cases,
mγ = 1 quite frequently (see §3.2, §3.3 and §3.4).

Simple real roots are of special interest. Denote by UA the subalgebra of HA

generated by all (VA )α , where α runs over all real simple roots of A , and refer to
it as the quantum enveloping algebra of A . The following well-known fact justifies
this definition.

Theorem 1.11 [Ringel 1990b]. If Q is an acyclic valued quiver, then Urepk Q is

isomorphic to a quantized enveloping algebra of the nilpotent part of gQ .

Since [X ]∈ Iso A is primitive if and only if it is almost simple (see Definition 5.2),
the algebra UA contains the subalgebra CA of HA generated by isomorphism classes
of all almost simple objects. We call CA the composition algebra of A since it
generalizes the composition algebra of repk Q, which is the subalgebra of Hrepk Q

generated by isomorphism classes of simple objects. In fact, in the assumptions
of the above theorem, Urepk Q = Crepk Q . However, it frequently happens that
CA ( UA (see §3 for examples). Note the following corollary of Theorem 1.7 and
[Andruskiewitsch and Schneider 2002, Corollary 2.3] (see Lemma 2.24).

Corollary 1.12. If A is a profinitary hereditary abelian category then both CA

and UA are Nichols algebras.
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It turns out that there is another algebra EA , which (yet conjecturally) “squeezes”
between these two. That is, EA is generated by elements eγ ∈ HA , where eγ is the
sum of all isomorphism classes of objects of A whose image in Ŵ is γ . Since

Exp
A
:=

∑

γ∈ŴA

eγ

is a group-like element in the completion of HA with respect to a slightly different
coproduct (see [Berenstein and Greenstein 2013, Lemma A.1]), we referred to
Exp

A
in [Berenstein and Greenstein 2013] as the exponential of A . Hence we

sometimes refer to EA as the exponential algebra of A . By definition, CA ⊂ EA .

Conjecture 1.13. For any profinitary category A one has

EA =UA .

In particular, Exp
A

belongs to the completion of UA .

In §3 we provide several supporting examples of profinitary categories A together
with the explicit presentations of HA , UA and EA .

The significance of the conjecture is that it paves the ground for the “Lie corre-
spondence” between the enveloping algebra UA and the quantum Chevalley group
GA that we introduced in [Berenstein and Greenstein 2013] as an analogue of the
corresponding Lie group. That is, Conjecture 1.13 implies that the “tame” part of
GA belongs to the completion of UA .

2. Definitions and main results

2.1. Exact categories and Hall algebras. All categories are assumed to be essen-
tially small. For such a category A we denote by Iso A the set of isomorphism
classes of objects in A . We say that a category A is Hom-finite if HomA (X, Y ) is
a finite set for all X, Y ∈ A .

Let A be an exact category, in the sense of [Quillen 1973] (see also [Keller
1990; Bühler 2010]). We denote by Ext1

A
(A, B) the set of all isomorphism classes

[X ] ∈ Iso A such that there exists a short exact sequence

(2-1) B //
f

// X
g

// // A

(here f is a monomorphism, g is an epimorphism, f is a kernel of g and g is a
cokernel of f ). We say that A is finitary if it is Hom-finite and Ext1

A
(A, B) is

finite for every A, B ∈ A .
Following [Hubery 2006] we define Hall numbers for finitary exact categories

as follows. For A, B, X ∈ A fixed, denote by E(A, B)X the set of all short exact
sequences (2-1). The group AutA A×AutA B acts freely on E(A, B)X by

(ϕ, ψ).( f, g)= ( f ϕ−1, ψg), ϕ ∈ AutA B, ψ ∈ AutA A.
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The Hall number F X
AB is the number of AutA A×AutA B-orbits in E(A, B)X and

equals

F X
AB =

#E(A, B)X

#(AutA A×AutA B)
.

Denote
HA =Q Iso A =

⊕

[X ]∈Iso A

Q · [X ].

Proposition 2.1 [Ringel 1990a; Hubery 2006]. For any finitary exact category A ,
the space HA is an associative unital Q-algebra with the product given by

(2-2) [A] · [B] =
∑

[C]∈Iso A

FC
A,B[C].

The unity 1 ∈ HA is the class [0] of the zero object of A .

It is well-known (see, e.g., [Bühler 2010; Keller 1990]) that each exact cate-
gory A can be realized as a full subcategory closed under extensions of an abelian
category A . However, even if A is finitary, it might be impossible to find an ambient
abelian category which is also finitary. On the other hand, any full subcategory of a
finitary abelian category closed under extensions is also finitary.

2.2. Ordered monoids and the PBW property of Hall algebras. Let 3 be an
abelian monoid. We say that 3 is ordered if there exists a partial order ⊳ on 3+

such that for µ,µ′, ν, ν ′ ∈3+, we have

µ⊳ ν, µ′E ν ′ =⇒ µ+µ′⊳ ν+ ν ′.

Let A be a finitary exact category. The set Iso A is naturally an abelian monoid
with the addition operation defined by [X ]+ [Y ] = [X ⊕ Y ]. Every object in A is
a finite direct sum of indecomposable objects (see Lemma 4.9). Thus, in particular,
Ind A generates Iso A as a monoid. The category A is said to be Krull–Schmidt
if Iso A is freely generated by Ind A .

Define a relation ⊳ on (Iso A )+ by [M]⊳ [N ] if

(i) [N ] = [M+⊕M−], and

(ii) there exists a nonsplit short exact sequence M− // // M // // M+.

By abuse of notation, we also denote by ⊳ the transitive closure of this relation.
We say that a partial (pre)order ≺ on a set3 is inductive if there exists a function

f : 3→ Z≥0 such that λ ≺ µ =⇒ f (λ) < f (µ). It is obvious that an inductive
preorder is a partial order.

Theorem 2.2. Let A be a Hom-finite exact category. Then (Iso A ,⊳) is an ordered

monoid and ⊳ is inductive with the function f : Iso A → Z≥0 given by

f ([M])= # EndA M.
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Remark 2.3. If the category A is finitary, one can show that the assertion holds
with f replaced by the function [M] 7→ # Ext1

A
(M,M), [M] ∈ Iso A .

We prove this theorem in §4.2. It is used as the key ingredient in a proof of
the following theorem, which generalizes [Guo and Peng 1997, Theorem 3.1] and
establishes the (weak) PBW property of Hall algebras.

Theorem 2.4. Let A be a finitary exact category. Then for any total order on

the set Ind A of isomorphism classes of indecomposable objects in A , HA is

spanned, as a Q-vector space, by ordered monomials on Ind A . Moreover, if A is

Krull–Schmidt, then such monomials form a basis of HA .

We prove this theorem in §4.3. After [Joyce 2007; Riedtmann 1994], this further
extends an analogy between Hall algebras of finitary categories and universal
enveloping algebras.

2.3. The Grothendieck monoid and grading. Define the relation ≡ on the monoid
Iso A by

[X ] ≡ [Y ] ⇐⇒ [X ], [Y ] ∈ Ext1
A
(M, N ) for some M, N ∈ A .

This relation is clearly symmetric and reflexive, hence its transitive closure is
an equivalence relation on Iso A which we also denote by ≡. The additivity
of Ext1

A
(A, B) :=

⋃
X E(A, B)X/AutA X in both A and B yields the following

lemma.

Lemma 2.5. The relation ≡ is a congruence relation on Iso A , that is, [X ] ≡ [Y ],
[X ′] ≡ [Y ′] implies that [X ⊕ X ′] ≡ [Y ⊕ Y ′].

Definition 2.6. The Grothendieck monoid ŴA of A is the quotient of Iso A by the
congruence ≡.

Given an object M in A , we denote its image in ŴA by |M |. For all γ ∈ ŴA , set

Iso Aγ = {[X ] ∈ Iso A : |X | = γ }.

We refer to Iso Aγ as a Grothendieck class in A , and write Ind Aγ = Ind A ∩Iso Aγ .
The following fact is obvious.

Lemma 2.7. For any finitary exact category A , the assignment [M] 7→ |M | defines

a grading of the Hall algebra HA of A by the Grothendieck monoid ŴA .

Remark 2.8. After Grothendieck, one defines the Grothendieck group K0(A )

of A as the universal abelian group generated by ŴA . Note that the canonical
homomorphism of monoids ŴA → K0(A ) can be very far from injective. One
example was already provided in the introduction. Perhaps the most extreme
example is the following. Let A =Vectk be the category of all k-vector spaces over
some field k. Then ŴA identifies with the monoid of cardinal numbers. In particular,
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if V is infinite dimensional and W is finite dimensional then |V | = |V | + |V | =
|W | + |V |. This implies that in K0(Vectk), |U | = 0 for every object U of Vectk,
that is, K0(Vectk)= 0.

Also, while K0(A ) can contain elements of finite order, this never occurs in ŴA .
Indeed, since [0] ∈ Ext1

A
(A, B) implies that A = B = 0 and the direct sum of two

nonzero objects is clearly nonzero, we immediately obtain the following lemma.

Lemma 2.9. For any exact category A , zero is the only invertible element of the

Grothendieck monoid ŴA .

2.4. Profinitary and cofinitary categories. Let Ŵ be an abelian monoid. Define a
relation � on Ŵ by α � β if β = α+ γ for some γ ∈ Ŵ. This relation is clearly an
additive preorder and 0� γ for any γ ∈ Ŵ. The following lemma is obvious.

Lemma 2.10. The preorder � is a partial order on Ŵ if and only if the equality

α+ β + γ = α for α, β, γ ∈ Ŵ implies that α = α+ β = α+ γ . In that case, 0 is

the only invertible element of Ŵ.

We say that Ŵ is naturally ordered if � is a partial order.

Definition 2.11. We say that a Hom-finite exact category A is

(i) profinitary if Iso Aγ is a finite set for all γ ∈ ŴA , and

(ii) cofinitary (cf. [Kapranov et al. 2012]) if for every [X ] ∈ Iso A , the set

{([A], [B]) ∈ Iso A × Iso A : [X ] ∈ Ext1
A
([A], [B])}

is finite.

Since E(M, N )X identifies with a subset of HomA (N , X)×HomA (X,M), any
profinitary category is necessarily finitary.

Proposition 2.12. Let A be a profinitary category. Then ŴA is naturally ordered

and is generated by its minimal elements.

A proof of this proposition is given in §5.2.

Remark 2.13. One can characterize profinitary categories as follows. If A is Hom-
finite and its Grothendieck monoid is locally finite, as defined before Theorem 1.4,
and Ind Aγ is finite for all γ ∈ ŴA , then A is profinitary.

Theorem 2.14. Any profinitary abelian category has the finite length property,
hence is Krull–Schmidt.

We prove this theorem in §5.3. This result, together with Theorem 1.4, yields
Corollary 1.5(a).



296 ARKADY BERENSTEIN AND JACOB GREENSTEIN

Remark 2.15. The finite length property in an abelian category A is much stronger
than the Krull–Schmidt property. For instance, the Grothendieck monoid of an
abelian category with the finite length property is freely generated by classes of
simple objects and the canonical homomorphism ŴA → K0(A ) is injective. On
the other hand, the category of coherent sheaves on P1 is Krull–Schmidt, but lacks
the finite length property and each Grothendieck class Iso Aγ , γ 6= 0 is infinite.

2.5. Comultiplication and primitive generation. Let A be any Hom-finite exact
category. Define a linear map 1 : HA → HA ⊗̂HA by

(2-3) 1([C]) =
∑

[A],[B]∈Iso A

F
A,B

C · [A]⊗ [B] ,

where HA ⊗̂HA is the completion of the usual tensor product with to the ŴA -grading
and F

A,B
C is the dual Hall number given by

F
A,B

C =
#(AutA A×AutA B)

# AutA C
FC

B,A.

It follows from Riedtmann’s formula [1994] that

F
A,B

C =
# Ext1

A
(B, A)C

# HomA (B, A)
,

where Ext1
A
(B, A)C = E(B, A)C/AutA C . Also define a linear map ε : HA →Q

by

(2-4) ε([C])= δ[0],[C].

The following fact is obvious.

Lemma 2.16. (a) HA is a topological coalgebra with respect to the above comul-

tiplication and counit.

(b) If A is cofinitary then HA is an ordinary coalgebra, that is, the image of the

comultiplication 1 lies in HA ⊗ HA .

For any coalgebra C with unity denote by Prim(C) the set of all primitive
elements, i.e.,

Prim(C)= {c ∈ C :1(c)= c⊗ 1+ 1⊗ c}.

Definition 2.17. Let A be both a unital algebra and a coalgebra over a field F. We
say that A is a quasi-Nichols algebra if A decomposes as F⊕V⊕

(∑
r>1 V r

)
where

V = Prim(A).

The following is the main result of the paper (Main Theorem 1.2) and is proven
in §6.4.
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Theorem 2.18. Let A be a profinitary and cofinitary exact category. Then the Hall

algebra HA is quasi-Nichols.

This theorem has the following useful corollary, which we prove in §6.5.

Corollary 2.19. Let

(2-5) P = ker ε ·ker ε=Q{[M][N ] : [M], [N ] ∈ (Iso A )+}, Pγ := P∩(HA )γ .

Then P =
∑

k≥2 Prim(HA )
k =

∑
k≥2(Q Ind A )k and (HA )γ = Prim(HA )γ ⊕ Pγ

for all γ ∈ Ŵ+
A

.

A natural question is to compute dimensions of Prim(HA )γ , γ ∈ Ŵ+
A

. The
following is a refinement of Proposition 1.8.

Proposition 2.20. In the notation (1-1) we have

mγ = dimQ(Pγ ∩Q Ind Aγ )

for all γ ∈ Ŵ+
A

. In particular, if Ind Aγ ⊂ Pγ then Prim(HA )γ = 0.

We prove Proposition 2.20 in §6.5, as well as the following observation, which
is useful for computing primitive elements.

Lemma 2.21. Each primitive element contains at least one isomorphism class

[X ] ∈ Ind A in its decomposition with respect to the basis Iso A of HA . In other

words, Prim(HA )∩Q(Iso A \ Ind A )= {0}.

2.6. Hereditary categories and Nichols algebras. Let Ŵ be an abelian monoid and
let CŴ be the tensor category of Ŵ-graded vector spaces V =

⊕
γ∈Ŵ Vγ over a field F.

The following fact can be easily checked.

Lemma 2.22. For each bicharacter χ : Ŵ×Ŵ→ F× the category CŴ is a braided

tensor category (CŴ, 9) with the braiding9U,V :U⊗V → V ⊗U for objects U, V

in CŴ given by
9U,V (u⊗ v)= χ(γ, δ) v⊗ u,

for any u ∈Uγ , v ∈ Vδ, γ, δ ∈ Ŵ.

By a slight abuse of notation, given a bicharacter χ : Ŵ×Ŵ→ F× we denote
this braided tensor category CŴ by Cχ .

Now let A be a finitary hereditary category, i.e., Exti
A
(M, N )= 0 for i > 1 and

all M, N ∈ A . Let χA : Ŵ×Ŵ→Q× be the bicharacter given by

χA (|M |, |N |)=
# Ext1

A
(M, N )

# HomA (M, N )
.

The bicharacter χA is easily seen to be well-defined because it is just the (multi-
plicative) Euler form.
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Nichols algebras were formally defined in [Andruskiewitsch and Schneider
2002].

Definition 2.23 [Andruskiewitsch and Schneider 2002, Definition 2.1]. Let (C , 9)
be a braided F-linear tensor category with a braiding9. Let V be an object in (C , 9).
A graded bialgebra with unity B =

⊕
n≥0 Bn in (C , 9) is called a Nichols algebra

of V if B0 = F, B1 = V and B is generated, as an algebra, by B1 = Prim(B).

For each object V of a braided tensor category (C , 9), the tensor algebra T (V ) is
a graded bialgebra (even a Hopf algebra) in (C , 9) with the coproduct determined
by requiring each v ∈ V to be primitive and the grading defined by assigning
degree 1 to elements of V . It is well-known [Andruskiewitsch and Schneider 2002,
Proposition 2.2] that the Nichols algebra of V is unique up to an isomorphism
and is the quotient of T (V ) by the maximal graded bi-ideal I of T (V ) which is
an object in (C , 9) and satisfies I∩ V = {0}. Henceforth we denote the Nichols
algebra of V by B(V ).

The following is proved in [Andruskiewitsch and Schneider 2002, Corollary 2.3].

Lemma 2.24. The assignment V 7→ B(V ) defines a functor from (C , 9) to the

category of bialgebras in (C , 9). Moreover, for any morphism f :U→V in (C , 9),
the kernel of the corresponding homomorphism B( f ) is the (bi-)ideal in B(U )

generated by ker f ⊂U.

The following fact is immediate from the definitions.

Lemma 2.25. Let B be a bialgebra in (C , 9) which is a quasi-Nichols algebra.

Then B is Nichols if and only if
∑

r≥2(Prim(B))r is direct.

The following extends the main result of [Sevenhant and Van Den Bergh 2001].

Theorem 2.26. For any profinitary hereditary abelian category A , the Hall algebra

HA is isomorphic to the Nichols algebra B(VA ) in the category CχA
, where VA =

Prim(HA ).

We prove this theorem in §7.2.

Remark 2.27. In fact, the original result of [Sevenhant and Van Den Bergh 2001,
Theorem 1.1] follows from Theorem 2.26. The classification of diagonally braided
Nichols algebras was obtained in [Andruskiewitsch and Schneider 2002, §5] and,
in particular, generalizes some results of [Sevenhant and Van Den Bergh 2001].

3. Examples

In this section we construct primitive elements in several Hall algebras and provide
supporting evidence for Conjectures 1.13 and 1.10. Throughout this section we
write 1(x)=1(x)− x ⊗ 1− 1⊗ x (thus, x is primitive if and only if x ∈ ker1).
Needless to say, every (almost) simple object S satisfies 1([S])= 0 so we focus
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only on nonsimple primitive elements. In this section, k always denotes a finite
field with q elements and all categories are assumed to be k-linear.

3.1. Classical Hall–Steinitz algebra. Let R be a principal ideal domain such that
R/m is a finite field for any maximal ideal m of R. Let A = A (m) be the full
subcategory of finite length R-modules M satisfying mr M = 0 for some r ≥ 0.
Then for each r > 0, there exists a unique, up to an isomorphism, indecomposable
object Ir = R/mr ∈ A . More generally, given a partition λ= (λ1 ≥ · · · ≥ λk > 0),
set Iλ = Iλ1 ⊕ · · ·⊕ Iλk

and write ℓ(λ)= k.
Since the Euler form of A is identically zero and A is hereditary, HA is an

ordinary Hopf algebra (the braiding is trivial). The Grothendieck monoid of A

being Z≥0, the algebra HA is Z≥0-graded. We now provide a new (very short) proof
of the following classical result.

Theorem 3.1 [Macdonald 1979; Zelevinsky 1981]. The Hall algebra HA is com-

mutative and cocommutative and is freely generated by the [In], n > 0. Moreover,
HA is freely generated by its primitive elements Pn , n > 0.

Proof. It is easy to see, using duality, that HA is commutative, hence cocommutative.
Let P be the set of all partitions. Given a partition λ= (λ1 ≥ · · · ≥ λr > 0) ∈P,
let Mλ = [Iλ1] · · · [Iλr

]. By Theorem 2.4, the set {Mλ}λ∈P is a basis of HA , hence
HA is freely generated by the isomorphism classes of indecomposables [In], n > 0.
Since HA is commutative, P = ker ε · ker ε is spanned by the Mλ with ℓ(λ) ≥ 2,
hence Q Ind A ∩P ={0} and by Proposition 2.20, dimQ Prim(HA )n = # Ind An = 1
for all n>0. Thus, for each n>0 we have a unique, up to a scalar, nonzero primitive
element Pn in (HA )n . The dimension considerations and Theorem 2.18 immediately
imply that HA is freely generated by the Pn , n > 0. �

This theorem has the following nice corollary.

Corollary 3.2. For all n > 0, let xn ∈ (HA )n \Q(Iso An \ Ind An). Then {xn}n>0

freely generates HA . In particular, EA = HA .

The elements Pn can be computed explicitly (see, e.g., [Hubery 2005, §5]),
namely

Pn =
∑

λ⊢n

( ℓ(λ)−1∏

j=1

(1− q j )

)
[Iλ],

where q = |R/m|.
Under the isomorphism ψ : HA → Sym, [Iλ] 7→ q−n(λ)Pλ(x; q

−1) [Macdonald
1979; Zelevinsky 1981], where Sym is the algebra of symmetric polynomials in
infinitely many variables and Pλ(x; t) is the Hall–Littlewood polynomial, the image
of Pn is the n-th power sum pn . As shown in [Zelevinsky 1981], the pn are primitive
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elements in Sym with the comultiplication defined by

1(en)=

n∑

i=0

ei ⊗ en−i ,

where er is the r -th elementary symmetric polynomial, which equals q−(
r
2)ψ([I(1r )]).

Note also that ψ
(∑

λ⊢n[Iλ]
)

is the n-th complete symmetric function hn .
Since CA =Q[P1], we have CA ( HA . Since dimQ Prim(HA )n=1 for all n>0,

it follows that UA = HA . Thus, CA ( EA =UA = HA .

3.2. Homogeneous tubes. Let A be the category of finite dimensional k-represen-
tations of a tame acyclic quiver Q. Then A decomposes into a triple of subcategories
of preprojective, preinjective and regular representations (see [Auslander et al. 1995,
Chapter VIII]) which we denote, as in [Berenstein and Greenstein 2013, §5], by
A−, A+ and A0, respectively. The category A0 can be further decomposed into the
so-called stable tubes, that is, components of the Auslander–Reiten quiver of A on
which the Auslander translation acts as an autoequivalence of finite order, called
the rank of the tube. It is well-known that rank 1, or homogeneous, tubes are
parametrized by the set kP1 of homogeneous prime ideals in k[x, y]. Given a
homogeneous prime ideal ρ, let deg ρ be the degree of a generator of that ideal and
denote by Tρ the corresponding rank 1 tube. Then Tρ is equivalent to the category
of nilpotent representations of K[x] where [K : k] = deg ρ and its Hall algebra is
isomorphic to the classical Hall–Steinitz algebra. Thus, for each r >0, Tρ contains a
unique indecomposable Ir (ρ) of length r . Given a partition λ= (λ1≥ · · · ≥λk > 0),
let Iλ(ρ)= Iλ1(ρ)⊕ · · ·⊕ Iλk

(ρ). By §3.1 the elements

Pn(ρ)=
∑

λ⊢n

( ℓ(λ)−1∏

j=1

(1− q j deg ρ)

)
[Iλ(ρ)]

are primitive in HTρ
. Let A0,h be the full subcategory of homogeneous objects

in A0 (cf. [Dlab and Ringel 1976, Theorem 3.5]). Since HA 0,h is isomorphic to the
tensor product of the HTρ

as a bialgebra, this gives all primitive elements in HA 0,h .
The Grothendieck monoid of A0,h equals the direct sum of infinitely many copies
(indexed by ρ ∈ kP1) of Z≥0.

However, the elements Pn(ρ) are not primitive in HA since an object in A0,h

can have preprojective subobjects and preinjective quotients. They can be used to
construct primitive elements in HA .

Conjecture 3.3. The elements

Pn(ρ)−
1

N (deg ρ)

∑

ρ′∈kP1:deg ρ′=deg ρ

Pn(ρ
′),
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are primitive in HA , where N (d) is the number of elements of kP1 of degree d

(that is, N (1) = |k| + 1 while N (d), d > 1, is the number of irreducible monic

polynomials of degree d in one variable).

This formula can be easily checked in small cases (see, for example, §3.8) or for
the Kronecker quiver, using the results of [Szántó 2006]. Since F

I,P
M = 0 for all

P ∈A− and I ∈A+, the above conjecture is an immediate consequence of the next
conjecture.

Conjecture 3.4.1 Let I ∈ A+ and P ∈ A−. Then for any partition λ we have

F
P,I
Iλ(ρ)
= F

P,I
Iλ(ρ′)

where ρ, ρ ′ ∈ kP1 with deg ρ = deg ρ ′.

This is known to hold in some special cases (see for example [Szántó 2006;
Hubery 2004]).

In the category A , we have CA = EA =UA ( HA . On the other hand, for A0

we have CA0 ( EA0 =UA0 = HA0 and similarly for each homogeneous tube.

3.3. A tame valued quiver. Consider now the valued quiver 1
(4,1)
−−→ 2. Let k2 be a

field extension of k1=k of degree 4. Note that k2 contains precisely q4−q2 elements
of degree 4 over k and q2−q elements of degree 2. A representation of this quiver is
a triple (V1, V2, f ) where Vi is a ki -vector space and f ∈Homk(V1, V2). Finally, a
morphism (V1, V2, f )→ (W1,W2, g) is a pair (ϕ1, ϕ2) where ϕi ∈Homki

(Vi ,Wi )

and g ◦ϕ1 = ϕ2 ◦ g.
The smallest indecomposable regular representation is (k2

1, k2, f ), where f is
injective. Thus, f is given by a pair (λ, µ) ∈ k2×k2 which is linearly independent
over k (this pair is the image under f of the standard basis of k

2
1). It is easy to see

that, up to an isomorphism, such a pair can be assumed to be of the form (λ, 1)
where λ ∈ k2 \ k1. Denote the resulting representation by E1(λ). A morphism
f : E1(λ)→ E1(λ

′) is uniquely determined by a matrix ϕ1 =
(

a
c

b
d

)
∈ M2(k) and

ϕ2 ∈ k2 and we have
(bλ′+ d)λ= aλ′+ c.

If λ has degree 4 over k then EndA E1(λ) ∼= k and AutA E1(λ) ∼= k
×. Other-

wise, EndA E1(λ) ∼= L and AutA E1(λ) ∼= L× where [L : k] = 2. It follows
that all E1(λ) with degk λ = 2 are isomorphic, since the stabilizer of such a λ
in GL(2, k) has index q2− q, and that there are q nonisomorphic representations
E1(λ)with degk λ= 4. It is easy to see that for any λ∈k2\k1 we have (q2−1)(q−1)
short exact sequences

0→ P1→ E1(λ)→ S1→ 0

1After the present paper was accepted for publication, we were informed that a proof of
Conjecture 3.4 was announced in [Deng and Ruan 2015].
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and q(q4− 1)(q2− 1)(q − 1) short exact sequences

0→ S2→ E1(λ)→ S⊕2
1 → 0.

As a result, we conclude that

1(E1(λ))=
(q2−1)(q−1)
|AutA E1(λ)|

(
[P1]⊗ [S1] + q(q4− 1)[S2]⊗ [S

⊕2
1 ]

)
,

hence

P1(λ) := E1(λ)−
1

(q+1)|AutA E1(λ)|

∑

µ∈(k2\k1)/GL(2,k)

|AutA E1(µ)|E1(µ)

is primitive, and these are all primitive elements of degree 2α1+α2 in HA . There
is precisely one linear relation among them, namely

∑

λ∈(k2\k1)/GL(2,k)

|AutA E1(λ)|P1(λ)= 0.

In this case, like in §3.2, CA = EA =UA ( HA which supports Conjecture 1.13.
Also, dimQ Prim(HA )2α1+α2 = q and m2α1+α2 = 1.

3.4. Hereditary categories defined by submonoids. The next two examples are
special cases of the following construction. Consider a submonoid Ŵ0 of the
Grothendieck monoid Ŵ of an abelian category A , and define a full subcate-
gory A (Ŵ0) of A whose objects X satisfy |X | ∈ Ŵ0. By construction, A (Ŵ0)

is closed under extensions and hence is exact.
First, let A be the category of k-representations of the quiver 1−→ 2. Then ŴA

is freely generated by αi = |Si | where the Si , i = 1, 2 are simple objects. Fix r > 0.
Let Ŵr = Z≥0(α1+ rα2) and set Br = A (Ŵr ). Let P1 = I2 be the projective cover
of S1 and the injective envelope of S2 in A . Then in HA we have

(3-1) [S1][S2]= [S2][S1]+[P1], [S1][P1]=q[P1][S1], [P1][S2]=q[S2][P1].

Every object in Br is isomorphic to S⊕a
1 ⊕ P⊕b

1 ⊕ S
⊕(ra+(r−1)b)
2 , a, b≥ 0. The only

simple objects in Br , up to an isomorphism, are X1= S1⊕S⊕r
2 and X2= S⊕r−1

2 ⊕P1.
Then [X1] is a nonzero multiple of E1 = [S2]

r [S1], and [X2] of E2 = [S2]
r−1[P1].

In particular, the Ei are primitive elements of HBr
. Using (3-1) we can show that

E1 and E2 satisfy the relation

E2 E1 = qr−1 E1 E2− [r − 1]q E2
2,

where [s]q = 1+ · · · + qs−1. The Grothendieck monoid of Br is generated by
βi = |X i |, i = 1, 2, subject to the relation β1+β2 = 2β1 = 2β2 (thus ŴBr

does not
coincide with Ŵr and is not even a submonoid of ŴA ). It is not hard to check that
E1 and E2 generate HBr

and hence form a basis of Prim(HBr
).
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In this case we have CBr
=UBr

= EBr
= HBr

and so Conjecture 1.13 holds.
A more complicated example is obtained as follows. Let A be the category of

k-representations of the quiver 1→ 0←− 2. As in the previous example, ŴA is
freely generated by αi = |Si |, 0 ≤ i ≤ 2. Let Ŵ◦ = {sα0+ rα1+ rα2 : r, s ∈ Z≥0}

and let B=A (Ŵ◦). Let Pi be the projective cover of Si in A and Ii be its injective
envelope. Thus, I1 = S1, I2 = S2, |I0| = α0+α1+α2, |P1| = α0+α1, P0 = S0 and
|P2| = α2+α0. The simple objects in B are S1⊕ S2 and S0, while the nonsimple
indecomposable objects are

P1⊕ S2, P2⊕ S1, P1⊕ P2, I0.

The Grothendieck monoid of B is freely generated by β1 = |S1⊕ S2| and β0 = |S0|.
Clearly, Y1=[S1⊕S2] and Y0=[S0] are primitive in HB. We also have two linearly
independent primitive elements of degree β1+β0, say

Z1 = [I0] − (q − 1)[P1⊕ S2],

Z2 = [I0] − (q − 1)[P2⊕ S1].

Then

[Z1, Z2] = 0, [Y1, Z1]q = [Y1, Z2]q = 0, [Z1, Y0]q = [Z2, Y0]q = 0,

and
[Y1, [Y1, Y0]]q2 = Y1(Z1+ Z2), [[Y1, Y0], Y0]q , Y0]q2 = 0,

where [a, b]t = ab − tba. Here CB = EB = UB ( HB which again supports
Conjecture 1.13. Also, we have a unique imaginary simple root β1 + β0, and
dimQ Prim(HB)β1+β0 = 2 while mβ1+β0 = 1.

3.5. Sheaves on projective curves. Consider the category A of coherent sheaves
on P1(k) (cf. [Burban and Schiffmann 2012; Kapranov 1997; Baumann and Kassel
2001]). Following [Baumann and Kassel 2001], A is equivalent to the category with
objects (M ′,M ′′, φ) where M ′ is a k[z]-module, M ′′ is a k[z−1]-module and φ is
an isomorphism of k[z, z−1]-modules M ′z→ M ′′

z−1 . In particular, for any n ∈ Z, we

have an indecomposable object O(n)= (k[z], k[z−1], φn) where φn ∈Aut k[z, z−1]

is multiplication by z−n . We have (cf. [Baumann and Kassel 2001])

dimk HomA (O(m),O(n))=max(0, n−m+ 1)

and any nonzero morphism O(m)→O(n) is injective.
Consider now the full subcategory A lc of locally free coherent sheaves on P1.

Any object in Alc is isomorphic to a direct sum of objects of the form O(m) and
these are precisely the indecomposables in Alc. The Grothendieck monoid of Alc

identifies with {(0, 0)}∪Z≥0×Z with |O(n)| = (1, n). Note that Alc has no simple
objects. The category Alc is closed under extensions and hence is exact. Since



304 ARKADY BERENSTEIN AND JACOB GREENSTEIN

A lc is Krull–Schmidt, its Hall algebra has a basis consisting of ordered monomials
on Xm := [O(m)] for any total order on Z. Since m < n implies that O(n)/O(m)
is not an object in Alc, it follows that O(m) is almost simple, hence Xm is primitive
for all m ∈ Z. Thus, HAlc is primitively generated. By [Baumann and Kassel 2001,
Theorem 10(iii)] the defining relations in HAlc are

Xn Xm = qn−m+1 Xm Xn + (q
2− 1)qn−m−1

⌊(n−m)/2⌋∑

a=1

Xm+a Xn−a, m < n.

However, Theorem 2.18 does not apply to the Hall algebra of A or Alc since the
categories A or even Alc are neither profinitary nor cofinitary. For example, every
object O(m)⊕O(n), m > n appears as the middle term of a short exact sequence

0→O(n− a)→O(m)⊕O(n)→O(m+ a)→ 0

for all a ≥ 0.
On the other hand, the Hall algebra of the subcategory of torsion sheaves is

isomorphic to the Hall algebra of the regular subcategory for the valued quiver
1 (2,2)
−−→ 2, or, equivalently, the Kronecker quiver.
It should be noted that the Hall algebra of the subcategory of preprojective

modules B+ in the category B of k-representations of the Kronecker quiver is
isomorphic to the subalgebra of HAlc generated by the Xm for m > 0. Indeed,
ŴB+
∼= Z≥0, and for each k > 0 there is a unique preprojective indecomposable Qk

with |Qk | = k. It is easy to see, by grading considerations, that Qk is primitive.
Then the [Qk], k ≥ 0 can be shown to satisfy exactly the same relations as the Xn

(see [Szántó 2006, Theorem 4.2]). In this case we have

CB+
( UB+

= EB+
= HB+

.

This situation can be generalized as follows. Let X be a smooth projective
curve and let A be the category of coherent sheaves on X . Let A

≥d
lc be the full

subcategory of A whose objects are locally free sheaves of positive rank and of
degree ≥ d. Since the rank and the degree are additive on short exact sequences,
this subcategory is closed under extensions. Since for a coherent sheaf F the
possible degrees of its subsheaves of rank r are bounded above (cf. [Kapranov et al.
2012, Proposition 2.5]), for any fixed pair (r, d) there are finitely many subsheaves
of F of rank r and degree d . We conclude that the category A

≥d
lc is cofinitary and

profinitary, hence Theorem 2.18 applies and the Hall algebra of A
≥d
lc is generated

by its primitive elements. Results on primitive elements in this algebra can be found
in [Kapranov et al. 2012, §3.2]. Note that Alc is Krull–Schmidt, hence its Hall
algebra is PBW on indecomposables.
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3.6. Nonhereditary categories of finite type. Let A be the category of k-represen-
tations of the quiver

1
a12

��

a13

��

2

a24 ��

3

a34��

4

satisfying the relation a24a12 = 0. This category has 14 isomorphism classes of
indecomposable objects, 12 of them having different images in ŴA and the two
remaining ones, namely the projective cover P1 of S1 and the injective envelope I4

of S4, having the same image α1+α2+α3+α4 (as before, αi = |Si |).
Let Si j and Si jk be the unique, up to an isomorphism, indecomposables with
|X | = αi +α j and |X | = αi +α j +αk , respectively. Then [Si j ], [Si jk] ∈ P follows
easily, hence Prim(HA )αi+α j

= 0= Prim(HA )αi+α j+αk
by Proposition 2.20. Let us

show that Prim(HA )α1+α2+α3+α4 = 0; then the only primitive elements are those in
Prim(HA )αi

, 1≤ i ≤ 4.
For every object M with |M | = α1+α2+α3+α4, except P1, I4 and S2⊕ S134,

there exists a pair of objects A, B such that F
A,B
N = 0 unless [N ] = [M]. This

implies that Prim(HA )α1+α2+α3+α4 is contained in the linear span of [P1], [I4] and
[S2⊕ S134]. We have (with h = |k×| = q − 1)

1([S2⊕ S134])= [S134]⊗ [S2] + [S2]⊗ [S134]

+ h
(
[S2⊕ S34]⊗ [S1] + [S2⊕ S4]⊗ [S13]

+ [S34]⊗ [S1⊕ S2] + [S4]⊗ [S2⊕ S13]
)
,

1([I4])= h
(
[S134]⊗ [S2] + [S234]⊗ [S1] + [S24]⊗ [S13]

)

+ h2([S34]⊗ [S1⊕ S2] + [S4]⊗ [S2⊕ S13]
)
,

1([P1])= h
(
[S34]⊗ [S12] + [S2]⊗ [S134] + [S4]⊗ [S123]

)

+ h2([S2⊕ S34]⊗ [S1] + [S2⊕ S4]⊗ [S13]
)
.

It is now clear that Prim(HA )α1+α2+α3+α4 = 0.
Let Ei = [Si ], 1 ≤ i ≤ 4. To write a presentation of HA , it is useful to intro-

duce Z = [P1] + [I4] − (q − 1)[S2⊕ S134]. We obtain

(3-2)

[Ei , [Ei , E j ]]q = 0= [[Ei , E j ], E j ]q

for (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)},

[E2, E3] = 0= [E1, E4],
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and also

[E4, [E1, E2]] = 0, [E1, Z ]q = 0= [Z , E4]q , [E2, Z ] = 0= [E3, Z ],

where
Z = [E1, [E2, [E3, E4]]q ] − [E4, [E3, [E2, E1]]q ].

If we consider the category of representations of the same quiver satisfying
the relation a24a12 = a34a13, its Hall algebra’s subspace of primitive elements is
spanned by the Ei , 1≤ i ≤ 4 which satisfy (3-2), as well as

[E4, [E1, E2]] = 0= [E4, [E1, E3]]

[E1, [E2, [E3, E4]]] = [E4, [E3, [E1, E2]]]

= [E4, [E2, [E1, E3]]] = [E1, [E3, [E2, E4]]].

In both cases CA = EA =UA = HA .

3.7. Special pairs of objects and primitive elements. Before we consider the next
group of examples, we make the following observation. Suppose that we have a pair
of indecomposable objects X ≇Y in A satisfying HomA (X, Y )=0=HomA (Y, X),
EndA X ∼= EndA Y ∼= k is a field and

dimk Ext1
A
(X, Y )= dimk Ext1

A
(Y, X)= 1.

Then there exist unique [ZY X ], [Z XY ] ∈ Iso A such that

Ext1
A
(X, Y )= {[X ⊕ Y ], [Z XY ]}, Ext1

A
(Y, X)= {[X ⊕ Y ], [ZY X ]}.

Let B = A (X, Y ) be the minimal additive full subcategory of A containing X

and Y and closed under extensions. Then in HB we have

1([ZY X ])= (q − 1)[X ]⊗ [Y ],

1([Z XY ])= (q − 1)[Y ]⊗ [X ],

1([X ⊕ Y ])= [X ]⊗ [Y ] + [Y ]⊗ [X ],

and so
[Z XY ] + [ZY X ] − (q − 1)[X ⊕ Y ]

is primitive in HB. Indeed, |Ext1
A
(Y, X)ZY X

| = q − 1= |Ext1
A
(X, Y )Z XY

| and so
by Riedtmann’s formula,

F
X,Y
ZY X
= q − 1= F

Y,X
Z XY
, F

X,Y
X⊕Y = F

Y,X
X⊕Y = 1.

This element need not be primitive in HA but is often useful for computations.
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3.8. A rank 2 tube. Let A = repk(Q) where Q is a valued acyclic quiver of
tame type. Let τ be the Auslander–Reiten translation and consider a regular
component of the Auslander–Reiten quiver which is a tube of rank 2 (that is, for
every indecomposable object M in that component we have τ 2(M) ∼= M). The
smallest example is provided by the quiver

2
��

1

DD

// 3

and the Auslander–Reiten component containing S2.
Let X be a simple object in our tube. Then τ(X) is also simple and both satisfy

EndA X ∼= EndA τ(X)∼= k. Furthermore,

Ext1
A
(X, τ (X))∼= HomA (τ (X), τ (X)), Ext1

A
(τ (X), X)∼= HomA (X, X),

and so X , τ(X) satisfy the assumptions of §3.7. Thus, we obtain a primitive element
of degree |X | + |τ(X)| in the Hall algebra of our tube given by

Z X,τ (X)+ Zτ(X),X − (q − 1)[X ⊕ Y ].

For the quiver shown above, with X = S2 we have

Y = τ(X)=
0

0
��

k

0 CC

1
// k

while

ZY X =
k

0
��

k

1 CC

1
// k

, Z XY =
k

1
��

k

0 CC

1
// k

.

However, in HA we have

1A (ZY X + Z XY − (q − 1)[X ⊕ Y ])= (q − 1)([S3]⊗ [I2] + [P2]⊗ [S1])

where I2 is the injective envelope of S2 and P2 is its projective cover. Other
indecomposable objects with the same image in ŴA are, up to an isomorphism,

E1(λ)=
k

1
��

k

1 CC

λ
// k

, λ ∈ k,

and we have

1(E1(λ))= (q − 1)([S3]⊗ [I2] + [P2]⊗ [S1]).



308 ARKADY BERENSTEIN AND JACOB GREENSTEIN

This gives q − 1 linearly independent primitive elements

P1(λ)= E1(λ)−
1
q

∑

µ∈k

E1(µ)

and one more primitive element

[ZY X ] + [Z XY ] − (q − 1)[X ⊕ Y ] −
1
q

∑

λ∈k

E1(λ).

Thus, in this case mα1+α2+α3 = 2 and dim Prim(HA )α1+α2+α3 = q .
In general, primitive elements in Hall algebras corresponding to nonhomogeneous

tubes were computed in [Hubery 2005]. It should be noted that they are not primitive
in HA but, conjecturally, can be used to construct primitive elements in a way similar
to that shown above.

3.9. Cyclic quivers with relations. Let A be the category of representations of the
quiver

1
a12

// 2
a21

oo

satisfying the relation a21a12 = 0. The three nonsimple indecomposable objects are,
up to an isomorphism,

S12 : k
1

//
k

0
oo , S21 : k

0
//
k

1
oo , S212 : k

( 1
0)

//
k

2

(0 1)
oo .

The object S12 is the projective cover of S1 while S21 is its injective envelope. Thus,

1([S12])= (q − 1)[S2]⊗ [S1], 1([S21])= (q − 1)[S1]⊗ [S2]

and so

(3-3) Z = [S12] + [S21] − (q − 1)[S1⊕ S2]

is the unique, up to a scalar, primitive element in |S1| + |S2|. Let E1 = [S1] and
E2 = [S2]. Then Prim(HA ) is spanned by E1, E2 and Z and

[E1, Z ] = [E2, Z ] = 0

and

[E1, [E1, E2]q ]q−1 = (1− q−1)E1 Z , [E2, [E2, [E2, E1]]q ]q−1 = 0

is a presentation of HA .
Now let A be the category of representations of the same quiver satisfying the

relations a21a12 = 0= a12a21. In this case, we have four indecomposable objects
S1, S2, S12 and S21 which coincide with the ones listed above. Thus, Si j is the
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injective envelope of Si and the projective cover of S j , {i, j} = {1, 2}. As before,
we have a unique nonsimple primitive element given by the same formula (3-3).
The following provides a presentation for HA :

[E1, [E1, E2]q ]q−1 = (1− q−1)E1 Z ,

[E2, [E2, E1]q ]q−1 = (1− q−1)E2 Z ,

[E1, Z ] = [E2, Z ] = 0.

In both examples, we have CA (UA = EA = HA which contributes supporting
evidence for Conjecture 1.13. Note also that in this case mγ = 1 for γ = |S1|+ |S2|.

4. The PBW property of Hall algebras and proof of Theorem 2.4

4.1. Rings filtered and graded by ordered monoids. Let (3,⊳) be an ordered
abelian monoid, as defined in §2.2. We write µE ν if either µ= ν or µ 6= ν and
µ⊳ ν.

Definition 4.1. We say that a unital ring H is 3-filtered if H contains a family of
abelian subgroups HEλ, λ ∈3+, such that for all λ,µ ∈3+,

(i) 1H ∈H
Eλ and λEµ=⇒HEλ ⊂HEµ;

(ii) H=
∑

λ∈3+ H
Eλ;

(iii) HEλ ·HEµ ⊂HE(λ+µ).

This definition is similar to that in [Polishchuk and Positselski 2005, §4.7];
however, we do not require the ring H to admit a Z≥0-grading compatible with 3.

Given λ ∈3+, let

H
⊳λ =

{
R if λ is minimal,∑
µ⊳λH

Eµ if λ is not minimal,

where R=
⋂
λ∈3+ H

Eλ. Note that R is a subring of H and that each HEλ, hence H⊳λ,
is an R-bimodule. We have

(4-1) H
⊳λ ·HEµ ⊂H

⊳(λ+µ), H
Eλ ·H⊳µ ⊂H

⊳(λ+µ).

Define the abelian group gr3H by

gr3H= R⊕
⊕

λ∈3

H
λ, H

λ :=H
Eλ/H⊳λ.

Lemma 4.2. The abelian group gr3H is a 3-graded unital ring with the multipli-

cation given by

(x +H
⊳λ) • (y+H

⊳µ)= x · y+H
⊳(µ+ν), for x ∈HEλ, y ∈HEµ

and r • (x +H⊳λ)= r x +H⊳λ, (x +H⊳λ) • r = xr +H⊳λ for all x ∈HEλ, r ∈ R.
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Proof. By construction, the multiplication by elements of R is well-defined. Us-
ing (4-1), we obtain, for all x ∈HEλ, y ∈HEλ,

(x+H⊳λ)•(y+H⊳µ)⊂ x ·y+HEλ·H⊳µ+H⊳λ·HEµ+H⊳λ·H⊳µ⊂ x ·y+H⊳(λ+µ).

Thus, • is well-defined. The distributivity and the associativity follow from those
in H. Then the ring H is graded by 3 by construction. It remains to observe that
1R is the unity of gr3H. �

Corollary 4.3. For any 3-filtered ring H and any collection λ1, . . . , λk ∈ 3, we

have

H
Eλ1 · · ·HEλk/(HEλ1 · · ·HEλk ∩H⊳(λ1+···+λk))=H

λ1 • · · · •Hλk .

Let 3min be the set of minimal, with respect to the partial order E, elements
of 3+. We say that 3 is optimal if it is generated by 3min.

Recall that an F-algebra A is generated over its subalgebra A0 by a subspace
A1 ⊂ A if A1 is an A0-bimodule and there exists a surjective homomorphism
TA0(A1)→ A which restricts to the identity on A0+ A1. Let (3,E) be an optimal
monoid and for any subset 3◦ of 3min define

H◦ :=
∑

λ∈3◦

H
Eλ, H◦ :=

⊕

λ∈3◦

H
λ.

Lemma 4.4. Let (3,E) be an optimal monoid and let H be a 3-filtered ring. Let

3◦ ⊂ 3min be a generating set for 3 as a monoid. If H◦ generates H then H◦

generates gr3H over R.

Proof. Given x ∈H, define ν(x)=min{k ≥ 0 : x ∈Hk
◦} where H0

◦ = R =H0
◦. Since

gr3H is 3-graded, it is sufficient to prove that for every x̄ ∈Hλ, λ ∈3+ we have
x̄ ∈ H•k◦ for some k. Take x ∈ HEλ \H⊳λ such that x +H⊳λ = x̄ . Let k = ν(x).
Then

x ∈
∑

HEλ1 · · ·HEλk ,

where the sum is taken over all (λ1, . . . , λk) ∈ 3
k
◦ such that λ1 + · · · + λk = λ.

Using Corollary 4.3 we conclude that x̄ ∈
∑

Hλ1 • · · · •Hλk ⊂H◦
•k . �

Proposition 4.5. Suppose that (3,E) is optimal and ⊳ is inductive. Let3◦⊂3min

be a generating set for 3. If H◦ generates gr3H over R then H◦ generates H.

Proof. Define
ν̄(x̄)=min{k ≥ 0 : x̄ ∈H•k◦ }

for all x̄ ∈ gr3H. We prove by induction on f (λ), λ ∈3+ that for every x ∈HEλ,
we have x ∈Hk

◦ for some k ≥ 0. This is sufficient since every x ∈H belongs to the
sum of finitely many HEλ.
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The induction base is obvious since for λ ∈ 3◦ we can take k = 1. Suppose
that x ∈HEλ for some λ ∈3+ \3◦. If x ∈HEµ for some µ⊳ λ then we are done
by the induction hypothesis. Therefore, we may assume that x ∈HEλ \H⊳λ hence
x̄ := x +H⊳λ 6= 0 in gr3H. Let k = ν̄(x̄). Then

x̄ ∈
∑

Hλ1 • · · · •Hλk ,

where the sum is taken over (λ1, . . . , λk) ∈3
k
◦ such that λ1+ · · ·+ λk = λ. Then

x ∈
∑

(λ1,...,λk)∈3
k
◦

λ1+···+λk=λ

H
Eλ1 · · ·HEλk +H

⊳λ ⊂H
k
◦+H

⊳λ.

hence x = x ′ + x ′′ where x ′ ∈ Hk
◦, x ′′ ∈ H⊳λ. Then using the definition of H⊳λ

we can write x ′′ = x ′′1 + · · · + x ′′ℓ , where x ′′j ∈ HEµ j with µ j ⊳ λ, 1 ≤ j ≤ ℓ.
Since f (µ j ) < f (λ), by the induction hypothesis x ′′j ∈H

k′j
◦ for some k ′j ≥ 1 with

1≤ j ≤ ℓ. Then x ∈Hmax(k,k′1,...,k
′
ℓ)

◦ . �

Proposition 4.6 (weak PBW property). Let (3,E) be an optimal monoid, let ⊳ be

inductive and let 3◦ ⊂3min be a subset which generates 3 as a monoid. Let H be

a 3-filtered ring. Suppose that there exists a total order ≤ on 3◦ such that

gr3H=
∑

k≥0

∑

λ1≤···≤λk∈3k
◦

H
λ1 • · · · •Hλk .

Then

H=
∑

k≥0

∑

λ1≤···≤λk∈3k
◦

(HEλ1) · · · (HEλk ).

Proof. The argument is similar to the proof of Proposition 4.5. Let

H
〈k〉 =

∑

(λ1≤···≤λk)∈3k
◦

(HEλ1) · · · (HEλk ),

We prove, by induction on f (λ), λ ∈ 3+ that for all x ∈ HEλ there exists k ≥ 0
such that x ∈H〈k〉. If λ ∈3◦ then x ∈H〈1〉 and we are done. Otherwise,

x +H
⊳λ ∈

∑

(λ1≤···≤λk)∈3
k
◦

λ1+···+λk=λ

H
λ1 • · · · •Hλk ,

which implies that x ∈ H〈k〉 + H⊳λ. Since H⊳λ =
∑

µ⊳λH
Eµ, we then have

x = x ′+ x ′′1 + · · · + x ′′ℓ where x ′ ∈H〈k〉 and x ′′j ∈H
Eµ j for µ j ⊳ λ and 1 ≤ j ≤ ℓ.

Applying the induction hypothesis to the x ′′j we conclude that x ′′j ∈H
〈k j 〉 for some k j ,

1≤ j ≤ ℓ, hence x ∈H〈max(k,k1,...,kℓ)〉. �

We now consider a special case which we will later apply to Hall algebras.
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Corollary 4.7. Let (3,E) be an optimal monoid and let ⊳ be an inductive order.

Let H be a unital F-algebra with a basis {[λ] : λ ∈3} such that [0] = 1H and

[λ] · [µ] ∈ F
×[λ+µ] +

∑

ν⊳λ+µ

F[ν].

for all λ,µ ∈3. Then for any subset 3◦ of 3min which generates 3 as a monoid,
the set [3◦] := {[λ] : λ ∈3◦} generates H as an algebra. Moreover, for any total

order on3◦, the set M([3◦]) of ordered monomials in [3◦] spans H as an F-vector

space. Finally, if 3 is freely generated by 3◦ then M([3◦]) is a basis of H.

Proof. Clearly, H is3-filtered with HEλ=F{[µ] :µEλ}. In particular, R=F·[0]=F.
Then gr3H has a basis {[λ] : λ ∈3} and

(4-2) [λ] · [µ] ∈ F
×[λ+µ],

hence [λ+µ] ∈ F×[λ] · [µ].
Let ≤ be any total order on 3◦. Given λ ∈3, we can write λ = λ1+ · · · + λr

with λi ∈3◦, 1≤ i ≤ r and λ1 ≤ · · · ≤ λr . By (4-2) we have [λ] ∈ F×[λ1] · · · [λr ].
Taking into account that HEλ = F+F[λ] for λ ∈3◦, we see that all assumptions of
Proposition 4.6 are satisfied. �

4.2. Proof of Theorem 2.2. The key ingredient of our argument is the following
result.

Proposition 4.8. Let A be a Hom-finite exact category. Then for any short exact

sequence

(4-3) M− //
f−

// M
f+

// // M+,

we have

(4-4) e([M])≤ e([M+⊕M−]),

where e([X ]) := # EndA X for [X ] ∈ Iso A . Moreover, if (4-4) is an equality

then (4-3) splits.

Proof. We need to prove that the following inequalities hold for every N in A :

(4-5)
# HomA (N ,M)≤ # Hom(N ,M+⊕M−),

# HomA (M, N )≤ # Hom(M+⊕M−, N ).

To prove the first inequality, recall (see, e.g., [Buchsbaum 1959; Yoneda 1954])
that for every N in A , (4-3) induces a long exact sequence of finite abelian groups

0→ HomA (N ,M−)→ HomA (N ,M)→ HomA (N ,M+)
δ∗
−→

Ext1
A
(N ,M−)−→ Ext1

A
(N ,M)−→ Ext1

A
(N ,M+)→ · · · .
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Truncating this sequence yields an exact sequence

(4-6) 0→ HomA (N ,M−)→ HomA (N ,M)→ HomA (N ,M+)
δ∗
−→ Im δ∗→ 0.

Then, computing the multiplicative Euler characteristic of (4-6), we obtain

(4-7) # HomA (N ,M−) · # HomA (N ,M+)= # HomA (N ,M) · # Im δ∗

≥ # HomA (N ,M),

which immediately yields the first inequality in (4-5).
To prove the second inequality, recall that for all N in A , (4-3) induces a long

exact sequence of abelian finite groups

0→ HomA (M
+, N )→ HomA (M, N )→ HomA (M

−, N )
δ∗

−→

Ext1
A
(M+, N )−→ Ext1

A
(M, N )−→ Ext1

A
(M−, N )→ · · · .

Similarly, truncating this sequence yields

0→ HomA (M
+, N )→ HomA (M, N )→ HomA (M

−, N )
δ∗

−→ Im δ∗→ 0,

and the argument identical to the above gives

# HomA (M, N )≤ # HomA (M
+, N ) · # HomA (M

−, N )

which is equivalent to the second inequality in (4-5).
Combining the first inequality in (4-5) with N = M+ ⊕ M− and the second

inequality in (4-5) with N = M we obtain

e([M])= # EndA M ≤ # HomA (M
+⊕M−,M)

≤ # EndA M+⊕M− = e([M+⊕M−]).

To prove the last assertion, it suffices to show, in view of the above chain of
inequalities, that # HomA (M

+⊕M−,M)= # EndA M+⊕M− implies that (4-3)
splits. Indeed, using the additivity of HomA in the first argument we rewrite the
latter equality as

# HomA (M
+,M) · # HomA (M

−,M)

= # HomA (M
+,M+⊕M−) · # HomA (M

−,M+⊕M−).

This and (4-5) taken with N = M− imply

# HomA (M
+,M)≥ # HomA (M

+,M+⊕M−),

which, together with (4-5) with N = M+, yield

# HomA (M
+,M)= # HomA (M

+,M+⊕M−).
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The last equality and (4-7) taken with N = M+ imply that E0 = Im δ∗ = 0, hence
the natural map HomA (M

+,M)→ EndA M+ is surjective. Therefore, there exists
g ∈ HomA (M

+,M) such that f+ ◦ g = 1M+ , hence (4-3) splits. �

Recall that ⊳ is the preorder defined as the transitive closure of the relation

[M]⊳ [M−⊕M+] ⇐⇒ ∃ a nonsplit short exact sequence M− // // M // // M+

(cf. §2.2). By Proposition 4.8, ⊳ is an inductive preorder with the function mapping
[X ] to e([X ]), hence is an inductive partial order.

It remains to prove that the order ⊳ is compatible with the addition in Iso A .
Indeed, note that for any X in A , the short exact sequence (4-3) yields a short exact
sequence

(4-8) M−⊕ X //

(
f− 0
0 1X

)

// M ⊕ X
( f+,0)

// // M+,

hence [M⊕ X ]E [M−⊕M+⊕ X ]. If [M]⊳ [M−⊕M+], that is, (4-3) is nonsplit,
then clearly (4-8) is also nonsplit, so [M⊕ X ]⊳ [M−⊕M+⊕ X ]. Taking transitive
closure implies that [M⊕X ]⊳[N⊕X ] for all [M], [N ] ∈ Iso A such that [M]⊳[N ]
and for all [X ] ∈ Iso A . This completes the proof of Theorem 2.2. �

4.3. Proof of Theorem 2.4. We are now going to apply the machinery developed
in §4.1. We begin by proving that (Iso A ,⊳) is optimal.

Lemma 4.9. Let A be an exact Hom-finite category. Then every object X in A is

a finite direct sum of indecomposable objects and the number of indecomposable

summands of X is bounded above by # EndA X.

Proof. Let X be a nonzero object in A . Write X = X1⊕ · · ·⊕ Xs for some s > 0,
where all the X i are nonzero. Then # EndA X ≥

∑s
j=1 # EndA X i ≥ s. Let k be

the maximal positive integer s such that X can be written as a direct sum of s

nonzero objects. The maximality of k immediately implies that each summand is
indecomposable. �

Remark 4.10. It should be noted that the Krull–Schmidt theorem does not have
to hold in this generality. For example, the full subcategory of the category of
k-representations of the quiver 1→ 0← 2, with the dimension vector satisfying
dimk V1 = dimk V2, is not Krull–Schmidt.

Corollary 4.11. The monoid Iso A is generated by Ind A and is optimal with

respect to E.

Proof. The first assertion is immediate from the lemma. To prove the second,
observe that if [N ] is not minimal, then [M]⊳ [N ] for some [M] ∈ Iso A and so
N is decomposable. Thus, every [X ] ∈ Ind A is minimal with respect to the partial
order E, hence Iso A is generated by its minimal elements. �
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Proof of Theorem 2.4. Since (Iso A ,⊳) is optimal and ⊳ is inductive, the algebra
HA satisfies the assumptions of Corollary 4.7 with 3 = Iso A and 3◦ = Ind A .
Therefore, for any total order on Ind A , ordered monomials on Ind A span HA .
Finally, if A is Krull–Schmidt, Iso A is freely generated by Ind A , hence ordered
monomials on Ind A form a basis of HA . �

5. The Grothendieck monoid of a profinitary category

5.1. Almost simple objects. We will repeatedly need the following obvious de-
scription of the defining relation of the Grothendieck monoid.

Lemma 5.1. Suppose that [X ] 6= [Y ] ∈ (Iso A )+ and |X | = |Y |. Then there exist

[X i ]∈ (Iso A )+, 0≤ i ≤ r and [Ai ], [Bi ]∈ (Iso A )+, 1≤ i ≤ r such that [X0]= [X ],
[Xr ] = [Y ] and [X i−1], [X i ] ∈ Ext1

A
(Ai , Bi ), 1≤ i ≤ r .

Definition 5.2. We say that an object X 6= 0 in an exact category A is almost

simple if there is no nontrivial short exact sequence Y  X ։ Z (or, equivalently,
[X ]∈Ext1

A
(A, B)=⇒{[A], [B]}={[X ], [0]}) and simple if it has no proper nonzero

subobjects.

Clearly, in an abelian category these notions coincide. Note that an almost simple
object is always indecomposable. Let SA ⊂ Iso A be the set of isomorphism classes
of almost simple objects. The definition (2-3) of comultiplication 1 implies that

F AB
X =

{
1 if {[A], [B]} = {[X ], [0]},

0 otherwise,

hence

(5-1) SA ⊂ Prim(HA ).

Let Ŵ be an abelian monoid. Observe that the elements of Ŵ+ \ (Ŵ++Ŵ+) are
precisely the minimal elements of Ŵ+ in the preorder � (cf. §2.4).

Lemma 5.3. Let A be an exact category. Then the restriction of the canonical

homomorphism of monoids φA : Iso A → ŴA to SA is a bijection

(5-2) SA → Ŵ+
A
\ (Ŵ+

A
+Ŵ+

A
).

In particular, if A is Hom-finite, then (HA )γ equals Prim(HA )γ and is one-

dimensional for all γ ∈ Ŵ+
A
\ (Ŵ+

A
+Ŵ+

A
).

Proof. Lemma 5.1 implies that for [X ] ∈ SA , we have |X | = |Y | if and only
if [X ] = [Y ]. This shows that the restriction of φA to SA is injective. Furthermore,
if |X | = |Y |+ |Z | = |Y ⊕ Z | for some nonzero [Y ], [Z ] then [X ] = [Y ⊕ Z ], which
is a contradiction since X is indecomposable. Thus, ImφA ⊂ Ŵ

+
A
\ (Ŵ+

A
+Ŵ+

A
) and

so the map in (5-2) is well-defined. Finally, if [X ] /∈ SA , then [X ] ∈ Ext1
A
(A, B)
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with |A|, |B| ∈ Ŵ+
A

, hence |X | = |A| + |B| ∈ Ŵ+
A
+ Ŵ+

A
. Thus, the preimage of

Ŵ+
A
\ (Ŵ+

A
+Ŵ+

A
) is contained in SA hence φA |SA

is surjective.
In particular, dimQ(HA )γ = # Iso Aγ = 1 for all γ ∈ Ŵ+

A
\ (Ŵ+

A
+ Ŵ+

A
). The

equality (HA )γ = Prim(HA )γ now follows from (5-1). �

Remark 5.4. Note that we can have dimQ(HA )γ = 1 even for γ ∈ Ŵ++Ŵ+. For
example, if S, S′ are simple objects with Ext1

A
(S, S′) = Ext1

A
(S′, S) = 0, then

(HA )|S|+|S′| =Q[S⊕ S′] =Q[S][S′]. However, in that case Prim(HA )γ = 0.

5.2. Proof of Proposition 2.12. Let

Ŵ
f
A
= {γ ∈ ŴA : # Iso Aγ <∞}.

Thus, A is profinitary if ŴA =Ŵ
f
A

. Note, however, that Ŵ f
A

need not be a submonoid
of ŴA . Since # Iso Aγ = 1 for γ ∈ Ŵ+

A
minimal, all minimal elements of ŴA are

contained in Ŵ f
A

. Given γ ∈ Ŵ f
A

, let sγ =max[X ]∈Iso Aγ
# EndA X .

Proposition 2.12 is a special case of the following proposition.

Proposition 5.5. Let A be a Hom-finite exact category. Then the restriction of the

preorder � to Ŵ f
A

is a partial order. Moreover, Ŵ f
A

is contained in the submonoid

of ŴA generated by its minimal elements.

Proof. We need the following lemma.

Lemma 5.6. Let γ ∈ Ŵ
f
A
\ {0}. Then γ can be written as a sum of finitely many

minimal elements of Ŵ+
A

and the number of summands in any such presentation is

bounded by sγ .

Proof. The proof is almost identical to that of Lemma 4.9. Write γ = γ1+ · · ·+ γs

for some γi ∈ Ŵ
+
A

. Take X i ∈A with |X i | = γi and let X = X1⊕· · ·⊕ Xs . Then s

cannot exceed the maximal possible number of indecomposable summands of X

which, by Lemma 5.3, is bounded above by # EndA X ≤ sγ . Let k be the maximal
integer s such that γ can be written as a sum of s elements of Ŵ+

A
. Then the

maximality of k implies that each summand is minimal. �

It follows from Lemma 5.6 that for α ∈ Ŵ f
A

, α = α + β implies that β = 0.
Then α+β + γ = α implies that β + γ = 0, hence β = γ = 0 since 0 is the only
invertible element of ŴA . The first assertion of the proposition now follows from
Lemma 2.10, while the second is immediate from Lemma 5.6. �

5.3. Proofs of Theorems 1.4, 2.14 and Corollary 1.5. We begin with Theorem 1.4.
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Proof of Theorem 1.4. Since [A⊕ B] ∈ Ext1
A
(A, B), Definition 2.11 implies that a

profinitary category A is cofinitary if and only if for any γ ∈ ŴA the set

Eγ := {([A], [B]) ∈ Iso A × Iso A : |A| + |B| = γ }

=
⋃

[X ]∈Iso A : |X |=γ

{([A], [B]) ∈ Iso A × Iso A : [X ] ∈ Ext1
A
(A, B)}

is finite. On the other hand,

Eγ =
⋃

α,β∈ŴA :α+β=γ

Iso Aα × Iso Aβ .

Therefore, Eγ is finite if and only if {(α, β) ∈ ŴA ×ŴA : α+β = γ } is finite. �

Now we proceed to prove Theorem 2.14. Given an object X ∈ A , an admissible
flag on X is a sequence of objects X0 = X , X1, . . . , Xs = 0 together with short
exact sequences X i

// // X i−1 // // Yi , 1≤ i ≤ s. An admissible flag is said to be a
composition series if the Yi are almost simple for all 1≤ i ≤ s.

Proposition 5.7. Let A be a profinitary exact category. Suppose that γ ∈ ŴA \ {0}.
Then X ∈A with |X | = γ admits a composition series. Moreover, the length of any

composition series of X is bounded above by sγ .

Proof. We use induction on the partially ordered set (ŴA ,�) (see Proposition 5.5).
If γ ∈ ŴA is minimal then X with |X | = γ is almost simple by (5-2), and hence
admits a composition series. Suppose the assertion is established for all γ ′ ≺ γ
and γ is not minimal. Then X with |X |=γ is not almost simple, hence there exists a
short exact sequence X ′′ // // X

h // // X ′ with |X ′|, |X ′′| ≺ |X |. By the induction
hypothesis there exists a short exact sequence Y ′′ // // X ′

g
// // Y with Y almost

simple. Let Y1 = Y . Then we have a short exact sequence

X1 // // X
gh

// // Y1

where |X1| ≺ |X |. Therefore, X1 admits a composition series by the induction
hypothesis, which establishes the first assertion of the lemma. The second assertion
is immediate from Lemma 5.6 since |X | = |Y1| + · · · + |Ys |. �

Proof of Theorem 2.14. If A is profinitary and abelian, then the composition series
from Proposition 5.7 is a composition series in the usual sense since all almost
simple objects are simple. Theorem 2.14 is now immediate. �

Proof of Corollary 1.5. Since a full exact subcategory of a cofinitary exact category
is also cofinitary, to prove (a), it suffices to consider the case when A is a profinitary
abelian category. Note that the uniqueness of composition factors in an abelian
category with the finite length property (see, e.g., [Joyce 2006, Theorem 2.7])
implies that ŴA is freely generated by its minimal elements. It remains to apply
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Theorem 1.4. To prove (b), note that by Lemma 5.6, ŴA is finitely generated
if and only if it contains finitely many minimal elements γ1, . . . , γn . Again by
Lemma 5.6, the number of decompositions of γ ∈ ŴA as γ =

∑n
i=1 ciγi , ci ∈ Z≥0

is bounded above by
(

sγ+n
n

)
, which is the number of n-tuples (c1, . . . , cn) ∈ Z

n
≥0

with
∑n

i=1 ci ≤ sγ . The assertion is now immediate from Theorem 1.4. �

6. Coalgebras in tensor categories and proof of the main theorem

6.1. Quasiprimitive elements and coideals. Let F be a field of characteristic zero.
Let H0 be a bialgebra over F and let C be the category of left H0-comodules.
Given V ∈ C , we denote the left coaction of H0 by δV : V → H0⊗ V and, using
Sweedler-like notation, write

δV (v)= v
(−1)⊗ v(0), v ∈ V .

The category C is an F-linear tensor category with the unit object F, the tensor
product A⊗B= A⊗F B of objects A, B ∈C acquiring a left H0-comodule structure
via

δA⊗B(a⊗ b)= a(−1)b(−1)⊗ a(0)⊗ b(0),

for all a ∈ A, b ∈ B.
By definition, a coalgebra in C is an object C ∈ C together with morphisms

1 ∈ HomC (C,C ⊗ C) and ε ∈ HomC (C, F) satisfying the usual axioms. For
any coalgebra C in C , denote by C0 = CoradC (C) the sum of all simple finite
dimensional subcoalgebras of C in C and refer to it as the coradical of C in C .
Clearly, C0 is a subcoalgebra of C in C . Denote also

C1 = QPrimC (C)=1
−1(C ⊗C0+C0⊗C)

and refer to it as the quasiprimitive set of C . Then C1 is a C -subobject of C . It is
well-known (see [Sweedler 1969, Corollary 9.1.7]) that

1(C1)⊂ C1⊗C0+C0⊗C1.

In particular, if C0 = F then QPrimC (C)= F⊕Prim(C). More generally, we have
the following lemma which extends a well-known result (cf. [Montgomery 1993,
Theorem 5.2.2; Sweedler 1969, §9.1]).

Lemma 6.1. Any coalgebra C in C admits an increasing coradical filtration by

subcoalgebras Ck ⊂ C in C , k ≥ 0, defined by C0 = CoradC (C), C1 =QPrimC (C)

and

Ck =1
−1(C ⊗Ck−1+C0⊗C)

for k > 1. Moreover, 1(Ck)=
∑k

i=0 Ci ⊗Ck−i . �
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A coideal in C is a C -subobject I of C satisfying

1(I )⊂ C ⊗ I + I ⊗C.

Proposition 6.2. Let C be a coalgebra in C . Then for any nonzero coideal I in C

one has

I ∩QPrimC (C) 6= {0}.

Proof. For each k ≥ 0 denote Ik := I ∩Ck . If I0 6= {0}, then we are done since
I0 ⊂ C0 ⊂ C1. Assume that I0 = 0. Since C0 ⊂ C1 ⊂ · · · is a filtration, there exists
a unique k ≥ 1 such that Ik−1 = 0 and Ik 6= 0. Then

1(Ik)⊂ C0⊗ Ik + Ik ⊗C0.

Since C1 is the maximal subobject V of C with the property1(V )⊂C0⊗V+V⊗C0,
it follows that Ik ⊂C1 and so k = 1. Thus, I1 = I ∩C1 = I ∩QPrimC (C) 6= {0}. �

6.2. Invariant pairing. Given two objects A, B in C , a pairing 〈 · , · 〉 : A⊗ B→ F

is called H0-invariant if

a(−1)〈a(0), b〉 = b(−1)〈a, b(0)〉

for all a ∈ A, b ∈ B.
The following example plays a fundamental role in the sequel.

Example 6.3. Let Ŵ be an abelian monoid. Its monoidal algebra H0 = FŴ has a
natural coalgebra structure, with the elements of Ŵ being group-like. Then a left
H0-comodule V is in fact a Ŵ-graded vector space, since V =

⊕
γ∈Ŵ Vγ where

Vγ = {v ∈ V : δV (v)= γ ⊗ v}. It is easy to see that a pairing 〈 · , · 〉 : A⊗ B→ F is
H0-invariant if and only if 〈Aγ , Bγ ′〉 = 0, γ 6= γ ′ ∈ Ŵ.

Lemma 6.4. Let 〈 · , · 〉 : A⊗ B→ F be an H0-invariant pairing between objects A

and B of C . Then for any subobject A0 of A in C , its right orthogonal complement

A0
⊥ = {b ∈ B : 〈A0, b〉 = 0}

is a subobject of B in C . Likewise, for any subobject B0 of B in C , its left orthogonal

complement
⊥B0 = {a ∈ A : 〈a, B0〉 = 0}

is a subobject of A in C .

Proof. We prove the first assertion only, the argument for the second one being
similar. Given b ∈ A0

⊥, write δB(b)=
∑

i hi ⊗ bi where the hi ∈ H0 are linearly
independent and bi ∈ B. Since the pairing is invariant, we have for all a ∈ A0

∑

i

hi 〈a, bi 〉 = a(−1)〈a(0), b〉 = 0
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since δA(a)=a(−1)⊗a(0) ∈ H0⊗A0. Therefore, 〈a, bi 〉= 0 for all i , hence bi ∈ A0
⊥

and so δB(b) ∈ H0⊗ A0
⊥. �

We now prove that an H0-invariant pairing between nonisomorphic simple objects
in C must be identically zero. For that purpose, it will be convenient to introduce
the dual picture. Let H∗0 = HomF(H0, F). Then H∗0 is an associative F-algebra
via f · g = ( f ⊗ g) ◦1H0 for all f, g ∈ H∗0 , where 1H0 : H0→ H0 ⊗ H0 is the
comultiplication on H0 (hereafter we identify F⊗F V with V via the canonical
isomorphism). Then a left H0-comodule V is naturally a left H∗0 -module via
f ⊲v = ( f ⊗1)δV (v), for all f ∈ H∗0 and v ∈ V . This yields a fully faithful functor
from the category C to the category of left H∗0 -modules. In particular, V ∼= V ′

in C if and only if they are isomorphic as H∗0 -modules. If 〈 · , · 〉 : A⊗ B→ F is an
H0-invariant pairing, then for all a ∈ A, b ∈ B and f ∈ H∗0 we have

(6-1) 〈 f ⊲ a, b〉 = f (a(−1))〈a(0), b〉

= f (b(−1))〈a, b(0)〉 = 〈a, f ⊲ b〉.

Finally, note that V is a simple H0-comodule if and only if it is simple as a left
H∗0 -module.

Proposition 6.5. Let A and B be simple objects in C . Let 〈 · , · 〉 : A⊗ B→ F be a

nonzero H0-invariant pairing. Then A ∼= B in C .

Proof. Given a ∈ A, let Ja = AnnH∗0
a = { f ∈ H∗0 : f ⊲ a = 0}. We need the

following technical result.

Lemma 6.6. Let A, B be objects in C and let 〈·, · 〉 : A⊗B→ F be an H0-invariant

pairing such that ⊥B = 0. If B is simple, then Ja ⊂ AnnH∗0
B for all a ∈ A, a 6= 0.

Moreover, if A is also simple, then Ja = AnnH∗0
A.

Proof. Let a ∈ A, a 6= 0 and take f ∈ Ja . It follows from (6-1) that for all b ∈ B,
0=〈 f ⊲a, b〉= 〈a, f ⊲b〉. Thus, 〈a, Ja⊲B〉= 0, hence a ∈⊥(Ja⊲B). Since ⊥B= 0,
this implies that Ja ⊲ B is a proper H∗0 -submodule of B, hence Ja ⊲ B = 0 by the
simplicity of B.

Suppose now that A is also simple. Then Ja is a maximal left ideal for all a 6= 0.
If Ja 6= Ja′ for some a, a′∈ A then Ja+ Ja′=H∗0 ∋1, hence B=0, which contradicts
the simplicity of B. Thus, Ja = Ja′ for all a, a′ ∈ A and so

AnnH∗0
A =

⋂

a′∈A

Ja′ = Ja. �

Since A, B are simple and the form 〈 · , · 〉 is H0-invariant and nonzero, ⊥B = 0
by Lemma 6.4. Then AnnH∗0

A⊂AnnH∗0
B by Lemma 6.6. Let R = H∗0 /AnnH∗0

A.
Then both A and B are R-modules in a natural way and are simple as such. Moreover,
A ∼= B as H0-comodules if and only if A ∼= B as R-modules. Furthermore, by
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definition of R and Lemma 6.6 every nonzero element of R acts on A by an injective
F-linear endomorphism. Since A is a simple H0-comodule, it is finite dimensional
(see, e.g., [Montgomery 1993, Corollary 5.1.2]). Thus, each nonzero element of R

acts on A by an F-automorphism. This implies that R is a division algebra, hence
admits a unique, up to an isomorphism, simple finite dimensional module, and so
A ∼= B as R-modules. Therefore, A ∼= B as objects in C . �

Remark 6.7. It can be shown that R is a field, since for all f, g ∈ H∗0 we have

〈 f g ⊲ a, b〉 = 〈g ⊲ a, f ⊲ b〉 = 〈a, (g f ) ⊲ b〉 = 〈g f ⊲ a, b〉.

Hence, since both A and B are simple, f g− g f ∈ AnnH0
∗ A.

Denote by C
f the full subcategory of C whose objects are direct sums of

simple comodules with finite multiplicities. Thus, an object V of C
f can be

written as V =
⊕

i∈I Vi where each Vi is a finite direct sum of isomorphic simple
subcomodules of V , and hence by [Montgomery 1995] is finite dimensional.

Lemma 6.8. Suppose that V =
⊕

i∈I Vi ∈ C
f admits an H0-invariant bilinear

form 〈 · , · 〉 : V ⊗ V → F. Then for any subobject U of V in C ,

U⊥ ⊃
⊕

i∈I

U⊥i ,

where U⊥i = {v ∈ Vi : 〈U ∩ Vi , v〉 = 0}.

Proof. By Proposition 6.5, 〈Vi , V j 〉=0 if i 6= j . The assertion is now immediate. �

6.3. Quasiprimitive generators.

Definition 6.9. Let (A, · , 1) be a unital algebra and (B,1, ε) be a coalgebra in C .
We say that an H0-invariant pairing 〈 · , · 〉 : A⊗ B→ F is compatible with (A, · , 1)
and (B,1, ε) if

〈a · a′, b〉 = 〈a⊗ a′,1(b)〉, ε(b)= 〈1, b〉

for all a, a′ ∈ A, b ∈ B, where 〈 · , · 〉 : (A⊗ A)⊗ (B⊗ B)→ F is defined by

〈a⊗ a′, b⊗ b′〉 = 〈a, b′〉〈a′, b〉.

The main ingredient in our proof of Theorem 2.18 is the following result.

Theorem 6.10. Let A be an algebra (denoted by (A, · , 1)) and a coalgebra (de-

noted by (A,1, ε)) in C
f . Let 〈 · , · 〉 : A⊗ A→ F be a compatible pairing between

(A, · , 1) and (A,1, ε) satisfying 〈a, a〉 6= 0 for all a ∈ A \ {0}. Then (A, · , 1) is

generated by A1 = QPrim(A,1, ε).
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Proof. Let B be a C -subalgebra of A. Since A ∈ C
f and B is its subobject,

A=
⊕

i Ai and B =
⊕

i Bi where Bi = Ai ∩ B. By Proposition 6.5, 〈Ai , A j 〉 = 0
for all i 6= j . We claim that B⊥ is a coideal of A in C .

Indeed, for any i , j we have

{0} = 〈Bi · B j , B⊥〉 = 〈Bi ⊗ B j ,1(B
⊥)〉.

Thus,1(B⊥)⊂
⊕

i, j (Bi⊗B j )
⊥ where (Bi⊗B j )

⊥={z∈ A j⊗Ai : 〈Bi⊗B j , z〉=0}.
We need the following simple fact from linear algebra.

Lemma 6.11. Let U , V be finite dimensional vector spaces over F and U ′ ⊂ U ,
V ′ ⊂ V their subspaces. Then:

(a) U ′⊗ V ′ = (U ′⊗ V )∩ (U ⊗ V ′);

(b) For any subspaces V1, V2 of V ,

(V1 ∩ V2)
⊥ = V⊥1 + V⊥2 , V⊥1 ∩ V⊥2 = (V1+ V2)

⊥,

where W⊥ = { f ∈ V ∗ : f (W )= 0} for any subspace W ⊂ V ;

(c) (U ′⊗V ′)⊥ = V ′⊥⊗U∗+V ∗⊗U ′⊥, where we canonically identify (U ⊗V )∗

with V ∗⊗U∗.

Proof. Parts (a) and (b) are easily checked. For (c), note that (U ′⊗V )⊥= V ∗⊗U ′⊥

and (U ⊗ V ′)⊥ = V ′⊥⊗U∗. Hence by parts (a), and (b)

(U ′⊗ V ′)⊥ = ((U ′⊗ V )∩ (U ⊗ V ′))⊥

= (U ′⊗ V )⊥+ (U ⊗ V ′)⊥ = V ∗⊗U ′⊥+ V ′⊥⊗U∗. �

Since Ak is finite dimensional and the restriction of 〈·, · 〉 to Ak is nondegenerate,
we naturally identify A∗k with Ak via a 7→ fa , where fa(a

′)=〈a′, a〉. Then, applying
Lemma 6.11(c) with U = Ai , V = A j , U ′ = Bi and V ′ = B j , we obtain

(6-2) (Bi ⊗ B j )
⊥ = A j ⊗ B⊥i + B⊥j ⊗ Ai ,

where B⊥k = {a ∈ Ak : 〈Bk, a〉 = 0}. We conclude that

1(B⊥)⊂
⊕

i, j

(Bi ⊗ B j )
⊥ ⊂ A⊗ B⊥+ B⊥⊗ A.

To complete the proof of the claim, observe that ε(B⊥)= 〈1, B⊥〉 = 0.
Now we complete the proof of Theorem 6.10. Let B be the subalgebra of A

in C generated by the subobject A1 = QPrimC (A) of A, and suppose that B 6= A.
Then, by the above claim, the orthogonal complement I = B⊥ is a coideal of A

in C . By Lemma 6.8, I ⊃
⊕

i B⊥i 6= {0} because Bi 6= Ai for some i . Therefore,
I 6= {0} and so I ∩ A1 6= {0} by Proposition 6.2. Yet I ∩ B = {0} since 〈x, x〉 6= 0
for all x ∈ A, hence I ∩ A1 = {0} and we obtain a contradiction. Thus, B = A. �
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6.4. Proof of Theorems 1.2 and 2.18. Let F = Q and define Green’s pairing
〈 · , · 〉 : HA ⊗ HA →Q (cf. [Green 1995]) by

(6-3) 〈[A], [B]〉 =
δ[A],[B]

|AutA (A)|

for any [A], [B] ∈ Iso A .
Clearly, this pairing is positive definite and symmetric. We extend 〈 · , · 〉 to a

symmetric bilinear form on HA ⊗ HA by

〈[A]⊗ [B], [C]⊗ [D]〉 = 〈[A], [D]〉〈[B], [C]〉

for any [A], [B], [C], [D] ∈ Iso A .

Lemma 6.12. Let A be a cofinitary category. Then (6-3) is a compatible pairing

(in the sense of Definition 6.9) between the Hall algebra HA and the coalgebra

(HA ,1, ε).

Proof. We abbreviate Ŵ = ŴA and let C = CŴ be the category of Ŵ-graded vector
spaces or, equivalently, QŴ-comodules (cf. Example 6.3). It follows immediately
from Example 6.3 that the pairing (6-3) is QŴ-invariant.

It remains to prove the compatibility in the sense of Definition 6.9, that is,

〈[A] · [B], [C]〉 = 〈[A]⊗ [B],1([C])〉

for all [A], [B], [C] ∈ Iso A . Indeed,

〈[A] · [B], [C]〉 =
FC

A,B

|AutA (C)|
=

F
B,A

C

|AutA (B)| |AutA (A)|

=
∑

[A′],[B ′]

F
B ′,A′

C 〈[A], [A′]〉〈[B], [B ′]〉

=
∑

[B ′],[A′]

F
B ′,A′

C 〈[A]⊗ [B], [B ′]⊗ [A′]〉

= 〈[A]⊗ [B],1([C])〉. �

Proof of Theorems 1.2 and 2.18. Suppose that A is profinitary and cofinitary. Since
for each γ ∈ Ŵ = ŴA , (HA )γ is finite dimensional and hence is a finite direct sum
of isomorphic simple left QŴ-comodules, HA ∈ C

f
Ŵ . Then, clearly, A = HA and

the pairing (6-3) satisfy all the assumptions of Theorem 6.10. Therefore, HA is
generated by A1 = QPrim(HA ,1, ε) in CŴ.

Our next step is to show that A1=Prim(HA ,1, ε), which gives the first assertion
of Main Theorem 1.2. For that, we need the following result.

Lemma 6.13. Let C =
⊕

γ∈Ŵ Cγ be a coalgebra in the category CŴ. Assume that

for every γ ∈ Ŵ+, there exists hγ ∈ Z>0 such that γ cannot be written as a sum of
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more than hγ elements of Ŵ+. Then CoradC (C)⊂ C0 where 0 is the zero element

of Ŵ.

Proof. First, observe that 0 is the only invertible element of Ŵ, since otherwise
0= α+β for some α, β ∈ Ŵ+ and so α = (n+1)α+nβ for any n ∈ Z>0, which is
a contradiction. Since for any subcoalgebra D =

⊕
γ∈Ŵ Dγ of C in CŴ

1(Dγ ) ⊂
⊕

γ ′,γ ′′∈Ŵ : γ=γ ′+γ ′′

Dγ ′ ⊗ Dγ ′′,

it follows that 1(D0)⊂ D0⊗ D0. Therefore, D0 is a subcoalgebra of D.
We claim that D = 0 if and only if D0 = 0. Indeed, if D0 = 0, since for the k-th

iterated comultiplication 1k we have

1k(Dγ ) ⊂
∑

γ0,...,γk∈Ŵ : γ0+···+γk=γ

Dγ0 ⊗ · · ·⊗ Dγk
,

it follows that 1hγ (Dγ )= 0, since then in each summand we must have γi = 0 for
some 0≤ i ≤ hγ by the assumptions of the lemma. This implies that Dγ = 0 for
all γ ∈ Ŵ, hence D = 0. The converse is obvious.

Thus, if D is a simple subcoalgebra of C , then D0 6= 0 and so D = D0. �

By Lemma 5.6, ŴA satisfies the assumptions of Lemma 6.13, with hγ ≤ sγ ,
hence CoradC (HA ) = Q and QPrimC (HA ) = Q⊕ Prim(HA ). This proves the
first assertion of Main Theorem 1.2. It remains to prove the second assertion (and
thus complete the proof of Theorem 2.18), namely, that Prim(HA ) is a minimal
generating space of HA . We need the following result.

Lemma 6.14. Suppose A is both a unital algebra and coalgebra with1(1)= 1⊗1.

Assume that A admits a compatible pairing 〈 · , · 〉 : A⊗ A→ F, in the sense of

Definition 6.9, such that 〈a, 1〉 = ε(a) for all a ∈ A. Let V = Prim(A). Then 1 /∈ V

and
〈∑

k≥2 V k, F⊕ V
〉
= 0.

Proof. Since v ∈ V is primitive, ε(v)= 0. Furthermore, we show that ε : A→ F is
a homomorphism of algebras. Indeed, given a, a′ ∈ A, we have

ε(aa′)= 〈aa′, 1〉 = 〈a⊗ a′,1(1)〉 = 〈a⊗ a′, 1⊗ 1〉 = 〈a′, 1〉〈a, 1〉 = ε(a)ε(a′).

This immediately implies that ε(V ℓ)= 0 and 〈V ℓ, V 0〉 = 0, ℓ> 0. Finally, let v ∈ V

and x, y ∈ ker ε. Then

(6-4) 〈xy, v〉=〈x⊗y,1(v)〉=〈x⊗y, v⊗1+1⊗v〉=〈y, v〉ε(x)+ε(y)〈x, v〉=0.

Let ℓ > 1. Since V ℓ ⊂ V · V ℓ−1 and V k ⊂ ker ε for all k > 0, it follows that
〈V ℓ, V 〉 = 0. �
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Let VA = Prim(HA ) and (HA )>1 =
∑

r≥2 V r
A

. From Lemma 6.14, we have
〈(HA )>1,Q⊕ VA 〉 = 0. Since the pairing 〈 · , · 〉 on HA is symmetric positive
definite, (HA )>1 ∩ (Q⊕ VA )= {0}, hence the sum (Q⊕ VA )+ (HA )>1 is direct.
This proves the second assertion of Main Theorem 1.2 and completes the proof of
Theorem 2.18. �

6.5. Proof of Corollary 2.19 and estimates for primitive elements.

Proof of Corollary 2.19. Let H+
A
= ker ε and let R ⊂ H+

A
be a generating space

for HA . Then (H+
A
)ℓ =

∑
k≥ℓ Rk , ℓ≥ 1. Taking R =Q Ind A (Theorem 1.1) and

R = Prim(HA ) (Theorem 2.18) we conclude that

P = (H+
A
)2 =

∑

k≥2

Prim(HA )
k =

∑

k≥2

(Q Ind A )k .

On the other hand, H+
A
= Prim(HA )+ P and P∩Prim(HA )= {0} by Lemma 6.14.

Therefore, H+
A
= Prim(HA )⊕ P . The graded version is immediate. �

Proof of Proposition 2.20 and Lemma 2.21. We need the following obvious fact
from linear algebra.

Lemma 6.15. Let U be a finite dimensional F-vector space and U1,U
′
1,U2 be

subspaces of U such that U = U1 + U2 = U ′1 + U2. If U1 ∩ U2 = {0}, then

dimF U1 = dimF U ′1− dimF(U
′
1 ∩U2).

Taking into account Corollary 2.19, we apply this lemma with U = (HA )γ ,
U ′1 =Q Ind Aγ , U2 = Pγ and U1 = Prim(HA )γ to obtain

dimQ Prim(HA )γ = # Ind Aγ − dimQ(Pγ ∩Q Ind Aγ ),

which yields Proposition 2.20.
To prove Lemma 2.21, note that Q(Iso A \ Ind A )= (Q Ind A )⊥. Thus,

Prim(HA )γ ∩Q(Iso A \ Ind A ) ⊂ (Q Ind Aγ )
⊥ ∩ P⊥γ

= (Q Ind Aγ + Pγ )
⊥ = (HA )

⊥
γ = 0

by Lemma 6.11(b) and Corollary 2.19. �

7. Proof of Theorem 2.26

7.1. Diagonally braided categories. We call a bialgebra H0 coquasitriangular if
it has a skew Hopf self-pairing R : H0 ⊗ H0 → Q. Let C be the category of
left H0-comodules. This category is braided via the commutativity constraint
9U,V :U ⊗ V → V ⊗U for all objects U, V of C defined by

9U,V (u⊗ v)=R(u(−1), v(−1)) · v(0)⊗ u(0)



326 ARKADY BERENSTEIN AND JACOB GREENSTEIN

for all u ∈ U , v ∈ V , where we use the Sweedler-like notation for the coactions
δU (u) = u(−1) ⊗ u(0) and δV (v) = v

(−1) ⊗ v(0). We will write CR to emphasize
that C is a braided category.

Remark 7.1. The category Cχ introduced in Lemma 2.22 is equivalent to the
category of H0-comodules, where H0 = QŴ is the monoidal algebra of Ŵ and
R|Ŵ×Ŵ = χ .

Our present aim is to prove the following result.

Theorem 7.2. Let B be a bialgebra in CR.

(a) The space V = Prim(B) is a subobject of B in CR.

(b) Suppose that B admits a compatible pairing, in the sense of Definition 6.9,
such that 〈b, 1〉 = ε(b) and 〈b, b〉 6= 0 for all b ∈ B \ {0}. Then the canonical

inclusion V →֒ B extends to an injective homomorphism

(7-1) B(V )→ B

of bialgebras in CR. In particular, if B is generated by V , then (7-1) is an

isomorphism.

Proof. Part (a) is a special case of the following simple fact.

Lemma 7.3. If C is a coalgebra in CR with unity, then V :=Prim(C) is a subobject

of C in CR.

Proof. Denote by δC : C→ H0⊗C the left coaction of H0 on C . All we have to
show is that δC(V )⊂ H0⊗ V . Fix a basis {bi } of H0 and let v ∈ Prim(C). Write

δC(v)=
∑

i

bi ⊗ vi , vi ∈ C.

Since 1 : C→ C ⊗C is a morphism of left H0-comodules,

(1⊗1) ◦ δC(v)= δC(v⊗ 1)+ δC(1⊗ v).

Taking into account that δC(1)= 1⊗ 1, we obtain
∑

i

bi ⊗1(vi )=
∑

i

bi ⊗ vi ⊗ 1+
∑

i

bi ⊗ 1⊗ vi ,

which implies that
1(vi )= vi ⊗ 1+ 1⊗ vi ,

that is, vi ∈ V for all i . �

Now we prove (b). Denote by B ′ the subalgebra of B generated by V = Prim(B).
It is sufficient to show that B ′ = B(V ). We need the following result.

Proposition 7.4. B ′ =
⊕

k≥0 V k , hence B ′ is a graded algebra.
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Proof. We prove that 〈V ℓ, V k〉 = 0 for all 0≤ k < ℓ by induction on the pairs (k, ℓ)
with k < ℓ, ordered lexicographically. The induction base for k = 0, 1 is established
in Lemma 6.14. Now, fix ℓ > 2 and suppose that 〈V s, V r 〉 = 0 for all r < s < ℓ.
Let 1< k < ℓ. Since 1 is a homomorphism of algebras,

1(V k)⊂ (V ⊗ 1+ 1⊗ V )k ⊂

k∑

i=0

V k−i ⊗ V i ,

hence

〈V ℓ, V k〉 ⊂ 〈V ⊗ V ℓ−1,1(V k)〉 ⊂

k∑

i=0

〈V ⊗ V ℓ−1, V k−i ⊗ V i 〉

=

k∑

i=0

〈V, V i 〉〈V ℓ−1, V k−i 〉 = 〈V, V 〉〈V ℓ−1, V k−1〉 = {0}

by the inductive hypothesis. It remains to show that the sum
∑

k≥0 V k is direct,
which is an immediate consequence of the following obvious fact.

Lemma 7.5. Let Ui , i ∈ Z≥0, be subspaces of an F-vector space U with a bilinear

form 〈 · , · 〉 : U ⊗ U → F such that 〈U j ,Ui 〉 = 0 if j > i and 〈u, u〉 6= 0 for

all u ∈U \ {0}. Then the sum
∑

i Ui is direct. �

This completes the proof of Proposition 7.4. �

Since B ′0 = Q and B ′1 = V = Prim(B ′) = Prim(B), B ′ is the Nichols algebra
of V by Definition 2.23. Theorem 7.2 is therefore proved. �

7.2. Proof of Theorem 2.26. We need the following reformulation of Green’s
celebrated theorem for Hall algebras ([Green 1995]; see also [Walker 2011]).

Proposition 7.6. Let A be a finitary and cofinitary hereditary abelian category.

Then the Hall algebra HA is a bialgebra in CχA
with the coproduct 1 given by

(2-3) and the counit ε given by (2-4).

Proof. For every [C], [C ′] ∈ Iso A we have

1([C])1([C ′])=

( ∑

[A],[B]

F
A,B

C · [A]⊗ [B]

)( ∑

[A′],[B ′]

F
A′,B ′

C ′ · [A
′]⊗ [B ′]

)

=
∑

[A],[B],[A′],[B ′]

F
A,B

C F
A′,B ′

C ′ ·
|Ext1

A
(B, A′)|

|HomA (B, A′)|
[A][A′]⊗ [B][B ′]

=
∑

[A],[B],[A′],
[B ′],[A′′],[B ′′]

F
A,B

C F
A′,B ′

C ′ F A′′

A,A′F
B ′′

B,B ′
|Ext1

A
(B, A′)|

|HomA (B, A′)|
· [A′′]⊗ [B ′′]
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On the other hand,

1([C][C ′])=
∑

[C ′′]

FC ′′

C,C ′1([C
′′]) =

∑

[C ′′],[A′′],[B ′′]

FC ′′

C,C ′F
A′′,B ′′

C ′′ · [A
′′]⊗ [B ′′].

We need the following lemma.

Lemma 7.7 ([Green 1995, Theorem 2], see also [Schiffmann 2012]). If A is a fini-

tary and cofinitary hereditary abelian category, then for any objects A′′, B ′′,C,C ′

of A one has

(7-2)
∑

[A],[A′],[B],[B ′]∈Iso A

|Ext1
A
(B, A′)|

|HomA (B, A′)|
· F B ′′

B,B ′F
A′′

A,A′F
A,B

C F
A′,B ′

C ′

=
∑

[C ′′]∈Iso A

FC ′′

C,C ′F
A′′,B ′′

C ′′

This immediately implies that 1([C])1([C ′])=1([C][C ′]). �

Theorem 2.26 now follows from Proposition 7.6 and Theorem 7.2. �
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