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Abstract

PRIMORDIAL BLACK HOLES IN THE COSMOLOGICAL CONTEXT
AND TRANSIENT ELECTROMAGNETIC SIGNATURES

FROM MERGING BLACK HOLE BINARIES

by

Jared Robert Rice

Dr. Bing Zhang, Examination Committee Chair
Professor of Astrophysics

University of Nevada, Las Vegas

The cosmological evolution of primordial black holes (PBHs) is presented via analysis of the

accretion and evaporation histories of the holes. The ultimate end of any BH is evaporation

— a spectacular seconds-long burst of high-energy radiation and particles. The critical

initial mass of a PBH undergoing current era evaporation is ∼ 510 trillion grams. A near-

critical mass PBH will not accrete radiation or matter in sufficient quantity to retard its

inevitable evaporation, if the hole remains within an average volume of the universe. The

gravitational waves (GWs) from five BH binary merger events discovered by the LIGO/Virgo

collaborations were BHs of a few to tens of solar masses merging at redshift z ∼ 0.1. It is

plausible these systems began as PBHs within overdense regions of the Universe. However, it

is difficult for isolated PBHs to become supermassive black holes (SMBHs) at high redshift.

A new type of electromagnetic (EM) counterpart is presented. During the inspiral of
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a SMBH binary system, copious amounts of GW and EM energy are injected into the

surrounding interstellar medium. The injected EM energy produces a relativistic blastwave,

which emits synchrotron radiation in a transient multiwavelength afterglow. A simultaneous

detection of the GWs and afterglow emission will contribute insights into blastwave dynamics,

the BH masses and angular momenta, and the inner galactic environment.
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Chapter 1

Introduction

Albert Einstein elucidated the nature of gravity as geometry one hundred and two years

ago [1, 2, 3, 4, 5]. Fifty years prior, James Clerk Maxwell established that “. . . light is

an electromagnetic disturbance propagated through the field according to electromagnetic

laws [6],” a fact corroborated by Einstein in his discovery of special relativity [7]. One

year after Einstein’s gravitational revelations, Karl Schwarzschild solved the Einstein field

equations for a static spherically symmetric mass [8]. Schwarzschild’s solution was critical

in the study of spacetime singularities, the particular brand of which became known as

“black holes.” Stephen Hawking postulated the particle emission rate from a Schwarzschild

black hole by combining the formalisms of general relativity (GR) and quantum field theory

(QFT) [9]. Black holes, with their large energy density, and propensity toward evolution via

particle emission or accretion, maintain a provocative position as arbiter of both gravitational

and electromagnetic information. This dissertation explores various aspects of gravity and

electromagnetism in the context of primordial black holes and electromagnetic counterparts

of binary black hole merger events in the cosmological context. The contents of Chapter 2

are published in the paper “Cosmological evolution of primordial black holes” [10] and the

contents of Chapter 3 will be submitted for publication soon [11].
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1.1 Primordial black holes

Primordial black holes (PBHs) are black holes that may have formed within the first moments

of the universe through a variety of mechanisms. Fifty-two years ago, Zel’dovich and Novikov

postulated the existence of these holes in a remarkable paper [12], placing constraints on the

PBH number density from cosmic microwave background (CMB) observations.

In the half-Century following this prediction, PBHs have yet to be discovered. However,

the various contraints on their existence are much tighter [13] and potential PBH burst signals

have been investigated [14]. Prospects for discovering evidence of PBHs are encouraging,

but a non-discovery is also important and will place interesting contraints on conditions in

the early universe.

1.2 Electromagnetic counterparts of binary black hole

mergers

The discovery of gravitational waves from a merging black hole binary system GW150914 [15]

opened a gravitational window on the universe. We now live in the era of gravitational wave

astronomy. Subsequent discoveries of the black hole merger systems GW151226, GW170104,

GW170608, and GW170814 [16, 17, 18, 19] have placed important constraints on the event

rate of BHB mergers, black hole binary formation channels, and cosmological models.

Four days prior to the Great American Eclipse of August 21, 2017, the LIGO/Virgo team

announced the discovery of GWs from a neutron star binary merger, followed by a gamma-

ray trigger on the Fermi and INTEGRAL satellites ∼ 1.7 s after the merger [15]. The dual

detection of GWs and electromagnetic signals, combined with a fortuitous sky location that

prevented Virgo from detecting a signal [20], provided a small target localization of ∼ 30 deg2

and allowed teams of astronomers around the world to narrow down the source to within

a particular galaxy, NGC 4993. With this incredible discovery, we now reside in the era of

2



multimessenger gravitational wave astronomy.

The purpose of this dissertation is to explore some aspects of PBHs and separately,

electromagnetic counterparts of black hole binary coalescence events.
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Chapter 2

PBH evaporation and accretion

The cosmological evolution of primordial black holes (PBHs) is considered. A comprehensive

view of the accretion and evaporation histories of PBHs across the entire cosmic history is

presented, with focus on the critical mass holes. The critical mass of a PBH for current era

evaporation is Mcr ∼ 5.1 × 1014 g. Across cosmic time such a black hole will not accrete

radiation or matter in sufficient quantity to retard the inevitable evaporation, if the black

hole remains within an average volume of the universe. The accretion rate onto PBHs

is most sensitive to the mass of the hole, the sound speed in the cosmological fluid, and

the energy density of the accreted components. It is not easy for a PBH to accrete the

average cosmological fluid to reach 30M� by z ∼ 0.1, the approximate mass and redshift

of the merging BHs that were the sources of the gravitational wave events GW150914 and

GW151226. A PBH located in an overdense region can undergo enhanced accretion leading

to the possibility of growing by many orders of magnitude across cosmic history. Thus, two

merging PBHs are a plausible source for the observed gravitational wave events. However, it

is difficult for isolated PBHs to grow to supermassive black holes (SMBHs) at high redshift

with masses large enough to fit observational constraints.
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2.1 Introduction

Primordial black holes (PBHs) are among the most intriguing ghosts in the universe. A

singular PBH of sufficient mass can navigate the history of the universe without detectable

clues to its existence; a true cosmic ghost. Low mass PBHs evaporate before the current

epoch and the radiation signature of an isolated high mass PBH is too weak to detect. The

last moments of a PBH evaporation reveal the hole through a burst of high-energy radiation

that is distinguishable from that of short gamma-ray bursts (GRBs) [14].

The upper limits on the number density of PBHs across a wide range of masses is dis-

cussed extensively in [13, 21]. To date there are no confirmed PBH burst signals, but these

compelling ghosts are ripe cosmological messengers that will enhance our understanding of

the universe if observed. The PBHs evolving through cosmic history could be used as a proxy

for understanding the conditions in the early universe. PBHs of significant mass may gain a

dark matter (DM) halo, e.g. [22, 23]. Since the PBH evaporation rate depends only on the

mass of the hole and the assumed particle physics model [24], PBHs in similar astrophysical

environments should produce similar radiation signatures; the ultimate “standard candles.”

This study explores the evolution of PBHs through accretion and evaporation across the

entire cosmic history. Special attention is paid to the changes in the density, temperature,

and sound speed in the cosmological fluid because of their influence on the accretion rate

of that fluid onto the PBHs. In §2.2 the concordance cosmological model of ΛCDM is dis-

cussed. In §2.3 the PBH accretion and evaporation models are discussed and formulae are

given for the accretion rates in the various cosmological eras. In §2.4 the results of the study

are discussed. Finally in §2.5 the conclusions are presented and a discussion of astrophysical

implications is made.

5



2.2 Cosmological model

The concordance cosmology assumed throughout this study is the six parameter ΛCDM

model, implementing the most recent Planck Collaboration results [25]. The model consists

of the homogeneous and isotropic Friedmann-Robertson-Walker (FRW) geometry dynami-

cally evolving according to the Einstein field equations. The Einstein equations, also called

the Friedmann equations [26, 27] in this case, describe the evolution of the curvature and

energy content of the universe as

(
ȧ

a

)2

+
kc2

a2
=

8πG

3
ρ, (2.1)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
, (2.2)

d

dt

(
ρa3
)

= −P
c2

d

dt

(
a3
)
, (2.3)

where the scale factor is a ≡ a0(1+z)−1, with the scale factor today a0 ≡ 1 and z the cosmo-

logical redshift, k = 0,±1 indicating zero, positive, or negative spatial curvature respectively,

G is the universal gravitation constant, and c is the speed of light. The term ρ is the sum of

the proper inertial mass densities of the cosmological fluid and the contribution from spatial

curvature, and P is the pressure contribution from matter, radiation, and vacuum energy

(or cosmological constant Λ).

The equation of state of each cosmological fluid can be expressed Pi = wiρic
2 (no sum

over i) with equation of state parameter wi. The equation of state parameters for matter,

radiation, cosmological constant, and spatial curvature are 0, 1/3, −1, and −1/3 respec-

tively. Note that the equation of state of a baryonic gas P ∝ ργ, where γ is the adiabatic

index, is relevant when calculating accretion rates onto a compact object. The approxima-

tion wi=b ≈ 0 for a baryonic gas holds on cosmological scales.

The Hubble parameter H is a measure of the temporal (extrinsic) curvature of the FRW
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geometry and is defined

(
ȧ

a

)2

≡ H2 = H2
0E2, (2.4)

where subscript-0 implies evaluation of a quantity today. The Hubble constant is H0 =

100h km s−1Mpc−1 where the dimensionless Hubble parameter is h = 0.6774 from Planck

[25]. Before defining E2, it is convenient to introduce the dimensionless density parameters

today

Ωi,0 ≡
ρi,0
ρcr,0

=
8πG

3H2
0

ρi,0, (2.5)

where i indicates baryonic matter, dark matter, radiation, and Λ. Dividing Eq. (2.1) by

H2 and evaluating the quantities today gives an expression for the ‘effective’ dimensionless

density parameter for spatial curvature

Ωk,0 = 1− Ω0, (2.6)

where Ω0 ≡ Ωr,0 + Ωm,0 + ΩΛ,0. The combined Planck and baryon acoustic oscillation data

[25] are consistent with Ωk,0 = 0.000± 0.005, i.e. the universe has zero spatial curvature to

within 0.5% accuracy. The term E2 in Eq. (2.4) is a function of the dimensionless density

parameters with their redshift dependencies

E2 ≡
∑
i

Ωi,0(1 + z)3(1+wi)

= Ωr,0(1 + z)4 + Ωm,0(1 + z)3

+ (1− Ω0)(1 + z)2 + ΩΛ,0. (2.7)

In the FRW geometry, proper time is related to redshift through the differential ż =

−H(z)(1 + z). Therefore the time ∆t ≡ t2 − t1 elapsed between any two redshifts z1 and z2
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is given by the integral

∆t ≡
∫ t2

t1

dt = H−1
0

∫ z1

z2

dz

(1 + z)E(z)
, (2.8)

which has no tractable analytic solution ordinarily, but may be calculated analytically in

simple cases or numerically in general. The age of the universe calculated numerically from

Eq. (2.8) is t0 = 13.8 Gyr, which was reported in the 2015 Planck results [25].

The spatially-averaged inertial mass densities of the various components of the cosmo-

logical fluid decrease as power-laws with decreasing redshift according to their equation of

state, i.e.

ρi ∝ (1 + z)3(1+wi) (2.9)

for matter, radiation, curvature, and the cosmological constant. The average matter density

in the universe evolves as ρm ∝ (1 + z)3. The effective mass density of radiation evolves as

ρr ∝ (1+ z)4. In the early universe the redshift dependence of this term is more complicated

due to the presence of radiation in the form of neutrinos and other relativistic Standard

Model (SM) particles in addition to photons. Thus ρr evolves [28, 29] according to the

expression

ρr(T ) =
π2

30
g?(T )

k4
BT

4

c5~3
, (2.10)

where g?(T ) is the effective number of relativistic degrees of freedom, kB is Boltzmann’s

constant, and T is the temperature. Thus the effective radiation mass density evolves with

redshift as ρr ∝ g?(1 + z)4.

A list of the important particle mass and energy thresholds is given in Table 2.1. Shown

in Fig. 2.1 is the corresponding plot of g? as a function of temperature. The factor g?

increases by up to a factor 106.75/3.38 ∼ 31.6 at high redshift when all SM particles are

8



Table 2.1: Standard model elementary particles and other mass thresholds important in the
early universe. Listed are the particles that freeze out below each temperature threshold,
the mass of each particle or threshold from [30], the effective relativistic degrees of freedom
at the temperature corresponding to that mass threshold, and the change in the degrees of
freedom as the radiation temperature of the universe crosses the threshold. See also Fig.
2.1.

Particle(s) Mass [MeV] g?
a −∆g?

All > mt,t̄ 106.75 —

t, t̄ 1.73× 105 96.25 7
8
· 2 · 2 · 3

H0 1.26× 105 95.25 1

Z0 9.12× 104 92.25 3

W± 8.04× 104 86.25 2 · 3
b, b̄ 4.18× 103 75.75 7

8
· 2 · 2 · 3

τ± 1.78× 103 72.25 7
8
· 2 · 2

c, c̄ 1.28× 103 61.75 7
8
· 2 · 2 · 3

ΛQCD
b 170 17.25 44.5

π± 140 15.25 2 · 1
π0 135 14.25 1 · 1
µ± 106 10.75 7

8
· 2 · 2

νdec
c 2.6 7.25 7

8
· 2 · 2

e± 0.511 3.38d −∆g?,f
e

a g? at or below corresponding mass threshold
b QCD phase transition [31]; remaining quarks

(ss̄, dd̄, uū) and gluons are bound in hadrons
c Neutrino decoupling energy threshold
d g?(T < me) = 2+ 7

8
·2 ·Neff ·(4/11)4/3 ∼ 3.38;

where Neff ∼ 3.04 [25]
e −∆g?,f = 7

8
· 2 · 3− 7

8
· 2 ·Neff · (4/11)4/3

9



Figure 2.1: Stepwise approximation of g? as a function of temperature, including only
relativistic particles whose number density is high enough to contribute. Steps occur at
temperatures corresponding to the rest mass of elementary SM particles with the largest
step occuring at the QCD phase transition scale ΛQCD ∼ 170 MeV [31]. The value of g? is a
minimum for temperatures less than the neutrino decoupling temperature and a maximum
for temperatures greater than or equal to the top quark mass. See [28] for a discussion of
g?s.
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relativistic. The factor g?(T ) for all relativistic particle species in thermal equilibrium can

be calculated as the sum [28]

g?(T ) =
∑
i=b

gi

(
Ti
T

)4

+
7

8

∑
i=f

gi

(
Ti
T

)4

, (2.11)

where the first term is the sum over all bosons and the second term is the sum over all

fermions.

Each component of the cosmological fluid has an associated temperature whose value de-

pends on redshift. At high redshift after inflation the universe is dominated by radiation and

the components of the cosmological fluid are in equilibrium. The temperature of radiation

evolves simply as Tr = T0(1 + z) where Tr is the radiation temperature at any redshift lower

than the neutrino decoupling redshift zdec,ν and the temperature today is T0 = 2.72548 K

[32]. The baryonic matter is coupled to the radiation through Compton scattering prior to

the thermalization redshift [33]

1 + zth ∼ 800
(
Ωb,0h

2
)2/5 ∼ 174, (2.12)

and in this redshift regime the baryonic matter temperature evolves as Tb = T0(1 + z). After

zth, the baryonic matter temperature evolves adiabatically until reionization as

Tb = T0
(1 + z)2

1 + zth
, (2.13)

so that at thermalization, Tb = Tr(z = zth).

It is assumed that the dark matter is mostly weakly interacting massive particles (WIMPs)

denoted χ. For simplicity other dark matter models are not considered in this study; see

[34] for more details on all the dark matter models. For a discussion on the possibility of the

PBHs themselves being the dark matter see [13]. If the dark matter is composed of WIMPs

the DM temperature decouples from the radiation temperature at high redshift when ther-

11



mal freeze out of the dark matter particles occurs [34]. The model forces the DM thermal

freeze out to occur when kBTfr ∼ mχc
2/20. If mχc

2 = 100 GeV the freeze out redshift is

1 + zfr = Tfr/T0 ∼ 2× 1013.

The root-mean-square velocity vrms is approximated by comparing the relativistic kinetic

energy of the dark matter particles to their thermal energy:

(γχ − 1)mχc
2 =

3

2
kBTχ, (2.14)

where the Lorentz factor associated with βχ ≡ vrms/c of the dark matter particles is given

by

γχ ≡ (1− β2
χ)−1/2. (2.15)

It is useful to define the dimensionless quantity

Θχ ≡
3kBTχ
2mχc2

(2.16)

such that Eq. (2.14) becomes γχ = 1 + Θχ and therefore

β2
χ =

Θ2
χ + 2Θχ

(1 + Θχ)2
, (2.17)

which is friendly to numerical evaluations for all possible physical values of Θχ. The value

of βχ becomes close to unity quite rapidly and for the assumed freeze-out temperature,

βχ ' 0.367, i.e. the dark matter particles are mildly relativistic at freeze-out.

2.3 Primordial black hole accretion and evaporation

The history of the universe may be divided into redshift regimes to simplify analysis. The

relevant physical processes in the very early universe are distinct from those acting in the
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current era and thus it is important to summarize the physics in each regime.

Though important to the dynamics of the universe in general, the history of the very

early universe (prior to inflation) is not considered in detail in this study. The number

density of a pre-inflation cosmological relic, e.g. any pre-inflation PBHs, is negligible after

the inflationary epoch. The number density of a pre-inflation relic depends on the amount

of inflation. The amount of inflation is calculated by finding the number of e-foldings during

the inflationary epoch

N ≡
∫ af

ai

d ln a =

∫ tf

ti

H dt, (2.18)

where ti denotes the start of inflation, tf denotes the end of inflation, and H is the Hubble

parameter given in Eq. (2.4). A successful inflation model requires the number of e-foldings

to be at least Nmin ∼ 50 in order to solve the horizon problem [35]. The number density of

a relic which formed prior to inflation will thus decrease by a factor e3Nmin ∼ e150 ∼ 1065.

Thus any PBHs which formed prior to inflation are unlikely to be located in the observable

universe today.

After inflation, PBHs may form through a variety of mechanisms including collapse of

primordial inhomogeneities, phase transitions, and cosmic string or domain wall collisions

[13]. If the energy density fluctuations have a strength δρ/ρ ∼ 1 in a particular spacetime

volume, the region will likely collapse to a black hole. In this study it is assumed that the

collapse to a black hole occurs on a time scale much shorter than the Hubble time so that

the expansion is irrelevant to PBH formation. A black hole forming at a time t after the Big

Bang will have a mass less than or equal to the Hubble mass at that time, i.e.

MH =
c3t

G
∼ (4.0× 1014 g)t−24, (2.19)

using the useful notation f = 10nfn. At t = 1.0 s after the Big Bang, the Hubble mass is

MH ∼ 2.0 × 105M�. A derivation of Eq. (2.19) can be found in Appendix A. Models for
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the mass function of PBHs are discussed in [13] with emphasis on the behavior of the mass

function near the critical mass regime.

Particles with spin s between energy E and E + dE are emitted near the horizon of a

Schwarzschild black hole of mass M at a rate [9, 36]

dṄ =
ΓsdE

2π~

[
exp

(
8πGME

~c3

)
− (−1)2s

]−1

, (2.20)

where Γs is the absorption probability for a mode with spin s [37]. This is the so-called

Hawking radiation which resembles emission from a blackbody with radius Rs = 2GM/c2 of

temperature

kBTBH =
~c3

8πGM
= (10.6 MeV)M−1

15 . (2.21)

The BH can only radiate when the temperature of the hole is greater than that of the

radiation bath of the early universe. The temperature of radiation in the early universe

evolves as Tr ∝ 1 + z and is less than 10.6 MeV when z < 4.5 × 1010, i.e. when t > 0.01

s. This will have a negligible effect on the evolution of PBHs near 1015 g. The absorption

probability asymptotes to the geometric optics limit

Γs =
27G2M2E2

~2c6
(2.22)

when the particle energy is E � kBTBH . The functional form of Γs is much more complicated

for lower energy E ∼ kBTBH interactions as discussed in [37].

The mass loss rate due to the Hawking emission from a Schwarzschild black hole of mass

M requires a sum over all particle types and an integration over the particle energies leading

to the simple equation

dM15

dt
= (−5.34× 10−5 g s−1)f(M)M−2

15 , (2.23)
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where f(M) is a function [36] allowing for the emission of particles other than photons and

f(M) = 1 for M � 1017 g. The function f(M) increases when the mass of the PBH crosses

a particle mass threshold (see Table 2.1), after which the PBH may emit that particle. A

good approximation is f(M) ∼ f(Mi) because for the majority of its lifetime the mass of a

PBH remains near its formation mass Mi [37].

For supermassive black holes or stellar mass black holes the evaporation rate in Eq.

(2.23) is negligibly small. The evaporation rate becomes important on cosmological time

scales for black holes with mass M ∼ 1015 g. This is seen by integrating Eq. (2.23) to get

the evaporation timescale

tevap = (6.24× 1018 s)f(Mi)
−1M3

i,15. (2.24)

Assuming tevap = t0 = 13.8 Gyr, the critical formation mass for evaporation today is

Mcr = 5.1× 1014 g, (2.25)

where the parameter f for the critical mass is f(Mcr) ∼ 1.9 as assumed in [13, 36].

In every cosmic era the Hawking evaporation of a near-critical mass PBH will compete

with accretion of the cosmological fluid onto the hole. For the PBHs of M ∼ Mcr the

accretion turns out to be irrelevant if the hole accretes the cosmological fluid at spatially-

averaged densities. For PBHs much smaller than Mcr accretion is completely unimportant.

For PBHs larger than Mcr the accretion becomes ever more important and the evaporation

rate becomes ever smaller. Thus it is important to quantify the various accretion rates at

the relevant cosmic epochs. The accretion rates are dependent on the physical parameters

of the cosmological fluid, which change dramatically with redshift. The full equation to be

solved is the first-order nonlinear ordinary differential equation in M

dM

dt
= Ṁevap(f,M ; z) + Ṁacc(ρ, cs,M ; z), (2.26)
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where Ṁevap is given by Eq. (2.23) and the mass accretion term Ṁacc will be calculated in

the following sections. The equation is integrated from the formation time ti to any desired

final time (or the evaporation time for small holes) using Eq. (2.8), with the concordance

cosmological model accounted for at all times. The Hawking evaporation term has an explicit

dependence on f(M) and the mass M of the hole and an implicit dependence on z (or t).

The accretion term has explicit dependence on ρ, cs, and M and an implicit dependence on

z due to the evolution of those quantities across cosmic time.

The mass accretion term in Eq. (2.26) is split into its component parts

Ṁacc(ρ, cs,M ; z) = Ṁr + Ṁb + Ṁχ, (2.27)

where r indicates radiation (γ, ν, and other SM particles), b indicates baryonic matter, and

χ the dark matter particles. When the universe is cool enough (i.e. Tr < 0.511 MeV), the

radiation term consists only of photons and neutrinos. At higher redshift, the other SM

particles become relativistic and can be accreted. When the baryonic matter is coupled to

the radiation the two accretion rates become coupled and are written Ṁb+r. In the sections

following, the mass accretion term is calculated explicitly for the different cosmic eras.

2.3.1 Late universe accretion

In the late universe at z . zth the relevant cosmic scales are set by the formation and

evolution of structure, i.e. the distribution of dark and baryonic matter in the cosmic web.

The details of cosmic structure formation are ripe with rich and complicated physics and are

not included in this study; see [38, 39].

To set a bound on late universe accretion, all accretion terms here are set by the spatially-

averaged fluid quantities. The PBHs in our universe will likely form and evolve within

overdense regions, so the use of spatially-averaged quantities gives a good idea what to

expect with relatively isolated holes. The accretion of radiation in this redshift regime is
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unimportant for ∼Mcr PBHs because it is a horizon-limited growth given in the approximate

form

Ṁr = 4πR2
Scρr

=
16πG2

c3
ρr,0(1 + z)4M2

= (6.5× 10−48 g s−1)(1 + z)4M2
15, (2.28)

where ρr is the equivalent mass density in radiation. The accretion rate in Eq. (2.28) is

comparable to the magnitude of the Hawking evaporation rate when the mass of the PBH is

M = (6.3× 1025 g)(1 + z)−1. (2.29)

Thus the accretion of background radiation in this redshift regime is unimportant to critical

mass holes. A PBH of the mass given in Eq. (2.29) will not evaporate until long after the

current era.

The accretion of baryonic matter is more complicated as it is governed by gas dynamics in

the vicinity of the PBH. If the PBH is in an ‘average’ region of the universe, i.e. of average

baryonic matter density and temperature, the accretion of baryons will be a competition

between Bondi and Eddington-limited accretion [40]. The accretion rate found in this manner

will inform a lower bound for any relevant PBH accretion activity. Below z ∼ 30 the

details of cosmic structure will change this simplified picture, but it is useful to set a first

approximation. A complete picture of the baryonic accretion has not been properly solved

and is the subject of intense study from both theoretical and observational perspectives.

With the complicated gas dynamics removed from the analysis in this simplified calculation,
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the accretion rate can be expressed as

Ṁb = min
(
Ṁb,B, Ṁb,E

)
= min

(
4πλsG

2

c3
s,b

ρb,0(1 + z)3M2,
4πGmp

σT c
M

)
. (2.30)

where λs = 1/4 for a γ = 5/3 baryonic gas [40], mp is the proton mass, and σT is the

Thomson scattering cross section for electrons. It is clear that the Eddington limit is redshift-

independent and is equal to

ṀE = (7.03× 10−2 g s−1)M15. (2.31)

The Bondi rate is also redshift-independent in this redshift regime. The temperature of the

baryonic gas in this regime is

Tb =
Tr(1 + z)

1 + zth
=
T0(1 + z)2

1 + zth
, (2.32)

and therefore the sound speed in the baryonic gas (assuming it is entirely hydrogen) is

cs,b =

(
5kBTb
3mp

)1/2

= (1 + z)

(
5kBT0

3mp(1 + zth)

)1/2

= (1.5× 103 cm s−1)(1 + z). (2.33)

Thus the redshift dependence of the Bondi rate goes away and Eq. (2.30) becomes

Ṁb = min

[
πG2

(
5kBT0

3mp(1 + zth)

)−3/2

ρb,0M
2,

4πGmp

σT c
M

]

=


(1.9× 10−24 g s−1)M2

15, M < Mcr,1

(7.0× 10−2 g s−1)M15, M > Mcr,1

, (2.34)
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where Mcr,1 = 3.8× 1037 g is the mass of a PBH that gives an equivalence in the Bondi and

Eddington rates in this redshift regime. Comparing Eq. (2.34) to Eq. (2.23) it is clear that an

isolated near-critical mass PBH cannot accrete sufficiently to beat the Hawking evaporation

rate. The Bondi rate is comparable to the magnitude of the Hawking evaporation rate when

the PBH has the characteristic mass

Mch,1 = 7.3× 1019 g. (2.35)

Any relevant growth of a near-critical mass PBH in this redshift regime will have to come

from enhanced accretion if the hole is located within a significant density perturbation such

as an individual galaxy or galaxy cluster.

2.3.2 Post-recombination accretion

In the post-recombination universe (zth < z < zrec) the matter temperature is coupled to

the radiation temperature via Compton scattering, i.e. Tb = T0(1 + z). The recombination

redshift is listed in [25] as zrec = 1089.90. Starting 381,000 yr after the Big Bang and until

thermal decoupling, the sound speed in the baryonic gas can be expressed as

cs,b =

(
5kBTb
3mp

)1/2

= (1 + z)1/2

(
5kBT0

3mp

)1/2

= (1.9× 104 cm s−1)(1 + z)1/2. (2.36)

In this redshift regime, the accretion of radiation is still horizon limited and given by Eq.

(2.28). The accretion of baryonic matter is the Bondi accretion rate at lower mass and is
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Eddington-limited growth if the mass is large enough. Using the same arguments as before

Ṁb = min
(
Ṁb,B, Ṁb,E

)
= min

(
πG2

c3
s,b

ρb,0(1 + z)3M2,
4πGmp

σT c
M

)

=


(8.1× 10−28 g s−1)(1 + z)3/2M2

15, M < Mcr,2

(7.0× 10−2 g s−1)M15, M > Mcr,2

, (2.37)

where Mcr,2 = (8.7× 1040 g)(1 + z)−3/2 is the PBH mass that gives an equivalent Bondi and

Eddington rate. The Bondi accretion rate in Eq. (2.37) is comparable to the magnitude of

the Hawking evaporation rate when the PBH has a characteristic mass

Mch,2 = (5.1× 1020 g)(1 + z)−3/8. (2.38)

Thus in the post-recombination era until thermal decoupling, the relevant process for near-

critical mass PBHs is Hawking evaporation.

2.3.3 Pre-recombination accretion

In the pre-recombination era (zrec < z < zmr) after matter-radiation equality the baryonic

matter and radiation are fully coupled and cannot accrete independently. Thus the assump-

tions present in the Bondi accretion formula fail [41] and the accretion of the coupled fluid is

horizon-limited. The temperature of the baryonic gas is coupled to the radiation temperature

and the sound speed in the fluid can be written (see Appendix B)

c2
s =

c2

3

4ρr
4ρr + 3ρb

. (2.39)

At the matter-radiation equality the sound speed in Eq. (2.39) is a few percent below the

asymptotic value c/
√

3.
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The accretion rate of this coupled fluid onto a PBH is the horizon-limited rate

Ṁb+r = 4πR2
Scs(ρr + ρb)

=
16πG2

√
3c3

[
4ρr,0(1 + z)4

4ρr,0(1 + z)4 + 3ρb,0(1 + z)3

]1/2

×
[
ρr,0(1 + z)4 + ρb,0(1 + z)3

]
M2. (2.40)

This rate has a complicated dependence on redshift so it is useful to expand the right hand

side of Eq. (2.40) near the boundaries of this redshift regime. Defining the intermediary

terms ρ′r ≡ 4ρr,0 and ρ′b ≡ 3ρb,0 near zrec the rate takes the form

Ṁb+r = (6.8× 10−36 g s−1)

[
0.26ρ′r

(
1 + z

1 + zrec

)4

+ 0.17ρ′b

(
1 + z

1 + zrec

)3
]
M2

15. (2.41)

The redshift dependence of the sound speed in Eq. (2.39) is included in the expansion above

and in the expansion that follows. The rate in Eq. (2.41) becomes comparable in magnitude

to the Hawking evaporation rate when the PBH has a characteristic mass

Mch,3a ' (6.2× 1022 g)

[
0.26ρ′r

(
1 + z

1 + zrec

)4

+ 0.17ρ′b

(
1 + z

1 + zrec

)3
]−1/4

. (2.42)

So again the Hawking evaporation is most important for critical mass, i.e. Eq. (2.25), PBHs.

Closer to zmr the rate in Eq. (2.40) takes the form

Ṁb+r = (5.5× 10−34 g s−1)

[
0.25ρ′r

(
1 + z

1 + zmr

)4

+ 0.21ρ′b

(
1 + z

1 + zmr

)3
]
M2

15, (2.43)
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so the accretion of the baryonic radiation fluid occurs slowly for near critical PBHs. This

rate becomes comparable in magnitude to the Hawking evaporation rate when the hole is of

characteristic mass

Mch,3b ' (2.1× 1022 g)

[
0.25ρ′r

(
1 + z

1 + zmr

)4

+ 0.21ρ′b

(
1 + z

1 + zmr

)3
]−1/4

. (2.44)

The accretion of dark matter onto a PBH will be horizon-limited and should be quite

small if the spatially-averaged cosmological value for ρχ,0 is assumed. The dark matter

accretion rate is

Ṁχ = 4πR2
Scβχρχ, (2.45)

where βχ is defined in Eq. (2.17). The mass density of dark matter evolves according to

ρχ = ρχ,0(1 + z)3 such that Eq. (2.45) becomes

Ṁχ =
16πG2

c3

(Θ2
χ + 2Θχ)1/2

1 + Θχ

ρχ,0(1 + z)3M2. (2.46)

If there is an enhancement of the DM density term ρχ due to the formation of a DM halo there

will be an appropriate enhancement of the DM accretion rate. Thus Eq. (2.46) represents a

lower limit on the DM accretion rate. For a treatment of accretion from an enhanced DM

halo see [22, 23]. Since the temperature Tχ of dark matter decoupled from the radiation

temperature at zfr ∼ 2.1 × 1013, the dimensionless quantity Θχ in this redshift regime is

quite small. The expansion of βχ for Θχ � 1 is βχ ' (2Θχ)1/2. Thus Eq. (2.46) becomes

Ṁχ =
16πG2

c3

[
3kBT0

mχc2(1 + zfr)

]1/2

ρχ,0(1 + z)4M2

= (3.4× 10−58 g s−1)(1 + z)4M2
15, (2.47)
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which is about ten orders of magnitude smaller than the accretion rate due to the baryon-

radiation coupled fluid. In this regime the accretion rate of dark matter onto a PBH becomes

similar to the Hawking evaporation rate when

Mch,3c = (2.3× 1028 g)(1 + z)−1. (2.48)

The constraints on the accretion rates further strengthens the argument that accretion onto

a critical mass PBH is unimportant and most if not all of the lifetime of such a PBH is

dominated by the Hawking evaporation.

2.3.4 Post-DM freeze-out accretion

In the post-DM freeze-out (zmr < z < zfr) era the universe is dominated by radiation. The

dark matter, if it comprised of WIMPs, will be non-relativistic until redshifts higher than

zfr [34] and will accrete at a horizon-limited rate. The accretion of baryonic matter and

radiation is horizon-limited as before. It is convenient to apply ρb � ρr and therefore ignore

the baryonic matter terms and allow cs ∼ c/
√

3. Also in this redshift regime, the effective

number of relativistic degrees of freedom g? begins to increase at higher redshift so it is

important to express the radiation term as in Eq. (2.10). The accretion rate is therefore

Ṁb+r = 4πR2
Scs(ρr + ρb)

' 8π3G2k4
BT

4
0

15
√

3c8~3
g?(1 + z)4M2

= (2.0× 107 g s−1)

(
g?

86.25

)(
1 + z

1 + zfr

)4

M2
15. (2.49)

For a near critical mass PBH this is a large accretion rate compared to the magnitude of

the Hawking rate. Thus the mass of a PBH in this redshift regime where these two rates
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balance is

Mch,4 = (1.5× 1012 g)

(
g?

86.25

)−1/4(
1 + z

1 + zfr

)−1

. (2.50)

The period of enhanced accretion in the early universe is quite short due to the strong

redshift dependence, i.e. Ṁ ∝ (1 + z)4 so no significant accretion is expected for critical

mass PBHs. This is consistent with the findings from previous studies on PBH accretion, i.e.

[41]. At high redshift a critical mass PBH will not accrete significantly, but massive PBHs

can grow by about an order of magnitude by zmr.

In this redshift regime the accretion of DM onto the PBH is small. It is increasingly

important at higher redshift but is never larger than the radiation accretion rate in Eq.

(2.49). At the DM freeze-out redshift the DM particles are somewhat relativistic, i.e. Θχ ∼

0.075, such that the accretion rate is of the same form as Eq. (2.47) to a good approximation.

In this regime Eq. (2.48) also remains valid.

2.3.5 Pre-DM freeze-out accretion

In this redshift regime the universe undergoes many changes as g? increases and all particles

become relativistic. At high enough redshifts all particles have the same temperature and

follow T = T0(1 + z). The accretion rate at these high redshifts is therefore the same as

Eq. (2.49). The PBH will not accrete radiation in the early universe if TBH > Tr, which

corresponds to z < 4.5 × 1010 if M = 1015 g. The radiation accretion at these high red-

shifts is highly dependent on the particle physics model. This study employs the Standard

Model with all the latest particle masses from [30]. The equivalent mass density in radiation

changes dramatically in the early universe because of the change in g? as shown in Table 2.1.

Table 2.2 summarizes the relevant properties of the universe with reference to the equa-

tions they are first noted. Table 2.3 summarizes the relevant evaporation and accretion rates

of PBHs in the relevant redshift regimes with reference to the equations or sections they are
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Table 2.2: Properties of the universe across a large range in redshift.

z Ωr Ωm ΩΛ Tr Tb cs/c

z > zfr Da Nb N ∝ (1 + z) = Tr ∼ 3−1/2

zmr < z < zfr D N N ∝ (1 + z) = Tr ∼ 3−1/2

zrec < z < zmr Ic D N ∝ (1 + z) = Tr Eq. (2.39)

zth < z < zrec N D N ∝ (1 + z) = Tr Eq. (2.36)

z . zth N D N ∝ (1 + z) Eq. (2.32)e Eq. (2.33)e

z = 0 Nd Id Dd = T0
d Eq. (2.32)e Eq. (2.33)e

a Dominant component of energy content.
b Negligible component of energy content.
c Important; non-negligible but non-dominant.
d Ωr,0 ∼ 9 × 10−5, Ωm,0 ∼ 0.3089, ΩΛ,0 ∼ 0.6911, and T0 = 2.72548

K; see [25] and [32].
e Does not account for reionization around z ∼ 9 or effects due to

structure formation.

first noted.

2.4 Results

From the evaporation and accretion expressions in §2.3 it is possible to construct a rough

accretion or evaporation history for any PBH with mass Mi forming at redshift zi. The

critical mass holes with Mi = Mcr ∼ 5.1× 1014 g will suffer no significant accretion in their

entire lifetime if located in a suitably ‘average’ volume of the universe. They will assume

the evaporation timescale in Eq. (2.24) and evaporate according to Fig. 2.2.

If the same PBHs of Fig. 2.2 happened to form later, say at redshift zi = 108, it would

not affect their history due to the small timescales in the early universe. The accretion rate

of the cosmological fluid onto larger PBHs at high redshift will be more important.

The analysis in §2.3 can be summarized in a look-up plot of Mf against Mi. The regime

important for Mi ∼ 10−4M� holes is shown in Fig. 2.3 and the entire mass regime is shown

in Fig. 2.4. Note the agreement of Fig. 2.4 in the near-critical mass regime to Figure 2 of
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Table 2.3: PBH accretion and evaporation properties across a large range in redshift. This
table summarizes the findings of §2.3. In each redshift regime, the accretion rates change
due to the changes in ρi, Tr, Tb, and cs as in Table 2.2.

z Ṁevap
a Ṁr Ṁb Ṁχ

b

z > zfr Eq. (2.23) Eq. (2.49) —

zmr < z < zfr Eq. (2.23) Eq. (2.49) Eq. (2.47)

zrec < z < zmr Eq. (2.23) Eq. (2.40) Eq. (2.47)

zth < z < zrec Eq. (2.23) Eq. (2.28) Eq. (2.37) Eq. (2.47)

z . zth Eq. (2.23) Eq. (2.28) Eq. (2.34) Eq. (2.47)

z = 0 Eq. (2.23) Eq. (2.28) Eq. (2.34) Eq. (2.47)

a Since the Hawking evaporation rate Ṁevap ∝ M−2, it is only
relevant if M . Mcr. High mass PBHs evaporate long after
z = 0; see Eq. (2.24)

b Does not account for DM halo formation in the late universe due
to structure formation. Inside a DM halo the effective mass of
the PBH will be enhanced by a potentially large factor M →
fhaloM and thus Ṁχ → f 2

haloṀχ.

[21]. The holes evaporating at higher redshift must have initial masses slightly lower than

Mcr. Note that no significant accretion occurs across the intermediate mass regime between

Mcr and ∼ 1036 g due to the low accretion rates for BHs of this mass. Isolated PBHs in

this mass regime accreting the spatially-averaged cosmological fluid do not grow much. This

does not account for enhancement of the accretion rates due to structure formation and thus

represents a first approximation. If the accretion rate is enhanced via Ṁb,B → fbṀb,B where

fb = ρenh/ρb is an enhancement factor and ρenh is the enhanced baryonic matter density,

then a PBH of given initial mass can reach a higher mass for a given final redshift. This is

reflected in the dotted lines of Fig. 2.3, which show the final mass of a PBH growing from

1.0 s after the big bang to z = 0.1 given an enhancement factor fb = 101, 102, 103. Even a

small enhancement of the baryonic matter density leads to a large increase in the possible

final mass of the accreting PBH. Since the Bondi accretion rate is proportional to M2, higher

mass PBHs will accrete more than lower mass PBHs and this increase in the accretion rate

is indicated by the increasing Mf in Fig. 2.3 around M ∼ 1036 g.
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Figure 2.2: Waterfall plot of various PBHs forming at z = 1016 with masses near the critical
evaporation mass, Mcr ∼ 5.1 × 1014 g. The PBHs near Mcr suffer no significant accretion
during their lifetime. The critical mass PBH evaporates at tevap = 13.8 Gyr after the Big
Bang (indicated by the dashed line). PBHs with M < Mcr evaporate prior to the current era
while those with M > Mcr will evaporate in the future if they do not accrete significantly.

In the first few seconds of the universe (z & 109), PBHs approaching the formation mass

limit around 1038 g have a large accretion rate (see Eq. 2.49). This large accretion rate,

though short-lived, can increase the mass of the PBH by about an order of magnitude by

z = 109. This effect is absent in lower mass PBHs and thus is visible in Fig. 2.4 as a small

increase beginning above Mi ∼ 1038 g.
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Figure 2.3: Look-up plot of the final mass of PBHs forming at 1.0 s after the Big Bang
and ending at redshifts 30, 6, 0.1, and 10−4. Also shown are three cases of PBHs forming
at 1.0 s after the Big Bang and ending at z = 0.1 if they are located in a region where
fb = 101, 102, and 103. The plot shows the dramatic effects of late-universe accretion and
density enhancement. It is known from SMBH observations that there are BHs with M ∼
2.5×1043 g at z ∼ 6.3 [42]. These holes are not easily explained with our ‘average’ accretion
histories; a PBH growing this large would have to be contained in an overdense region of the
universe and supplied with gas for their entire histories. Laser Interferometer Gravitational-
Wave Observatory (LIGO) observations of the gravitational wave events GW150914 [43] and
GW151226 [44] prove the existence of ∼ 6× 1034 g and ∼ 3× 1034 g BHs at z ∼ 0.1. These
observations are consistent with PBHs inside a regime of higher than average baryonic matter
density that grow by a few orders of magnitude over their lifetime. The dotted vertical lines
indicate the required initial masses that produce a PBH of 30M� by z = 0.1. Lower initial
masses arise from higher density enhancements fb.
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Figure 2.4: Full look-up plot for all PBHs forming at 1.0 s after the Big Bang and ending
at redshifts 30, 6, 0.1, and 10−4; same color scheme as Fig. 2.3. The four dashed lines are
Mf = 1.1 × 1013Mi, Mf = 6.4 × 1011Mi, Mf = 7.7Mi, and Mf = Mi (top to bottom). The
zf = 30 case asymptotes to Mf = 1.01Mi for Mi > 1035 g. The low-mass regime agrees with
Figure 2 of [21], with the cut-off minimum mass increasing for lower final redshift (lower
mass PBHs would have already evaporated). The increase in Mf for Mi ∼ 1038 g is due to
the large accretion rate of Eq. (2.49) at high redshift, which is large for only a short time
due to the (1 + z)4 redshift dependence.
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2.5 Conclusions and Discussion

A comprehensive view of the evolution of PBHs throughout cosmic history was presented.

The accretion and evaporation histories of PBHs with masses in the approximate range

1014 g < M < 2 × 1038 g were calculated. PBHs with lower masses will have evaporated

prior to the current era and are not considered and PBHs with higher masses are not allowed

due to the Hubble mass constraint of Eq. (2.19). The accreted fluids were assumed to

have spatially averaged cosmological densities and the details of structure formation were

not included. The important quantities for accretion are the mass densities of the various

cosmological fluids, the sound speed in those fluids, and the details of their behavior at all

relevant redshifts. All of these details were calculated precisely for the ΛCDM concordance

cosmology.

The important findings of this study are the following:

• A PBH with initial mass near Mcr = 5.1× 1014 g will not accrete radiation or matter

in any significant quantity and will thus evaporate according to the timescale given in

Eq. (2.24). A PBH with initial mass less than Mcr will evaporate prior to the current

era.

• A PBH with initial mass in the approximate range 1015 g < Mi < 1035 g neither

evaporates nor accretes significantly over a Hubble time. Such a PBH would have to

grow by other means, i.e. merging with other BHs or accreting while in an overdense

region of the universe. Since the Hawking evaporation rate is so small for PBHs in this

mass regime, the lower limit on the final (observed) mass of such PBHs is thus simply

Mf = Mi.

• A PBH with initial mass M < 1038 g will not grow significantly in the early universe,

i.e. within the first few minutes after the Big Bang. This finding is consistent with

other PBH accretion studies, e.g. [41]. The small increase for BHs with Mi ∼ 1038 g

seen in Fig. 2.4 results from the large accretion rate for high-mass holes in Eq. (2.49).

30



It represents a growth of approximately one order of magnitude in the early universe,

consistent with previous studies. There is negligible growth of critical mass PBHs in

the radiation-dominated era.

• A PBH with initial mass in the approximate range 1035 g < Mi < 1037 g can accrete

significantly during its lifetime. In the redshift regime zth < z < zrec, a PBH with

M < (8.7 × 1040 g)(1 + z)−3/2 accretes at the Bondi rate and is Eddington-limited

above that. In the redshift regime z ≤ zth, a PBH with M < 3.8 × 1037 g accretes at

the Bondi rate and is Eddington-limited above that. A PBH with such a mass that

grows at the Bondi rate for its whole lifetime can thus grow by one or two orders of

magnitude.

• When a PBH grows enough to have its baryonic matter accrete at an Eddington-

limited rate, the hole can increase in mass by many orders of magnitude if evolving

into the late universe zf ∼ 0. Since the PBH will grow by accreting the spatially

averaged cosmological gas, this growth represents how an ‘average’ PBH accretes at

the Eddington limit. The true accretion history of course will be complicated by

feedback effects which were not modeled here. The curves in Fig. 2.4 thus represent

an ‘average’ growth. A true astrophysical hole of this mass may grow at either a higher

or a lower rate.

• A PBH with initial mass in the approximate range 4×1037 g < Mi < 1038 g will accrete

at an Eddington limited rate after zrec and the final mass of such a hole depends on its

observed redshift. At zf = 30, the hole can only grow to Mf = 1.01Mi. The hole can

grow to Mf = 7.7Mi if zf = 6. The hole can grow to Mf = 6.4 × 1011Mi if zf = 0.1

and to Mf = 1.1× 1013Mi if zf = 10−4. See Fig. 2.4 for more details.

The PBH mass histories discussed in this study represent a first approximation of their

cosmic behavior. Several astrophysical applications may be discussed in the context of the

above results:
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• It is impossible to explain the large BHs with M ∼ 1010M� observed [42] at z > 6

via PBHs with Eddington-limited accretion of the ‘average’ baryonic gas, even with

Mi ∼ 105M�. These holes must be explained through multiple massive PBH mergers,

mergers with BH seeds from the first generation of stars, or PBHs in overdense regions

accreting at super-Eddington rates.

• PBHs do not easily grow to 30M� by z ∼ 0.1 through Bondi accretion of the ‘average’

cosmological fluid. These PBHs cannot easily explain the binary BH mergers observed

by LIGO as the gravitational wave events GW150914 [43] and GW151226 [44] unless

they experience an enhancement of the Bondi rate through various channels. One

such channel is a baryonic matter density enhancement leading to Ṁb,B → fbṀb,B as

discussed in §4. Small enhancement factors allow a lower mass PBH to reach 30M�

compared to those PBHs accreting the average cosmological baryonic matter. Another

possibility is the LIGO BHs were PBHs that formed with an initial mass Mi = Mf ,

where Mf is their mass at the merger time. According to [45], the event rate for PBH

mergers would be high enough to explain the GW events if the PBHs constitute a

large enough fraction of the dark matter. However, PBHs in the appropriate mass

range to explain these LIGO events are unlikely to be a large enough fraction of the

DM as constrained from CMB measurements discussed in [46], [47], and [48]. Either

LIGO has chanced upon two relatively rare PBH mergers or there is a common stellar

evolution channel that produces BHs of these masses. Both explanations are interesting

and more data are needed to distinguish these two possibilities.

• Searches for PBH bursts [24] are ongoing. Although there are candidates for such

events, no confirmed PBH burst event has been detected. The spectral properties of

such bursts should be distinguishable from the ‘normal’ GRBs. The non-detection of

such an event has a few explanations. First, the fraction of PBHs that make up the

dark matter must be quite low for PBHs of the relevant mass scale (see Fig. 9 of [13]).
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Thus it is plausible that not enough of these PBHs exist to subsequently evaporate and

trigger gamma-ray detectors. Second, it might be possible for the critical mass holes to

accrete enough to no longer evaporate in the current era. However, the accretion rate

is too small and this would not explain the non-detection of PBH bursts. Even if the

accretion rate onto small PBHs happened to be large enough, there would be smaller

PBHs that would accrete enough to reach Mcr anyway, filling the void of critical mass

holes.
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Chapter 3

Transient electromagnetic signature of

SMBHB mergers

Black hole binary systems evolve toward irreversible states beginning with a shrinking orbit

from accretion disk interactions and ending in gravitational wave emission driving the system

to a dramatic merger [49]. A binary supermassive black hole binary (SMBHB) system

located deep in a galactic potential well is immersed in the approximately uniform magnetic

field created by the inner accretion disk surrounding the SMBHB system. A black hole

binary inspiralling within this magnetic field will produce copious isotropic and collimated

electromagnetic energy losses that increase in frequency and amplitude until the merger time.

A binary black hole merger should not create messy baryon-rich ejecta as in kilonovae, merger

events requiring the presence of at least one neutron star [50], rather it will drive a Poynting

flux dominated outflow. A SMBHB system with total mass 108M� will produce an isotropic

electromagnetic luminosity of ' 1045 erg/s that to first post-Newtonian (PN) order scales

with the gravitational wave luminosity LEM . 10−11LGW [51, 52, 53, 54]. The Poynting flux

will drive a relativistic blast wave as it interacts with the surrounding interstellar medium

(ISM). The synchrotron radiation from this blast wave will radiate across a broad range of

EM frequencies and its unique signature will distinguish it from other EM signatures from
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the galactic core. This blast wave afterglow will evolve in a similar manner to standard

gamma-ray burst afterglow emissions and is the topic of the §3.3.

3.1 Special relativity

Wave solutions to the field equations of general relativity emerge from perturbing the

Minkowski metric with a small tensor field hµν . Astrophysically relevant sources of these

gravitational waves include, but are not limited to, compact object mergers, supernovae, and

a stochastic background that includes primordial waves from the birth of the universe. The

most luminous events in the universe are gravitational waves from compact object mergers.

From dimensional analysis their luminosity is scaled by LGW ∼ c5/G ∼ 3.6 × 1059 erg/s,

equivalent to radiating the mass-energy equivalent of ∼ 2× 105M� per second.

The discovery of the laws of general relativity by Albert Einstein is an outstanding ex-

ample of transcendent human intellectual exploration. To understand the importance of this

discovery, a discussion on special relativity is in order. Einstein discovered special relativ-

ity and the mutability of space and time by taking two simple postulates to their logical

termination [55]:

1. Principle of Relativity: The laws of electrodynamics are valid for all global Lorentz

transformations.

2. Light celerity invariance: The celerity of light in empty space, c, is independent of

the motion of the emitting or receiving body.

The postulates of special relativity require a willful recalculation of the basic human experi-

ences of space and time, which are not separate and form a complete spacetime continuum

within this framework. A difficult notion to forget is the concept of universal simultaneity,

that all observers will agree that some event A precedes another event B, a perception ex-

plicit in Newtonian (prerelativity) dynamics. Imagine one reference frame S with coordinate
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representation (t, x, y, z) and another S ′ with coordinates (t′, x′, y′, z′) moving at a constant

speed v = dx/dt along the x-axis without loss of generality. The frames S and S ′ are coin-

cident at t = t′ = 0. The Galilei transformation defines the conversion of the coordinates of

events in S and S ′

t′ = t x′ = x− vt y′ = y z′ = z, (3.1)

thus t′A = tA and t′B = tB. Events A and B are simultaneous in frame S if tA = tB. The

Galilei transformation then demands simultaneity in frame S ′, namely t′A = t′B, in accordance

with everyday experience.

The failure of the Galilei transformation in describing electrodynamical phenomena led

Einstein to develop special relativity, in which events in the two inertial reference frames S

and S ′ are related by the Lorentz transformation [55]

t′ = γ(t− βx/c) x′ = γ(x− vt) y′ = y z′ = z, (3.2)

where the Lorentz factor γ ≡ (1 − β2)−1/2, β ≡ v/c, and c the celerity of light. Event A is

simultaneous to event B in frame S if tB − tA = 0. If A and B are simultaneous in S then

they cannot be simultaneous in S ′ because t′B − t′A = −(γβ/c)(xB − xA) 6= 0. The notion of

universal simultaneity is absent in special (and general) relativity.

Hermann Minkowski discovered that special relativity is inherently geometric in nature

and introduced the concept of the differential spacetime interval ds defined via [56]

ds2 ≡ −c2dt2 + dx2 + dy2 + dz2, (3.3)
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where c is the speed of light. Events in spacetime are thus separated according to the relative

magnitude of the above terms, in other words

ds2 < 0 timelike separated (3.4)

ds2 = 0 lightlike (null) separated (3.5)

ds2 > 0 spacelike separated. (3.6)

Massive observers travel along a timelike trajectory in spacetime (worldline) with a speed v <

c, whereas massless particles (photons, gravitons, etc.) in vacuum travel on null worldlines.

An observer cannot travel between two spacelike separated events; doing so would require

breaking Postulate 2 above. Though universal simultaneity is absent the causal structure

of timelike and null separated events is always preserved, i.e. simultaneity is not preserved

only for spacelike separated events.

3.2 General relativity and gravitational waves

Though subject to an interesting debate regarding their existence in the first half of the

twentieth century, the undeniable reality of wave solutions to the field equations of gen-

eral relativity appeared in spectacular punctuality one hundred years after their prediction

[15]. Gravitational waves propagate at the speed of light, carrying information about the

momentum-energy content and geometry of the source system. The information, encoded in

the two polarized oscillating GW amplitudes h+(t) and h×(t), falls as 1/dL where dL is the

luminosity distance to the source. Extracting GW solutions to the field equations of GR is

straightforward and proceeds as follows.

A conceptual realization of the Einstein field equations is written

curvature = stress-energy, (3.7)
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or the statement given in [57] “Space acts on matter, telling it how to move. In turn, matter

reacts back on space, telling it how to curve.” In mathematical language, the equations are

Gαβ ≡ Rαβ −
1

2
gαβR =

8πG

c4
Tαβ, (3.8)

where Gαβ is the Einstein tensor, Rαβ ≡ Rλ
αλβ is the Ricci curvature tensor (defined as the

trace of the Riemann curvature tensor), R ≡ Rλ
λ is the Ricci scalar (or trace of the Ricci

curvature), Tαβ is the stress-energy tensor, G is Newton’s gravitation constant (present in

order to recover the Newtonian limit), and c is the speed of light. An excellent review

of tensor calculus is found in [58]. The following is a review of the minimum necessary

mathematical concepts to understand Eq. (3.8).

The metric tensor, whose components are gαβ, is a tensor that defines the dot product

in the manifold (our D = 3 + 1 spacetime). The infinitesimal displacement, between two

events in the spacetime is invariant and found using the metric tensor

ds2 ≡ gαβdx
αdxβ. (3.9)

In special relativity, the metric tensor is called the Minkowski metric and can be represented

as the diagonal matrix

gαβ ≡ ηαβ → diag(−1, 1, 1, 1). (3.10)

In general relativity one cannot compare a vector to another at a different spacetime

location without calculating as well the change in the basis used to find the components.

The covariant derivative on a vector v accomplishes this task and is defined

∇αv
λ = ∂αv

λ + vβΓλαβ, (3.11)
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where ∇ is the covariant derivative, the notation ∂α ≡ ∂/∂xα is used, and the Γλαβ are the

connection coefficients defined through

Γλαβ ≡
1

2
gλµ
(
∂βgαµ + ∂αgβµ − ∂µgαβ

)
. (3.12)

Since GR is coordinate-independent in the sense that invariant quantities are the same

in all coordinate systems, one may be fooled into thinking that a complicated functional

form for the components gαβ indicates spacetime curvature. This is false; remembering the

functional form of basis vectors in a polar coordinate system in Euclidean 3-space removes

all doubt. The proper method of assessing spacetime curvature requires knowledge of the

change in components of a vector wα as it is parallel-transported along a closed path. The

process is path-dependent and is given by

δwα = Rα
βµνw

βdxµdxν , (3.13)

where Rα
βµν is the Riemann curvature tensor defined as

Rα
βµν ≡ ∂µΓαβν − ∂νΓαβµ + ΓαλµΓλβν − ΓαλνΓ

λ
βµ. (3.14)

All components of the Riemann tensor Rα
βµν = 0 in Minkowski spacetime because the space

lacks curvature. In general the components are nonzero. The Ricci identity,

(
∇µ∇ν −∇ν∇µ

)
wα = Rα

βµνw
β, (3.15)
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is a statement of the non-commutativity of two covariant derivatives acting on a vector. The

fully covariant Riemann curvature tensor has the following symmetries:

Rσλµν = −Rλσµν = −Rσλνµ = Rµνσλ, (3.16)

Rσλµν +Rσνλµ +Rσµνλ = 0, (3.17)

Rσλµν −Rµνσλ = 0. (3.18)

The Bianchi identity involves covariant derivatives of the Riemann curvature tensor and

provides another symmetry

∇λR
α
βµν +∇νR

α
βλµ +∇µR

α
βνλ = 0. (3.19)

The Ricci curvature tensor is formed by contracting on the first and third indices of the

Riemann curvature tensor

Rαβ ≡ gµλRµαλβ

= Rλ
αλβ. (3.20)

The Ricci scalar is the trace of the Ricci curvature tensor

R ≡ gµλRµλ

= Rλ
λ. (3.21)

The Bianchi identity of Eq. 3.19 allows the Einstein tensor, defined as

Gαβ ≡ Rαβ −
1

2
gαβR, (3.22)
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to satisfy the contracted Biachi identity ∇βGαβ = 0.

The stress-energy tensor Tαβ describes the local energy-momentum density and fluxes. It

has zero divergence, i.e. ∇βT
αβ = 0 and relates to the Einstein tensor via the field equations

of Eq. (3.8).

To find a solution to the Einstein field equations is difficult; only a small class of solutions

have ever been found. The difficulty arises because in a general sense Eq. (3.8) represents

twenty coupled, nonlinear, partial differential equations with each equation having tens to

hundreds of terms. Solutions are found by exploiting symmetry and making appropriate

approximations.

Wave solutions in general relativity can be found by making the assumption that the

spacetime is Minkowskian with a small perturbation

gαβ = ηαβ + hαβ, with |hαβ| � 1, and (3.23)

gαβ = ηαβ − hαβ, with |hαβ| � 1. (3.24)

In this so-called linearized gravity, the following relationships hold

Γλαβ =
1

2
ηλµ
(
∂βhαµ + ∂αhβµ − ∂µhαβ

)
+O(h2) (3.25)

Rα
βµν = ∂µΓαβν − ∂νΓαβµ +O(h2) (3.26)

Rαβµν =
1

2

(
∂µ∂βhαν + ∂ν∂αhβµ − ∂ν∂βhαµ − ∂µ∂αhβν

)
+O(h2) (3.27)

Rαβ =
1

2

(
∂λ∂αhβλ + ∂λ∂βhαλ −�hαβ − ∂α∂βh

)
+O(h2) (3.28)

R = ∂α∂βhαβ −�h+O(h2) (3.29)

where h ≡ ησλhσλ = hλλ is the trace of the metric perturbation and � ≡ ησλ∂σ∂λ = ∂λ∂λ

is the d’Alembertian operator in the background Minkowski spacetime. With the above
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relationships, to first order in the perturbing field tensor hαβ, Eq. (3.8) becomes

∂λ∂αhβλ + ∂λ∂βhαλ −�hαβ − ∂α∂βh− ηαβ∂λ∂σhλσ + ηαβ�h =
16πG

c4
Tαβ. (3.30)

The above equations are difficult to understand on a passing glance. Two choices will

simplify the equations. First, introduce the trace-reversed perturbing field tensor

h̄αβ ≡ hαβ −
1

2
ηαβh (3.31)

such that Eq. (3.30) becomes

∂λ∂αh̄βλ + ∂λ∂βh̄αλ −�h̄αβ − ηαβ∂λ∂σh̄λσ =
16πG

c4
Tαβ. (3.32)

Finally, make a gauge transformation (choice of coordinates) into the harmonic (or Lorenz

or de Donder) gauge: ∂αh̄
αβ = 0, such that Eq. (3.32) becomes

�h̄αβ = −16πG

c4
Tαβ +O(h2). (3.33)

One final simplification is to set Tαβ = 0 because the gravitational waves are propagating

in empty space. This gives the complete linearized Einstein field equations in the harmonic

gauge

�h̄αβ = 0 +O(h2), (3.34)

whose solutions are gravitational waves propagating at the speed of light. There is an

additional gauge choice that simplifies Eq. (3.34), elucidating the nature of gravitational

waves. The convenient choice is to introduce a coordinate transformation

xλ → xλ + ξλ with |∂σξλ| � 1. (3.35)
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The requirement |∂σξλ| � 1 is a statement that the derivatives of ξλ must be small in the

same order that the perturbing metric tensor is small, i.e. |h̄αβ| � 1. In addition, one may

demand �ξλ = 0 and �
(
∂σξλ +∂λξσ−ησλ∂µξµ

)
= 0. These conditions define the transverse-

traceless (TT) gauge. For the perturbing field tensor h̄αβ, the traceless condition implies

h̄λλ ≡ h̄ = 0 = h ≡ hλλ. The TT gauge removes all time components of the perturbing field

tensor such that hTTα0 = 0. Finally the TT gauge is transverse, namely ∂βhαβ = 0.

Solutions to the wave equation �hTTαβ = 0 are plane waves

hTTαβ = ATTαβ eikλx
λ

, (3.36)

where kλ ≡ (ω/c,k) is the wave four-vector and Aαβ is the amplitude tensor. Without

loss of generality, the wave can be taken to be propagating in the z-direction such that the

amplitude tensor is

ATTαβ =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (3.37)

where h+ and h× are the GW strain amplitudes in the “plus” and “cross” polarization

states so named for their effect on a ring of test particles, and the real part of eikλx
λ

is

cos
[
ω(t− z/c)

]
.

The stress-energy tensor of the gravitational waves can be found using Eq. (3.8) and

evaluating the Einstein tensor to the appropriate order in the perturbing field tensor. In [59]

it is shown to be

TGWαβ =
c4

8πG

〈
∂αhµν∂βh

µν
〉
, (3.38)
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where the brackets represent a time average over a few periods of the wave. In the TT gauge,

the energy flux of the wave is

dE

dtdA
=

c3

32πG

〈
ḣTTab ḣ

ab
TT

〉
=

c3

32πG

〈
ḣ2

+ + ḣ2
×
〉
, (3.39)

where, in the first equality, the sum is taken over the time derivatives of the non-zero am-

plitudes in ATTαβ . The luminosity in gravitational waves is found by integrating the above

equations over dA = r2dΩ, where r is the distance to the source and dΩ is the differential

solid angle.

If there is knowledge of the mass distribution of the source of the waves, one may easily

calculate the GW energy flux and luminosity. The calculation proceeds as follows. First,

assume that the quadrupole moment tensor is the sole source of the GWs (in reality, all

moments beyond quadrupole are also needed)

I ij =

∫
d3xT 00(t− r/c,x)xixj, (3.40)

where T 00/c2 is the mass density of the source in the weak field limit. The trace-free

quadrupole moment tensor is

I ij =

∫
d3xT 00(t− r/c,x)

(
xixj − 1

3
r2δij

)
, (3.41)

where δij is the Kronecker delta. The trace-free quadrupole moment tensor projected into the

plane orthogonal to the direction of propagation of the GW is the TT quadrupole moment

tensor

ITTij =

(
PikPjl −

1

2
PijPkl

)
Ikl, (3.42)
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where the projection tensor Pij ≡ δij−ninj and ni ≡ xi/r is the unit normal in the direction

of xi. With this in mind, the GW energy flux, Eq. (3.39), at a distance r far from the source

can be written

dE

dtdA
=

G

8πr2c5

〈...
I TTab

...
I abTT

〉
. (3.43)

Integrating Eq. (3.43) over dA = r2dΩ gives the simple result

−dEGW
dt

= LGW =
1

5

G

c5

〈...
I ab

...
I ab
〉
. (3.44)

It can be shown that the GW strain far from the source is then

hTTab (t) =
2G

c4r
Ïab(t− r/c). (3.45)

3.2.1 GWs from compact binary coalescence

A compact binary coalescence (CBC) is the process wherein two compact objects (either

black holes or neutron stars) merge and produce a single compact remnant. The CBC con-

sists of three distinct phases: inspiral, merger, and ringdown. During the inspiral the com-

pact objects (in our case, black holes) emit gravitational radiation, losing energy and angular

momentum in the process. The separation between the two BHs adiabatically decreases in a

quasi-Keplerian fashion. During the final orbits of the inspiral the Newtonian approximation

breaks down, the two BHs plunge toward one another, and the system undergoes a merger,

forming a single perturbed BH. The GW luminosity is highest here. The perturbed BH acts

similarly to a struck bell, emitting GWs in damped sinusoidal quasi-normal modes (QNMs)

that depend on the mass and spin of the remnant BH – the ringdown. It is straightforward

to calculate the GW signal during the inspiral. It is also straightforward to calculate the

ringdown QNMs. It is impossible, however, to analytically predict the entire CBC gravita-

tional waveform. The inspiral, merger, and ringdown GW signals must be stitched together
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numerically to produce the full CBC waveform.

The following mirrors arguments made in [60, 61, 62] regarding the calculation of the

quadrupolar GW energy losses. Suppose a black hole binary (BHB) system consists of two

Schwarzschild BHs of mass m1 and m2 separated by a distance r, orbiting in the xy-plane

with the z-axis at an angle ι to the line of sight. The total mass is m ≡ m1 + m2, the

reduced mass is µ ≡ m1m2/m, the mass ratio is q ≡ m1/m2 ≤ 1, the symmetric mass ratio

is η ≡ µ/m, and the chirp mass isM≡ µ3/5m2/5. Over the course of a few orbits, ṙ ' 0 and

the orbital angular frequency obeys Kepler’s third law, namely Ω2r3 = Gm. The nonzero

components of the quadrupolar moment tensor are Ixx, Iyy, and Ixy = Iyx:

Ixx =
1

2
µr2(1 + cos 2ϕ), (3.46)

Iyy =
1

2
µr2(1− cos 2ϕ), (3.47)

Ixy =
1

2
µr2 sin 2ϕ = Iyx, (3.48)

where ϕ is the orbital phase given by

ϕ =
c3t

Gm

(
v

c

)3

, (3.49)

and t is the orbital time. The orbital velocity of either mass is v and it is convenient to write

it as the dimensionless parameter

v

c
=

(
Gm

c3
πf

)1/3

, (3.50)

where the GW frequency is f = 2forb = Ω/π and so the gravitational waves are emitted at

twice the orbital frequency. This can be visualized by noting the quadrupolar nature of the

GWs and recognizing therefore the requirement of producing two full periods of gravitational

waves in one orbital period.
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The GW luminosity of such a source can be found using Eq. (3.44) and is written

LGW =
c5

G
F(v), (3.51)

where F(v) is the flux function and is given by

F(v) =
32

5
η2

(
v

c

)10

. (3.52)

It is clear in this form that LGW increases dramatically toward the final stages of the inspiral

when the orbital velocity of the BHs approaches significant fractions of the speed of light.

Making use of Eq. (3.45) and calculating two time derivatives of the quadrupolar moment

tensors, the GW strain at a distance dL from the source in each polarization state is

h+(t) =
4G

c2

µ

dL

1 + cos2 ι

2

(
v

c

)2

cos 2ϕ (3.53)

h×(t) =
4G

c2

µ

dL
cos ι

(
v

c

)2

sin 2ϕ. (3.54)

The time derivative of v/c is simply

d

dt

(
v

c

)
=

32

5
η
c3

GM

(
v

c

)9

, (3.55)

and is useful in determining the time to merger given by

tm − t(v) =
5

256

1

η

Gm

c3

(
v

c

)−8

. (3.56)

One may also calculate the orbital phase evolution

ϕm − ϕ(v) =
1

32

1

η

(
v

c

)−5

, (3.57)
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while recalling ϕGW = 2ϕ. Another important quantity is the time derivative of the GW

frequency

ḟ =
96

5

(
GM
c3

)5/3

π8/3f 11/3. (3.58)

The gravitational wave energy released as the orbital velocity increases from v0 to some

v is given by integrating

dEGW = d(v/c)
dt

d(v/c)
LGW , (3.59)

which gives

EGW (v) = µc2

∫ v

v0

d(v′/c)
v′

c

=
1

2
µc2

[(v
c

)2

−
(v0

c

)2
]
. (3.60)

Typically v0 � v if many orbits prior to merger are included in the integration. The energy

released in GWs is thus approximately

EGW '
1

2
µc2
(v
c

)2

' (8.9× 1059 erg)µ8

(v−1

c

)2

, (3.61)

where µ8 is the reduced mass in units of 108M� and the orbital velocity v−1 = 0.1c.

The fiducial example of two orbiting supermassive BHs is a non-spinning equal mass

BH binary with m1 = m2 = 108M�. The time-domain waveforms are plotted in Fig. 3.1.

The characteristic ‘chirp’ signal of the merger showing an increasing frequency is visible in

Fig. 3.2. The dimensionless orbital velocity v/c is shown in Fig. 3.3. The evolution of the

gravitational wave phase ϕGW is shown in Fig. 3.4.
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3.2.2 Electromagnetic counterparts of binary black hole mergers

An astrophysical supermassive black hole binary (SMBHB) is likely to be located deep in

the potential well of a galaxy and living inside the ∼ 104 G magnetic field typical of such

systems [66]. The SMBHB may initially live inside the interstellar gas at the center of the

galaxy, but due to magnetohydrodynamical interactions will decouple from the gas and enter

a GW inspiral phase in its evolution.

In their orbital evolution the BHs will move through the magnetic field, tapping the

electromagnetic energy present in the field. In simulations, it has been shown that a mainly

quadrupolar EM emission is present and follows the phase evolution of the BHs [52, 53, 66,

51]. At quadrupolar order, the EM luminosity is a simple scaling factor ∼ 10−11 on the GW

luminosity. It is possible to evaluate the evolution of this coincident EM signal through the

GW analysis of §§3.2.1.

The luminosity of a coincident quadrupolar electromagnetic signal may be expressed as

LEM = FEMLGW (3.62)

= F0

(
v

c

)δ
LGW , (3.63)

where δ is a power law index on the velocity-dependent term and with the supposition that

the constant factor F0 ∼ O(10−11). The EM energy emitted by such a coincident signal is

simply

EEM = µc2F0

∫ v

v0

d(v′/c)

(
v′

c

)1+δ

(3.64)

= µc2 F0

2 + δ

[(v
c

)2+δ

−
(v0

c

)2+δ
]
. (3.65)

A non-singular solution requires 2 + δ > 0 or δ > −2. In numerical solutions, these isotropic

signals seem to have a small dependence on v/c such that δ & 0 [53, 66, 51]. The EM energy

of this signal is deposited into the interstellar medium via a relativistic blast wave which is
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the topic of the next section.

3.3 Blastwave afterglow synchrotron emission

A relativistic blastwave compresses the ISM magnetic field and allows electrons present in the

outflow to radiate via nonthermal synchrotron emission. The synchrotron emission problem

for a population of electrons with a power-law distribution in Lorentz factors is well-posed

and has been solved, for example, in [67]. The basic argument is as follows.

The synchrotron emission power, dE/dtdν of a single particle of mass m and charge q in

a uniform B-field at pitch angle α is

P (ν, γ) =

√
3q3B sinα

2πmc2
F

(
ν

νch

)
, (3.66)

where the characteristic gyration frequency νch is

νch =
3

4π
γ2 qB sinα

mc
(3.67)

and

F

(
ν

νch

)
≡
(
ν

νch

)∫ ∞
ν/νch

dξ K5/3(ξ), (3.68)

where K5/3 is a modified Bessel function of the second kind [68, 69]. The total synchrotron

power of a single electron is the integral of the emission power per unit frequency.

In standard blastwave theory there is a power-law distribution of electron Lorentz factors

between a minimum γm and a maximum γM

N(γ)dγ = Cγγ
−pdγ, with γm < γ < γM , (3.69)
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where N(γ) is the number of electrons with Lorentz factor γ, Cγ is an undetermined constant,

and p is the power law index. The electron population exists in a randomized B-field such

that B sinα → 〈B〉. The averaged B-field in the comoving (blastwave) frame moving with

bulk Lorentz factor Γ with respect to the central engine is denoted B′ and is given by

B′ = (32πmpεBn)1/2Γc

' (0.039 G) ε
1/2
B,−2n

1/2
0 Γ, (3.70)

where εB is the fraction of the blastwave internal energy in the magnetic fields, mp is the

proton mass, n is the ambient ISM number density, and the notation for a quantity in cgs

units Q = 10nQn has been used. The minimum electron Lorentz factor is given in [70]:

γm = g(p)
εe
ξe

(Γ− 1)
mp

me

' (1.8× 102) g(p)εe,−1(Γ− 1), (3.71)

where g(p) ' p−2
p−1

for p > 2, εe is the fraction of the blastwave internal energy in the shocked

electrons, me is the electron mass, and the fraction of shocked electrons that are accelerated

is ξe = 1. The observed minimum synchrotron frequency νm is therefore

(1 + z)νm =
3

4π
γ2
mΓ

eB′

mec

' (54 GHz)
[
g(p)εe,−1

]2
ε

1/2
B,−2n

1/2
0 Γ2(Γ− 1)2. (3.72)

The synchrotron cooling frequency νc of the population of electrons occurs at a frequency

where the electrons lose a significant fraction of their energy to the emission of synchrotron

radiation. It is found by comparing the synchrotron emission power to the energy of the

51



electrons. The electron Lorentz factor associated with this cooling frequency is

γc =
6πmec

σTΓtB′2(1 + Ỹ )
,

' (5.1× 106) ε−1
B,−2n

−1
0 t−1

5 Γ−2, (3.73)

where σT ' 6.65× 10−25 cm2 is the electron Thomson scattering cross section, t is the time

in the observer’s frame, B′ is the comoving magnetic field, and Ỹ are the inverse Compton

(IC) corrections, which are taken to be zero in this study. The cooling frequency is thus

(1 + z)νc =
3

4π
γ2
cΓ
eB′

mec

' (4.3× 1018 Hz) ε
−3/2
B,−2n

−3/2
0 t−2

5 Γ−4. (3.74)

The last important synchrotron frequency is the frequency at which the radiation is

self-absorbed by the same population of electrons. The synchrotron self-absorption (SSA)

process occurs when the synchrotron frequency of the radiating electrons matches the syn-

chrotron absorption frequency for the population. The synchrotron photons will be absorbed

significantly when the optical depth of absorption is τν = 1, i.e.

τν =

∫ s

s0

ds′ αν(νa, s
′) = 1. (3.75)

Approximating this integral yields

αν∆
′ = 1, (3.76)

where ∆′ = r/Γ is the characteristic width of the emission region in the comoving frame.

The radius r of the blast wave is given by the expression

r =
βct

1− β cos θ
, (3.77)
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where θ is the angle between the line of sight and the emission site. Generally, this method

of finding the SSA frequency is difficult to solve. An alternative approach is to estimate the

SSA frequency using a blackbody method, equating the specific intensity of a a blackbody

of temperature kT = γmec
2, with γ the larger of γm or γa, with the specific intensity of

synchrotron radiation at νa. The cases of different orderings of νm, νc, and νa will give

distinct solutions of νa.

The specific flux Fν of an electromagnetic signal is related to the specific intensity via

Iν =
D2
A

πR2
⊥
Fν , (3.78)

where DA is the angular diameter distance to the source and R⊥ is the radius of the spherical

shell projected onto the sky and perpendicular to the line of sight. The specific flux can be

expressed in terms of the maximum synchrotron power via

Fν,max = (1 + z)
NtotPν,max

4πD2
L

, (3.79)

where

Pν,max = ΓP ′ν,max

=

√
3φe3

mec2
ΓB′. (3.80)

Also, assuming all of the swept-up electrons achieve relativistic energies thenNtot = 4πnR3
⊥/3.

The synchrotron spectra will be broken power laws with behavior determined by the or-

dering of νm, νa, νc, and νM , the comoving magnetic field B′(t), and the blastwave dynamics,

Γ(t) and r(t). This is the standard gamma-ray bust afterglow recipe. Once the dynamics

are solved it is a simple manner to calculate the synchrotron spectra and light curves.

There are many starting points one may consider, but as a first step it is simplest to
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assume the ad hoc energy conservation E0 = Ebw. The blastwave energy can be written

Ebw = ΓMc2

= Γ
[
M0 +m+ U/c2

]
c2

= Γ
[
M0 +m+ (Γ− 1)m

]
c2

= ΓM0c
2 + Γ2mc2, (3.81)

where M0 is the initial blastwave mass, m is the swept-up ISM mass, and Γ is the bulk

Lorentz factor of the blastwave. The initial energy E0 can be expressed as the sum

E0 = mc2 +

∫ T

0

dt′ LEM , (3.82)

so that the energy conservation condition gives

mc2 +

∫ T

0

dt′ LEM = ΓM0c
2 + Γ2mc2. (3.83)

This is clearly nonlinear. The goal is to find expressions for Γ(t) and m(t). The swept-up

mass is simply

m =
4π

3
r3ρ. (3.84)

The radius of the blast wave is r ' 2Γ2ct. The density can be expressed with an arbitrary

power-law dependence on r via ρ = nmp = n0mp(r/r0)−k, where k = 0 is the constant-

density ISM case and k = 2 is a wind medium. Compiling all these relations, the swept-up

mass can be expressed as

m =
4π

3

(
2Γ2ct

)3
n0mp

(
2Γ2ct

r0

)−k
=

25−k

3
πc3−krk0n0mpΓ

6−2kt3−k. (3.85)
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For the constant density ISM case,

mISM =
32π

3
c3n0mpΓ

6t3. (3.86)

For the wind medium case,

mwind =
8π

3
cr2

0n0mpΓ
2t. (3.87)

Using these results it is easy to write down the energy conservation condition f(Γ, t) =

Ebw − E0 = 0 for each case.

General k

f(Γ, t) =
25−k

3
πc5−krk0n0mpΓ

6−2k(Γ2 − 1)t3−k +

(
Γ

Γ0

− 1

)∫ T

0

dt′ LEM = 0. (3.88)

Constant density ISM (k = 0)

f(Γ, t) =
32π

3
c5n0mpΓ

6(Γ2 − 1)t3 +

(
Γ

Γ0

− 1

)∫ T

0

dt′ LEM = 0. (3.89)

Wind medium (k = 2)

f(Γ, t) =
8π

3
c3r2

0n0mpΓ
2(Γ2 − 1)t+

(
Γ

Γ0

− 1

)∫ T

0

dt′ LEM = 0. (3.90)

These are relatively well-behaved for physically plausible values of Γ but since they are

highly nonlinear, a root finder is needed to find Γ(t). A robust algorithm for finding the roots

of the general equation f(· · · , t) = 0 is the Van Wijngaarden-Dekker-Brent method, which I

will call the VDB method for brevity. The VDB method is useful when the functional form

of df/dt is unknown and relies only on functional evaluations. It combines the methods of

root bracketing, bisection, and interpolation and is guaranteed at least linear convergence.
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Once one solves for Γ(t), r(t), and B′(t), it is straightforward to calculate the transient and

evolving broken power-law synchrotron spectra and light curves. We will publish the results

of such a calculation later this year. Though incomplete, this chapter described a new type

of transient EM counterpart to SMBHB coalescence events. The signature should be unique

and have an interesting evolution in time. The future of astronomy is multi-messenger; a

combination of EM and GW signals (perhaps with neutrino signals as well) carries much

more information about the system than a single type of signal alone. If the first SMBHB

coalescence is discovered through pulsar timing techniques there is a potential for radio

telescopes around the world to search for this new type of EM counterpart. If pulsar timing

is unsuccessful in discovering GW signals prior to the launch of the Laser Interferometer

Space Antenna (LISA), then surely LISA will be. The field of EM counterpart studies is

only just beginning!
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Figure 3.1: Non-spinning equal mass 108M� SMBHB time domain gravitational wave strain.
The luminosity distance of the binary is taken to be dL = 1.0 Mpc and the initial GW
frequency is f0 = 0.01 mHz. The dark and light green curves are the ‘plus’ and ‘cross’
polarization time domain waveforms, respectively. Shown are the final few orbits of the
inspiral, the merger, and the ringdown. The vertical black dotted line is the time of maximum
GW strain. The waveforms were calculated with PyCBC using the SEOBNRv4 waveform
approximant, which stitches together the effective one body inspiral and merger waveforms
with the ringdown waveform [63, 64, 65].
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Figure 3.2: Non-spinning equal mass 108M� SMBHB frequency evolution. This is the same
system as in Fig. 3.1. The luminosity distance of the binary is taken to be dL = 1.0 Mpc and
the initial GW frequency is f0 = 0.01 mHz. At the merger time, indicated by the vertical
black dotted line, the GW frequency is approximately 0.06 mHz. The frequency evolution
was calculated with PyCBC using the SEOBNRv4 waveform approximant [63, 64, 65].
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Figure 3.3: Non-spinning equal mass 108M� SMBHB dimensionless orbital velocity. This
is the same system as in Fig. 3.1. The luminosity distance of the binary is taken to be
dL = 1.0 Mpc and the initial GW frequency is f0 = 0.01 mHz. At the merger time, indicated
by the vertical black dotted line, the dimensionless orbital velocity is approximately v/c ∼
0.57c. The velocity evolution was calculated with PyCBC using the SEOBNRv4 waveform
approximant [63, 64, 65].
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Figure 3.4: Non-spinning equal mass 108M� SMBHB GW phase. This is the same system
as in Fig. 3.1. The luminosity distance of the binary is taken to be dL = 1.0 Mpc and the
initial GW frequency is f0 = 0.01 mHz. The initial gravitational wave phase is 0.0 rad. At
the merger time, indicated by the vertical black dotted line, the gravitational wave phase
is approximately 3836 rad. The phase evolution was calculated with PyCBC using the
SEOBNRv4 waveform approximant [63, 64, 65].

60



Appendix A

Maximum PBH formation mass

As discussed in §2.3 the maximum formation mass of a PBH will be the Hubble mass, i.e. the

mass contained within the Hubble volume at a given time. The Hubble radius in the early

radiation-dominated universe is RH = 2ct = cH−1. Thus the Hubble volume for z & zmr is

VH =
4π

3
R3
H

=
32π

3
c3t3, (A.1)

The critical density for the universe to close is the Hubble mass in a Hubble volume and

thus the Hubble mass is

MH(t) = ρcrVH

=
3H2

8πG
· 32π

3
c3t3

=
c3t

G
, (A.2)

which recovers Eq. (2.19). These relations predict only an approximate maximum PBH

formation mass, namely that MPBH .MH [13, 21].
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Appendix B

Sound speed in the cosmological fluid

In the late universe at redshifts lower than zth, the temperature of the baryonic matter

decouples from the CMB photon temperature. Thus the sound speed in the baryonic fluid

is given by Eq. (2.33)

cs,b = (1.5× 103 cm s−1)(1 + z), (B.1)

where the increase due to reionization around z ∼ 9 is not taken into account. In the redshift

regime zth < z < zrec the redshift dependence changes due to the temperature coupling

between the baryonic matter and the CMB radiation. Thus the sound speed evolves as Eq.

(2.36)

cs,b = (1.9× 104 cm s−1)(1 + z)1/2. (B.2)

In the above equations it is assumed that the baryonic matter is composed entirely of hy-

drogen; corrections due to the helium and metal content of the baryonic matter need to be

made for a more realistic calculation.

In the early universe at redshifts higher than the recombination redshift zrec ∼ 1090, the

baryonic matter is coupled to the CMB radiation. The sound speed in such a coupled fluid
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can be found by calculating

c2
s =

(
∂P

∂ρ

)
s

, (B.3)

where the subscript s on the right hand side indicates taking the derivative at constant

entropy. The dominant pressure term is the radiation pressure and the density is a sum

of radiation and baryonic terms ρ = ρr + ρb. The dark matter does not contribute to the

pressure or density terms but has an early influence when it is relativistic at redshifts greater

than zfr ∼ 2.1× 1013.

Rewriting the partial derivatives of Eq. (B.3) in terms of temperature gives

c2
s =

(∂Pr/∂T )s
(∂ρr/∂T )s + (∂ρb/∂T )s

. (B.4)

Recalling Eq. (2.10) and Pr = ρrc
2/3 the numerator of Eq. (B.4) is

(
∂Pr
∂T

)
s

=
4π2

90
g?(T )

k4
BT

3

c3~3
=

4ρrc
2

3T
, (B.5)

ignoring the small ∂g?/∂T terms. Similarly, the first term in the denominator of Eq. (B.4)

is

(
∂ρr
∂T

)
s

=
4π2

30
g?(T )

k4
BT

3

c5~3
=

4ρr
T
. (B.6)

Recalling at high redshift the radiation and baryonic gas temperatures are coupled, i.e.

Tr = Tb = T and using T = T0(1 + z), the second term in the denominator of Eq. (B.4) is

(
∂ρb
∂T

)
s

=
∂

∂T

(
ρb,0T

3

T 3
0

)
=

3ρb
T
. (B.7)
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Figure B.1: Plot of sound speed in the baryonic gas against redshift. The sound speed
asymptotes to c/

√
3 ∼ 0.577c quickly after the recombination redshift. The three vertical

dashed lines are (left to right) zth, zrec, and zmr. The large jump at zrec is due to the
decoupling of radiation and matter, which reduces the pressure.

Combining Eq. (B.5–B.7) into Eq. (B.4) gives

c2
s =

c2

3

4ρr
4ρr + 3ρb

. (B.8)

It is clear that at redshifts higher than zmr ∼ 3400 the sound speed calculated using Eq.

(B.8) asymptotes to cs ∼ c/
√

3 ∼ 0.577c. The behavior of the sound speed across all relevant

redshifts is plotted in Fig. B.1.
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Appendix C

Gravitational wave luminosity

The gravitational wave luminosity of Eq. (3.44) is found by expanding Eq. (3.43) given the

definition in Eq. (3.42). The following identities are also useful, given the projection tensor

Pij ≡ δij − ninj and unit normal ni ≡ xi/r:

Pij = Pji (C.1)

nin
i =

1

r2
xix

i = 1 (C.2)

niPij = niδij − nininj = 0 (C.3)

PijPjk =
(
δij − ninj

)(
δjk − njnk

)
= δijδ

jk − δijnjnk − δjkninj + ninjn
jnk

= P k
i (C.4)

PijP ij =
(
δij − ninj

)(
δij − ninj

)
= δijδ

ij − δijninj − δijninj + ninjn
inj

= 2 (C.5)

Pij
...
I ij = δij

...
I ij − ninj

...
I ij

= −ninj
...
I ij. (C.6)
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Given these definitions, Eq. (3.43) becomes

dE

dtdA
= − G

8πr2c5

〈...
I TTab

...
I abTT

〉
= − G

8πr2c5

〈(
PacPbd −

1

2
PabPcd

)...
I cd
(
PajPbk −

1

2
PabPjk

)...
I jk
〉

= − G

8πr2c5

〈(
PacPbdPajPbk −

1

2
PacPbdPabPjk −

1

2
PabPcdPajPbk

+
1

4
PabPcdPabPjk

)...
I cd

...
I jk
〉

= − G

8πr2c5

〈(
PcjPdk −

1

2
PcdPjk

)...
I cd

...
I jk
〉

= − G

8πr2c5

〈...
I ab

...
I ab − 2nanb

...
I ac

...
I bc +

1

2
nanbncnd

...
I ab

...
I cd
〉
. (C.7)

The gravitational wave luminosity requires integration over a sphere of radius r � λGW

where dA = r2dΩ. Using the fact that the time average of a sum is the sum of the time

averages, the GW luminosity is

LGW = − G

8πc5

∫
dΩ
〈...
I ab

...
I ab − 2nanb

...
I ac

...
I bc +

1

2
nanbncnd

...
I ab

...
I cd
〉

= − G

8πc5

[〈...
I ab

...
I ab
〉∫

dΩ− 2
〈...
I ac

...
I bc
〉∫

dΩnanb +
1

2

〈...
I ab

...
I cd
〉∫

dΩnanbncnd

]
= − G

8πc5

[
4π
〈...
I ab

...
I ab
〉
−8π

3
δab

〈...
I ac

...
I bc
〉

+
2π

15

(
δabδcd + δacδbd + δadδbc

)〈...
I ab

...
I cd
〉]

= − G

8πc5

[
60π

15

〈...
I ab

...
I ab
〉
−40π

15

〈...
I ab

...
I ab
〉

+
2π

15

〈...
I aa

...
I cc
〉

+
4π

15

〈...
I ab

...
I ab
〉]

= −1

5

G

c5

〈...
I ab

...
I ab
〉
, (C.8)

where in the penultimate step one may notice
...
I cc = 0 because

...
I ab is traceless.

Similarly, it can be shown [59] that the angular momentum J carried away from a system

at quadrupolar order can be written as the sum of the orbital L and spin S angular mo-

mentum losses, i.e. J̇ = L̇ + Ṡ. The spin angular momentum will be zero for Schwarzschild

holes and reaches a maximum for a maximally rotating Kerr black hole when the effective

rotational velocity of the event horizon approaches the speed of light. Writing the losses in
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each spatial direction gives

dJa

dt
≡ dLa

dt
+
dSa

dt

= − 2

15

G

c5
εabc
〈
Ïbd

...
I dc
〉
− 4

15

G

c5
εabc
〈
Ïbd

...
I dc
〉

= −2

5

G

c5
εabc
〈
Ïbd

...
I dc
〉
, (C.9)

where εabc is the totally antisymmetric Levi-Civita tensor in three dimensions defined as

εabc ≡


+1 for cyclic permutations of abc

−1 for anticyclic permutations of abc

0 otherwise

. (C.10)
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