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Abstract. The model in which Primordial Black Holes (PBHs) constitute a non-negligible
fraction of the dark matter has (re)gained popularity after the first detections of binary black
hole mergers. Most of the observational constraints to date have been derived assuming a
single mass for all the PBHs, although some more recent works tried to generalize constraints
to the case of extended mass functions. Here we derive a general methodology to obtain con-
straints for any PBH Extended Mass Distribution (EMD) and any observables in the desired
mass range. Starting from those obtained for a monochromatic distribution, we convert them
into constraints for EMDs by using an equivalent, effective mass Meq that depends on the
specific observable. We highlight how limits of validity of the PBH modelling affect the EMD
parameter space. Finally, we present converted constraints on the total abundance of PBH
from microlensing, stellar distribution in ultra-faint dwarf galaxies and CMB accretion for
Lognormal and Power Law mass distributions, finding that EMD constraints are generally
stronger than monochromatic ones.ar
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1 Introduction

The ΛCDM model has become the cosmological standard model thanks to its ability to
provide a good description to a wide range of observations, see e.g., [1]. However, it remains
a phenomenological model with no fundamental explanations on the nature of some of its key
ingredients, e.g., of dark matter, see e.g., [2]. Several possible dark matter candidates have
been proposed, ranging from yet undetected exotic particles like WIMPs [3] or axions [4], to
compact objects such as black holes [5], including the ones possibly forming at early times,
therefore called Primordial Black Holes (PBHs).

Since so far none of the numerous undergoing direct dark matter detection experiments
has given positive results (neither for WIMPs [6] nor for axions [7]), PBHs have started to
(re)gain interest after the first gravitational waves detection by the LIGO collaboration [8].
Those gravitational waves were generated by a merger of two black holes with masses around
30M⊙. Given the large mass of the progenitors, some authors [9, 10] have proposed that
it could be the first detection of PBHs, whose merger rate is indeed compatible with LIGO
observations. Since PBHs were first proposed as a candidate for dark matter, there have been
considerable efforts from both theoretical and observational sides to constrain such theory.
PBHs might produce a large variety of different effects because the theoretically allowed
mass range spans many order of magnitude. As a consequence, the set of constraints coming
from a variety of observables is broad too. Starting from the lower allowed mass, constraints
come from γ-rays derived from black holes evaporation [11], quantum gravity [12], γ-rays
femtolensing [13], white-dwarf explosions [14], neutron-star capture [15], microlensing of stars
[16–20] and quasars [21], stellar distribution in ultra-faint dwarf galaxies [22], X-ray and radio
emission [23], wide-binaries disruption [24], dynamical friction [25], quasars millilensing [26],
large-scale structure [27] and accretion effects [28–31]; given the strong interest in the model,
there have been recently suggestions for obtaining constraints from e.g. the cross-correlation
of gravitational waves with galaxy maps [32, 33], eccentricity of the binary orbits [34], fast
radio bursts lensing [35], the black hole mass function [36, 37] and merger rates [38].

These constraints have been obtained (mostly) for a PBH population with a Monochro-
matic Mass Distribution (MMD). This distribution has been always considered as stationary,
even if during its life any black hole changes its mass due to different processes, such as
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Hawking evaporation [39], gravitational waves emission, accretion [29] and mergers events [9].
The magnitude of such effects has been analysed recently. In Ref. [40] the authors investigate
the importance of evaporation and Bondi accretion during the whole Universe history. They
found that PBHs with mass 10−17M⊙ . M . 102M⊙ neither accrete or evaporate signifi-
cantly in a Hubble time (unless they are in a baryon-rich environment). On the other hand,
the mass lost in gravitational waves emission due to mergers has to be small, since the frac-
tion of dark matter converted into radiation after recombination cannot exceed the 1%1 [41].
This finding rejects the possibility of an intense merging period at z ≤ 1000. Although these
effects are small compared to current experimental precision and theoretical uncertainties in
the modelling of the processes involving PBHs, a comprehensive treatment must eventually
include a description of their evolution.

More importantly, a large variety of formation mechanisms directly produce Extended
Mass Distributions (EMDs) for PBHs. Such mechanisms generate PBHs as the result of,
among other precesses, collapse of large primordial inhomogeneities [42] arising from quantum
fluctuations produced by inflation [43], spectator fields [44] or phase transitions, like bubble
collisions [45] or collapse of cosmic string [46], necklaces [47] and domain walls [48].

As pointed out in Ref. [49], no EMD can be directly compared to MMD constraints.
Since re-computing the constraints for any specific EMD can be time-consuming, at least two
different techniques [49, 50] have been proposed so far to infer EMDs constraints from the
well-known MMD ones. In this paper we propose a new and improved way to compare EMDs
to MMD constraints, directly based on the physical processes when PBHs with different
masses are involved.

The paper is organized as follows. In Section 2 we present our method to convert between
monochromatic constraints and EMD ones and compare it with existing ones. In Section 3
first we introduce the EMDs we will analyse, then we provide some practical examples of
how our technique works for three different observables, namely microlensing (3.1), ultra-
faint dwarf galaxies (3.2) and the cosmic microwave background (3.3). In Section 4 we derive
constraints for EMDs and discuss the validity of the limits found in previous Sections. Finally,
we conclude in Section 5.

2 Equivalent Monochromatic Mass Distribution

Most of the constraints derived in previous works have been obtained under the simplifying
assumption that PBHs have a MMD, despite the fact that such distribution is unrealistic
from a physical point of view. Since EMDs have more robust theoretical motivations, it is
extremely important to derive accurate constraints for EMDs in order to establish if PBHs
could be a valid candidate for (at least a large fraction of) dark matter.

As pointed out for the first time in Ref. [49] and then in ref. [51], it is not straightforward
to interpret MMD constraints in terms of EMD. It is therefore important to derive constraints
precisely using directly the chosen EMD or to provide an approximated technique to convert
between MMD and EMD constraints, as done in [49, 50]. Advantages and shortcomings of
the presently available methods to convert between MMD and EMD constraints have been
discussed in Ref. [51]; in short they may bias (i.e., overestimate or underestimate depending
on the EMD) the inferred constraints.

1A single merger event may surpass this limit, for example the LIGO event GW150914 has been estimated

to have converted about 5% of the mass in GW. Here however what matters is the overall integrated conversion.
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As it is customary, hereafter fPBH denotes the fraction of dark matter in primordial
black holes, fPBH = ΩPBH

Ωdm
. The fundamental quantity in our approach is the PBHs differential

fractional abundance
dfPBH

dM
≡ fPBH

dΦPBH

dM
, (2.1)

defined in such a way that fPBH represents the normalisation and the distribution dΦPBH
dM

describes the shape (i.e., the mass dependence) of the EMD and it is normalized to unity. By
definition this function is related to the differential PBH energy density or, equivalently, to
the differential PBH number density by

dρPBH

dM
=

dnPBH

d logM
= fPBHρdm

dΦPBH

dM
, (2.2)

since PBHs are a dynamically cold form of matter. Each EMD is specified by a different
number of parameters {ζj} that define its shape and the mass range [Mmin,Mmax] where the
distribution is defined. Known theoretically-motivated models provide a variety of EMDs; in
what follows we consider two popular EMDs families, namely the Power Law (PL) and the
Lognormal (LN ) ones, which we will describe in Section 3 (for other examples of EMD, see
e.g., Ref. [52]).

We start from the same consideration done in Ref. [50], where it was noticed that PBHs
with different masses contributes independently to the most commonly considered observ-
ables. In order to account for a PBHs EMD, when calculating PBHs effects on astrophysical
observables we have to perform an integral of the form

∫

dM
dfPBH

dM
g(M, {pj}), (2.3)

where g(M, {pj}) is a function which encloses the details of the underlying physics and
depends on the PBH mass, M , and a set of astrophysical parameters, {pj}. Therefore,
g(M, {pj}) is different for each observable (some example of these functions are provided in
Section 3). Because of this integral over the mass distribution, there is an implicit degen-
eracy between different EMDs, which means that two distributions (indicated below by the
subscripts 1 and 2) such that

fPBH,1

∫

dM
dΦ1

dM
g(M, {pj}) = fPBH,2

∫

dM
dΦ2

dM
g(M, {pj}) (2.4)

will be observationally indistinguishable. As the constraints for MMDs have already been
computed in the literature, we set one of the two distributions in Equation 2.4 to be a
MMD and the other to be an arbitrary EMD i.e.,

dfPBH,1

dM = fMMD
PBH δ(M −Meq) and

dfPBH,2

dM =

fEMD
PBH

dΦEMD
dM , so that we can easily rewrite Equation 2.4 as

fMMD
PBH g(Meq, {pj}) = fEMD

PBH

∫

dM
dΦEMD

dM
g(M, {pj}), (2.5)

where Meq will be called Equivalent Mass (EM). The equivalent mass is, by definition, the
effective mass associated with a monochromatic PBHs population such that the observable
effects produced by the latter are equivalent to the ones produced by the EMD under consid-
eration.

Constraints for EMDs can be extracted from the previous equation through the following
procedure.
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(A) Fix the ratio rf = fEMD
PBH /fMMD

PBH to a specific value. Here, since we want to reinterpret
fMMD
PBH as a fEMD

PBH and solve for Meq we set rf = 1, that is we assume that PBHs total
abundance in both scenarios is the same. In principle and for other applications one
may want to work with other values of rf or one may want to fix Meq and solve for
rf . For this reason in our equations we have left rf indicated explicitly, but in explicit
calculations it is set to unity.

(B) Given the (known, see e.g., Section 3) function g for the selected observable, solve for
Meq the equation

g(Meq, {pj}) = rf

∫

dM
dΦEMD

dM
g(M, {pj}) (2.6)

to calculate the equivalent mass Meq(rf , {ζj}) as a function of the parameters of the
EMD. As we will see below, in some case this can be done analytically (see e.g., Equation
3.20), but in other cases must be done numerically (see e.g., Equation 3.16). The
dependence of Meq on the EMD parameters describing its shape is helpful to understand
which observable effects are produced by a certain EMD.

(C) The allowed PBHs abundance (for the considered observable) is given by

fEMD
PBH ({ζj}) = rff

MMD
PBH (Meq(rf , {ζj})) , (2.7)

where fMMD
PBH (Meq) is the largest allowed abundance for a MMD with M = Meq. If

we are interested in just one constraint in particular, then this formalism allows us to
immediately state if a given EMD is compatible or not with observations. If instead we
want to account for several constraints at once, we have to a find the set of Equivalent
Masses associated to each function g. Every mass calculated in this way has a maximum
allowed (MMD) PBHs fraction (e..g, as found in the literature); of these fPBH values,
the minimum one that satisfies all the constraints at once is the largest allowed PBH
abundance of that EMD. This is illustrated in Figure 1. Hereafter we refer to the
maximum allowed value of the PBH fraction as f̂PBH.

In Figure 1 we consider two specific EMDs, a PL (left) and a LN (right) and four
observational constraints obtained for MMD: microlensing, ultra-faint dwarf galaxies (UFDG)
and CMB. The adopted functions g for these observables will be described in Section 3. For
each observable and each EMD we show the corresponding Meq (dashed vertical lines) and

maximum allowed PBHs fraction f̂PBH. For the PL EMD the maximum allowed f̂PBH is
the lowest of the four i.e., the one obtained from EROS2 microlensing (for its corresponding
EM). On the other hand, for the chosen LN distribution the maximum allowed f̂PBH is that
provided by the UFDG for their EM.

An additional feature of this approach is that it allows one to understand which part of a
EMD (e.g., low-mass or high-mass tail) is more relevant for a given observational constraint.
Such information can be inferred from the value of the equivalent mass i.e., from the position
of the vertical dotted lines in Figure 1.

Our method extend existing ones [49, 50] in several ways. First of all it introduces
a clear physical connection between the effects of EMDs and those of a MMD thanks to
the introduction of the new concept of the Equivalent Mass. Thanks to this concept one
can predict the approximated strength of the constraint even without computing it, since
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Figure 1: Illustration of the new method proposed in this paper. Upper Panels : Microlensing
(EROS-2, MACHO), ultra-faint dwarf galaxies (UFDG) and cosmic microwave background
(CMB) constraints for MMD. Solid lines are used for constraints generally considered robust
to astrophysical assumptions, while dashed lines are used for constraints which robustness
has yet to be fully discussed in the literature. Lower Panels : Examples of Power Law (on
the left) and Lognormal (on the right) mass distributions. The vertical dotted lines highlight
the position of the equivalent mass for each observable, calculated from Equations 3.12, 3.16
and 3.20. From their intersection with the corresponding constraint in the upper panels, we
extract the set of four maximum PBHs allowed fractions f̂PBH. The fraction of PBHs that
satisfies the four constraints at once is the minimum of the four, i.e. f̂EROS2

PBH for the Power

Law and f̂UFDG
PBH for the Lognormal. This is then the maximum fPBH allowed for that EMD

and that combination of observables.

the EM highlights which part of an arbitrary EMD is more relevant for the physics of a
given observable. Secondly, our method allows to calculate constraints coming from single
experiments taking into account properly the effects coming from the EMD low- and high-
mass tails, since the integrals are performed over the whole mass range and not only where
f̂MMD
PBH < 1. One advantage of such formulation is the possibility to easily check the validity

of the assumptions of the underlying modelling (see e.g., Section 4).
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3 Application to different observables

In light of recent observations by LIGO [8], we focus on the O(10) M⊙ window in the the-
oretically allowed PBHs mass range. This particular window is limited on the lower mass
end by microlensing constraints and on the higher mass end by UFDG and CMB constraints,
which could in principle rule out the possibility that PBHs make up the entirety of the DM,
under certain assumptions (e.g., if PBHs form an accreting disk [30]). Inside this mass range
there are other constraints, e.g. those coming from PBHs radio and X-ray emission [23]. We
chose not to consider this probe since the constraints are extremely sensitive to one partic-
ular poorly known parameter, the accretion efficiency relative to the Bondi-Hoyle rate λ, to
the point that mildly different values of λ, all consistent with current literature, make the
constraint disappear, as pointed out by the same authors of Ref. [23].

In order to obtain equivalence relations between the MMD and the EMD cases, we
will introduce some approximations that will be described in each specific case. Given all the
astrophysical uncertainties that enter in the computation of the limits, one has to keep in mind
that constraints have to be considered as orders of magnitude. Therefore the performance of
our proposed approach should be evaluated keeping in mind this underlying limitation. Even
under our stated simplifying assumptions, here we show the potential of our method to mimic
the effects of a MMD and easily obtain constraints for any EMD.

Finally, it should be kept in mind that, even for a MMD, every constraint has been
derived under some approximation that determines the range of masses where the same con-
straint is meaningful. Since our method does not change such assumptions, it should be used
for EMDs contained, or at least peaked, in the valid mass domain, in order to extract consis-
tent constraints. We comment on such limitations at the end of each Subsection and at the
beginning of Section 4.

We consider two different families of EMDs:

• A Power Law (PL) distribution of the form

dΦPBH

dM
=

NPL

M1−γ
Θ(M −Mmin)Θ(Mmax −M), (3.1)

characterized by an exponent γ, a mass range (Mmin,Mmax) and a normalization factor
NPL that reads

NPL(γ,Mmin,Mmax) =















γ

Mγ
max −Mγ

min

, γ 6= 0,

log−1

(

Mmax

Mmin

)

, γ = 0.
(3.2)

Such EMDs appear, for instance, when PBHs are generated by the collapse of large
density fluctuations [42] or of cosmic strings [46]. The epoch of the collapse determines
the exponent γ, in fact, if we call w = p

ρ the equation of state parameter of universe

at PBHs formation, γ = − 2w
1+w and spans the range [−1, 1], assuming that this process

happens in an expanding Universe (w > −1/3). Interesting values of the exponent are
γ = −0.5 (w = 1/3) and γ = 0 (w = 0), corresponding to formation during radiation
and matter dominated eras, respectively.
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• A Lognormal (LN) distribution

dΦPBH

dM
=

e−
log2(M/µ)

2σ2

√
2πσM

, (3.3)

defined by the mean and a standard deviation of the logarithm of the mass, µ and σ,
respectively. This distribution gives a good approximation to real EMDs when PBHs
form from a symmetric peak in the inflationary power spectrum, as proven numerically
in [51] and analytically in [53].

3.1 Microlensing

Microlensing is the temporary magnification of a background source which occurs when a
compact object passes close to its line of sight [54] and crosses the so-called “microlensing
tube”. The compact object, a PBH in our case, usually (and in this work) belongs to our
galaxy halo, but in some works (see e.g., [17]) the background source (M31) was external to
the Milky Way and PBHs could belong to either halo. The microlensing tube is the region
where the PBH amplification of the background source is larger than some threshold value
AT . For the standard value AT = 1.34, the radius of the microlensing tube is given by the
Einstein radius

RE(x) = 2

√

GMLx(1− x)

c2
, (3.4)

where G is Newton’s gravitational constant, L is the distance to the source and x is the
distance to the PBH in units of L. Standard analyses usually assume for our galaxy a cored
isothermal dark matter (either made by PBHs or not) halo model, for which the density
profile reads as

ρ(r) = ρ0
r2c + r20
r2c + r2

, (3.5)

where rc is the halo core radius, r0 is the Galactocentric radius of the Sun and ρ0 is the
local dark matter density. The duration of each event is the Einstein tube crossing time for
the compact object involved. Therefore globally (considering the entire Milky Way halo),
the differential microlensing event rate for a single source, for PBHs with an EMD, i.e., how
many events we should expected for every Einstein diameter crossing time ∆t, is [55–57]

dΓ

d∆t
=

512G2Lρ0(r
2
c + r20)

∆t4c4v2c

∫ 1

0
dx

x2(1− x)2

A+Bx+ x2
fPBH

∫

dM
dΦ

dM
Me−Q(x,∆t,M), (3.6)

where

A =
r2c + r20
L2

, B = −2
r0
L

cos b cos l, Q(x, t,M) =

(

2RE

vc∆t

)2

, (3.7)

(b, l) are the galactic latitude and longitude of the source (usually the Magellanic Clouds)
and vc is local circular velocity2. For a specific survey, the number of expected microlensing
events will be

Nexp = E

∫

d∆t
dΓ

d∆t
ε(∆t), (3.8)

2In this paper we use ρ0 = 0.008 M⊙pc
−3, r0 = 8.5 kpc, rc = 5.0 kpc, L = 50 kpc, vc = 220 km s−1,

(b, l) = (−33o, 280o).
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where the exposure E and the detection efficiency ε(∆t) depend on the specific experiment
and instrument. The choice ε(∆t) = 1 correspond to the theoretical number of expected
events N the

exp.

The average microlensing tube crossing time scales as M1/2. This suggests that the mass
and time dependence in Q

(

x, M
∆t2

)

can be described by a single parameter y. We change the

old variables (M,∆t) to new ones
(

M,y = M
∆t2

)

, obtaining in this way that

Nexp ∝
∫

dxf(x)

∫

dy y1/2e−Q(x,y)fPBH

∫

dM
ε
(

√

M/y
)

M1/2

dΦ

dM
, (3.9)

which we use to find the equivalent mass. Since M and y are coupled by the detection
efficiency, the function g introduced in Section 2 reads as

g(M, {pj}) =
∫

dxf(x)

∫

dy y1/2e−Q(x,y)
ε
(

√

M/y
)

M1/2
, (3.10)

where we have already dropped all the constant factors in Equation 3.6, since they are present
in both side of Equation 2.5. Moreover, when we focus on N the

exp, for which ε = 1, the mass
dependence can be decoupled, the common (x, y)-dependent factor cancels and the final g
function simplifies to

g(M) = M−1/2. (3.11)

Now we can use Equation 2.5 to obtain

M−1/2
eq = rf































NPL
M

γ−1/2
max −M

γ−1/2
min

γ − 1
2

, PL, γ 6= 1

2
,

NPL log
Mmax

Mmin
, PL, γ =

1

2
,

e
σ2

8 µ−1/2, LN.

(3.12)

To validate our approximation, since we are interested in converting MMD to EMD
constraints, the relevant quantity is the ratio between the expected microlensing events for the
two mass distributions: NEMD

exp /NMMD
exp , which should be unity. To quantify the performance

of the approximation ε = 1 (which enabled us to provide an analytic solution) we also consider
an ε(∆t) of a form3 similar to that of the MACHO survey (see Figure 8 of Ref. [57]).

The duration of detected candidates events was typically ∼ 50 days, which for high
amplification yields a typical mass of 0.3M⊙ according to the expected scaling (see e.g., Ref.
[55]). For illustration purposes we therefore set the equivalent mass Meq = 0.3M⊙. For
the PL EMD we set Mmax = 100M⊙ and consider two cases for the exponent (γ = −0.5
and γ = 0) which implies (Equation 3.12) that Mmin = 0.079M⊙ and Mmin = 0.015M⊙,
respectively; and for the LN we have σ = 1.0 and µ = 0.385M⊙. The left panel of Figure 2
shows the theoretical (ε = 1) differential event rate as a function of duration for the four
mass distributions and reports the ratio NEMD

exp /NMMD
exp . The fact that this ratio is the unity

indicates that the effective mass approach works well. The right panel is the same as the left
panel but the number of expected events is now computed with our adopted ε(∆t). In this case

3ε(t) = exp
[

− log2(t/µt)

2σ2
t

]

/
√

2πσ2
t , with time, t, in days, µt = 70 days and σt = 1.25.
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Figure 2: Theoretical (ε(∆t) = 1) and experimental differential event rate for a MMD with
Meq = 0.3M⊙, two PL and a LN with Mmax = 100M⊙ and σ = 1.0. Mmin and µ have
been obtained with Equation 3.12 imposing the same equivalent mass of the MMD. The stars
source is the LMC, whose parameters can be found in [51, 58]. We assume fPBH = 1 for every
distribution to calculate the EM. Notice the level of concordance of the expected number of
events.

the performance of the approach (quantified by (NEMD
exp /NMMD

exp − 1) ∼ 10− 25%) introduces
errors smaller than, or at worst comparable, to those introduced by other assumptions in the
model (e.g., the PBHs velocity dispersion choice of the halo model, see Figure 3 in [58]). For
instance, using the same parameters, a 10% change in the velocity dispersion yields a 25%
change in NMMD

exp . A detailed analysis of the effects of astrophysical uncertainties on PBH
constraints from microlensing can be found in [58].

The range of validity of this approach for microlensing is given by the observational
window i.e., by the experimental efficiency ε(∆t), characteristic of every given experiment. In
particular, below the minimum ∆tmin and above the maximum ∆tmax sampled, the efficiency
drops to zero, along with the capability to detect PBHs. Through the above mentioned scaling
relation, we can translate the crossing time window sampled by the experiment to a sampled
mass range. For this approach to be valid, Mmin and Mmax appearing in Equation 3.12 must
be within the sampled mass range. In general, properly computed lensing constraints would
require a detailed modelling including simulations, which is beyond the scope of this paper.
Since PBHs constraints are indicative, we followed the most common modelling.

3.2 Ultra-Faint Dwarf Galaxies

In dwarf galaxies, dominated by dark matter, the stellar population can be dynamically
heated by gravitational two-body interaction between PBHs and stars. These interactions
tend to equalize energy of different mass groups, but if PBHs have a mass larger than one
solar mass (average mass of a star), stars will extract energy from them and the stellar system
will expand [59]. Since this is the case commonly considered in the literature we will limit
ourselves to consider cases in which MPBH > M⊙.
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For a generic PBHs mass distribution, the half-light radius of the stellar population
evolves according to [22]

drh
dt

=
4
√
2πGfPBH

σPBH

(

αM⋆

ρcorer2h
+ 2βrh

)

∫

dM
dΦ

dM
M log Λ(M), (3.13)

where M and σPBH are the PBH mass and velocity dispersion, M⋆ is the galaxy stellar
mass, ρcore is the dark matter core density, α and β are constants that depend on the mass
distribution of the dwarf galaxy and the Coulomb logarithm reads as

log Λ(M) = log
rhσ

2
PBH

G(M⊙ +M)
. (3.14)

In general, there should also be a cooling term, which becomes important only if the mass of
the PBH is smaller than the mass of the stars. Moreover this modelling is valid if there is no
central black hole massive enough to stabilise the stellar distribution [60, 61].

Aside from common factors we are not interested in, the g function for this observable,
directly read from Equation 3.13, is given by

g(M, rh, σPBH) = M log Λ(M) = M log
rhσ

2
PBH

G(M⊙ +M)
. (3.15)

We find that Equation 2.5 with this particular choice of g reads as

Meq log Λ(Meq) =

rf



















































NPL

1 + γ

(

M1+γ
max log

[

Λ(Mmax)e
1−2F1(1,1+γ,2+γ,−Mmax)

4

1+γ

]

−

−M1+γ
min log

[

Λ(Mmin)e
1−2F1(1,1+γ,2+γ,−Mmin)

1+γ

])

, PL, γ 6= −1,

NPL

[

log Λ(0) log
Mmax

Mmin
+ Li2(−Mmax)

5 − Li2(−Mmin)

]

, PL, γ = −1,

µe
σ2

2 log Λ(µeσ
2 −M⊙), LN

(3.16)

where the PL result is exact but for the LN case we assumed that the EMD was peaked at
M & M⊙ to have on average PBHs more massive than stars, in order for stars to extract
energy from the PBHs.

In Figure 3 we show the evolution of the half light radius for different EMDs with the
same equivalent mass and the corresponding MMD, for the fiducial dwarf galaxies model
considered in [22]. We have fixed Meq = 30M⊙ and we have used the same halo parameters6

of Figure 3 of Ref. [22]. We fixed Mmin = 2 M⊙ for the PL EMDs and σ = 0.5 for the LN.
Then, by using Equation 3.16, we obtain Mmax and µ for two PL and one LN distributions,
respectively. In the three cases we used the initial value of the half-light radius rh0 to calculate
the equivalent mass (recall that the equivalent mass has a logarithmic dependence on rh). As
it can be seen in Figure 3, our equivalence relations provide a good match between the MMD
and the EMDs, which in turn will give an accurate interpretation of abundance constraints.

5Gaussian Hypergeometric function.
5Polylogarithm function.
6In this paper we use rh0 = 2 pc, M⋆ = 3000M⊙, ρcore = 1 M⊙pc

−3, α = 0.4, β = 10.
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Figure 3: Half-light radius evolution for different values of the PBHs velocity dispersion.
The PBHs distributions considered here are a MMD with Meq = 30M⊙, a Power Law with
two different exponents and a Lognormal, all with the same Equivalent Mass. In the PL case
we fixed γ and Mmin = 2M⊙, while in the LN we have fixed σ = 0.5; Mmax and µ were
calculated using Equation 3.16 and assuming fPBH = 1 for every distribution.

Beside the requirement that MPBH & M⊙ for the PBH to heat the star system, one
should also impose M . σ2

PBHrh/G − 1, otherwise the assumption of PBHs travelling in an
homogeneous star field will not be valid [62]. Moreover if an EMD provides enough PBHs
with masses & 102M⊙, it is reasonable to believe that some of these may be placed at the
centre of dwarf galaxies and may thus stabilise the stellar distribution, making Equation 3.13
invalid [60, 61]. Therefore, in order to obtain constraints for EMDs using Equation 3.13,
EMDs should not have significant contribution outside this mass range. The sensitivity of
the PBH abundance constraints to astrophysical uncertainties in this technique has yet to be
fully analysed and discussed in the literature. However given the discussion above in what
follows we present separately combined constraints with and without this probe and specific
constraints from this probe are indicated by a different line-style.

3.3 Cosmic Microwave Background

The impact that PBHs have on CMB observables derives from the energy they inject into the
plasma. In fact, the extra radiation is responsible for the heating, excitation and ionization
of the gas. We refer the interested reader to Refs. [29, 30], where the authors presented an
updated treatment of the underlying physics of the energy injection for spherical and disk
accretion, respectively, and to Ref. [31], where cosmological effects of PBHs are described and
investigated in detail. In order to include an EMD in this framework, one should integrate
the volumetric rate of energy injection over the whole mass range spanned by PBHs as

ρ̇inj = ρdmfPBH

∫

dM
dΦ

dM

〈L(M)〉
M

, (3.17)
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where 〈L(M)〉 is the velocity-averaged luminosity of a PBH with mass M . We immediately
read that

g(M, {pj}) =
〈L(M)〉

M
. (3.18)

In general, the averaged luminosity will depend not only on the mass but also on redshift, gas
temperature, free electron fraction and ionization regime. Here we will make the simplifying
assumption that these dependencies can be factored out, and focus on the mass dependence.
Using the results obtained for spherical accretion [29], we can estimate the mass dependence
of the integrand as

〈L〉
M

∝ L

M
∝ Ṁ2/LEdd

M
∝ M4λ2(M)/M

M
= M2λ2(M), (3.19)

where L is the luminosity of an accreting black hole, Ṁ is the black hole growth rate, LEdd

is the Eddington luminosity and λ(M) is the dimensionless accretion rate. As can be seen in
Figure 4 of [29], PBHs with different masses accrete in different manners at different redshift.
In particular, heavy (light) PBHs mostly accrete, and therefore inject energy, after (before)
decoupling. However, in the same Figure it can be noticed that λ ∼ O(1/2) for z . 17007 for
a wide range of masses. Assuming λ = const is a possibility. However, a much better option
is to parametrize the accretion rate as λ(M) = Mα/2 (neglecting the redshift dependence),
where α is a parameter to be tuned numerically a posteriori to minimize differences in the
relevant observable quantity between the EMD case and the equivalent monochromatic case.

Equation 2.5 thus becomes

M2+α
eq = rf











NPL
Mγ+2+α

max −Mγ+2+α
min

γ + 2 + α
, PL,

µ2+αe
(2+α)2σ2

2 , LN.

(3.20)

In Figure 4, produced with a modified version of HYREC [31, 63, 64], we compare temper-
ature and polarization power spectra of three different EMDs chosen so that their equivalent
mass is Meq = 30M⊙ with those of a fiducial MMD with Meq = 30M⊙, assuming fPBH = 1 in
the photoionization limit. We have explored α in the interval [0.0, 0.4] but we have plotted the
Cℓs only for the intermediate value α = 0.2, since it guarantees that differences are kept under
the cosmic variance limit for every ℓ . 3 × 103, especially for the E-mode polarization. The
choice of α can be further optimised depending on the experiment. For example experiments
not limited by cosmic variance at ℓ ≫ 103, such as Planck, may require a different value of α,
since they have the smallest error bar at lower ℓ [31]. Despite the good agreement, we stress
that no choice of this parameter is able to simultaneously match early (before decoupling, for
ℓ > 200) and late time (after decoupling, for ℓ < 200) energy injection. Values of α larger
than the adopted one suppress deviations with respect to the MMD case for ℓ < 200 in both
spectra, but increase deviations for ℓ > 200. Deviations from the fiducial MMD model are
larger for EMDs that exhibit a wider high-mass tail, as in the PL case with negative exponent
or in the LN case. We refer the interested reader to Reference [31], where these equivalence
relations (Equation 3.20) are used, along with a full MCMC treatment, to quantify the per-
formance of our approach. The differences in the obtained PBHs abundance constraints are
below the 10%.

7The modified HYREC version calculates the modified thermal history for z < 1700, redshift of the beginning

of Hydrogen Recombination.
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Figure 4: Relative difference in temperature (left panel) and polarization (right panel) power
spectra for two PL and one LN distributions with respect to a MMD with Meq = 30M⊙,
all of them with the same Equivalent Mass. In the PL case we fixed γ and Mmin = 1M⊙,
while in the LN we have fixed σ = 1.0; Mmax and µ were calculated using Equation 3.20 and
assuming fPBH = 1 for every distribution. We chose to show the photoionization limit case,
since it is the most constraining case. Finally we have used α = 0.2 because it keeps the
differences with respect to the MMD case under the cosmic variance level.

Finally one should keep in mind that all constraints (including the monochromatic ones)
are derived under the steady-state approximation, which is valid only for PBHs with masses
M . 104M⊙. Hence effects of an EMD high-mass tail beyond this critical value are not
properly accounted for.

4 Practical considerations and observational constraints

Before calculating experimental constraints, some important considerations are in order. For
a MMD one can unambiguously check if the validity conditions (of the adopted modelling,
code, equations etc.) that depend on the PBH mass hold: e.g., the mass is in the sampled mass
range for microlensing (Section 3.1), PBHs cede energy to the stellar system and travel in a
homogeneous field for UFDG and there is no central black hole to stabilise the system (Section
3.2), steady-state approximation is valid for CMB constraints (Section 3.3). In other words
the adopted modelling defines a mass range of validity; outside this range, results (if any)
are not reliable and sometimes even unphysical. On the other hand, for non-monochromatic
cases, parts of the EMDs can lie outside the mass range of validity. This issue is not only
important for our equivalent mass formalism (as discussed previously), but also for every
analysis dealing with extended distributions.

In the case of a PL distribution, it is always possible to tune Mmin and Mmax to restrict
the mass range where the distribution is defined, but the LN is infinitely extended and the
effects of the tails can be relevant. In order to account for them, we propose to compare the
amplitude of the EMD at the lower and upper boundaries (if both exist, otherwise just at
the relevant one) of the mass range of validity which we indicate as M±

lim, to the amplitude
of the EMD maximum, situated at Mpeak. Then require the relative amplitude to be smaller
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tolerance i.e, how much the EMD is required to drop from its maximum before we accept
that the tails of the distribution may extend beyond the range of validity. In this example,
for δ = 10−1 this EMD is considered in the range of valid. This is not the case for the more
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just the mass limits that come with the description of Equation 3.13, while in the right panel
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than an arbitrarily chosen threshold δ where8 δ ≤ 1. Without any loss of generality, for any
EMD and δ, we can define a mass Mδ through

dΦ

dM

∣

∣

∣

∣

Mδ

= δ
dΦ

dM

∣

∣

∣

∣

Mpeak

. (4.1)

By solving Equation 4.1 for Mδ in the case of a LN EMD, we find two solutions, sym-
metric with respect to the peak:

M±

δ = µe−σ2±σ
√

log(δ−2). (4.2)

Finally, by requiring that
M−

lim ≤ M−

δ , M+
δ ≤ M+

lim, (4.3)

we find the set of inequalities














σ2 + σ
√

log(δ−2)− log
µ

M−

lim

≤ 0,

σ2 − σ
√

log(δ−2)− log
µ

M+
lim

≥ 0 ,
(4.4)

which satisfies the condition that the amplitude of the tails is smaller than the desired ampli-
tude δ dΦ

dM

∣

∣

Mpeak
. This procedure translates the mass range of validity to a range of validity

for the parameters describing the EMD. The smaller the δ, the more reliable the abundance
constraint will be. At the same time, low values of δ disqualify wider regions of the EMD
parameter space. A schematic representation of this criterion is shown in Figure 5.

In the following we calculate the LN EMD allowed parameter regions for CMB and
UFDG constraints. For the CMB, we have just an upper bound M+

lim ≃ 104M⊙, but for
UFDG we have an upper and a lower bound. We consider two sub-cases: in UFDG-1 we
take M−

lim ≃ 1M⊙ and M+
lim ≃ 104M⊙, considering just limits that come from Equation 3.13,

while in UFDG-2 we take M−

lim ≃ 1M⊙ and M+
lim ≃ 102M⊙, adding the further condition

of not having stabilizing PBHs at the center of the dwarf galaxy. Inserting these values in
Equation 4.4, we obtain the allowed region of parameter space for three different values of
δ. We show it in Figure 6. In the CMB case, unless a really small value of δ is chosen, the
parameter space is not heavily constrained. We refer the interested reader to Ref. [31] to see
how these limitations apply to the concrete case of CMB-derived abundance constraints. On
the other hand, in the case of UFDG we observe that there is a limited region of validity in
the EMD parameter space, even for quite high values of δ. This does not mean that lognormal
distributions outside the gray region in Figure 6 are ruled out! It means that the adopted
modelling for computing fPHB constraints for these observable is not valid outside the gray
region and therefore nothing can be said about distributions corresponding to that region of
parameters.

Once established which part of the parameter space is consistent with the modelling,
we focus on calculating PBHs constraints in the 10 − 100M⊙ window using the equivalent
mass approach we presented here. We are interested in assessing whether for these EMD the

8Here we have in mind the lognormal distribution. In general this approach applies for EMD that are

monotonic around and beyond each of the M±
lim. This is not the only viable criteria, in fact one could directly

impose some upper bound on the integrals
∫∞

M+

lim

dM dΦ
dM

g(M, {pj}) and
∫M−

lim

0
dM dΦ

dM
g(M, {pj}) instead of on

the EMD.
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Figure 7: Power Law constraints for γ = −0.5 (upper panels) and γ = 0.0 (lower pan-
els). Solid lines are used for constraints generally considered robust while dashed lines
for constraints which dependence on astrophysical assumptions is less known. Left panels:
Mmin = 1 M⊙, Mmax varying. Right panels : Mmin varying, Mmax = 103 M⊙.

allowed window remain open. On the contrary, it would rule out the possibility for PBHs
with PL or LN EMDs to make all the dark matter in that mass range.

This is shown in Figures 7 and 8. The color coding is the same used in Figure 1,
i.e. solid lines represent constraints more robust with respect to astrophysical uncertainties,
dashed lines are used for other constraints and dotted lines (when present) represent the
MMD constraints. In Figure 8, on top of UFDG constraints, we have also introduced diamond
markers to highlight the region where the constraints satisfy validity conditions with δ = 10−3

(see central panel of Figure 6).
For the PL EMDs, Figure 7 show the maximum allowed PBH fraction f̂PBH as a function

of Mmax for fixed Mmin and vice versa. By construction, for Mmax = Mmin the monochromatic
constraints are recovered. For illustrating the LN EMD, we select two representative values
of the distribution width σ. By looking at Figure 6 one can immediately see that for such
values of the EMD width, the mean value µ has only a small range of validity for the UFDG
probe around µ = 102M⊙. Conveniently, the UFDG f̂PBH limits are most stringent and useful
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When σ decreases, EMD constraints tend to MMD ones.

exactly in this mass range. Figure 8 shows the maximum allowed PBHs fraction f̂PBH for the
LN EMD as a function of the mean µ (solid lines). For comparison also the MMD constraint
is shown for M = µ (dashed lines). By construction a LN tends to a MMD of mass set by
µ for vanishing σ. When the width increases, the window starts shrinking since microlensing
constraints drift towards larger mass values while UFDG and CMB constraint drift in the
opposite direction.
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Finally, to analyse the behaviour of the window where fPBH ∼ 1 is allowed by the data,
we explore the 2D/3D parameter space for the LN and PL distributions in Figures 9 and
10, respectively. In both scenarios we find that with EMDs the PBHs fraction allowed by
the combination of all the observables is lower than for a MMD. From the Figures we can
derive the combination of parameters for each EMD that allow the highest PBHs fraction.
Even if in these two figures we have shown wide regions of the parameter space, we want to
stress again that constraints can be considered valid only in the subspace allowed by validity
conditions, marked with black lines.
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The LN EMD is shown in Figure 9 (the same conventions are kept as in Figure 10). The
dashed line indicates the boundary of the valid region for UFDG for δ = 10−3 as of Figure 6.
We notice that to have large fPBH allowed by the whole set of data, the value of µ is quite
constrained, and peaked around 20M⊙, while the set of possible σ is wider.

The top and central panels of Figure 10 show the maximum allowed fPBH as a function
of Mmin and Mmax for several choices of γ. We chose to explore the parameter space for the
extreme values of γ because the behaviour of any intermediate exponent can be extrapolated
from the three cases shown. The bottom panels show sections of the maximum fPBH allowed
as a function of Mmin for fixed Mmax. These sections are chosen to intercept the maximum.
By looking at the f̂PBH > 0.5 region in the central panels, we can confirm the findings of [50],
i.e. that in the γ < 0 (γ > 0) case the relevant boundary is Mmin (Mmax), while in the γ = 0
case both boundary values are equally relevant.

5 Conclusions

PBHs as a dark matter candidate has recently become a popular scenario. Because of the
rich phenomenology implied by this possibility, a wide set of different observables can be used
to test and set constraints on this scenario. However, to date most of the PBH constraints
have been derived assuming a monochromatic mass distribution, which is over-simplistic.

In this paper we provide a new way to compare extended to monochromatic mass dis-
tribution constraints and translate MMD constraints on the maximum allowed PBH abun-
dance to EMD constraints. The aim of our approach is to provide the most accurate and
physically-motivated framework to date, while still being quick and easy to implement. For
every observable and EMD, we show that there is a corresponding MMD with an “Equivalent
Mass” which produces the same physical and observational effects.

We provide three practical examples of our method, considering the MMD constraints
of the maximum allowed fraction of PBH from microlensing, ultra-faint dwarf galaxies and
CMB constraints. We then focus on the mass window at tens of M⊙ – where for MMD a
fPBH ∼ 1 is allowed – for two popular and physically motivated families of EMDs: Power Law
and Lognormal. When considering EMDs and their observational constraints, it is important
to consider carefully their regime of validity. In fact the modelling of each observable relies
on several assumptions which, while valid for a MMD, may not be for an EMD, especially if
it has extended tails. Ignoring this important fact may lead to unreliable or even unphysical
constraints. This is a danger not only for the approach presented here but of any study of
PBH constraints with EMDs: we study this issue in detail and present an easy to use reference
to avoid this pitfall.

We find that in both cases (lognormal and power law EMDs), for a consistent and valid
choice of distribution parameters, the f̂PBH ∼ 1 mass window shrinks or is displaced, allowing
a lower PBHs abundance compared to MMD calculations. Before exploring a larger EMD
parameter space, the physical description behind constraints from microlensing, dynamics of
dwarf galaxies and CMB energy injection must be improved to be valid over a wider mass
range.

As it is well known, because of all the theoretical uncertainties, all constraints on the
maximum allowed fPBH have to be considered as order of magnitudes rather than exact num-
bers. Similarly the behaviour of this window, where f̂PBH ∼ 1 is allowed, for the considered
EMDs should not be thought as general, in fact it could well become wider and allow a larger
fPBH for other EMDs. A window that is closed for a MMD can open for an EMD. We leave
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the exploration of other windows in other mass range for future work. We envision that our
effective “equivalent mass” technique will be useful to study systematically different EMDs
and a broad range of observables.
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