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Abstract: In this article, we investigate the various physical implications of quantum circuit complex-
ity using the squeezed state formalism of Primordial Gravitational Waves (PGW). Recently, quantum
information-theoretic concepts, such as entanglement entropy and complexity, have played a pivotal
role in understanding the dynamics of quantum systems, even in diverse fields such as high-energy
physics and cosmology. This paper is devoted to studying the quantum circuit complexity of PGW
for various cosmological models, such as de Sitter, inflation, radiation, reheating, matter, bouncing,
cyclic and black hole gas models, etc. We compute complexity measures using both Covariance and
Nielsen’s wave function method for three different choices of quantum initial vacua: Motta-Allen,
α and Bunch–Davies. Besides computing circuit complexity, we also compute the Von Neumann
entanglement entropy. By making the comparison between complexity and entanglement entropy,
we are able to probe various features regarding the dynamics of evolution for different cosmolog-
ical models. Because entanglement entropy is independent of the squeezing angle, we are able to
understand more details of the system using Nielsen’s measure of complexity, which is dependent on
both squeezing parameter and angle. This implies that quantum complexity could indeed be a useful
probe to study quantum features on a cosmological scale. Quantum complexity is also becoming a
powerful technique to understand the chaotic behaviour and random fluctuations of quantum fields.
Using the growth of complexity, we are able to compute the quantum Lyapunov exponent for various
cosmological models and comment on its chaotic nature.

Keywords: quantum circuit complexity; entanglement entropy; theoretical cosmology

1. Introduction

Formally, Gravitational Waves (GW) can be defined as tensor perturbations or dis-
turbances of the space-time metric. Although many indirect evidences for the existence
of Gravitational Waves were already available, the first direct detection of Gravitational
Waves was made by the Laser Interferometry Gravitational Wave Observatory (LIGO),
coming from a black hole merger in 2015 [1]. This has enabled a completely new possibility,
in which we can observe our universe along with electromagnetic radiation, neutrino
astronomy and others, marking a new era of Gravitational Wave Astronomy.

Once Gravitational Waves are generated, they continue spreading in space-time without
interacting with other fields in the universe. If we can detect Gravitational Waves that were
formed just after the Big Bang or in very early times, it may potentially reveal information
about the very early universe. These Gravitational Waves produced in very early times after
the Big Bang are called Primordial Gravitational Waves (PGW). However, because of their
relatively very small amplitude, current GW detectors do not have sufficient sensitivity
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for identifying PGW. As a consequence, some indirect ways of identifying PGW have been
suggested using the Cosmic Microwave Background (CMB) power spectrum. The reader
can find more detailed aspects in this review and the references therein [2].

Models for the theory of inflation describing early universe cosmology are well-developed.
Cosmic Microwave Background measured from COBE in 1989 revealed some irregularities
in the temperature map of CMB [3]. Models of inflation can give explanations of such an
observation; in fact, the data agree with models of inflation. In the context of quantum field
theory of curved space-time, inflation is caused by the inflation field. It is believed that
the quantum fluctuations exhibited by the inflation field are responsible for the observed
anisotropy in the CMB temperature map. From the recent Planck 2018 observation, we
obtain the latest constraints on inflation and the related cosmological parameter estimations,
which further constrain the CMB temperature as well as the polarisation maps. See refs. [4,5]
for more details.

Primordial quantum fluctuations are thought to be the responsible for inflation [6–9]. These
quantum fluctuations in the early universe are believed to be responsible for the structure of
the present-day universe and also the generation of PGW. We analyse these PGW in the form
of tensor perturbation in the metric for various cosmological models and then incorporate it
with quantum information-theoretic methods, particularly in the computation of quantum
circuit complexity. So, the detection of PGW can verify the theory of inflation and also the
correctness of the corresponding cosmological model.

Among all inflation models, “Slow roll” is the most widely studied. This model was
studied even in the framework of the quantum inverted Harmonic Oscillator system
undergoing different phase transitions [10–14]. However, it was found that, at late times,
PGW undergo the phenomenon of quantum squeezing, a phenomena widely studied in
the context of quantum optics [15]. So, various attempts have been made for identifying
the signature for detection of these squeezed PGW. It is argued that the direct detection
for such squeezed PGW is not possible; as a result, later on, the possibility of an indirect
detection method using Cosmic Microwave Background fluctuations was explored [16–18].
The evolution of these PGW can be explained in the framework of quantum squeezing
operator formalism [14]. Since there are well-developed quantum information-theoretic
tools to study the squeezing operation, we would like to see if we can gain new insights on
a cosmological scale using this emerging field of quantum information.

Recently, quantum information theory has became a major factor in various areas of
physics. Especially, the calculation of circuit complexity has been paid much attention in
recent studies because of its relation with chaos and its possibility to probe physics behind the
horizon of black holes in the context of AdS/CFT [19–25]. Circuit complexity has even been
computed in quantum field theories [26–32]. Despite it being a computational framework,
its application has been impactful by giving conjectures such as “Complexity = Action” and
“Complexity = Volume” [33–36].

In the domain of Cosmology, this concept has recently been studied to characterise
quantum chaos and complexity in the early universe [37–39]. This concept has also been
explored in the bouncing cosmological framework and cosmological islands [40,41].

On the other hand, entanglement entropy is also being paid attention in quantum
field theory, gravity and cosmology [42–47]. It has also been studied as to whether the
entanglement entropy has a relation with quantum circuit complexity [48–50].

It was realised previously that zero-particle states (vacua) for de Sitter space can exist
as transformations according to a set of two parameters for free fields [51–54]. In relation
to that, in this work, we aim to analyse squeezing of PGW with respect to three quantum
initial vacuum states: Bunch–Davies, α-vacuum and α− γ vacuum (also called Motta-Allen
vacuum) for various cosmological backgrounds. For this, we first develop a squeezed state
formalism for tensor perturbations using circuit complexity and Nielsen’s approach. Then,
the Covariance method is calculated. We also give comparisons of entanglement entropy
and circuit complexity. Then, we calculate the quantum Lyapunov exponent using these
complexity measures.
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It is important to note that the latest observational constraint from Planck 2018 was
not able to break the degeneracy among various models of inflation, as well as between
the bounce and inflationary paradigm at the level of the two-point correlation function
(from the amplitude and shape of the spectrum in Fourier space) for the comoving scalar
modes. For the tensor modes, only the upper bound of the tensor-to-scalar ratio is available,
which is unable to strictly fix the two-point function and its associated power spectrum
for PGW in Fourier space. The prime difficulty is as follows: using the present precision
level of the cosmological observation, the detection of tensor modes and relics of PGW is
very difficult. Moreover, the latest observational probes are unable to detect signatures of
non-Gaussianity from the spectrum of higher point correlations using the cosmological
perturbed scalar and tensor modes with high statistical precision. Such repeated failure
from the various observations in primordial cosmology is one of the strongest motiva-
tions to revisit and rethink the overall problem from a completely different perspective.
In this work, we use the two-mode squeezed state formalism, with which we quantise
the Hamiltonian of the perturbed tensor modes, which, in turn, produces the relics of
PGW’ modes in the early universe. In this formalism, we parameterise everything in
terms of time-dependent squeezed parameters, which are squeezing amplitude, squeezing
angle and an additional phase. These parameters further fix the theoretical structure of
two-point or higher quantum correlations, entanglement entropy and quantum circuit
complexity. To date, the direct signatures of these parameters or the mentioned derived
quantities have not yet been observed in any of the past observational probes of early
universe cosmology. From an observational perspective, this is a frustrating fact. However,
one should not lose hope by seeing the various findings of quantum information theory
within the framework of primordial cosmology. In the near future, instead of probing the
amplitude and the power spectrum from two-point as well as higher point functions, if the
upcoming cosmological missions are able to measure the previously mentioned squeez-
ing parameters with high statistical accuracy, one will be able to explicitly measure the
signatures of various quantum information-theoretic quantities, such as quantum circuit
complexity and quantum entanglement, in the cosmological correlation functions. The
most probable candidate for this purpose is out-of-time ordered correlation (OTOC), which
basically signifies a special type of correlation that can be used to probe the mentioned
quantum information-theoretic measures in the context of cosmology. The most significant
fact is that, within the framework of primordial cosmological perturbation theory using
canonically quantised scalar and tensor modes, one can compute the cosmological version
of OTOC in terms of the squeezed state parameters. Because of this specific reason, one
can carry forward the computation and make a clear connection between OTOC, quantum
circuit complexity and quantum entanglement. Some initial efforts have been already
made in a similar direction in refs. [40,41,55,56], where the authors try to establish such
connections in various contexts. Even if the signatures of OTOC will not be possible to
probe by future cosmological missions, simply measuring the squeezing parameters will
still contribute towards the purpose to a great extent. The detection of these parameters
through observational probes is not only able to measure the contributions of quantum
circuit complexity but also to quantify the amount of quantum entanglement in the cos-
mological correlations. Such detection will surely help us to distinguish among various
models of inflation as well as break the long-standing degeneracy between the bouncing
and inflationary paradigms. In this article, we will show in the next sections that just from
the PGW (tensor modes) perspective, it is theoretically possible to distinguish among all of
these models and paradigms using the quantum complexity measure, which is obviously
a good indication, at least from the quantum information-theoretic point of view. This
is because, in the context of quantum information theory, quantum circuit complexity is
obviously considered the stronger measure compared with quantum entanglement entropy.
Within the framework of primordial cosmology, if we can find direct observational evidence
of the chaotic signature in terms of the quantum Lyapunov exponent, one would be able to
break the degeneracy among various inflationary models, i.e., which one is most probable
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among inflation and bounce; distinguish reheating and black hole solutions; and open
possibilities for many more discoveries. Theoretically, the corresponding measure of the
quantum Lyapunov exponent can be computed from the slope of the quantum complex-
ity curves studied with respect to the scale factors computed from various cosmological
solutions. We have found from our analysis that not every model can show such features
clearly. In the near future, if cosmological observations are able to detect the signature of
this effect, it is highly expected that, using the results obtained in this work, one can discard
various models and distinguish among various paradigms. In this work, at least from the
theoretical point-of-view, we found the same indication, which we will show in the later
half of this work. Particularly, the present study with PGW (tensor modes) is extremely
important compared with the scalar modes of the perturbation because finding signatures
in CMB maps from PGW can tell us about the exact scale of the fundamental physical
interactions from which inflationary/bouncing paradigms are created. To date, this is
completely a unknown fact. We strongly believe that the present analysis on quantum
circuit complexity from the perspective of PGW generated from various cosmological
models is able to address at least some of these important unknown facts.

The organisation of the paper is as follows:

• In Section 2, we provide a brief review of quantum circuit complexity and how it can
be related to quantum chaos.

• In Section 3, we provide the squeezed state formalism of the cosmological perturbation
of PGW. We give a list of various scale factors that we are interested in. As our initial
state, we choose different vacua such as the Motta-Allen vacua, α vacua and Bunch–
Davies vacua. Finally, we show how the squeezed state formalism in PGW dominated
primordial cosmology.

• In Section 4, we compute the quantum circuit complexity of PGW from squeezed states
using both Covariance and Nielsen’s wave function approach for all three vacua.

• In Section 5, we compute the entanglement entropy of PGW from squeezed states for
each vacua: Motta-Allen vacua, α vacua and Bunch–Davies vacua.

• In Section 6, we perform numerical analyses for various cosmological models. In particular,
we compute quantum complexity, entanglement entropy and quantum chaos.

• Finally, in Section 7, we present the concluding remarks and future prospects.

2. Chaos and Complexity: Old Wine in a New Glass

Computationally, circuit complexity is the minimum number of elementary operations
required to solve a certain problem. In quantum computation, we can also introduce a
similar term that indicates how hard or easy it to solve a particular problem in a quantum
computer. In quantum computing, such problems are solved by operations, which can be
represented by a unitary transformation. Quantum circuit complexity would then indicate
the smallest size of a circuit that implements this unity.

Quantum information-theoretic probes such as entanglement entropy have numerous
applications in physics other than quantum computing [57,58]. Very recently, quantum cir-
cuit complexity has been gaining attention as one of such tools. One can use quantum circuit
complexity to detect topological phases of matter, where a high-complexity quantum state
indicates a topological phase. In high-energy physics, quantum complexity is being used to
show holographic connections of Anti-de Sitter/Conformal Field Theory (AdS/CFT) corre-
spondence [33,35,36,59]. The “Complexity equals volume” conjecture [33] in the (AdS/CFT)
correspondence says that the complexity in the boundary term is proportional to the volume
in bulk state. Similarly, the “Complexity equals action” conjecture says that the complexity
in the boundary is due to a particular space-time region’s action [34]. Because of these
wide motivations, quantum circuit complexity is now being viewed as a powerful tool to
study the behaviour of quantum many-body systems. However, computing complexity
is a notoriously difficult open challenge. In this section, we will describe the geometric
approach introduced by Nielsen [60–63] to lower bound the circuit complexity.
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2.1. Framework of Quantum Circuit Complexity

Let us consider a transformation U, which transforms a reference quantum state ψR to
the target quantum state ψT and is described by the following equation:

ψT = UψR (1)

In a quantum computational problem, usually, this unitary transformation U can be
written as a sequence of basic unitary gates Qi that satisfy the constraint

U = Q1Q2 . . . Qd, (2)

where d physically represents the depth of the circuit under consideration. The minimum
number of such operations d can be referred to as the circuit complexity. Because it is very
difficult to achieve the perfect transformation, we can have the tolerance ε such that

||ψT −UψR||2 ≤ ε (3)

Nielsen’s approach of computing the complexity is geometric, where the unitary U is
constructed using a time-dependent Hamiltonian H(t):

U =
←−P exp

[
−i
∫ 1

0
dτH(τ)

]
where H(τ) = ∑

I
Y I(τ)OI (4)

The operator OI forms a basis for H(τ) and P is a path-ordering operator, which
indicates the circuit is moving from left to right. We also need to define a cost function
F(U,~Y(τ)), which is a local functional through U(τ) and tangent vectors ~Y(τ). The cost
for each path is given by

D(U(t)) =
∫ 1

0
dtF(U(t), U̇(t)) (5)

Nielsen showed that using the similar principles of Hamiltonian control theory gives the
optimal quantum circuit, where we minimise the functional using a variational approach.
There are certain properties we would like the cost function F to satisfy:

• Continuity: Here, we have F ∈ C0, which implies that we need to consider a continu-
ous cost function. This is expected because of the physical reason.

• Positivity: The continuous cost function should satisfy the constraint F(U, v) ≥ 0.
Here, F = 0 is obtained from v = 0. This also means that when this equality condition
is satisfied, the reference and target should be same.

• Positive homogeneity: For any positive real number α and any vector v, we obtain
F(αv) = αF(v).

• Triangle Inequality: The continuous cost function should strictly satisfy the triangle
inequality, which is given by F(U, v + v′) ≤ F(U, v) + F(U, v′), for all tangent vectors v
and v′. Now, if both of these vectors belong to the same ray, the equality holds perfectly.

Here, it is important to note that the definition of the cost function is not unique and,
depending on this fact, the quantum complexity measure also changes. These choices are
appended below:

F1(U, Y) = ∑
I
|Y I |

Fp(U, Y) = ∑
I

pI |Y I |

F2(U, Y) =
√

∑
I
|Y I |2

Fq(U, Y) =
√

∑
I

qI |Y I |2

(6)
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Here, F1 represents the linear cost functional measure, which appears from the concept
of being closest to the individual counting of gates. Further, F2 represents the quadratic
cost functional measure, which appears from the proper distance in the manifold. Next, F1p
represents a cost function measure with penalty factors pI used to favour certain choices
over others. Depending on the problem and system we want to study, we will have to
choose different cost functions.

In this connection, one can also consider the following possibilities:

Fk(U, Y) = ∑
I
|Y I |k

F1
k
(U, Y) = ∑

I
|Y I |

1
k

(7)

where the degree of quantity homogeneity is characterised by k ≥ 1. These complexities
were introduced to match the results from holography such as “Complexity = Action” and
“Complexity = Volume” conjectures.

2.2. Quantum Chaos and Complexity

Quantum chaos is a popular tool in many-body quantum physics to study statistical
mechanics and thermodynamics [64]. Very recently, it was conjectured that there should be
a bound on quantum chaos [65,66] such as

λ ≤ 2πT (8)

where λ is identified to be the quantum Lyapunov exponent and T is the equilibrium
temperature of the system. This conjecture was made in the context of holography
AdS/CFT [67,68]. Since the complexity of a chaotic system also grows exponentially,
one could associate the growth of the complexity measure to the quantum chaos [69]:

λ =
d ln(C[τ])

dτ
(9)

where C[τ] is the measure of complexity.

3. Squeezed State Formalism of Cosmological Perturbation Theory of PGW

Consider a spatially flat (k = 0) Friedmann–Lemaître–Robertson–Walker (FLRW) metric
in 3 + 1 dimensions:

ds2 = a2(τ)
(
−dτ2 + dx2

)
= a2(τ)

(
−dτ2 + δijdxidxj

)
, (10)

where the metric is expressed in a conformally flat form. Here, a(τ) is the conformal
time-dependent scale factor, which plays the role of the conformal factor in the present
context. In this context, conformal and physical time are related via dτ = dt

a(t) , which is
used in the abovementioned expression for the FLRW infinitesimal line element to write it
in terms of the conformal time coordinate instead of the physical time coordinate. For this
reason, one can treat t→ τ, x→ x as the coordinate transformation in the present context.

Here, we start with a very simple theory, which is described by

S =
1
2

∫
d4x
√
−g
[

R− (∂φ)2 − 2V(φ)
]
, (11)

where we fix Planck mass Mp = 1. Here, φ is a scalar field that is minimally coupled to
gravity in FLRW space-time. Using this set-up, various types of cosmological solutions
of the scale factor can be obtained by solving simultaneously the Friedmann equations
and Klein–Gordon equations in a spatially flat FLRW background. Depending on the
constraints and structure of the effective potential, all these cosmological solutions can be
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obtained. In this article, we will not mention any particular class of effective potentials;
although, from the cosmological solution of the scale factors, one can predict the features
and structures of these effective potentials.

In this section, instead of the effective class of potentials, we are actually interested in the
different solutions of the conformal time-dependent scale factors of Friedmann equations,
which will finally produce the PGW from the gravitational tensor mode fluctuation. The
desired solutions of the scale factors are given as follows:

a(τ) =



− 1
H∗τ

De Sitter

− 1
H∗τ

[
1 + ε∗ − ε∗ ln

(
τ

τ∗

)
+ · · ·

]
Inflation/Quasi De Sitter (w ≈ −1)[

(1 + 3w)

3(1 + w)
τ

] 2
(1+3w)

Reheating (0 < w < 1/3)
τ

2
Radiation (w = 1/3)

τ2

9
Matter (w = 0)

a∗

(
−γ

τ

τ∗

)α∗
Contraction (Pre-Bounce)

a∗

[
1 +

(
τ

τ∗

)2
]

Matter Bounce

a∗ sech(α∗(τ − τ∗)) Sechyperbolic Bounce
a∗ cosh(α∗(τ − τ∗)) Coshyperbolic Bounce
a∗ sinh(α∗(τ − τ∗)) Sinhyperbolic Bounce
a∗ cosech(α∗(τ − τ∗)) Cosechyperbolic Bounce
a∗ exp(InverseErf(α∗(τ − τ∗))) Exponential Bounce

a∗

(
τ

τ∗

) α
1−α

Power-Law Bounce (0 < α < 1)

a∗

√
γ

(
τ

τ∗

)
+ δ

(
τ

τ∗

)2

Polynomial Bounce

a∗

(
γ

τ

τ∗

)α∗
Expansion (Post-Bounce)

a∗ [1− cos(α∗(τ − τ∗))] Matter Cyclic
a∗ sin(α∗(τ − τ∗)) Radiation Cyclic

a3/2
∗ exp

(
iπ
2

) √
2
3

τ1/2 Black Hole Gas

(12)

Most importantly, each of the scale factors carry some information regarding the signifi-
cant physics of the early universe. We have tried to quote almost all of them available in the
cosmology literature. A detailed study on all of these possibilities will give us a complete
picture of the underlying physics within the framework of chaos and complexity in our
primordial universe. In the rest of the paper, our further objective is to explicitly study all
of these possibilities in detail.

3.1. Classical Perturbation Due to PGW

In this section, we will consider only the gravitational contribution, which is basically
described by the Einstein–Hilbert term, i.e.,

Sgrav =
1
2

∫
d4x
√
−g R. (13)

The production of the PGW is described by the following linearised first-order pertur-
bation in the spatially flat (k = 0) FLRW metric:

Perturbed Linearised Metric : ds2 = a2(τ)

−dτ2 +

δij + 2hij(τ, x)︸ ︷︷ ︸
Linearised PGW

dxidxj

, (14)

where the linearised perturbed PGW or the spin-2 tensor perturbation satisfy the following
constraint conditions:
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Symmetric :⇒ hij = hji, Transverse :⇒ ∂ihij = 0, Traceless :⇒ hi
i = 0. (15)

Further, by substituting the abovementioned perturbed linearised metric in the Einstein–
Hilbert classical gravitational action, the second-order perturbed action is given by

δ(2)Sgrav =
1
8

∫
dτ d3x a2(τ)

[
(h
′
ij(τ, x))2 −

(
∇hij(τ, x)

)2
]
. (16)

Further, considering the abovementioned properties of PGW, one can write the following
ansatz:

hij(τ, x) := ∑
λ=+,×

h(λ)(τ) e(λ)ij (x), (17)

where e(λ)ij (x) represents the polarisation tensor for PGW for two helicities, λ = +,×,
respectively.

Next, for computational purposes, it is convenient to define the following rescaled
perturbation field variable for the linearised perturbation of PGW, which is given by

1
2

a(τ)hij(τ, x) ≡ 1√
2

 f(+)(τ, x) f(×)(τ, x) 0
f(×)(τ, x) − f(+)(τ, x) 0

0 0 0

 (18)

which is consistent with all the required constraints on the spin-2 PGW or the tensor
perturbation. Using the abovementioned convenient field redefinition, the second-order
perturbed action for the linearised tensor modes or the PGW can be written as

δ(2)Sgrav =
1
2 ∑

λ=+,×

∫
dτ d3x

[
| f ′λ(τ, x)|2 − |∇ fλ(τ, x)|2 + a

′′
(τ)

a(τ)
| fλ(τ, x)|2

]
. (19)

Now, we transform the above action in the Fourier space using the following equation,

fλ(τ, x) :=
∫ d3k

(2π)3 fλ,k(τ) exp(ik.x) ∀ λ = +,×. (20)

Using this further, we obtain

δ(2)Sgrav =
1
2 ∑

λ=+,×

∫
dτ d3k

[
| f ′λ,k(τ)|2 −ω2(k, τ)| fλ,k(τ)|2

]
, (21)

where we define the effective frequency of the PGW a:

ω2(k, τ) = k2 + m2(τ) with effective mass m2(τ) = − a
′′
(τ)

a(τ)
. (22)

Further, the Mukhanov–Sasaki equation for PGW can be written as

f
′′
λ,k(τ) + ω2(k, τ) fλ,k(τ) = 0. (23)

Now, the effective mass of the PGW can be further simplified as

m2(τ) = − a
′′
(τ)

a(τ)
= −

(
H2 +H′

)
= (ε(τ)− 2) H2, (24)

where we define the slowly varying quantity ε(τ) as

ε(τ) = 1− H
′

H2 , where H =
a′(τ)
a(τ)

. (25)
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On the other hand, the mass parameter ν(τ) for PGW can be parameterised as

m2(τ) = − 1
τ2

(
ν2

PGW(τ)− 1
4

)
, (26)

where νPGW(τ) =
1
2

√
1 + 4(τH)2(2− ε(τ)) =

1
2

√
1 + 4(τH)2

(
1 +
H′
H2

)
. (27)

Apart from this, another very crucial quantity plays a significant role to determine the
cosmological dynamics, described by

DH :=
k

a(t)H(t)
=

k
H(τ)

→


� 1 Super-Horizon

= 1, Horizon-crossing

� 1, Sub-Horizon

(28)

In the following, we will explicitly derive the expression for the mass parameters and the
abovementioned horizon-determining ratio for different primordial universe models:

1. De Sitter:

νPGW(τ) =
3
2

, (29)

DH =
k
H(τ)

= −kτ. (30)

2. Inflation/Quasi De Sitter:

νPGW(τ) =
3
2
+ 3ε(τ)− η(τ) with η(τ) = 2ε(τ)− 1

2H
ε′(τ)

ε(τ)
, (31)

DH =
k
H(τ)

= −kτ. (32)

3. Reheating (0 < w < 1/3):

νPGW(τ) =
3
2
(w− 1)
(3w + 1)

, (33)

DH =
k
H(τ)

=
ka(τ)
a′(τ)

=
1
2

kτ(3w + 1) (34)

During reheating, the equation of the state parameter lies within the window
0 < w < 1/3, which was discussed in detail in refs. [55,70]. However, there is
always an ambiguity when having the equation of the state parameter within
this prescribed window, as the micro-physics of the epoch of reheating are not
known yet and, to date, it was studied from the phenomenological perspective
only. Regarding the ambiguity, let us mention ref. [71], where the authors pointed
out that during such an epoch the equation of state parameter is w > 1/3. We
have restricted the equation of state parameter within 0 < w < 1/3 because it is
believed that the classically reheating epoch should lie between matter domination
(w = 0) and radiation (w = 1/3). The exact form of the equation of state during
this epoch is unknown to date.

4. Radiation (w = 1/3):

νPGW(τ) = −1
2

. (35)

DH =
k
H(τ)

= −kτ. (36)
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5. Matter (w = 0):

νPGW(τ) = −3
2

. (37)

DH =
k
H(τ)

= −kτ. (38)

Bouncing cosmology is emerging as an alternative to inflationary models [72–77]. Here,
the mass parameters for various bouncing models are given.

6. Contraction (Pre-Bounce):

νPGW(τ) = α− 1
2

. (39)

DH =
kτ

α∗
. (40)

7. Matter Bounce:

νPGW(τ) =
3
2

√√√√√1− 8
9

1[
1 +

(
τ
τ∗

)2
] . (41)

DH =
k(τ2 + τ2

∗ )

2τ
. (42)

8. Sechyperbolic Bounce:

νPGW(τ) =
1
2

√
1 + 4τ2α2∗

[
1− 2 sech2(α∗(τ − τ∗))

]
. (43)

DH =
−k coth[α∗(τ − τ∗)]

α∗
. (44)

9. Coshyperbolic Bounce:

νPGW(τ) =
1
2

√
1 + 4τ2α2∗. (45)

DH =
k coth[α∗(τ − τ∗)]

α∗
. (46)

10. Sinhyperbolic Bounce:

In this case, the mass parameter can be evaluated as

νPGW(τ) =
1
2

√
1 + 4τ2α2∗. (47)

DH =
k tanh[α∗(τ − τ∗)]

α∗
. (48)

11. Cosechyperbolic Bounce:

νPGW(τ) =
1
2

√
1 + 4τ2α2∗

[
1 + 2 cosech2(α∗(τ − τ∗))

]
. (49)

DH =
k ∗ cosech[α∗(τ − τ∗)]

α∗cosech’[α∗(τ − τ∗)]
. (50)
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12. Exponential Bounce:

νPGW(τ) =
1
2

√
1 + πα2

∗τ
2(1 + 2 InverseErf (α∗(τ − τ∗))) exp(2 InverseErf (α∗(τ − τ∗))2). (51)

DH =
k
H(τ)

=
2 exp

(
−InverseErf[α∗(τ − τ∗)]2

)
k√

πα∗
. (52)

13. Power-Law Bounce (0 < α∗ < 1):

νPGW(τ) =
1
2

(
3α∗ − 1
α∗ − 1

)
. (53)

DH =
(1− α∗)kτ

α∗
(54)

14. Polynomial Bounce:

νPGW(τ) =
1
2

1
(τ∗γ + δτ)

√
δτ(2τ∗γ + δτ). (55)

DH =
2kτ(δτ + γτ∗)

2δτ + γτ∗
(56)

15. Matter Cyclic:

νPGW(τ) =
1
2

√
1− 2τ2α2∗

[
1− cot2

(
α∗(τ − τ∗)

2

)]
. (57)

DH =
k tan

(
α∗
2 (τ − τ∗)

)
α∗

(58)

16. Radiation Cyclic:

νPGW(τ) =
1
2

√
1− 4τ2α2∗. (59)

DH =
k tan(α∗(τ − τ∗))

α∗
. (60)

17. Black Hole Gas:

Black hole gas is a relatively new model that predicts maximum entropy state in
the very early universe [78–82]. In this case, the mass parameter and the horizon
determining ratio can be evaluated as

νPGW(τ) = 0 (61)

DH =
k
H(τ)

= 2kτ. (62)

We are going to use all of these derived model-dependent expressions for the mass
parameters for the PGW during the numerical analysis performed in the later half of this
paper. From these derived expressions, it is evident that, depending on the expressions
of different models, the expressions for the change in the mass parameter determined in
terms of the model parameters. Here, we have found that for some models this parameter
is exactly constant and for some classes of models there are appearances of non-trivial
conformal time dependence. In the later half of the paper, we will perform the analysis of
the squeezed state formalism; from there, we are able to see how these different expressions
of the mass parameters will hugely change the dynamical behaviour of the quantum
complexity and the related estimators of chaos.
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3.2. Classical Mode Function for PGW

For the PGW, the Mukhanov–Sasaki equation is

f
′′
λ,k(τ) +

(
k2 − 1

τ2

(
ν2

PGW(τ)− 1
4

))
fλ,k(τ) = 0. (63)

The most general analytical solution can be expressed as

fλ,k(τ) =
√
−τ
[
C1 H

(1)
νPGW(−kτ) + C2 H

(2)
νPGW(−kτ)

]
. (64)

Here, C1 and C2 are arbitrary integration constants, fixed by the appropriate choice of
quantum initial vacuum state, which also satisfy the normalisation criteria:

|C1|2 − |C2|2 = 1. (65)

In this solution,H(1)
νPGW(−kτ) andH(2)

νPGW(−kτ) represent the Hankel function of the first
and second kind. In general, one can further express these functions in terms of the Bessel
function of the first kind and the Newman function (which is the Bessel function of the
second kind) as

H(1)
νPGW(−kτ) = J (1)

νPGW(−kτ) + iY (1)
νPGW(−kτ), (66)

H(1)
νPGW(−kτ) = J (1)

νPGW(−kτ)− iY (1)
νPGW(−kτ), (67)

which further implies the fact that, in the present context, the two Hankel functions appear-
ing are complex conjugates of each other. If we further substitute back the abovementioned
expressions into the previously obtained solution of the Mukhanov–Sasaki equation for PGW,
we obtain the following result:

fλ,k(τ) =
√
−τ
[
D1 J

(1)
νPGW(−kτ) +D2 Y

(2)
νPGW(−kτ)

]
, (68)

where we have defined two new arbitrary integration constants, D1 and D2, which are
defined in terms of the abovementioned constants, C1 and C2, as

D1 = C1 + iC2, (69)

D2 = C1 − iC2. (70)

It needs to be emphasised that, in general, the two arbitrary integration constants, C1 and
C2, might be parameterised by complex parameters. However, the most important part is
that both solutions are equivalent to each other and one can use any one of them according
to their preference. In this paper, we will take the first solution, which is expressed in terms
of the Hankel functions.

It is difficult to analyse and extract physically meaningful information from looking at
obtained solutions of the rescaled field and the associated canonically conjugate momentum.
So, we will consider asymptotic limits in obtained solutions, which will be very helpful
for our analysis in various cosmological scales. We take asymptotic limits as kτ → 0 and
kτ → −∞ to decide the behaviour of Hankel functions of the first and second kind of order
νPGW. We obtain expressions after taking such asymptotic limits as follows:

lim
kτ→−∞

H(1)
νPGW(−kτ) =

√
2
π

1√
−kτ

exp(−ikτ) exp
(
− iπ

2

(
νPGW +

1
2

))
, (71)

lim
kτ→−∞

H(2)
νPGW(−kτ) = −

√
2
π

1√
−kτ

exp(ikτ) exp
(

iπ
2

(
νPGW +

1
2

))
, (72)
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lim
kτ→0

H(1)
νPGW(−kτ) =

i
π

Γ(νPGW)

(
− kτ

2

)−νPGW

, (73)

lim
kτ→0

H(2)
νPGW(−kτ) = − i

π
Γ(νPGW)

(
− kτ

2

)−νPGW

, (74)

which implies that

lim
kτ→0

H(1)
νPGW(−kτ) = − lim

kτ→0
H(2)

νPGW(−kτ), (75)

lim
kτ→−∞

H(1)
νPGW(−kτ) = − lim

kτ→−∞
H(2)

νPGW(−kτ), (76)

Here, super-horizon (kτ � −1) is represented by limit kτ → 0 and sub-horizon (kτ �
−1) is represented by limit kτ → −∞. The transition of modes from sub-horizon to super-
horizon can be represented by kτ = −1, which is known as the horizon exit.

The expressions for the rescaled field variable and associated canonically conjugate
momentum can be obtained by placing the abovementioned super-horizon (kτ � −1) and
sub-horizon (kτ � −1) asymptotic limits as follows:

lim
kτ→0

fλ,k(τ) =

√
2
k

i
π

Γ(νPGW)

(
− kτ

2

) 1
2−νPGW

(C1 − C2), (77)

lim
kτ→−∞

fλ,k(τ) =

√
2

πk

[
C1 exp

(
−i
{

kτ +
π

2

(
νPGW +

1
2

)})
− C2 exp

(
i
{

kτ +
π

2

(
νPGW +

1
2

)})]
. (78)

Hence, the most general solution for the rescaled PGW field variable for any quantum
initial vacuum state can be written as

fλ,k(τ) =
1√
2k

2νPGW− 3
2 (−kτ)

3
2−νPGW

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[
C1

(
1− i

kτ

)
exp

(
−i
{

kτ +
π

2

(
νPGW −

3
2

)})
+ C2

(
1 +

i
kτ

)
exp

(
i
{

kτ +
π

2

(
νPGW −

3
2

)})]
. (79)

Finally, we want to mention a special situation where we obtain an imaginary contribu-
tion, i.e., instead of having νPGW, we have −i|νPGW| after analytic continuation. This can
be very clearly understood from the following equation:

νPGW(τ) = −i|νPGW(τ)| where |νPGW(τ)| =

√
m2
H(τ)

H2 − 9
4

, (80)

where we define the heavy Hubble effective mass by the following expressions:

mH(τ) :=
√
(2− τ2(H2 +H′)) H � H, (81)

where we have that the following additional constraint condition holds well in the associ-
ated conformal time scale:

τ � 1√
(H2 +H′)

=
1√

2− ε(τ) H
. (82)

In this particular situation, the solution for the rescaled PGW field with arbitrary
quantum initial vacuum can be expressed as
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fλ,k(τ) =
1√
2k

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

C1

(
1− i

kτ

)
exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − 3π

4

})

+ C2

(
1 +

i
kτ

)
exp

(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

kτ − 3π

4

}). (83)

For all types of possible quantum initial vacuum states, the highlighted Boltzmann
suppression term plays a very significant role, as it is related to the fact of huge suppression
in the probability distribution profile and the related spectrum of the heavy Hubble particle
production. On the other hand, for excited quantum vacua states such as Bruce Allen
vacua and α vacua, an additional contribution will also appear, which is highlighted as
the Boltzmann enhancement contribution and is the only term that survives only when one
considers the possibility for having excited quantum vacua states as an initial choice. For
the Bunch–Davies vacuum state, which is the ground quantum vacuum Euclidean state, this
particular Boltzmann enhancement contribution does not appear. This implies that for the
excited quantum vacua there is a possibility of having enhancement in the probability
distribution profile and its related spectrum of particle production. Frankly speaking, for
the excited quantum vacuum states, a competition between the Boltzmann suppression term
and Boltzmann enhancement term always takes place; depending on the parameter values
for a specific vacuum parametrization, one can decide who wins the competition at the end
of this cosmological game. To feel the cosmological essence of this competition, one must
explicitly study the physical outcomes in the context of chaos and complexity. On the other
hand, for the commonly used Bunch–Davies state, no such competition will be observed as
only the Boltzmann suppression term survives. However, we will study this possibility as
well in this paper to compare the results obtained from the excited and ground quantum
vacuum states.

In this paper, we will further discuss three specific choices of quantum vacuum states,
which appear in different contexts in the theoretical physics literature. These possibilities
are appended below:

1. Motta-Allen (α, γ) vacua:

This is a specific choice where the arbitrary coefficients appearing in the classical
solution of the PGW are parametrized by two real parameters, α and γ, following

C1 = cosh α, C2 = exp(iγ) sinh α ∀α, γ ∈ R subject to |C1|2 − |C2|2 = 1. (84)

This is considered as an excited SO(1, 4) isometric vacuum state having an oscillating
feature. One can explicitly show that this type of quantum-excited vacua is CPT
symmetry breaking in nature and is characterised by the real parameter γ. Apart
from having this issue to describe various physical situations, the explicit role of this
quantum vacuum state is extremely important. In this paper, we will investigate the
role of these two real parameters α and γ in the parametrization of Motta-Allen vacua
to determine the quantum complexity and to study the underlying phenomena of
quantum chaos from the various cosmological primordial models of our universe
using PGW perturbation. We are excited about this finding because such possibilities
have not been explored. In this context, the solution for the PGW field variable for the
Motta-Allen vacua can be written as
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fλ,k(τ) =
1√
2k

2νPGW−
3
2 (−kτ)

3
2 −νPGW

∣∣∣∣∣ Γ(νPGW)

Γ
( 3

2

) ∣∣∣∣∣
×
[

cosh α

(
1− i

kτ

)
exp

(
−i
{

kτ +
π

2

(
νPGW −

3
2

)})
+ sinh α

(
1 +

i
kτ

)
exp

(
i
{

γ + kτ +
π

2

(
νPGW −

3
2

)})]
. (85)

For the case of heavy field, we have the following simplified expression:

fλ,k(τ) =
1√
2k

2−
(

i|νPGW |+
3
2

)
(−kτ)

3
2 +i|νPGW |

∣∣∣∣∣ Γ(−i|νPGW|)
Γ
( 3

2

) ∣∣∣∣∣
×

cosh α

(
1− i

kτ

)
exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − 3π

4

})

+ sinh α

(
1 +

i
kτ

)
exp

(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

γ + kτ − 3π

4

}). (86)

The limiting results for the super-Hubble, sub-Hubble and horizon exit scale are
given as follows:

I. Sub−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
1√
2k

2νPGW− 3
2 (−kτ)

3
2−νPGW

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α exp
(
−i
{

kτ +
π

2

(
νPGW −

3
2

)})
+ sinh α exp

(
i
{

γ + kτ +
π

2

(
νPGW −

3
2

)})]
. (87)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2−(i|νPGW|+ 3

2 )(−kτ)
3
2+i|νPGW|

√
2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

cosh α exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − 3π

4

})

+ sinh α exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

γ + kτ − 3π

4

}). (88)

II. Super−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2νPGW− 3

2 (−kτ)
1
2−νPGW

√
2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α exp
(
−i
{

π

2

(
νPGW −

5
2

)})
+ sinh α exp

(
i
{

γ +
π

2

(
νPGW −

5
2

)})]
.

(89)
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B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2−(i|νPGW|+ 3

2 )(−kτ)
1
2+i|νPGW|

√
2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

cosh α exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

5πi
4

)

+ sinh α exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

γ− 5π

4

}). (90)

III. Solution at the point where boundary condition is fixed :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ0 = 1) =
2νPGW−1
√

2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣[

cosh α exp
(
−i
{π

2
(νPGW − 2)− 1

})
+ sinh α exp

(
i
{

γ +
π

2
(νPGW − 2)− 1

})]
. (91)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ0 = 1) =
2−(i|νPGW|+1)
√

2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

cosh α exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1))

+ sinh α exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp(i(γ− (π + 1)))

. (92)

2. α vacua:
This is a specific choice where the arbitrary coefficients that are appearing in the
classical solution of the PGW are parametrized by one real parameter family α, by:

C1 = cosh α, C2 = sinh α ∀α ∈ R subject to |C1|2 − |C2|2 = 1. (93)

This is identified as a excited SO(1, 4) isommetric vacuum state which is CPT sym-
metry preserving in nature. The real parameter α of α vacua determine the quantum
complexity and to study the underlying phenomena of quantum chaos from the
various cosmological primordial models of our universe using PGW perturbation.
Like the previous case this issue was not have been studied before and for this reason
we are very hopeful to explore some interesting underlying physical facts from our
analysis. It is important to note that by fixing γ = 0 in the (α, γ) vacua or Motta-Allen
vacua one can obtain the results for the α vacua, which in tern implies that by fixing
this choice of the parameter γ one can able to transform a CPT violating vacua to a
CPT preserving vacua. In this context, we get:
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fλ,k(τ) =
1√
2k

2νPGW−
3
2 (−kτ)

3
2 −νPGW

∣∣∣∣∣ Γ(νPGW)

Γ
( 3

2

) ∣∣∣∣∣
×
[

cosh α

(
1− i

kτ

)
exp

(
−i
{

kτ +
π

2

(
νPGW −

3
2

)})
+ sinh α

(
1 +

i
kτ

)
exp

(
i
{

kτ +
π

2

(
νPGW −

3
2

)})]
. (94)

For the case of heavy field case the PGW field can be expressed as:

fλ,k(τ) =
1√
2k

2−
(

i|νPGW |+
3
2

)
(−kτ)

3
2 +i|νPGW |

∣∣∣∣∣ Γ(−i|νPGW|)
Γ
( 3

2

) ∣∣∣∣∣
×

cosh α

(
1− i

kτ

)
exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − 3π

4

})

+ sinh α

(
1 +

i
kτ

)
exp

(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

kτ − 3π

4

}). (95)

The limiting results for super-Hubble, the sub-Hubble and horizon exit scale are given by:

I. Sub−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
1√
2k

2νPGW− 3
2 (−kτ)

3
2−νPGW

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α exp
(
−i
{

kτ +
π

2

(
νPGW −

3
2

)})
+ sinh α exp

(
i
{

kτ +
π

2

(
νPGW −

3
2

)})]
. (96)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2−(i|νPGW|+ 3

2 )(−kτ)
3
2+i|νPGW|

√
2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

cosh α exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − 3π

4

})

+ sinh α exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

kτ − 3π

4

}). (97)

II. Super−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2νPGW− 3

2 (−kτ)
1
2−νPGW

√
2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α exp
(
−i
{

π

2

(
νPGW −

5
2

)})
+ sinh α exp

(
i
{

π

2

(
νPGW −

5
2

)})]
.

(98)
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B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2−(i|νPGW|+ 3

2 )(−kτ)
1
2+i|νPGW|

√
2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

cosh α exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

5πi
4

)

+ sinh α exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(
−5πi

4

). (99)

III. Solution at the point where boundary condition is fixed :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ0 = 1) =
2νPGW−1
√

2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣[

cosh α exp
(
−i
{π

2
(νPGW − 2)− 1

})
+ sinh α exp

(
i
{π

2
(νPGW − 2)− 1

})]
. (100)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ0 = 1) =
2−(i|νPGW|+1)
√

2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

cosh α exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1))

+ sinh α exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp(−i(π + 1))

. (101)

3. Bunch-Davies vacuum:

This is a specific choice where the arbitrary coefficients that are appearing in the
classical solution of the PGW are parametrized by the following expression:

C1 = 1, C2 = 0 subject to |C1|2 − |C2|2 = 1, (102)

which is a SO(1, 4) isommetric ground state of the initial vacuum used in primordial
cosmology. In literature Bunch-Davies vacuum state is identified as Cherenkov vacuum
or Hartle-Hawking vacuum state, which is actually an Euclidean state. The general
solution for PGW field variable for the Bunch-Davies vacuum is given by:

fλ,k(τ) =
1√
2k

2νPGW− 3
2 (−kτ)

3
2−νPGW

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
(

1− i
kτ

)
exp

(
−i
{

kτ +
π

2

(
νPGW −

3
2

)})
. (103)

For the case of heavy field case the solution for the PGW field for the Bunch-Davies
vacuum can be written as:
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fλ,k(τ) =
1√
2k

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
(

1− i
kτ

)
exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − 3π

4

})
. (104)

The limiting results for super-Hubble, the sub-Hubble and horizon exit scale are given by:

I. Sub−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2νPGW− 3

2 (−kτ)
3
2−νPGW

√
2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

× exp
(
−i
{

kτ +
π

2

(
νPGW −

3
2

)})
.

(105)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2−(i|νPGW|+ 3

2 )(−kτ)
3
2+i|νPGW|

√
2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

× exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − 3π

4

})
. (106)

II. Super−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2νPGW− 3

2 (−kτ)
1
2−νPGW

√
2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

× exp
(
−i
{

π

2

(
νPGW −

5
2

)})
. (107)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ � 1) =
2−(i|νPGW|+ 3

2 )(−kτ)
1
2+i|νPGW|

√
2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

× exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

5πi
4

)
. (108)

III. Solution at the point where boundary condition is fixed :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(−kτ0 = 1) =
2νPGW−1
√

2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣ exp

(
−i
{π

2
(νPGW − 2)− 1

})
. (109)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(−kτ0 = 1) =
2−(i|νPGW|+1)
√

2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

× exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1)). (110)
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3.3. Quantization of Hamiltonian for PGW

In this section we quantize the Hamiltonian for PGW. Using the sets of solutions that
we have obtained for different choice of the initial vacuum state, one can further compute
the expression for the time derivative of PGW tensor mode:

f ′λ,k(τ) = i

√
k
2

2νPGW− 3
2 (−kτ)

3
2−νPGW

∣∣∣∣∣ Γ(νPGW)

Γ
( 3

2

) ∣∣∣∣∣
×
[
C1

{
1−

(
νPGW −

1
2

)
i

kτ

(
1− i

kτ

)}
exp

(
−i
{

kτ +
π

2

(
νPGW −

1
2

)})
− C2

{
1 +

(
νPGW −

1
2

)
i

kτ

(
1 +

i
kτ

)}
exp

(
i
{

kτ +
π

2

(
νPGW −

1
2

)})]
. (111)

In the specific case of heavy field case the conformal time derivative of the PGW tensor
mode can be written as:

f ′λ,k(τ) = i

√
k
2

2−
(

i|νPGW |+
3
2

)
(−kτ)

3
2 +i|νPGW |

∣∣∣∣∣ Γ(−i|νPGW|)
Γ
( 3

2

) ∣∣∣∣∣
×
[
C1

{
1 +

(
i|νPGW|+

1
2

)
i

kτ

(
1− i

kτ

)}
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ +
π

4

})

− C2

{
1−

(
i|νPGW|+

1
2

)
i

kτ

(
1 +

i
kτ

)}

× exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

kτ +
π

4

}). (112)

We further discuss about three specific choices of quantum vacuum states for which the
expressions for the PGW tensor perturbed field velocities are simplified as appended below:

1. Motta-Allen (α, γ) vacua:

In presence of Motta-Allen vacua the PGW tensor mode velocity can be written as:

f ′λ,k(τ) = i

√
k
2

2νPGW−
3
2 (−kτ)

3
2 −νPGW

∣∣∣∣∣∣ Γ(νPGW)

Γ
(

3
2

)
∣∣∣∣∣∣

×
[

cosh α

{
1−

(
νPGW −

1
2

)
i

kτ

(
1− i

kτ

)}
exp

(
−i
{

kτ +
π

2

(
νPGW −

1
2

)})
− sinh α

{
1 +

(
νPGW −

1
2

)
i

kτ

(
1 +

i
kτ

)}
exp

(
i
{

γ + kτ +
π

2

(
νPGW −

1
2

)})]
.

(113)

Now for the case of heavy Hubble effective mass the PGW tensor perturbed field
velocity can be expressed as:

f ′λ,k(τ) = i

√
k
2

2−(i|νPGW |+ 3
2 )(−kτ)

3
2 +i|νPGW |

∣∣∣∣∣ Γ(−i|νPGW|)
Γ
( 3

2

) ∣∣∣∣∣
×
[

cosh α

{
1 +

(
i|νPGW|+

1
2

)
i

kτ

(
1− i

kτ

)}
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − π

4

})

− sinh α

{
1−

(
i|νPGW|+

1
2

)
i

kτ

(
1 +

i
kτ

)}

× exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

γ + kτ − π

4

}). (114)
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In the super-Hubble, horizon crossing and sub-Hubble limit we have the following
results:

I. Sub−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2νPGW− 3
2 (−kτ)

3
2−νPGW

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1−

(
νPGW −

1
2

)
i

kτ

}
exp

(
−i
{

kτ +
π

2

(
νPGW −

1
2

)})
− sinh α

{
1 +

(
νPGW −

1
2

)
i

kτ

}
exp

(
i
{

γ + kτ +
π

2

(
νPGW −

1
2

)})]
.

(115)

B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(τ) = i

√
k
2

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1 +

(
i|νPGW|+

1
2

)
i

kτ

}
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − π

4

})

− sinh α

{
1−

(
i|νPGW|+

1
2

)
i

kτ

}

× exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

γ + kτ − π

4

}). (116)

II. Super−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2νPGW− 3
2 (−kτ)−(νPGW+ 1

2 )

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

(
νPGW −

1
2

)
exp

(
−i
{

π

2

(
νPGW −

5
2

)})
− sinh α

(
νPGW −

1
2

)
exp

(
i
{

γ +
π

2

(
νPGW −

5
2

)})]
. (117)

B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

cosh α

(
i|νPGW|+

1
2

)
exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

iπ
4

)

− sinh α

(
i|νPGW|+

1
2

)
exp

(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

γ− π

4

}). (118)
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III. Solution at the point where boundary condition is fixed :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ0 = 1) = i

√
k
2

2νPGW− 3
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1−
√

2
(

νPGW −
1
2

)
exp

(
− iπ

4

)}
exp

(
−i
{

π

2

(
νPGW −

1
2

)
− 1
})

− sinh α

{
1−
√

2
(

νPGW −
1
2

)
exp

(
iπ
4

)}
exp

(
i
{

γ− 1 +
π

2

(
νPGW −

1
2

)})]
. (119)

B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(−kτ0 = 1) = i

√
k
2

2−(i|νPGW|+ 3
2 )

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1 +
√

2
(

i|νPGW|+
1
2

)
exp

(
− iπ

4

)}
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

i
{π

4
+ 1
})

− sinh α

{
1 +
√

2
(

i|νPGW|+
1
2

)
exp

(
iπ
4

)}

× exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

γ− 1− π

4

}). (120)

2. α vacua:

In presence of α vacua the expression for the PGW tensor mode velocity can be
simplified as:

f ′λ,k(τ) = i

√
k
2

2νPGW−
3
2 (−kτ)

3
2 −νPGW

∣∣∣∣∣∣ Γ(νPGW)

Γ
(

3
2

)
∣∣∣∣∣∣

×
[

cosh α

{
1−

(
νPGW −

1
2

)
i

kτ

(
1− i

kτ

)}
exp

(
−i
{

kτ +
π

2

(
νPGW −

1
2

)})
− sinh α

{
1 +

(
νPGW −

1
2

)
i

kτ

(
1 +

i
kτ

)}
exp

(
i
{

kτ +
π

2

(
νPGW −

1
2

)})]
.

(121)

Now for the case of heavy field case the PGW tensor mode velocity can be simplified as:

f ′λ,k(τ) = i

√
k
2

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1 +

(
i|νPGW|+

1
2

)
i

kτ

(
1− i

kτ

)}
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − π

4

})

− sinh α

{
1−

(
i|νPGW|+

1
2

)
i

kτ

(
1 +

i
kτ

)}

× exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

kτ − π

4

}). (122)
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In the super-Hubble, horizon crossing and sub-Hubble limit we have the following
results:

I. Sub−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2νPGW− 3
2 (−kτ)

3
2−νPGW

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1−

(
νPGW −

1
2

)
i

kτ

}
exp

(
−i
{

kτ +
π

2

(
νPGW −

1
2

)})
− sinh α

{
1 +

(
νPGW −

1
2

)
i

kτ

}
exp

(
i
{

kτ +
π

2

(
νPGW −

1
2

)})]
.

(123)

B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1 +

(
i|νPGW|+

1
2

)
i

kτ

}
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − π

4

})

− sinh α

{
1−

(
i|νPGW|+

1
2

)
i

kτ

}

× exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(

i
{

kτ − π

4

}). (124)

II. Super−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2νPGW− 3
2 (−kτ)−(νPGW+ 1

2 )

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

(
νPGW −

1
2

)
exp

(
−i
{

π

2

(
νPGW −

5
2

)})
− sinh α

(
νPGW −

1
2

)
exp

(
i
{

π

2

(
νPGW −

5
2

)})]
. (125)

B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

cosh α

(
i|νPGW|+

1
2

)
exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

iπ
4

)

− sinh α

(
i|νPGW|+

1
2

)
exp

(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(
− iπ

4

). (126)
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III. Solution at the point where boundary condition is fixed :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ0 = 1) = i

√
k
2

2νPGW− 3
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1−
√

2
(

νPGW −
1
2

)
exp

(
− iπ

4

)}
exp

(
−i
{

π

2

(
νPGW −

1
2

)
− 1
})

− sinh α

{
1−
√

2
(

νPGW −
1
2

)
exp

(
iπ
4

)}
exp

(
i
{

π

2

(
νPGW −

1
2

)
− 1
})]

. (127)

B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(−kτ0 = 1) = i

√
k
2

2−(i|νPGW|+ 3
2 )

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
[

cosh α

{
1 +
√

2
(

i|νPGW|+
1
2

)
exp

(
− iπ

4

)}
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

i
{π

4
+ 1
})

− sinh α

{
1 +
√

2
(

i|νPGW|+
1
2

)
exp

(
iπ
4

)}

× exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp
(
−i
{π

4
+ 1
}). (128)

3. Bunch-Davies vacuum:

For α vacua the expression for the PGW tensor mode velocity can be written as:

f ′λ,k(τ) = i

√
k
2

2νPGW−
3
2 (−kτ)

3
2 −νPGW

∣∣∣∣∣ Γ(νPGW)

Γ
( 3

2

) ∣∣∣∣∣
×
{

1−
(

νPGW −
1
2

)
i

kτ

(
1− i

kτ

)}
exp

(
−i
{

kτ +
π

2

(
νPGW −

1
2

)})
.

(129)

Now for the case of heavy field case the PGW tensor mode velocity can be simplified as:

f ′λ,k(τ) = i

√
k
2

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
{

1 +
(

i|νPGW|+
1
2

)
i

kτ

(
1− i

kτ

)}
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − π

4

})
. (130)

In the super-Hubble, horizon crossing and sub-Hubble limit we have the following
results:

I. Sub−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2νPGW− 3
2 (−kτ)

3
2−νPGW

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣ exp

(
−i
{

kτ +
π

2

(
νPGW −

1
2

)})
.

(131)
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B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2−(i|νPGW|+ 3
2 )(−kτ)

3
2+i|νPGW|

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

× exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(
−i
{

kτ − π

4

})
. (132)

II. Super−Hubble limiting solution :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2νPGW− 3
2 (−kτ)−(νPGW+ 1

2 )

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
(

νPGW −
1
2

)
exp

(
−i
{

π

2

(
νPGW −

5
2

)})
. (133)

B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(−kτ � 1) = i

√
k
2

2−(i|νPGW|+ 3
2 )(−kτ)i|νPGW|− 1

2

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
(

i|νPGW|+
1
2

)
exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

iπ
4

)
. (134)

III. Solution at the point where boundary condition is fixed :

A. Massless & Partially Massless Hubble Effective Mass :=⇒

f ′λ,k(−kτ0 = 1) = i

√
k
2

2νPGW− 3
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×
{

1−
√

2
(

νPGW −
1
2

)
exp

(
− iπ

4

)}
exp

(
−i
{

π

2

(
νPGW −

1
2

)
− 1
})

.

(135)

B. Heavy Hubble Effective Mass :=⇒

f ′λ,k(−kτ0 = 1) = i

√
k
2

2−(i|νPGW|+ 3
2 )

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×
{

1 +
√

2
(

i|νPGW|+
1
2

)
exp

(
− iπ

4

)}
exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp
(

i
{π

4
+ 1
})

.

(136)

Now, the canonically conjugate momenta for PGW tensor mode can be computed as:

PGW momenta : πλ,k(τ) :=
∂L(2)( fλ,k(τ), f ′λ,k(τ), τ)

∂ f ′λ,k(τ)
=

[
v
′ ∗
k (τ)−

(
a′(τ)
a(τ)

)
fλ,k(τ)

]
. (137)

Then the Hamiltonian for the PGW tensor mode can be further simplified as:

HPGW(τ) =
1
2

∫
d3k

[∣∣∣∣πλ,k(τ) +
a′(τ)
a(τ)

fλ,k(τ)

∣∣∣∣2 + µ2
PGW(k, τ)| fλ,k(τ)|2

]
, (138)

where the effective mass µ2
PGW(k, τ) of the PGW is defined as:

µ2
PGW(k, τ) :=

[
k2 −

(
a′(τ)
a(τ)

)2]
. (139)
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To quantize the Hamiltonian for PGW we introduce the following quantum operators
in the Heisenberg picture:

f̂λ(x, τ) = U †
PGW(τ, τ0) f̂λ(x, τ0)UPGW(τ, τ0)

=
∫ d3k

(2π)3

[
f ∗λ,−k(τ) âk + fλ,k(τ) â†

−k

]
exp(ik.x), (140)

π̂λ(x, τ) = U †
PGW(τ, τ0)π̂λ(x, τ0)UPGW(τ, τ0)

=
∫ d3k

(2π)3

[
π∗λ,−k(τ) âk + πλ,k(τ) â†

−k

]
exp(ik.x). (141)

Then the quantized Hamiltonian for PGW is given by:

ĤPGW(τ) =
1
2

∫
d3k

[∣∣∣∣[ f ∗
′

λ,−k(τ) âk + f
′
λ,k(τ) â†

−k

]
+

a′(τ)
a(τ)

[
f ∗λ,−k(τ) âk + fλ,k(τ) â†

−k
]∣∣∣∣2

+ µ2
PGW(k, τ)|

[
f ∗λ,−k(τ) âk + fλ,k(τ) â†

−k
]
|2
]

=
1
2

∫
d3k

[
Ωλ,k(τ)

(
â†

k âk + â†
−k â−k + 1

)︸ ︷︷ ︸
Contribution from the free term

+ i Λk(τ)

(
exp(−2iφλ,k(τ))âk â−k − exp(2iφλ,k(τ))â†

k â†
−k

)
︸ ︷︷ ︸

Contribution from the Interaction term

]
, (142)

where we define two crucial quantities, the dispersion relation for PGW, Ωk(τ) and the
time dependent factor Λk(τ) by:

Ωλ,k(τ) : =

{∣∣∣ f ′λ,k(τ)
∣∣∣2 + µ2

PGW(k, τ)| fλ,k(τ)|2
}

=

{
|πλ,k(τ) + Λk(τ)λ,k(τ)|2 + µ2

PGW(k, τ)| fλ,k(τ)|2
}

, (143)

µ2
PGW(k, τ) : =

(
k2 −Λ2

k(τ)
)
=
(

k2 −H2(τ)
)

, (144)

Λk(τ) : =

(
a′(τ)
a(τ)

)
= H(τ). (145)

For the PGW perturbation we find out that Λk(τ) actually represents the Hubble param-
eter in the conformal scale, which makes this computation different from the same study
from the quantized scalar modes. Also, the effective mass and related mass parameters
for the scalar and PGW tensor mode perturbations are significantly different, though the
classical solutions from the Mukhanov Sasaki equation for both the mode functions looks
similar structure-wise. It would be more clear once we follow the rest of the part of the
computation and the physical outcomes that we have obtained in this paper.

3.4. Time Evolution of Quantized PGW

In this section we will study the time evolution of the quantized PGW tensor mode in
presence of different initial conditions. To study this one need to follow few steps one by
one which we discuss in the following subsections in detail.

3.4.1. Fixing the Initial Condition at Horizon Crossing

Here we fix the intermediate time scale at τ = τ0 with the crucial constraint, −kτ0 = 1
in such a way that, we get the following normalization in the classical solution of the PGW
tensor modes. This gives us the following results:
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1. Motta-Allen (α, γ) vacua:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(τ0) =
2νPGW−1
√

2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣[

cosh α exp
(
−i
{π

2
(νPGW − 2)− 1

})
+ sinh α exp

(
i
{

γ +
π

2
(νPGW − 2)− 1

})]
, (146)

πλ,k(τ0) = i

√
k
2

2νPGW− 3
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×

cosh α

1−
√

2

(
νPGW −

1
2

)(
νPGW +

1
2
+ i
)

(
νPGW +

1
2

) exp
(
− iπ

4

)
× exp

(
−i
{π

2
(νPGW − 2)− 1

})

− sinh α

1−
√

2

(
νPGW −

1
2

)(
νPGW +

1
2
+ i
)

(
νPGW +

1
2

) exp
(

iπ
4

)
× exp

(
i
{

γ +
π

2
(νPGW − 2)− 1

})]
,

(147)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(τ0) =
2−(i|νPGW|+1)
√

2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

cosh α exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1))

+ sinh α exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp(i(γ− (π + 1)))

, (148)

πλ,k(τ0) = i

√
k
2

2−(i|νPGW|+ 3
2 )

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

cosh α

1 +
√

2

(
i|νPGW|+

1
2

)(
i|νPGW| −

1
2
− i
)

(
i|νPGW| −

1
2

) exp
(
− iπ

4

)
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1))

− sinh α

1 +
√

2

(
i|νPGW|+

1
2

)(
i|νPGW| −

1
2
− i
)

(
i|νPGW| −

1
2

) exp
(

iπ
4

)
× exp

(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp(i(γ− (π + 1)))

. (149)
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2. α vacua:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(τ0) =
2νPGW−1
√

2k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣[

cosh α exp
(
−i
{π

2
(νPGW − 2)− 1

})
+ sinh α exp

(
i
{π

2
(νPGW − 2)− 1

})]
, (150)

πλ,k(τ0) = i

√
k
2

2νPGW− 3
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

×

cosh α

[1−
√

2

(
νPGW −

1
2

)(
νPGW +

1
2
+ i
)

(
νPGW +

1
2

) exp
(
− iπ

4

)
× exp

(
−i
{π

2
(νPGW − 2)− 1

})

− sinh α

1−
√

2

(
νPGW −

1
2

)(
νPGW +

1
2
+ i
)

(
νPGW +

1
2

) exp
(

iπ
4

)
× exp

(
i
{π

2
(νPGW − 2)− 1

})]
,

(151)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(τ0) =
2−(i|νPGW|+1)
√

2k

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

cosh α exp
(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1))

+ sinh α exp
(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp(−i(π + 1))

, (152)

πλ,k(τ0) = i

√
k
2

2−(i|νPGW|+ 3
2 )

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

×

cosh α

1 +
√

2

(
i|νPGW|+

1
2

)(
i|νPGW| −

1
2
− i
)

(
i|νPGW| −

1
2

) exp
(
− iπ

4

)
× exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1))

− sinh α

1 +
√

2

(
i|νPGW|+

1
2

)(
i|νPGW| −

1
2
− i
)

(
i|νPGW| −

1
2

) exp
(

iπ
4

)
× exp

(π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann enhancement

exp(−i(π + 1))

. (153)
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3. Bunch-Davies vacuum:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

fλ,k(τ0) =
1√
2k

2νPGW−1

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣ exp

(
−i
{π

2
(νPGW − 2)− 1

})
, (154)

πλ,k(τ0) = i

√
k
2

2νPGW− 3
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣ exp

(
−i
{π

2
(νPGW − 2)− 1

})
1−

√
2

(
νPGW −

1
2

)(
νPGW +

1
2
+ i
)

(
νPGW +

1
2

) exp
(
− iπ

4

), (155)

B. Heavy Hubble Effective Mass :=⇒

fλ,k(τ0) =
1√
2k

2−(i|νPGW|+1)

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣ exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1)), (156)

πλ,k(τ0) = i

√
k
2

2νPGW− 3
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣ exp

(
−π

2
|νPGW|

)
︸ ︷︷ ︸

Boltzmann suppression

exp(i(π + 1))

1−
√

2

(
νPGW −

1
2

)(
νPGW +

1
2
+ i
)

(
νPGW +

1
2

) exp
(
− iπ

4

). (157)

Hence for the PGW tensor modes we can write the following operators:

f̂λ,k(τ) = fλ,k(τ0)

(
ak(τ) + a†

−k(τ)

)
, (158)

π̂λ,k(τ) = −πλ,k(τ0)

(
ak(τ)− a†

−k(τ)

)
, (159)

where the creation and the annihilation operators at any arbitrary time scale can be ex-
pressed at τ = τ0 along with −kτ0 = 1 in the Heisenberg picture as:

ak(τ) := U †
PGW(τ, τ0)akUPGW(τ, τ0), (160)

a†
−k(τ) := U †

PGW(τ, τ0)a†
−kUPGW(τ, τ0), (161)

where the unitary time evolution operator UPGW(τ) satisfy the following condition:

U †
PGW(τ)UPGW(τ) = I. (162)

3.4.2. Squeezed State Formalism in PGW Dominated Primordial Cosmology

The time evolution of the unitary operator UPGW(τ), produced by the full quadratic
quantized Hamiltonian which is basically taking care of both the free and interaction
contribution, can be understood in a very simplified language of factorization, as given by:

PGW Unitary Operator : UPGW(τ, τ0) = ŜPGW(rλ,k(τ, τ0), φλ,k(τ))︸ ︷︷ ︸
PGW Squuezing Operator

R̂PGW(θλ,k(τ))︸ ︷︷ ︸
PGW Rotation Operator︸ ︷︷ ︸

Simple factorization

, (163)

where R̂PGW(θλ,k(τ)) is a two momentum mode PGW rotation operator, which is defined
by the following expression:
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PGW Rotation Operator : R̂PGW(θλ,k(τ)) = exp

(
−iθλ,k(τ)

(
âk â†

k + â†
−k â−k

))
, (164)

and ŜPGW(rλ,k(τ, τ0), φλ,k(τ)) is the two momentum mode PGW squeezing operator,
which is defined by the following expression:

PGW Squeezing Operator :

ŜPGW(rλ,k(τ), φλ,k(τ)) = exp

( Amplitude︷ ︸︸ ︷
rλ,k(τ)

2

{
exp(−2i φλ,k(τ)︸ ︷︷ ︸

Phase

)âk â−k − exp(2iφλ,k(τ))â†
−k â†

k

})
.

(165)

Here the squeezing amplitude for PGW is represented by the parameter, rλ,k(τ) and
the angle φλ,k(τ). Most importantly, at the level of quantized version of the Hamiltonian
functional operator, PGW rotation operator is associated with the free contributions. On
the other hand, PGW squeezing operator is specifically capturing the contribution from the
interaction part of the Hamiltonian after quantization. But by careful inspection one can
point that the two-mode PGW rotation operator give rise to an irrelevant conformal time
dependent phase term, exp(iθλ,k(τ)) when it operate on the initial quantum mechanical
vacuum state. Now since this part completely capturing the information regarding the
free part of the PGW perturbation theory, it will not give us any additional significant
information after this parametrization and for this reason one can ignore this contribution
in our derived results in this paper to avoid the appearance of unnecessary complicated
junks. It means that in the rest of the paper we will only concentrate on outcomes of the
PGW squeezing operator which is basically playing most significant role to determine the
cosmological complexity from PGW in terms of the squeezed parameters which depend
upon conformal time and the phase contributions by solving the time evolution equations
which we will discuss very soon.

Here it is quite natural that the PGW mode quantization can be visualized in terms of
quantized parametric oscillator, which is the prime reason for the appearance of a squeezed
quantum mechanical state in the present computation. As a result the whole description
can be explicitly described in terms of two-mode two-helicity squeezed state formalism for
PGW, which is the backbone of our present computation of this paper. Things will be more
clear once we proceed in the later half of this paper. For better understanding, some of the
crucial computations are explicitly given in the appendix, which we suggest to the readers
to go through.

For the detailed computation we choose the ground state of the Hamiltonian as the
initial choice of the helicity and momentum dependent vacuum state:

âk0λ,k,−k = 0 ∀ k & λ = +,×, (166)

which is a Poincare invariant state. Obviously, this is a very general definition of an annihila-
tion operator, which can be further translated in the language of the choice of the initial
vacuum states which we have chosen once we have obtained the full classical solution of the
PGW mode function. In this paper we are interested in the CPT violating Motta-Allen vacua
state (|α, γ〉λ,k,−k) and the CPT preserving α-vacua state (|α〉λ,k,−k), which are related to the
well known Euclidean ground state, represented by Bunch-Davies vacuum state (|0〉λ,k,−k)
via Bogoliubov transformation, which are appended below:

Motta Allen initial quantum vacua state :

|α, γ〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
exp(−iγ) tanhα â†

k â†
−k

)
BDλ,k,−k, (167)

ff initial quantum vacua state :

|α〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
tanhα â†

k â†
−k

)
BDλ,k,−k. (168)
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Next we use the operator ŜPGW(rλ,k(τ), φλ,k(τ)) which operates on the various initial
states and produce a two-mode PGW squeezed vacuum state. All other initial states will
be related to the Bunch-Davies result via the previously mentioned non-trivial Bogoliubov
transformations, which are appended below:

Motta Allen squeezed quantum vacua state :

Ψ(α,γ)
sq λ,k,−k = ŜPGW(rλ,k(τ), φλ,k(τ))|α, γ〉λ,k,−k

=
1

cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ) tanhn rλ,k(τ)nλ,k, nλ,−k
(α,γ), (169)

ff squeezed quantum vacua state :

Ψ(α)
sq λ,k,−k = ŜPGW(rλ,k(τ), φλ,k(τ))|α, γ〉λ,k,−k

=
1

cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ) tanhn rλ,k(τ)nλ,k, nλ,−k
(α), (170)

Bunch Davies squeezed quantum vacuum state :

Ψ(BD)
sq λ,k,−k = ŜPGW(rλ,k(τ), φλ,k(τ))|α, γ〉λ,k,−k

=
1

cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ) tanhn rλ,k(τ)nλ,k, nλ,−k
(BD). (171)

Here we define two-mode two helicity dependent excited state (occupation number
state) for the three corresponding choices of the initial states, given by:

Motta Allen squeezed quantum vacua state :

nλ,k, nλ,−k
(α,γ) =

1
n!
√
| cosh α|

(
â†

k
)n(â†

−k
)n exp

(
− i

2
exp(−iγ) tanhα â†

k â†
k

)
BDλ,k,−k

=
1√
| cosh α|

exp
(
− i

2
exp(−iγ) tanhα â†

k â†
k

)
nλ,k, nλ,−k

(BD)

=
1√
| cosh α|

{1

+
∞

∑
m=1

(−1)m

m!

(
i
2

)m
exp(−imγ) tanhmα

(
â†

k
)m(â†

k
)m
}

nλ,k, nλ,−k
(BD)

=
1√
| cosh α|

{
nλ,k, nλ,−k

(BD)

+
∞

∑
m=1

(−1)m

m!

(
i
2

)m
exp(−imγ) tanhmα (n + m)λ,k, (n + m)λ,−k

(BD)

}
,

(172)

ff squeezed quantum vacua state :

nλ,k, nλ,−k
(α) =

1
n!
√
| cosh α|

(
â†

k
)n(â†

−k
)n exp

(
− i

2
tanhα â†

k â†
k

)
BDλ,k,−k

=
1√
| cosh α|

exp
(
− i

2
tanhα â†

k â†
k

)
nλ,k, nλ,−k

(BD)

=
1√
| cosh α|

{
1 +

∞

∑
m=1

(−1)m

m!

(
i
2

)m
tanhmα

(
â†

k
)m(â†

k
)m
}

nλ,k, nλ,−k
(BD)

=
1√
| cosh α|

{
nλ,k, nλ,−k

(BD)

+
∞

∑
m=1

(−1)m

m!

(
i
2

)m
tanhmα (n + m)λ,k, (n + m)λ,−k

(BD)

}
,

(173)

Bunch Davies squeezed quantum vacuum state :

nλ,k, nλ,−k
(BD) =

1
n!
(
â†

k
)n(â†

−k
)nBDλ,k,−k. (174)
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Then the wave function having two-modes k,−k from the various initial states can be
computed as:

Motta Allen squeezed quantum vacua state :

Ψ(α,γ)
sq = ∑

λ=+,×

⊗
k

Ψ(α,γ)
sq λ,k,−k

= ∑
λ=+,×

⊗
k

ŜPGW(rλ,k(τ), φλ,k(τ))|α, γ〉λ,k,−k

= ∑
λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ)) tanhn rλ,k(τ)nλ,k , nλ,−k
(α,γ)

=
1√
| cosh α| ∑

λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

∞

∑
m=0

(−1)n+m

n!m!

(
i
2

)m

exp(−i(mγ + 2n φλ,k(τ)))

tanhmα tanhn rλ,k(τ)
(
â†

k
)n+m(â†

−k
)n+mBDλ,k,−k

=
1√
| cosh α| ∑

λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ) tanhn rλ,k(τ)
{

nλ,k , nλ,−k
(BD)

+
∞

∑
m=1

(−1)m

m!

(
i
2

)m

exp(−imγ) tanhmα (n + m)λ,k , (n + m)λ,−k
(BD)

}
,

(175)

ff squeezed quantum vacua state :

Ψ(α)
sq = ∑

λ=+,×

⊗
k

Ψ(α)
sq λ,k,−k

= ∑
λ=+,×

⊗
k

ŜPGW(rλ,k(τ), φλ,k(τ))|α〉λ,k,−k

= ∑
λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ)) tanhn rλ,k(τ)nλ,k , nλ,−k
(α)

=
1√
| cosh α| ∑

λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

∞

∑
m=0

(−1)n+m

n!m!

(
i
2

)m

exp(−2in φλ,k(τ))

tanhmα tanhn rλ,k(τ)
(
â†

k
)n+m(â†

−k
)n+mBDλ,k,−k

=
1√
| cosh α| ∑

λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ) tanhn rλ,k(τ)
{

nλ,k , nλ,−k
(BD)

+
∞

∑
m=1

(−1)m

m!

(
i
2

)m

tanhmα (n + m)λ,k , (n + m)λ,−k
(BD)

}
,

(176)

Bunch Davies squeezed quantum vacuum state :

Ψ(BD)
sq = ∑

λ=+,×

⊗
k

Ψ(BD)
sq λ,k,−k

= ∑
λ=+,×

⊗
k

ŜPGW(rλ,k(τ), φλ,k(τ))|BD〉λ,k,−k

= ∑
λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ)) tanhn rλ,k(τ)nλ,k , nλ,−k
(BD)

= ∑
λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n

n!

(
i
2

)m

exp(−2in φλ,k(τ))

tanhn rλ,k(τ)
(
â†

k
)n(â†

−k
)nBDλ,k,−k

= ∑
λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ) tanhn rλ,k(τ)nλ,k , nλ,−k
(BD) ,

(177)

Here in the squeezed states we have taken the sum over two possible helicities or the
polarization of the PGW perturbation, whose contributions in the classical version or in the
quantum version of the PGW tensor mode functions looks exactly identical to each other.



Symmetry 2023, 15, 664 33 of 82

Because of this fact after performing the sum over the two helicities we will get an overall
contribution of a factor of 2 which we have not mentioned in the previously mentioned
equations, but we will take care of this fact in the rest of the paper.

3.4.3. Role of Unitary Time Evolution of PGW Fluctuations in Squeezed State Formalism

Here, our aim is to explore the role of the unitary time evolution of the PGW tensor
fluctuations in previously mentioned squeezed state formalism. Applying the unitary
transformation for the PGW perturbation, one can obtain the following ladder operators:

âk(τ) = Û †
PGW(τ, τ0) âk ÛPGW(τ, τ0)

= R̂†
PGW(θλ,k(τ))Ŝ†

PGW(rλ,k(τ), φλ,k(τ)) âk R̂PGW(θλ,k(τ))ŜPGW(rλ,k(τ), φλ,k(τ))

= cosh rλ,k(τ) exp(−iθλ,k(τ)) âk − sinh rλ,k(τ) exp(i(θk(τ) + 2φλ,k(τ))) â†
−k , (178)

â†
−k(τ) = Û †

PGW((τ, τ0) â†
−k ÛPGW((τ, τ0)

= R̂†
PGW((θλ,k(τ))Ŝ†

PGW((rλ,k(τ), φλ,k(τ)) â†
−k R̂PGW((θλ,k(τ))ŜPGW((rλ,k(τ), φλ,k(τ))

= cosh rλ,k(τ) exp(iθλ,k(τ)) â†
−k − sinh rλ,k(τ) exp(−i(θλ,k(τ) + 2φλ,k(τ))) âk . (179)

Using these expressions, the field and momentum operator of the PGW perturbation
can be expressed as:

f̂λ,k(τ) = fλ,k(τ0)

(
âk(τ) + â†

−k(τ)

)

= fλ,k(τ0)

[
âk

(
cosh rλ,k(τ) exp(−iθλ,k(τ))− sinh rλ,k(τ) exp(−i(θλ,k(τ) + 2φλ,k(τ)))

)

+ â†
−k

(
cosh rλ,k(τ) exp(iθλ,k(τ))− sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)]
=

[
f ∗λ,−k(τ) âk + fλ,k(τ) â†

−k
]
, (180)

π̂λ,k(τ) = −πλ,k(τ0)

(
ak(τ)− a†

−k(τ)

)

= −πλ,k(τ0)

[
âk

(
cosh rλ,k(τ) exp(−iθλ,k(τ)) + sinh rλ,k(τ) exp(−i(θλ,k(τ) + 2φλ,k(τ)))

)

− â†
−k

(
cosh rλ,k(τ) exp(iθλ,k(τ)) + sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)]
=

[
π∗λ,−k(τ) âk + πλ,k(τ) â†

−k
]
, (181)

which are valid for two modes ±k and the two helicities ± for the PGW tensor modes.
From above expressions, the classical counterparts can be written as:

fλ,k(τ) = fλ,k(τ0)

(
cosh rλ,k(τ) exp(iθλ,k(τ))− sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)
, (182)

πλ,k(τ) = πλ,k(τ0)

(
cosh rλ,k(τ) exp(iθλ,k(τ)) + sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)
. (183)

Further, the time evolution of the quantum operators R̂PGW(θλ,k(τ)) and
ŜPGW(rλ,k(τ), φλ,k(τ)) are described by the Schrödinger equation, which gives:

drλ,k(τ)

dτ
= −H(τ) cos(2φλ,k(τ)), (184)

dφλ,k(τ)

dτ
= Ωλ,k(τ) +H(τ) coth(2rλ,k(τ)) sin(2φλ,k(τ)), (185)

where Ωλ,k(τ) is defined as:

Ωλ,k(τ) : =

{
|πλ,k(τ) +H(τ) fλ,k(τ)|2 +

(
k2 −H2(τ)

)
| fλ,k(τ)|2

}
. (186)
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It needs to be emphasized that both the conformal time dependent factors are not explicitly
dependent on the particular polarization or the helicity of the PGW. Not only that the
contribution appearing from both the PGW polarization components become exactly identical
to each other. For this reason if we sum over all the helicity components or the polarizations
the from both the sides of these evolution equations we will get a factor of 2 as we have
already pointed earlier. Since such factor will appear in the both sides of the evolution
equations, it will actually cancel from both the sides and ultimately we have the simplified
form of the coupled system which we have to solve in the present context. Additionally, we
can see from these above mentioned equations that, the analytical solutions of these equations
are not actually possible at all for any arbitrary time scale and for the mentioned classes of
the scale factors on which we are interested in this paper. Also, since we are dealing with
two first order coupled differential equations, to numerically solve the boundary condition
at the cosmological horizon exit play very crucial role. We fix −kτ0 = 1 condition at the
scale τ = τ0, which is chosen to be the boundary condition to solve the evolution in terms of
the squeezed amplitude and squeezed angle. Apart from having the complicated angular
dependent contributions in these coupled differential equations the prime and the most
significant information is appearing from the dispersion relation of the perturbed PGW or
the tensor modes. It is worth to mention that the individual terms appearing in the PGW
dispersion relation not explicitly depend on the specific polarization or the helicity of the
PGW. However, since two polarization components exist for PGW, so to remind ourself we
have kept the helicity index.

Next, we compute the PGW dispersion relation for the three the quantum vacuum
states, as mentioned earlier in the paper. More details regarding expressions for these cases
for dispersion relation can be found in the Appendix. The simplified version of the PGW
dispersion relation in terms of squeezing parameters can be written as:

Ωλ,k(τ) : =

{∣∣∣∣∣πλ,k(τ0)

(
cosh rλ,k(τ) exp(iθλ,k(τ)) + sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)

+H(τ) fλ,k(τ0)

(
cosh rλ,k(τ) exp(iθλ,k(τ))− sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)∣∣∣∣∣
2

+
(
k2 −H2(τ)

)
| fλ,k(τ0)|2∣∣∣∣∣

(
cosh rλ,k(τ) exp(iθλ,k(τ))− sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)∣∣∣∣∣
2}

.

(187)

4. Complexity of PGW from Squeezed States

In this section, the complexity will be computed from the squeezed cosmological perturba-
tions which were studied in the preceding section. The wave function method of calculating
circuit complexity was introduced in refs. [26,28] and further used in refs. [27,37,38] has been
used here. Choosing a particular reference and target state is needed to calculate the circuit
complexity. For this purpose the most common choice is the Bunch-Davies state 0k,−k. The
complexity will be studied for three different target quantum states Ψsqk,−k: α squeezed quan-
tum vacua state, Bunch-Davies squeezed quantum vacuum states and Motta-Allen squeezed
quantum vacuum state. α initial quantum vacua states and Motta-Allen initial quantum
vacua state are obtained from the Bunch-Davies quantum vacua state through the Bogoliubov
transformation. Hence, the complexity for these transformations should be a reflection of the
complexity of the Bogoliubov transformation and squeezing operator. A variety of methods
for calculating the circuit complexity are available in the literature [83]. We shall be discussing
two such approaches: (1) Nielsen’s wave-function method and (2) covariance matrix approach.

4.1. Circuit Complexity of Two Mode Squeezed States

Let us start with the two mode squeeze state operator, which is given by:
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PGW Squeezing Operator :

ŜPGW(rλ,k(τ), φλ,k(τ)) = exp

( Amplitude︷ ︸︸ ︷
rλ,k(τ)

2

{
exp(−2i φλ,k(τ)︸ ︷︷ ︸

Phase

)âk â−k − exp(2iφλ,k(τ))â†
−k â†

k

})
.

(188)

Here the squeezing amplitude, rλ,k(τ) and angle for PGW is represented by φλ,k(τ).
The two mode squeezed target state, in this context is given by:

ψsq~k, ~−k = ŜPGW(rλ,k(τ, τ0), φλ,k(τ))0, 0

= exp

(Amplitude︷ ︸︸ ︷
rλ,k(τ)

2

{
exp(−2i φλ,k(τ)︸ ︷︷ ︸

Phase

)âk â−k − exp(2iφλ,k(τ))â†
−k â†

k

})
0, 0 (189)

where 0~k0 ~−k = 0, 0. In terms of number states, we can write it as follows:

ψsq~k, ~−k =
1

coshrλ,k

∞

∑
n=0

(−1)neinφλ,k(tanhrλ,k)
nnk, n−k) (190)

We can now calculate circuit complexity for reference and target states. Here, we start
with the following operators:

q̂~k =
1√
2Ωk

(
â†
~k
+ â~k

)
(191)

p̂~k = i

√
Ωk
2
(
â†
~k
− â~k

)
(192)

given that, [q̂~k, p̂~k′ ] = iδ3(~k− ~k′).
Reference and target states can be represented as wave functions in position space as

follows:

ψR(q~k, q−~k) = 〈q~k, q−~k|0〉~k,−~k

=

(
Ωk
π

) 1
4
exp

(
−Ωk

2
(
q2
~k
+ q2
−~k
))

(193)

ψsq(q~k, q−~k) = 〈q~k, q−~k|ψsq〉~k

=
eA
(

q2
~k
+q2
−~k

)
−Bq~kq−~k

coshrλ,k
√

π
√

1− e−4iφk tanh2rλ,k

(194)

Here, A and B denote coefficient which are functions rk and φk:

A =
Ωk
2

e−4iφλ,k tanh2rλ,k + 1

e−4iφλ,k tanh2rλ,k − 1

B = 2Ωk
e−2iφλ,k tanhrλ,k

e−4iφλ,k tanh2rλ,k − 1

(195)

We define following terms:

Σ~k = −2A + B, Σ−~k = −2A− B, ω~k = ω−~k =
Ωk
2

(196)
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For computing complexities using different three methods, reader can refer to [83]. How-
ever, in this paper, we will consider covariance method and Nielsen method for calculating
complexity. According to Equations (6) and (7), different choice of cost functions will give
resultant complexity accordingly. In this paper, we will represent C1 as complexity resulting
from linear cost functional, C2 as complexity resulting from to quadratic cost functional and in
general, Ck as complexity resulting from k family of functionals Fk.

Covariance Matrix Method:

Reference and Target states (193) and (194), can be written as covariance matrix as below,
because they are in gaussian form as below

Gs=0
k =


1

Ωk
0 0 0

0 Ωk 0 0

0 0
1

Ωk
0

0 0 0 Ωk

 (197)

Gs=1
k =



1
Re(Σk)

− Im(Σk)

Re(Σk)
0 0

− Im(Σk)

Re(Σk)

|Σk|2
Re(Σk)

0 0

0 0
1

Re(Σ−k)
− Im(Σ−k)

Re(Σ−k)

0 0 − Im(Σ−k)

Re(−Σk)

|Σ−k|2
Re(Σ−k)


(198)

Note that Σk and Σ−k are already defined (196). Covariance matrix representation is
actually equivalent to Wave function representation, as both contain same information in them.

To make procedure simpler, we will consider two 2× 2 blocks of above 4× 4 covariance
matrices G of reference and target states, because other entries in them are zero, as follows -

Gs=0
k=0 =

 1
Ωk

0

0 Ωk

, Gs=0
k=1 =

 1
Ωk

0

0 Ωk

 (199)

Gs=1
k=0 =


1

Re(Σk)
− Im(Σk)

Re(Σk)

− Im(Σk)

Re(Σk)

|Σk|2
Re(Σk)

, Gs=1
k=1 =


1

Re(Σ−k)
− Im(Σ−k)

Re(Σ−k)

− Im(Σ−k)

Re(Σ−k)

|Σ−k|2
Re(Σ−k)

, (200)

After doing this, we will be able to calculate complexity individually for each block and
then we can sum it up to find total complexity.

We can now change basis for each block for simplicity of calculation:

G̃s=1 = SGs=1ST , G̃s=0 = SGs=0ST (201)

given that, G̃s=0 = 1. Here, S is given by:

S =

√Ωk 0

0
1√
Ωk

 (202)

which imply G̃s=0 = 1 and
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G̃s=1 =


Ωk

Re(Σk)
− Im(Σk)

Re(Σk)

− Im(Σk)

Re(Σk)

|Σk|2
ΩkRe(Σk)

, (203)

The unitary evolution of wave functions with respect to covariance matrices can be
expressed as, G̃s = Ũ(τ)G̃s=0Ũ(τ)T . The unitary transformations are parametrized with
gates satisfying SL(2, R) algebra:

Ũ(τ) =


cos(µ(τ))cosh(ρ(τ))− sin(θ(τ))sinh(ρ(τ)) −sin(µ(τ))cosh(ρ(τ)) + cos(θ(τ))sinh(ρ(τ))

sin(µ(τ))cosh(ρ(τ)) + cos(θ(τ))sinh(ρ(τ)) cos(µ(τ))cosh(ρ(τ)) + sin(θ(τ))sinh(ρ(τ))

 (204)

where, µ, ρ, θ are defined in SL(2, R) group. Considering following boundary conditions,

G̃s=1 = Ũ(τ = 1)G̃s=0Ũ(τ = 1)T

G̃s=0 = Ũ(τ = 0)G̃s=0Ũ(τ = 0)T
(205)

Additionally, we have:

(cosh(2ρ(1)), tan(θ(1) + µ(1))) =

(
Ω2

k + |Σk|2

2ΩRe(Σk)
,

Ω2
k − |Σk|2

2ΩIm(Σk)

)
(ρ(0), θ(0) + µ(0)) = (0, c)

(206)

Again to make calculations simple, we make following choice:

1. µ(τ = 1) = µ(τ = 0) = 0.

2. θ(τ = 0) = θ(τ = 1) = c = tan−1

(
Ω2

k − |Σk|2

2ΩIm(Σk)

)
.

Hence the metric for Ũ can be computed as:

ds2 = dρ2 + cosh(2ρ)cosh2ρdµ2 + cosh(2ρ)sinh2ρdθ2 − sinh(2ρ)2dµdθ (207)

The simple geodesic is a straight line on this geometry i.e., ρ(τ) = ρ(1)τ. From, the
boundary conditions (206), we get:

ρk(τ = 1) =
1
2

cosh−1

[
Ω2

k + |Σk|2

2ΩkRe(Σk)

]
(208)

After summing over both the values of momentum mode we finally get:

C1(Ωk) = ρk(τ = 1) + ρ−k(τ = 1)

=
1
2

[
cosh−1

[
Ω2

k + |Σk|2

2ΩkRe(Σk)

]
+ cosh−1

[
Ω2
−k + |Σ−k|2

2Ω−kRe(Σ−k)

]]
(209)

C2(Ωk) =
√

ρk(τ = 1)2 + ρ−k(τ = 1)2

=
1
2

√√√√(cosh−1

[
Ω2

k + |Σk|2
2ΩkRe(Σk)

])2

+

(
cosh−1

[
Ω2
−k + |Σ−k|2

2Ω−kRe(Σ−k)

])2 (210)
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After algebraic simplification we finally get:

C1(Ωk) = 4rk, (211)

C2(Ωk) = 2
√

2rk, (212)

C1(Ωk) =
√

2C2(Ωk) (213)

which is independent of φk. For, rk → 0, we have C1 ≈ 0 and C2 ≈ 0. We can see that
covariance approach is interesting because it is not dependent upon squeezing angle φk.

It is worth mentioning that while calculating entanglement entropy, it will also not
depend upon the squeezing angle φk. Therefore, this observation will lead us to draw some
similarity in behaviour of two quantities - entanglement entropy and Covariance approach
of computing complexity.

Complexity via Nielsen’s Wave-Function Method:

The overall methodology of computing circuit complexity is same as in covariance
matrix approach. The exponent of the target state (194) can be diagonalized as:

ψsq = N exp
(
−1

2
M̃abqaqb

)
(214)

where, N is the normalization constant. Here the matrix M̃ is defined as:

M̃ =

−2A + B 0

0 −2A− B


=

Σk 0

0 Σ−k

 (215)

The reference and target wave function are given by:

ψR = N exp
(
−Ωk

2
(
q2

k + q2
−k
))

= N exp

(
1
2 ∑

k,−k
Ωkk2

)
(216)

ψτ = N exp
(
−1

2
(va.Aτ

ab.vb)

)
(217)

where, v = (qk, q−k) and Aτ is a diagonal matrix. For the target state Equation (214), and
reference state Equation (216) we get:

Aτ=1 = M =

Σk 0

0 Σ−k

 Aτ=0 =

Ωk 0

0 Ω−k

 (218)

The following unitary transformation is required here,

Aτ = U (τ).Aτ=0.UT(τ) (219)

The following constraints are used:

Aτ=1 = U (τ = 1).Aτ=0.UT(τ = 1)

Aτ=0 = U (τ = 0).Aτ=0.UT(τ = 0)
(220)

In this case, U can be parameterized as in Equation (4) so that the required goal state
is attained at τ = 1. Elementary gates are limited to GL(2, C) unitaries because Aτ=1 and
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Aτ=0 can both have complex components. The generators are OI , and the tangent vector
components are complex parameters. Now, Y I can be written as follows:

Y I = Tr(∂τU(τ)U−1(τ)(OI)
T) (221)

where, we have note that:

Tr(OI .OT
J ) = δI J , (222)

and I, J = 0, 1, 2, 3. The metric is then given by:

ds2 = GI JdY IdY∗J . (223)

For the sake of ease, we’ll use the penalty factors GI J = δI J , where we set it to unity. As
the distance between states grows, the off-diagonal components in GL(2, C) can be set to
zero. As a result of the U(τ),

U(τ) = exp

 ∑
i∈(k,−k)

αi(τ)Odiagonal
i

 (224)

where, αi(τ) are complex parameters andOdiagonal
i are generators with identity at i diagonal

elements. The metric takes a simple form:

ds2 = ∑
i∈(k,−k)

(dαi,Re)2 + (dαi,Im)2 (225)

The geodesic is then given by:

αi,p(τ) = αi,p(τ = 1) + αi,p(τ = 0) (226)

for each (i ∈ k,−k) and (p = Re and Im). Given the constraints, we will get,

αi,Re(τ = 0) = αi,Im(τ = 0) = 0

αi,Re(τ = 1) =
1
2

ln

∣∣∣∣∣Σ~i
ω~i

∣∣∣∣∣
αi,Im(τ = 1) =

1
2

tan−1 Im(Σ~i)
Re(Σ~i)

(227)

for each (i ∈ k,−k). Now, the circuit complexity can be computed as:

C1(Ωk) = αk,Re(τ = 1) + α−k,Re(τ = 1) + αk,Im(τ = 1) + α−k,Im(τ = 1)

=
1
2

(
ln
∣∣∣∣Σk
ωk

∣∣∣∣+ ln
∣∣∣∣Σ−k
ω−k

∣∣∣∣+ tan−1 Im(Σk)

Re(Σk)
+ tan−1 Im(Σ−k)

Re(Σ−k)

)
(228)

C2(Ωk) =
√
(αk,Re(τ = 1))2 + (α−k,Re(τ = 1))2 + (αk,Im(τ = 1))2 + (α−k,Im(τ = 1))2

=
1
2

√√√√(ln
∣∣∣∣ Σk

ωk)

∣∣∣∣
)2

+

(
ln
∣∣∣∣ Σ−k

ω−k)

∣∣∣∣
)2

+

(
tan−1 Im(Σk)

Re(Σk)

)2

+

(
tan−1 Im(Σ−k)

Re(Σ−k)

)2

(229)

Using expressions of Σk, Σ−k, ωk and ω−k from Equation (196), circuit complexity can
be obtained as follows:
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C1(Ωk , τ) =

∣∣∣∣ln∣∣∣∣ 1 + exp(−2iφk(τ))tanhrk(τ)

1− exp(−2iφk(τ))tanhrk(τ)

∣∣∣∣∣∣∣∣+ ∣∣∣tanh−1(sin(2φk(τ))sinh(2rk(τ)))
∣∣∣ (230)

C2(Ωk , τ) =
1√
2

√(
ln
∣∣∣∣ 1 + exp(−2iφk(τ))tanhrk(τ)

1− exp(−2iφk(τ))tanhrk(τ)

∣∣∣∣)2

+
(

tanh−1(sin(2φk(τ))sinh(2rk(τ)))
)2 (231)

As we can see, this approach for calculating circuit complexity of two mode squeezed
states depends upon both squeezed parameters: rk and φk For the large squeezing parameter
rk and φk → −π

2 we get:

C1(Ωk) ≈
√

2C2(Ωk) ≈
∣∣∣∣ln(1− tanhrk

1 + tanhrk

)∣∣∣∣ ≈ rk. (232)

4.2. Complexity in PGW

The evolution of the unitary operator UPGW(τ) in Equation (163), produced by the full
quadratic quantized Hamiltonian functional is given by:

PGW Unitary Operator : UPGW(τ, τ0) = ŜPGW(rλ,k(τ, τ0), φλ,k(τ))︸ ︷︷ ︸
PGW Squuezing Operator

R̂PGW(θλ,k(τ))︸ ︷︷ ︸
PGW Rotation Operator︸ ︷︷ ︸

Simple factorization

, (233)

where R̂PGW(θλ,k(τ)) is a two momentum mode PGW rotation operator given in Equa-
tion (164) while ŜPGW(rλ,k(τ, τ0), φλ,k(τ)) is the two momentum mode PGW squeezing
operator in Equation (165). Since two mode rotation operator correspond to the free terms,
we will mostly be interested in the squeezing operator. The complexity of the squeezing
transformation has been calculated using covariance and Nielsen’s approach in previous
section. In the context of time evolution of PGW, one can choose different initial vacua
states. We want to calculate quantum circuit complexity for CPT violating Motta-Allen vacua
state (|α, γ〉λ,k,−k) and the CPT preserving α-vacua state (|α〉λ,k,−k), which are related to the
well known Euclidean ground state, represented by Bunch-Davies vacuum state (|0〉λ,k,−k)
via Bogoliubov transformation, which are appended below:

Motta Allen initial quantum vacua state :

|α, γ〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
exp(−iγ) tanhα â†

k â†
−k

)
BDλ,k,−k, (234)

ff initial quantum vacua state :

|α〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
tanhα â†

k â†
−k

)
BDλ,k,−k. (235)

So, we will individually compute quantum circuit complexity for all these three different
vacua. In order to capture terms from Bogoliubov transformation and two-mode squeezing
operator, we will choose Bunch-Davies initial state as the reference state and Motta-Allen
squeezed state , α-squeezed state, and Bunch-Davies squeezed state as the target state respectively.

Motta Allen Squeezed Quantum Vacua State:

The initial state |α, γ〉λ,k,−k is obtained by applying Bogoliubov transformation on the
Bunch-Davies initial state:

|α, γ〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
exp(−iγ) tanhα â†

k â†
−k

)
BDλ,k,−k (236)
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while the target state is given by applying squeezing operator in the initial state: ψsq
MA
~k, ~−k

=

∑λ=+,×
⊗

k ŜPGW(rλ,k(τ), φλ,k(τ))|α, γ〉λ,k,−k. The full target state is given in (175).

Ψ(α,γ)
sq =

1√
| cosh α| ∑

λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ)) tanhn rλ,k(τ)
{

nλ,k , nλ,−k
(BD)

+
∞

∑
m=1

(−1)m

m!

(
i
2

)m

exp(−imγ) tanhmα (n + m)λ,k , (n + m)λ,−k
(BD)

}
(237)

Because the initial state is obtained from the Bunch-Davies vacuum state, we will chose
our reference state to be Bunch-Davies and the target state is obtained by applying two
unitary transformations U2U1 where U1 is the Bogoliubov transformation:

U1 =
1√
| cosh α|

exp
(
− i

2
exp(−iγ) tanhα â†

k â†
−k

)
(238)

and U2 is time-dependent squeezing transformation:

U2 = ŜPGW(rλ,k(τ), φλ,k(τ)) = exp

( Amplitude︷ ︸︸ ︷
rλ,k(τ)

2

{
exp(−2i φλ,k(τ)︸ ︷︷ ︸

Phase

)âk â−k − exp(2iφλ,k(τ))â†
−k â†

k

})
.

(239)

Now, because of the triangle inequality, the complexity from reference state to target
state, C, is bounded by C ≤ C[U1] + C[U2] where C[U1] is the complexity of unitary trans-
formation U1 and C[U2] is the complexity of unitary transformation U2. The complexity of
U2, C[U2], is same as for the two mode squeezed operator in previous section. One can also
relate the Bogoliubov transformation, U1 in (234) with the squeezing operator where the
squeezing parameter r is r = α and the squeezing angle is φ = γ/2. Then using the result
of circuit complexity for two-mode squeezed operator from previous section, we can write
the expression for C[U1] too. Then, one can compute the complexity using both covariance
matrix and Nielsen’s wave function approaches:

Covariance Matrix Approach:

The complexity from Covariance Matrix approach is:

C1(Ωk) = C1(U1) + C1(U2) = 4(rk(τ) + α) (240)

C2(Ωk) = C2(U1) + C2(U2) = 2
√

2(rk(τ) + α) (241)

Interestily circuit complexity using covariance matrix approach is independent of the
angular terms like φ and γ.

Nielsen’s Wave Function Approach:

The total complexity from Nielsen’s approach, up to the bound is given by:

C1(Ωk) = C1(U1) + C1(U2)

=

∣∣∣∣ln∣∣∣∣ 1 + exp(−iγ)tanhα

1− exp(−iγ)tanhα

∣∣∣∣∣∣∣∣+ ∣∣∣tanh−1(sin(γ)sinh(2α)
∣∣∣

+

∣∣∣∣ln∣∣∣∣ 1 + exp(−2iφk(τ))tanhrk(τ)

1− exp(−2iφk(τ))tanhrk(τ)

∣∣∣∣∣∣∣∣+ ∣∣∣tanh−1(sin(2φk(τ))sinh(2rk(τ)))
∣∣∣

(242)
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C2(Ωk) = C2(U1) + C2(U2)

=
1√
2

√(∣∣∣∣ln∣∣∣∣ 1 + exp(−iγ)tanhα

1− exp(−iγ)tanhα

∣∣∣∣∣∣∣∣)2

+
(∣∣∣tanh−1(sin(γ)sinh(2α)

∣∣∣)2

+
1√
2

√(
ln
∣∣∣∣ 1 + exp(−2iφk(τ))tanhrk(τ)

1− exp(−2iφk(τ))tanhrk(τ)

∣∣∣∣)2

+
(

tanh−1(sin(2φk(τ))sinh(2rk(τ)))
)2

(243)

This complexity C1(Ωk) and C2(Ωk) captures the effect from both squeezing operator
and Bogoliubov transformation. C(U1) shows the complexity necessary for creating Motta-
Allen Initial state which is as expected independent of time. C(U2) is the complexity of the
squeezing operator applied on the initial state which is now dependent on time.

α Squeezed Quantum Vacua State:

The initial state |α〉λ,k,−k is obtained by applying Bogoliubov transformation on the
Bunch-Davies initial state:

|α〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
tanhα â†

k â†
−k

)
BDλ,k,−k. (244)

while the target state is given by applying squeezing operator in the initial state: ψsq
Alpha
~k, ~−k

=

∑λ=+,×
⊗

k ŜPGW(rλ,k(τ), φλ,k(τ))|α〉λ,k,−k. The full target state is given by:

ψsq
Alpha
~k, ~−k

=
1√
| cosh α| ∑

λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

(−1)n exp(−2in φλ,k(τ)) tanhn rλ,k(τ)
{

nλ,k , nλ,−k
(BD)

+
∞

∑
m=1

(−1)m

m!

(
i
2

)m

tanhmα (n + m)λ,k , (n + m)λ,−k
(BD)

}
,

(245)

Like in Motta-Allen case, we will choose our reference state to be Bunch davies vacuum
state, and our target state is obtained by applying two unitary transformations U2U1 where
U1 is the Bogoliubov transformation:

U1 =
1√
| cosh α|

exp
(
− i

2
tanhα â†

k â†
−k

)
(246)

and U2 is time-dependent squeezing transformation:

U2 = ŜPGW(rλ,k(τ), φλ,k(τ)) = exp

( Amplitude︷ ︸︸ ︷
rλ,k(τ)

2

{
exp(−2i φλ,k(τ)︸ ︷︷ ︸

Phase

)âk â−k − exp(2iφλ,k(τ))â†
−k â†

k

})
.

(247)

The operator U1 is also a squeezing operator with squeezing angle φ = 0. The overall
framework to compute complexity is already discussed in Motta-Allen case, so will now
directly write down the result.

Covariance Matrix Approach:

The complexity from Covariance Matrix approach is:

C1(Ωk) = C1(U1) + C1(U2) = 4(rk(τ) + α) (248)

C2(Ωk) = C2(U1) + C2(U2) = 2
√

2(rk(τ) + α) (249)

Final results in this case are independent of phases φk and γ.
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Nielsen’s Wave Function Approach:

The complexity from Nielsen’s approach, up to the bound is given by:

C1(Ωk) = C1(U1) + C1(U2)

=

∣∣∣∣ln∣∣∣∣ 1 + tanhα

1− tanhα

∣∣∣∣∣∣∣∣+ ∣∣∣tanh−1(sinh(2α)
∣∣∣

+

∣∣∣∣ln∣∣∣∣ 1 + exp(−2iφk(τ))tanhrk(τ)

1− exp(−2iφk(τ))tanhrk(τ)

∣∣∣∣∣∣∣∣+ ∣∣∣tanh−1(sin(2φk(τ))sinh(2rk(τ)))
∣∣∣

(250)

C2(Ωk) = C2(U1) + C2(U2)

=
1√
2

√(∣∣∣∣ln∣∣∣∣ 1 + tanhα

1− tanhα

∣∣∣∣∣∣∣∣)2

+
(∣∣∣tanh−1(sinh(2α)

∣∣∣)2

+
1√
2

√(
ln
∣∣∣∣ 1 + exp(−2iφk(τ))tanhrk(τ)

1− exp(−2iφk(τ))tanhrk(τ)

∣∣∣∣)2

+
(

tanh−1(sin(2φk(τ))sinh(2rk(τ)))
)2

(251)

Bunch Davies Squeezed Quantum Vacua State:

The reference state is 0k,−k while the target state is given by:

Ψsq
BD
k,−k = ∑

λ=+,×

⊗
k

ŜPGW(rλ,k(τ), φλ,k(τ))0k,−k (252)

Since the complexity of two-mode squeezed transformation has already been obtained
in previous sections and it corresponds to the Bunch-Davies case, we will directly quote
down the result.

Covariance Matrix approach:

The complexity from Covariance Matrix approach is:

C1(Ωk) = 4rk (253)

C2(Ωk) = 2
√

2rk (254)

Final results in this case are independent of phase φk.

Nielsen’s wave function approach:

The complexity from Nielsen’s wave function approach is:

C1(Ωk , τ) =

∣∣∣∣ln∣∣∣∣ 1 + exp(−2iφk(τ))tanhrk(τ)

1− exp(−2iφk(τ))tanhrk(τ)

∣∣∣∣∣∣∣∣+ ∣∣∣tanh−1(sin(2φk(τ))sinh(2rk(τ)))
∣∣∣ (255)

C2(Ωk , τ) =
1√
2

√(
ln
∣∣∣∣ 1 + exp(−2iφk(τ))tanhrk(τ)

1− exp(−2iφk(τ))tanhrk(τ)

∣∣∣∣)2

+
(

tanh−1(sin(2φk(τ))sinh(2rk(τ)))
)2 (256)

One can also directly obtain the expression of quantum circuit complexity for Bunch-
Davies squeezed quantum vacua state by directly substituting parameters like α and γ
in Motta-Allen and α squeezed cases to be zero. This gives the consistency check for our
lengthy calculations.

5. Entanglement Entropy of PGW from Squeezed States

In this section, our object is to compute entanglement entropy using the squeezed states
for PGW. In terms of number states, the reduced density matrix for the two modes are
given by:
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ρ̂k =
∞

∑
n=0

1
(cosh rk)2 (tanh rk)

2n〈n|k kn, ρ̂−k =
∞

∑
n=0

1
(cosh r−k)2 (tanh r−k)

2n〈n|-k -kn. (257)

The corresponding probability of having n photons in a single mode having momenta k
or −k is given by the following expression:

P(i)
n =

(tanhrk)
2n

(coshrk)2 , i = a, b (258)

There are different measures exist for entropy in the context of quantum information
theory. Von-Neumann and Renyi Entanglment measures for entropies are commonly used in
this context. In the present context Von-Neumann entanglement entropy can be computed as:

S(ρ̂k) = −
∞

∑
n=0

Pn lnPn = S(ρ̂−k)

= −
∞

∑
n=0

tanh2nrk

cosh2rk
ln

tanh2nrk

cosh2rk

= −
∞

∑
n=0

tanh2nrk

cosh2rk

(
ln(tanh2nrk)− ln(cosh2rk)

)
= ln(cosh2rk)cosh2rk − ln(sinh2rk)sinh2rk

(259)

The rise in entropy with increasing rk is then evident. Since the squeezed states are pure
states, we didn’t calculate the entropy associated with them because it will be zero. Instead,
entropy for the reduced density matrix has been computed. Further using the formalism
Renyi-entropy can be computed as:

Sµ =
1

1− µ
ln

d

∑
n=1

Pn =
2µ ln coshrk + ln(1− tanh2µrk)

µ− 1
(260)

where µ ≥ 0 is the Renyi Parameter and d is the Schmidt rank. Again, we can see that Renyi
entropy increases with increasing squeezing parameter rk. For large values of rk, we get:

Sµ(rk → ∞) ≈ 2µrk
(µ− 1)

(261)

If we take the limit µ→ 1, we get the Von-Neumann entropy (259). Meanwhile, Renyi-2
entropy is given by S2(rk) = ln cosh2rk.

We can also compute effective temperature in thermal distribution 〈n̂i〉 = sinh2rk. The
average photon number is:

〈n̂i〉 = n̄ =
1

exp(h̄ω/kBT)− 1
(262)

Then, effective temperature is given by:

T =
h̄ωi
kB

ln
(
〈n̂i〉
〈n̂i〉+ 1

)
=

h̄ωi
kB

ln

(
sinh2rk

sinh2rk + 1

)

=
h̄ωi

2kBln(cothrk)
(263)

where, ωi = i/c is the frequency of the mode and i ∈ (k,−k).
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In the context of time evolution of PGW, one can choose different initial vacua states. In
this paper we are interested in calculating quantum circuit complexity for CPT violating
Motta-Allen vacua state (|α, γ〉λ,k,−k) and the CPT preserving α-vacua state (|α〉λ,k,−k), which
are related to the well known Euclidean ground state, represented by Bunch-Davies vacuum
state (|0〉λ,k,−k) via Bogoliubov transformation, which are appended below:

Motta Allen initial quantum vacua state :

|α, γ〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
exp(−iγ) tanhα â†

k â†
−k

)
BDλ,k,−k, (264)

ff initial quantum vacua state :

|α〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
tanhα â†

k â†
−k

)
BDλ,k,−k. (265)

So, we will individually compute entanglement entropy for all these three different
vacua. The initial state |α, γ〉λ,k,−k is obtained by applying Bogoliubov transformation on
the Bunch-Davies initial vacuum state

|α, γ〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
exp(−iγ) tanhα â†

k â†
−k

)
BDλ,k,−k (266)

while the target state is given by applying squeezing operator in the initial state: ψsq
MA
~k, ~−k

=

∑λ=+,×
⊗

k ŜPGW(rλ,k(τ), φλ,k(τ))|α, γ〉λ,k,−k. The full target state is given in (175).

Motta Allen squeezed quantum vacua state:

The initial state |α, γ〉λ,k,−k is obtained by applying Bogoliubov transformation on the
Bunch-Davies initial vacuum state

|α, γ〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
exp(−iγ) tanhα â†

k â†
−k

)
BDλ,k,−k (267)

while the target state is given by applying squeezing operator in the initial state: ψsq
MA
~k, ~−k

=

∑λ=+,×
⊗

k ŜPGW(rλ,k(τ), φλ,k(τ))|α, γ〉λ,k,−k. The Motta-Allen squeezed quantum vacua
state is given in (175):

Ψ(α,γ)
sq =

1√
| cosh α| ∑

λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

∞

∑
m=0

(−1)n+m

n!m!

(
i
2

)m

exp(−i(mγ + 2n φλ,k(τ)))

tanhmα tanhn rλ,k(τ)
(
â†

k
)n+m(â†

−k
)n+mBDλ,k,−k

(268)

Now we can compute Von-Neumann entanglement entropy for Motta-Allen squeezed
quantum vacua state as:

S(ρ̂k) = S(ρ̂−k)

=
∞

∑
n=0

∞

∑
m=0

tanh2nrktanh2mα

cosh2rkcoshα
ln

tanh2nrktanh2mα

cosh2rkcoshα

=
∞

∑
n=0

∞

∑
m=0

{[
tanh2nrktanh2mα

cosh2rkcoshα

]{
ln[cosh2rkcoshα]− ln[(tanhrk)

2n ]− ln[(tanhα)2m ]
}}

= coshα
{
(1 + sinh2rk)ln(cosh2rk)− sinh2rkln(sinh2rk)

+ (
1
2
+ sinh2α)ln(cosh2α)− sinh2αln(sinh2α)

}
(269)
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α squeezed quantum vacua state:

The initial state |α〉λ,k,−k is obtained by applying Bogoliubov transformation on the
Bunch-Davies initial vacuum state

|α〉λ,k,−k =
1√
| cosh α|

exp
(
− i

2
tanhα â†

k â†
−k

)
BDλ,k,−k. (270)

while the target state is given by applying squeezing operator in the initial state: ψsq
Alpha
~k, ~−k

=

∑λ=+,×
⊗

k ŜPGW(rλ,k(τ), φλ,k(τ))|α〉λ,k,−k. The full target state is given by:

ψsq
Alpha
~k, ~−k

=
1√
| cosh α| ∑

λ=+,×

⊗
k

1
cosh rλ,k(τ)

∞

∑
n=0

∞

∑
m=0

(−1)n+m

n!m!

(
i
2

)m

exp(−2in φλ,k(τ))

tanhmα tanhn rλ,k(τ)
(
â†

k
)n+m(â†

−k
)n+mBDλ,k,−k

(271)

Now we can compute Von-Neumann entanglement entropy for α squeezed quantum
vacua state as:

S(ρ̂k) = S(ρ̂−k)

=
∞

∑
n=0

∞

∑
m=0

tanh2nrktanh2mα

cosh2rkcoshα
ln

tanh2nrktanh2mα

cosh2rkcoshα

=
∞

∑
n=0

∞

∑
m=0

{[
tanh2nrktanh2mα

cosh2rkcoshα

]{
ln[cosh2rkcoshα]− ln[(tanhrk)

2n ]− ln[(tanhα)2m ]
}}

= coshα
{
(1 + sinh2rk)ln(cosh2rk)− sinh2rkln(sinh2rk)

+ (
1
2
+ sinh2α)ln(cosh2α)− sinh2αln(sinh2α)

}
(272)

Bunch Davies squeezed quantum vacua state:

The reference state is 0k,−k while the target state is given by:

Ψsq
BD
k,−k = ∑

λ=+,×

⊗
k

ŜPGW(rλ,k(τ), φλ,k(τ))0k,−k (273)

Since the entanglement entropy of two-mode squeezed transformation has already been
obtained and it corresponds to the Bunch-Davies case, we will directly quote down the result.

S(ρ̂k) = −
∞

∑
n=0

Pn lnPn = S(ρ̂−k)

= −
∞

∑
n=0

tanh2nrk

cosh2rk
ln

tanh2nrk

cosh2rk

= −
∞

∑
n=0

tanh2nrk

cosh2rk

(
ln(tanh2nrk)− ln(cosh2rk)

)
= ln(cosh2rk)cosh2rk − ln(sinh2rk)sinh2rk

(274)

6. Numerical Results and Interpretation

The primary goal of this section is to numerically resolve the time-dependent squeezed
state parameter rk(τ) and squeezed angle φk(τ), which are provided in the Equations (184)
and (185). The scale factor a(τ) has been selected as the dynamical variable instead of the
conformal time τ. As a result, the calculation is made to be simpler and easy to physically
support. The differential operator in the aforementioned evolution equations must be
replaced with the following one using the chain rule in order to transform the variable
from τ → a(τ):
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d
dτ

=
d

da(τ)
da(τ)

dτ
= a′(τ)

d
da(τ)

. (275)

In terms of the new variable the time evolution equations of the squeezing parameters
are given by:

drk(a)
da

= −λk(a)
a′

cos 2φk(a), (276)

dφk(a)
da

=
Ωk
a′
− λk(a)

a′
coth 2rk(a) sin 2φk(a) (277)

Here the dispersion relation is derived in Appendix A, for general initial quantum states.
We will now briefly comment on the choice of cost functions for circuit complexity used

in our calculations for circuit complexity. Circuit complexity C1 is close to the counting of
gates in quantum computation while circuit complexity C2 is the geodesic distance in the
manifold of unitaries. We have computed the circuit complexity for both: linear C1 and
quadratic circuit complexity C2 of using Covariance and Nielsen’s approach. These two
different approaches give the different structure of circuit complexity. These differences are
discussed below:

• Covariance measure of circuit complexity is not sensitive to the squeezing angle φk
while circuit complexity obtained via Nielsen’s approach is. Since, entanglement en-
tropy is also independent of the the squeezing angle φk it is easier to make comparison
of entropy with Covariance measure rather than Nielsen’s ones.

• The circuit complexity via covariance approach is always linearly dependent on the
squeezing parameter rk while this is not true for Nielsen’s measure. Furthermore on
different limiting conditions, structure of the Nielsen’s measure of complexity can
be very different. In contrast, we always have one limiting condition in Covariance
measure: C1(Ωk) =

√
2C2(Ωk) = 4

√
2rk.

• Nielsen’s measure of circuit complexity is sensitive to the details of evolution of the
wave function while covariance measure is not. This is because Nielsen’s measure is
dependent on both parameters: squeezing angle φk and squeezing parameter rk.

6.1. De Sitter

In Figure 1, we have numerically plotted the squeezing parameters, derived circuit
complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua, comparison
of entanglement entropy with circuit complexity measure and quantum chaos in de Sitter
Model on super-horizon scales for the parameters k = 0.1, α = 0.2 and γ = 0.4. We have
set rk(a = 1) = 1, φk(a = 1) = 1 as our initial conditions.

Squeezing Parameters

In Figure 1a, we have plotted squeezing parameters rk and φK for each vacua using
the parameters listed above. Both rk and φk are oscillating for each vacua before a = 0.5.
However, interestingly after that point these squeezing parameters starts to converge at
each other and stops to oscillate. Since both circuit complexity and entanglement entropy
are strongly dependent on the values of these parameters, the behaviour of these parameters
are significant to understand the dynamics of the system.

Complexity Measure

In Figure 1b–d, we have plotted the circuit complexity measures for Bunch-Davies Vacua,
α Vacua and Motta-Allen Vacua respectively using both Covariance as well as Nielsen
Approach using calculations from Section 4. Before discussing each Vacua individually, let
us discuss the overall features of these complexity measures. Clearly both Covariance and
Nielsen complexity measures have similar growth pattern. However Nielsen’s complexity
measure has more details on it. The reason for this is that covariance approach of computing
complexity is independent of the squeezing angle φk while Nielsen’s approach depends on
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it too. Still to have the similar growth pattern shows that circuit complexity could indeed
be an useful tool to probe the dynamics of the system. After scale factor a = 0.5, both
Covariance and Nielsen’s complexity measures starts to grow linearly while before that
point, they show the oscillating behaviour. The reason for this linear growth of complexity
is that squeezing parameters rk and φk starts to grow linearly after a = 0.5.
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Figure 1. De Sitter Model (a) Behaviour of the squeezing parameters in De Sitter Model for k = 0.1,
α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit complexity C1 and
C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both Nielsen and
Covariance approach for same parameters as in (a), (e) Comparison of entanglement entropy with
Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.

Since the dispersion relations Appendix A.2 for each vacua, squeezing parameters are
also different. This has a direct effect in the circuit complexity measure. For α vacua, we
have set α = 0.2 while for Motta-Allen Vacua, we have set α = 0.2 and γ = 0.4. Because
these measures are oscillating before the point a = 0.5, it is simpler to compare them after it.
Circuit complexity measure of Motta-Allen vacua is largest followed by α vacua and then
by Bunch-Davies vacua. One can understand this in the following way. After a = 0.5, the
squeezing parameters starts to merge at each other, so if α and γ would be zero, the circuit
complexity measure would be same. However, with increase of the number of parameters
the circuit complexity is expected to increase which is then reflected in plot.
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Comparison of Entanglement Entropy with Complexity

Entanglement entropy is a very popular probe to study the dynamics of quantum sys-
tems. We would like to see if circuit complexity can also be a similar candidate. In Figure 1e,
we have plotted a comparison of Nielsen’s circuit complexity C1 and entanglement entropy.
We have chosen Nielsen’s measure of complexity because, both Covariance complexity
and entanglement entropy are independent of squeezing angle and depends linearly on
squeezing parameter rk. So, the pattern obtained from covariance measure of complexity
will be similar as to entanglement entropy except that both complexity measure C1 and C2
is greater than entanglement entropy. However with Nielsen’s measure of complexity, we
can obtain more interesting details of the system. For example, the nature of oscillation
obtained in complexity measure is not visible in the entanglement entropy. After the point
a = 0.5, both entanglement entropy and complexity starts to grow linearly with entangle-
ment entropy being bounded by complexity. So, given the complexity plot, we can say that
entanglement entropy is bounded by it.

Quantum Lyapunov Exponent

Circuit complexity has also been proposed as a tool to measure quantum chaos. In
particular, low growth of complexity indicates less chaotic system while higher growth of
complexity indicates highly chaotic system. So, slope of the complexity could be a measure
of quantum chaos. As a crude approximation, we will call the Lyapunov exponent λi to be:

λi =
lnCi(point of saturation)− lnCi(point of rise)

a(point of saturation)− a(point of rise)
(278)

where i indicates the choice of vacua. For simplicity, we will restrict to Nielsen complexity
C1 and we will obtain Lyapunov exponent λi to be:

λMotta−Allen = 3.3

λα = 3.1

λBunch−Davies = 4.1

(279)

Bunch-Davies Vacua has the largest Lyapunov exponent, so it is the most chaotic
cosmological model followed by Motta-Allen and α vacua.

6.2. Inflation/Quasi De Sitter

In Figure 2, we have numerically plotted the squeezing parameters, derived circuit
complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua, comparison
of entanglement entropy with circuit complexity measure and quantum chaos in de Sitter
Model on super-horizon scales for the parameters k = 0.1, ε∗ = 0.5, τ∗ = 1, α = 0.2 and
γ = 0.4. We have set rk(a = 1) = 1, φk(a = 1) = 1 as our initial conditions.

Squeezing Parameters

In Figure 2a, we have plotted squeezing parameters rk and φK for each vacua using
the parameters listed above. The behavior for this model is similar to the one for de Sitter
Model. Both rk and φk are oscillating for each vacua before a = 0.5. However, interestingly
after that point these squeezing parameters starts to converge at each other and stops to
oscillate. Since both circuit complexity and entanglement entropy are strongly dependent
on the values of these parameters, the behavior of these parameters are significant to
understand the dynamics of the system.

Complexity Measure

In Figure 2b–d, we have plotted the circuit complexity measures for Bunch-Davies Vacua,
α Vacua and Motta-Allen Vacua respectively using both Covariance as well as Nielsen
Approach using calculations from Section 4. Before discussing each Vacua individually, let
us discuss the overall features of these complexity measures. Clearly both Covariance and
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Nielsen complexity measures have similar growth pattern. However Nielsen’s complexity
measure has more details on it. The reason for this is that covariance approach of computing
complexity is independent of the squeezing angle φk while Nielsen’s approach depends on it
too. Still to have the similar growth pattern shows that circuit complexity could indeed be an
useful tool to probe the dynamics of the system. After scale factor a = 0.5, both Covariance
and Nielsen’s complexity measures starts to grow linearly while before that point, they show
the oscillating behavior. The reason for this linear growth of complexity is that squeezing
parameters rk and φk starts to grow linearly after a = 0.5. The gap between the magnitude
of complexity between covariance approach and Nielsen’s approach is highest in the case of
Bunch-Davies Vacua. This difference drops as we go to Motta-Allen and Alpha Vacua.
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Figure 2. Inflation/Quasi De Sitter Model (a) Behaviour of the squeezing parameters in Infla-
tion/Quasi De Sitter Model for k = 0.1, ε∗ = 0.5, τ∗ = 1, α = 0.2 and γ = 0.4 for Bunch-Davies, α

and Motta-Allen Vacua (b–d) Circuit complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and
Motta-Allen Vacua respectively using both Nielsen and Covariance approach for same parameters as
in (a), (e) comparison of entanglement entropy with Nielsen circuit complexity C1 (f) Logarithm of
Nielsen circuit complexity C1.

Since the dispersion relations Appendix A.2 for each vacua, squeezing parameters are
also different. This has a direct effect in the circuit complexity measure. For α vacua, we
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have set α = 0.2 while for Motta-Allen Vacua, we have set α = 0.2 and γ = 0.4. Because
these measures are oscillating before the point a = 0.5, it is simpler to compare them after it.
Circuit complexity measure of Motta-Allen vacua is largest followed by α vacua and then
by Bunch-Davies vacua. One can understand this in the following way. After a = 0.5, the
squeezing parameters starts to merge at each other, so if α and γ would be zero, the circuit
complexity measure would be same. However, with increase of the number of parameters
the circuit complexity is expected to increase which is then reflected in plot.

Comparison of Entanglement Entropy with Complexity

Entanglement entropy is a very popular probe to study the dynamics of quantum sys-
tems. We would like to see if circuit complexity can also be a similar candidate. In Figure 2e,
we have plotted a comparison of Nielsen’s circuit complexity C1 and entanglement entropy.
We have chosen Nielsen’s measure of complexity because, both Covariance complexity
and entanglement entropy are independent of squeezing angle and depends linearly on
squeezing parameter rk. So, the pattern obtained from covariance measure of complexity
will be similar as to entanglement entropy except that both complexity measure C1 and C2
is greater than entanglement entropy. However with Nielsen’s measure of complexity, we
can obtain more interesting details of the system. For example, we can see more details
regarding the evolution of system in the complexity graph compared to entanglement
entropy. After the point a = 0.5, both entanglement entropy and complexity starts to grow
linearly with entanglement entropy being bounded by complexity. So, given the complexity
plot, we can say that entanglement entropy is bounded by it.

Quantum Lyapunov Exponent

Circuit complexity has also been proposed as a tool to measure quantum chaos. In
particular, low growth of complexity indicates less chaotic system while higher growth of
complexity indicates highly chaotic system. So, slope of the complexity could be a measure
of quantum chaos. As a crude approximation, we will call the lyapunov exponent λi to be:

λi =
lnCi(point of saturation)− lnCi(point of rise)

a(point of saturation)− a(point of rise)
(280)

where i indicates the choice of vacua. For simplicity, we will restrict to Nielsen complexity
C1 and we will obtain Lyapunov exponent λi to be:

λMotta−Allen = 2.375

λα = 2.25

λBunch−Davies = 3.75

(281)

Bunch-Davies Vacua has the largest Lyapunov exponent, so it is the most chaotic
cosmological model followed by Motta-Allen and α vacua.

6.3. Reheating

In Figure 3, we have numerically plotted the squeezing parameters, derived circuit
complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua, comparison
of entanglement entropy with circuit complexity measure and quantum chaos in de Sitter
Model on super-horizon scales for the parameters k = 0.1, w = 1/4, α = 0.2 and γ = 0.4.
We have set rk(a = 1) = 1, φk(a = 1) = 1 as our initial conditions.

Squeezing Parameters

In Figure 3a, we have plotted squeezing parameters rk and φK for each vacua using the
parameters listed above. The value of these squeezing parameters keep growing for all
vacua. Since both circuit complexity and entanglement entropy are strongly dependent
on the values of these parameters, the behaviour of these parameters are significant to
understand the dynamics of the system.
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Figure 3. Reheating Model (a) Behaviour of the squeezing parameters in Reheating Model for
k = 0.1, w = 1/4, α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit
complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using
both Nielsen and Covariance approach for same parameters as in (a), (e) comparison of entanglement
entropy with Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.

Complexity Measure

In Figure 3b–d, we have plotted the circuit complexity measures for Bunch-Davies Vacua,
α Vacua and Motta-Allen Vacua respectively using both Covariance as well as Nielsen
Approach using calculations from Section 4. Before discussing each Vacua individually, let
us discuss the overall features of these complexity measures. Clearly both Covariance and
Nielsen complexity measures have similar growth pattern. However Nielsen’s complexity
measure has more details on it. The complexity from Nielsen’s method starts to grow
linearly and then starts to oscillate. In contrast, the complexity obtained using Covariance
method grows and show saturating behaviour. The reason that we don’t see oscillating be-
haviours in covariance is that covariance approach of computing complexity is independent
of the squeezing angle φk while Nielsen’s approach depends on it too.

Since the dispersion relations Appendix A.2 for each vacua, squeezing parameters are
also different. This has a direct effect in the circuit complexity measure. For α vacua, we
have set α = 0.2 while for Motta-Allen Vacua, we have set α = 0.2 and γ = 0.4. In the
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complexity computed using Nielsen’s approach, the gap between oscillating peaks are
different for each vacua. While for Covariance approach, there is not much difference.

Comparison of Entanglement Entropy with Complexity

Entanglement entropy is a very popular probe to study the dynamics of quantum sys-
tems. We would like to see if circuit complexity can also be a similar candidate. In Figure 3e,
we have plotted a comparison of Nielsen’s circuit complexity C1 and entanglement entropy.
We have chosen Nielsen’s measure of complexity because, both Covariance complexity
and entanglement entropy are independent of squeezing angle and depends linearly on
squeezing parameter rk. So, the pattern obtained from covariance measure of complexity
will be similar as to entanglement entropy except that both complexity measure C1 and C2
is greater than entanglement entropy. However with Nielsen’s measure of complexity, we
can obtain more interesting details of the system. For example, we can see more details
regarding the evolution of system in the complexity graph compared to entanglement
entropy.

Quantum Lyapunov Exponent

Circuit complexity has also been proposed as a tool to measure quantum chaos. In
particular, low growth of complexity indicates less chaotic system while higher growth of
complexity indicates highly chaotic system. So, slope of the complexity could be a measure
of quantum chaos. As a crude approximation, we will call the Lyapunov exponent λi to be:

λi =
lnCi(point of saturation)− lnCi(point of rise)

a(point of saturation)− a(point of rise)
(282)

where i indicates the choice of vacua. The logarithm of complexity plot for Nielsen’s
measure of complexity is very oscillatory and it doesn’t reach a saturation point. So, it is
not able to measure the chaotic component here.

6.4. Radiation

In Figure 4, we have numerically plotted the squeezing parameters, derived circuit
complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua, comparison
of entanglement entropy with circuit complexity measure and quantum chaos in de Sitter
Model on super-horizon scales for the parameters k = 0.1, α = 0.2 and γ = 0.4. We have
set rk(a = 1) = 1, φk(a = 1) = 1 as our initial conditions.

Squeezing Parameters

In Figure 4a, we have plotted squeezing parameters rk and φK for each vacua using the
parameters listed above. The overall growth pattern is similar to the reheating model. The
value of these squeezing parameters keep growing for all vacua. Since both circuit complexity
and entanglement entropy are strongly dependent on the values of these parameters, the
behaviour of these parameters are significant to understand the dynamics of the system.

Complexity Measure

In Figure 4b–d, we have plotted the circuit complexity measures for Bunch-Davies Vacua,
α Vacua and Motta-Allen Vacua respectively using both Covariance as well as Nielsen
Approach using calculations from Section 4. Before discussing each Vacua individually,
let us discuss the overall features of these complexity measures. Clearly both Covariance
and Nielsen complexity measures have similar growth pattern with Nielsen’s complexity
measure is bounded by Covariance’s complexity measure. However Nielsen’s complexity
measure has more details on it. The complexity from Nielsen’s method starts to grow
linearly and then sometimes starts to oscillate. In contrast, the complexity obtained using
Covariance method grows and show saturating behaviour. The reason that we don’t see
oscillating behaviours in covariance is that covariance approach of computing complexity is
independent of the squeezing angle φk while Nielsen’s approach depends on it too.
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Figure 4. Radiation Model (a) Behaviour of the squeezing parameters in Radiation Model for k = 0.1,
α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit complexity C1 and
C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both Nielsen and
Covariance approach for same parameters as in (a), (e) comparison of entanglement entropy with
Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.

Since the dispersion relations Appendix A.2 for each vacua, squeezing parameters are
also different. This has a direct effect in the circuit complexity measure. For α vacua, we
have set α = 0.2 while for Motta-Allen Vacua, we have set α = 0.2 and γ = 0.4. For the
bunch davies vacua, Nielsen’s complexity is oscillatory while for Alpha and Motta-Allen
Vacua, complexity grows to a peak and then saturates. Covariance’s complexity measure
for all three vacua converges at some point of α.

Comparison of Entanglement Entropy with Complexity

Entanglement entropy is a very popular probe to study the dynamics of quantum sys-
tems. We would like to see if circuit complexity can also be a similar candidate. In Figure 4e,
we have plotted a comparison of Nielsen’s circuit complexity C1 and entanglement entropy.
We have chosen Nielsen’s measure of complexity because, both Covariance complexity
and entanglement entropy are independent of squeezing angle and depends linearly on
squeezing parameter rk. So, the pattern obtained from covariance measure of complexity



Symmetry 2023, 15, 664 55 of 82

will be similar as to entanglement entropy except that both complexity measure C1 and C2
is greater than entanglement entropy. However with Nielsen’s measure of complexity, we
can obtain more interesting details of the system. For example, we can see more details
regarding the evolution of system in the complexity graph compared to entanglement
entropy. The complexity grows and then saturates after certain point while complexity
starts to oscillating behaviour.

Quantum Lyapunov Exponent

Circuit complexity has also been proposed as a tool to measure quantum chaos. In
particular, low growth of complexity indicates less chaotic system while higher growth of
complexity indicates highly chaotic system. So, slope of the complexity could be a measure
of quantum chaos. As a crude approximation, we will call the Lyapunov exponent λi to be:

λi =
lnCi(point of saturation)− lnCi(point of rise)

a(point of saturation)− a(point of rise)
(283)

where i indicates the choice of vacua. For simplicity, we will restrict to Nielsen complexity
C1 and we will obtain lyapunov exponent λi to be:

λMotta−Allen = 0.52

λα = 1.05

λBunch−Davies = 3.15

(284)

Bunch-Davies Vacua has the largest lyapunov exponent, so it is the most chaotic cosmo-
logical model followed by α vacua and Motta-Allen Vacua respectively.

6.5. Matter

In Figure 5, we have numerically plotted the squeezing parameters, derived circuit
complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua, comparison
of entanglement entropy with circuit complexity measure and quantum chaos in de Sitter
Model on super-horizon scales for the parameters k = 0.1, α = 0.2 and γ = 0.4. We have
set rk(a = 1) = 1, φk(a = 1) = 1 as our initial conditions.

Squeezing Parameters

In Figure 5a, we have plotted squeezing parameters rk and φK for each vacua using the
parameters listed above. The value of these squeezing parameters rk keeps constant while
φk keep growing for all vacua. Since both circuit complexity and entanglement entropy are
strongly dependent on the values of these parameters, the behaviour of these parameters
are significant to understand the dynamics of the system.

Complexity Measure

In Figure 5b–d, we have plotted the circuit complexity measures for Bunch-Davies Vacua,
α Vacua and Motta-Allen Vacua respectively using both Covariance as well as Nielsen
Approach using calculations from Section 4. Before discussing each Vacua individually,
let us discuss the overall features of these complexity measures. Clearly both Covariance
and Nielsen complexity measures have similar growth pattern with Nielsen’s complexity
measure is bounded by Covariance’s complexity measure. However Nielsen’s complexity
measure has more details on it. The complexity using Nielsen’s approach shows some
oscillatory behaviour while after reaching value a = 0.5, it starts to grow linearly. While
Covariance’s complexity grows at the beginning, then takes a dip. After the dip it starts
to grow linearly. The reason that we don’t see oscillating behaviours in covariance is that
covariance approach of computing complexity is independent of the squeezing angle φk
while Nielsen’s approach depends on it too.
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Figure 5. Matter Model (a) Behaviour of the squeezing parameters in Matter Model for k = 0.1,
α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit complexity C1 and
C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both Nielsen and
Covariance approach for same parameters as in (a), (e) comparison of entanglement entropy with
Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.

Comparison of Entanglement Entropy with Complexity

Entanglement entropy is a very popular probe to study the dynamics of quantum systems.
We would like to see if circuit complexity can also be a similar candidate. In Figure 5e, we
have plotted a comparison of Nielsen’s circuit complexity C1 and entanglement entropy.
We have chosen Nielsen’s measure of complexity because, both Covariance complexity
and entanglement entropy are independent of squeezing angle and depends linearly on
squeezing parameter rk. So, the pattern obtained from covariance measure of complexity
will be similar as to entanglement entropy except that both complexity measure C1 and C2
is greater than entanglement entropy. However with Nielsen’s measure of complexity, we
can obtain more interesting details of the system. For example, we can see some oscillatory
details regarding the evolution of system in the complexity graph compared to entanglement
entropy. After a = 0.5, both complexity and entanglement entropy starts to grow linearly
with entanglement entropy being bounded by complexity growth.
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Quantum Lyapunov Exponent

Circuit complexity has also been proposed as a tool to measure quantum chaos. In
particular, low growth of complexity indicates less chaotic system while higher growth of
complexity indicates highly chaotic system. So, slope of the complexity could be a measure
of quantum chaos. As a crude approximation, we will call the Lyapunov exponent λi to be:

λi =
lnCi(point of saturation)− lnCi(point of rise)

a(point of saturation)− a(point of rise)
(285)

where i indicates the choice of vacua. For simplicity, we will restrict to Nielsen complexity
C1 and we will obtain Lyapunov exponent λi to be:

λMotta−Allen = 3.12

λα = 2.5

λBunch−Davies = 3.75

(286)

Bunch-Davies Vacua has the largest lyapunov exponent, so it is the most chaotic cosmo-
logical model followed by Motta-Allen and α vacua.

6.6. Bouncing Model

From Figures 6–15, we have numerically plotted the squeezing parameters, derived circuit
complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua, comparison
of entanglement entropy with circuit complexity measure and quantum chaos for various
Bouncing models on super-horizon scales for the parameters k = 0.1, α = 0.2 and γ = 0.4.
We have set rk(a = 1) = 1, φk(a = 1) = 1 as our initial conditions for exponential bounce,
sechyperbolic bounce, cosechyperbolic bounce models and rk(a = 2) = 2, φk(a = 2) = 2
for Expansion bounce, polynomial bounce, power law bounce, cosinehyperbolic bounce,
sinehyperbolic bounce, contraction bounce, matter bounce models. The extra parameters we
have selected for each bouncing model will be highlighted under it’s own headings.

Squeezing Parameters

Figures 6–15, in sub figure a, we have plotted squeezing parameters rk and φK for each
vacua using the parameters that will be given below. Since all measures of interest such
as Complexity, Entropy and Chaos are dependent on these parameters, it is crucial to
understand their behaviour.

1. Contraction Bounce Model: In Figure 6a, we have plotted squeezing parameters rk and
φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The growth
of rk is very small for all vacua and they merge at each other. The evolution of φk is
different to Motta-Allen vacua than α and Bunch-Davies Vacua.

2. Matter Bounce Model: In Figure 7a, we have plotted squeezing parameters rk and φk
for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. For all three vacua,
rk grows at the early values of scale factor a, and then keeps dropping. While for all
three vacua, φk grows and then saturates.

3. Sechyperbolic Bounce Model: In Figure 8a, we have plotted squeezing parameters rk
and φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. For all three
vacua, rk keeps growing with respect to the scale factor a. While the behavior of φk is
different for each vacua at early a. Then, they starts to merge after some time.

4. Cosinehyperbolic Bounce Model: In Figure 9a, we have plotted squeezing parameters rk
and φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The growth
of rk is very small for all vacua and they merge at each other. At early time, φk starts
to grow together with the evolution of φk being different to Motta-Allen vacua than α
and Bunch-Davies Vacua at later a.

5. Sinehyperbolic Bounce Model: In Figure 10a, we have plotted squeezing parameters rk
and φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The growth
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of rk is very small for all vacua and they merge at each other. At early time, φk starts
to grow together with the evolution of φk being different to Motta-Allen vacua than α
and Bunch-Davies Vacua at later a.

6. Cosechyperbolic Bounce Model: In Figure 11a, we have plotted squeezing parameters rk
and φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The growth
of rk takes a dip around a = 0.15 and then keeps a linear growth. This holds for all
vacua. While value of φk are different for each vacua until a = 0.3, and then they
merge. After that, they keep on dropping until it merge with rk.

7. Exponential Bounce Model: In Figure 12a, we have plotted squeezing parameters rk and
φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The value of rk is
constant up to a = 0.35, and then they starts to grow linearly. The value of φk keeps
dropping until it merges with rk. This holds for all vacua.

8. Power Law Bounce Model: In Figure 13a, we have plotted squeezing parameters rk and
φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The value of rk
takes a sharp growth and starts to drop. While φk grows and then saturates.

9. Polynomial Bounce Model: In Figure 14a, we have plotted squeezing parameters rk and
φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The growth of
rk is constant and almost same for each vacua. Bunch-Davies vauca has the largest
growth of φk followed by Alpha and then Motta-Allen vacua.

10. Expansion (Post-Bounce) Model: In Figure 15a, we have plotted squeezing parameters rk
and φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The growth
of rk is constant and almost same for each vacua. The growth of φk is similar in the
beginning for each vacua but they starts to diverge around a = 50.
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Figure 6. Contraction Bounce Model (a) Behaviour of the squeezing parameters in Contraction Bounce
Model for k = 0.1, α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit
complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both
Nielsen and Covariance approach for same parameters as in (a), (e) comparison of entanglement entropy
with Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.
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Figure 7. Matter Bounce Model (a) Behaviour of the squeezing parameters in Matter Bounce Model
for k = 0.1, α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit complexity
C1 and C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both Nielsen
and Covariance approach for same parameters as in (a), (e) comparison of entanglement entropy
with Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.
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Figure 8. Sechyperbolic Bounce Model (a) Behaviour of the squeezing parameters in Sechyperbolic
Bounce Model for k = 0.1, α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit
complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both
Nielsen and Covariance approach for same parameters as in (a), (e) comparison of entanglement entropy
with Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.
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Figure 9. j (a) Behaviour of the squeezing parameters in Cosinehyperbolic Bounce Model for k = 0.1,
α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit complexity C1 and
C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both Nielsen and
Covariance approach for same parameters as in (a), (e) comparison of entanglement entropy with
Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.
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Figure 10. Sinehyperbolic Bounce Model (a) Behaviour of the squeezing parameters in Sinehyperbolic
Bounce Model for k = 0.1, α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit
complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both
Nielsen and Covariance approach for same parameters as in (a), (e) comparison of entanglement entropy
with Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.
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Figure 11. Cosechyperbolic Bounce Model (a) Behaviour of the squeezing parameters in Cosechyper-
bolic Bounce Model for k = 0.1, α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua
(b–d) Circuit complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respec-
tively using both Nielsen and Covariance approach for same parameters as in (a), (e) comparison of
entanglement entropy with Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.
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Figure 12. Exponential Bounce Model (a) Behaviour of the squeezing parameters in Exponential
Bounce Model for k = 0.1, α = 0.2 and γ = 0.4 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit
complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both
Nielsen and Covariance approach for same parameters as in (a), (e) comparison of entanglement entropy
with Nielsen circuit complexity C1 (f) Logarithm of Nielsen circuit complexity C1.
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Figure 13. Power Law Bounce Model (a) Behaviour of the squeezing parameters in Power Law
Bounce Model for k = 0.1, α∗ = 0.9, τ∗ = 0.2, a∗ = 1, α = 0.2 and γ = 0.4 for Bunch-Davies, α

and Motta-Allen Vacua (b–d) Circuit complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and
Motta-Allen Vacua respectively using both Nielsen and Covariance approach for same parameters as
in (a), (e) comparison of entanglement entropy with Nielsen circuit complexity C1 (f) Logarithm of
Nielsen circuit complexity C1.
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Figure 14. Polynomial Bounce Model (a) Behaviour of the squeezing parameters in Polynomial
Bounce Model for k = 0.1, τ∗ = 0.2, γ = 0.5, δ = 0.5, a∗ = 1, α = 0.2 and γ = 0.4 for Bunch-
Davies, α and Motta-Allen Vacua (b–d) Circuit complexity C1 and C2 for Bunch-Davies Vacua, α

Vacua and Motta-Allen Vacua respectively using both Nielsen and Covariance approach for same
parameters as in (a), (e) comparison of entanglement entropy with Nielsen circuit complexity C1

(f) Logarithm of Nielsen circuit complexity C1.

Complexity Measure

Figures 6–15, in sub figure b–d, we have plotted the circuit complexity measures for
Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both Covariance
as well as Nielsen Approach using calculations from Section 4. Before discussing each case
individually, let us discuss the overall features of these complexity measures. Covariance
measure of complexity has similar pattern to the growth of squeezing parameter rk. How-
ever, Nielsen’s complexity measure has more details on it. This is reasonable as Nielsen’s
complexity measure is sensitive to both rk and φk.
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Figure 15. Expansion (Post-Bounce) Model (a) Behaviour of the squeezing parameters in Expansion
(Post-Bounce) Model for k = 0.1, τ∗ = 0.2, γ = 0.5, δ = 0.5, a∗ = 1, α = 0.2 and γ = 0.4 for
Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit complexity C1 and C2 for Bunch-Davies Vacua,
α Vacua and Motta-Allen Vacua respectively using both Nielsen and Covariance approach for same
parameters as in (a), (e) comparison of entanglement entropy with Nielsen circuit complexity C1

(f) Logarithm of Nielsen circuit complexity C1.

1. Contraction Bounce Model: Circuit complexity plots for each vacua is identical in
overall pattern except for the magnitude. Overall, Motta-Allen Vacua has the largest
magnitude with Bunch-Davies being lowest which is due to Motta-Allen Vacua having
largest number of external parameters. Covariance measure of complexity is similar
to the growth of the squeezing parameter rk with increase in magnitude. However,
Nielsen’s measure is telling a different story. Nielsen’s measure of complexity is highly
oscillatory for each vacua and for both cost function C1 and C2.

2. Matter Bounce Model: Circuit complexity plots for each vacua is identical in overall
pattern except for the magnitude. The plot for the covariance measure of complexity
is smooth with a growth at early times and then taking a dip around a = 20. After
the dip, both C1 and C2 growing linearly. Nielsen measure of complexity has similar
pattern but with more details on it. Around a = 60, we can observe a pick in both C1
and C2. Even in early values of a, we can observe some oscillatory behaviour.
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3. Sechyperbolic Bounce Model: Interestingly, we can observe different behaviour in evolution
of complexity for each vacua. For Bunch-Davies case, both C1 and C2 Covariance’s
complexity is oscillatory before a = 0.2, and then they keep growing with C2 being
bounded by C1. While this pattern is visible for Nielsen’s approach too, there is a
oscillatory around a = 0.65. For α vacua, more such peaks are visible in Nielsen’s
measure of complexity. In Motta-Allen Vacua, both covariance and Nielsen’s measure
of complexity is oscillatory before a = 0.35 after which they starts to take a smooth rise.

4. Cosinehyperbolic Bounce Model: Circuit complexity plots for each vacua is identical in
overall pattern except for the magnitude. Overall, Motta-Allen Vacua has the largest
magnitude with Bunch davies being lowest which is due to Motta-Allen Vacua having
largest number of external parameters. Covariance measure of complexity is similar
to the growth of the squeezing parameter rk with increase in magnitude. However,
Nielsen’s measure is telling a different story. Nielsen’s measure of complexity is
highly oscillatory for each vacua and for both cost function C1 and C2. In all cases, C2
is being bounded by C1.

5. Sinehyperbolic Bounce Model: Circuit complexity plots for each vacua is identical in
overall pattern except for the magnitude. Overall, Motta-Allen Vacua has the largest
magnitude with Bunch davies being lowest which is due to Motta-Allen Vacua having
largest number of external parameters. Covariance measure of complexity is similar
to the growth of the squeezing parameter rk with increase in magnitude. However,
Nielsen’s measure is telling a different story. Nielsen’s measure of complexity is
highly oscillatory for each vacua and for both cost function C1 and C2. In all cases, C2
is being bounded by C1.

6. Cosechyperbolic Bounce Model: Interestingly, we can observe different behavior in
evolution of complexity for each vacua. For Bunch-Davies case, both C1 and C2
Covariance’s complexity is oscillatory before a = 0.35, and then they keep growing
with C2 being bounded by C1. While this pattern is visible for Nielsen’s approach too,
there is a oscillatory peak around a = 0.8. Before a = 0.35, the complexity measure is
oscillatory just like for Bunch- Davies case but with more sharp peaks visible. In all
cases, C2 is being bounded by C1.

7. Exponential Bounce Model: The overall pattern of complexity measure is identical for each
vacua expect for the change in magnitude. Covariance measure of complexity is similar
to the growth of rk with C2 being bounded by C1. Nielsen’s measure of complexity is
very oscillatory before a = 0.5 after which it takes a growth and saturates.

8. Power Law Bounce Model: The overall pattern of complexity measure is identical for
each vacua expect for the change in magnitude. Covariance measure of complexity
takes a sharp growth and takes a dip until a = 36 and then keep a linear growth with
C2 being bounded by C1. While this is also true for Nielsen’s measure, there are some
peaks visible around a = 10.

9. Polynomial Bounce Model: Circuit complexity plots patter for Bunch-Davies and α vacua
is identical in overall pattern except for the magnitude. For both vacua, covariance
measure has the growth pattern similar to the squeezing parameter rk. However,
Nielsen’s measure of complexity is very oscillatory. For the case of Motta-Allen vacua,
there are more gaps in the oscillatory peaks.

10. Expansion (Post-Bounce) Model: For each vacua, circuit complexity drops until a = 35
and then saturates around that point. In all vacua, Nielsen’s measure of complexity is
quite chaotic and oscillatory before a = 10. For α and Motta-Allen vacua, there are
also more oscillatory bumps visible after the point a = 35.

Comparison of Entanglement Entropy with Complexity

Entanglement entropy is a very popular probe to study the dynamics of quantum systems.
We would like to see if circuit complexity can also be a similar candidate. In sub figure e,
we have plotted a comparison of Nielsen’s circuit complexity C1 and entanglement entropy.
We have chosen Nielsen’s measure of complexity because, both Covariance complexity
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and entanglement entropy are independent of squeezing angle and depends linearly on
squeezing parameter rk. So, the pattern obtained from covariance measure of complexity
will be similar as to entanglement entropy except that both complexity measure C1 and C2
is greater than entanglement entropy. However with Nielsen’s measure of complexity, we
can obtain more interesting details of the system.

1. Contraction Bounce Model: Complexity is highly oscillatory compared to the entangle-
ment entropy.

2. Matter Bounce Model: Both entanglement entropy and complexity measure has similar
growth pattern. However, complexity measure has more peaks visible around a = 60.

3. Sechyperbolic Bounce Model: Again complexity measure has more oscillatory peaks com-
pared to the entanglement entropy. This allows us to understand the system in more
detail.

4. Cosinehyperbolic Bounce Model: Complexity is highly oscillatory compared to the
entanglement entropy.

5. Sinehyperbolic Bounce Model: Complexity is highly oscillatory compared to the entan-
glement entropy.

6. Cosechyperbolic Bounce Model: Both entanglement entropy and complexity has similar
growth pattern but entanglement entropy has a very huge peak at early values of a.

7. Exponential Bounce Model: Nielsen’s measure of complexity is very oscillatory before
a = 0.5 after which it takes a growth and saturates while entanglement entropy is
not. But, entanglement entropy also takes a growth and saturates just like complexity
measure.

8. Power Law Bounce Model: Both complexity and entanglement entropy has a similar
growth pattern, but there are some peaks visible around a = 10 for the case of com-
plexity measure.

9. Polynomial Bounce Model: Complexity is highly oscillatory compared to the entangle-
ment entropy.

10. Expansion (Post-Bounce) Model: Nielsen’s measure of complexity is quite chaotic and
oscillatory before a = 10 but the overall pattern is similar to of entanglement entropy.

Quantum Lyapunov Exponent

Circuit complexity has also been proposed as a tool to measure quantum chaos. In
particular, low growth of complexity indicates less chaotic system while higher growth of
complexity indicates highly chaotic system. So, slope of the complexity could be a measure
of quantum chaos. As a crude approximation, we will call the Lyapunov exponent λi to be:

λi =
lnCi(point of saturation)− lnCi(point of rise)

a(point of saturation)− a(point of rise)
(287)

where i indicates the choice of vacua. For simplicity, we will restrict to Nielsen complexity
C1 and we will obtain Lyapunov exponent λi.

1. Contraction Bounce Model: The log. complexity plot is too oscillatory to get the chaotic
measure.

2. Matter Bounce Model:
λMotta−Allen = 0.008

λα = 0.007

λBunch−Davies = 0.008

(288)

All three vacua has similar lyapunov exponent, so they have similar chaotic properties.
3. Sechyperbolic Bounce Model:

λMotta−Allen = 1

λα = 0.01

λBunch−Davies = 0.16

(289)
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Motta-Allen Vacua has the largest lyapunov exponent, so it is the most chaotic cosmo-
logical model followed by Bunch-Davies and α vacua.

4. Cosinehyperbolic Bounce Model: The log. complexity plot is too oscillatory to get the
chaotic measure.

5. Sinehyperbolic Bounce Model: The log. complexity plot is too oscillatory to get the
chaotic measure.

6. Cosechyperbolic Bounce Model:

λMotta−Allen = 1.25

λα = 0.41

λBunch−Davies = 2.91

(290)

Bunch-Davies Vacua has the largest Lyapunov exponent, so it is the most chaotic
cosmological model followed by Motta-Allen and α vacua.

7. Exponential Bounce Model:
λMotta−Allen = 0.83

λα = 0.75

λBunch−Davies = 0.75

(291)

All three vacua has similar Lyapunov exponent, so they have similar chaotic properties.
8. Power Law Bounce Model:

λMotta−Allen = 0.02

λα = 0.01

λBunch−Davies = 0.03

(292)

All three vacua has similar Lyapunov exponent, so they have similar chaotic properties.
9. Polynomial Bounce Model: The log. complexity plot is too oscillatory to get the chaotic

measure.
10. Expansion (Post-Bounce) Model: There is no growth or saturation point of complexity,

so we will not be able to get the chaotic measure.

6.7. Cyclic Models

In Figures 16 and 17, we have numerically plotted the squeezing parameters, derived
circuit complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua, com-
parison of entanglement entropy with circuit complexity measure and quantum chaos for
Matter cyclic and Radiation cyclic model on super-horizon scales for the parameters k = 0.1,
α = 0.2 and γ = 0.4. We have set rk(a = 1) = 1, φk(a = 1) = 1 as our initial conditions. The
extra parameters we have selected for each bouncing model will be highlighted under it’s
own headings.
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Figure 16. Matter Cyclic Model (a) Behaviour of the squeezing parameters in Matter Cyclic Model
for k = 0.1, τ∗ = 0.2, γ = 0.5, δ = 0.5, a∗ = 1, α = 0.2 and γ = 0.4 for Bunch-Davies, α and
Motta-Allen Vacua (b–d) Circuit complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and Motta-
Allen Vacua respectively using both Nielsen and Covariance approach for same parameters as in (a),
(e) comparison of entanglement entropy with Nielsen circuit complexity C1 (f) Logarithm of Nielsen
circuit complexity C1.
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Figure 17. Radiation Cyclic Model (a) Behaviour of the squeezing parameters in Radiation Cyclic
Model for k = 0.1, τ∗ = 0.2, γ = 0.5, δ = 0.5, a∗ = 1, α = 0.2 and γ = 0.4 for Bunch-Davies, α

and Motta-Allen Vacua (b–d) Circuit complexity C1 and C2 for Bunch-Davies Vacua, α Vacua and
Motta-Allen Vacua respectively using both Nielsen and Covariance approach for same parameters as
in (a), (e) comparison of entanglement entropy with Nielsen circuit complexity C1 (f) Logarithm of
Nielsen circuit complexity C1.

Squeezing Parameters

For each figures from Figures 16 and 17, in sub figure a, we have plotted squeezing
parameters rk and φK for each vacua using the parameters that will be given below. Since
all measures of interest such as Complexity, Entropy and Chaos are dependent on these
parameters, it is crucial to understand their behavior.

1. Matter cyclic model: In Figure 16a, we have plotted squeezing parameters rk and φk
for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. Before a = 0.2, rk
is different for each vacua. However, after that point, they merge and starts to grow
linearly. While before a = 0.3, φk is different for each vacua, after that point they
merge and saturates.

2. Radiation cyclic model: In Figure 17a, we have plotted squeezing parameters rk and
φk for each vacua using the parameters k = 0.1, α = 0.2 and γ = 0.4. The value
of rk grows for each vacua but with a different magnitude. α vacua has the largest
magnitude while Bunch-Davies and Motta-Allen have comparable values of rk. At
early values of a, φk grows for each vacua and saturates. However at around a = 1,
all three vacua merges and takes a sharp growth.

Complexity Measure

For each figures from Figures 16 and 17, in sub figure b–d, we have plotted the circuit
complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively
using both Covariance as well as Nielsen Approach using calculations from Section 4.
Before discussing each case individually, let us discuss the overall features of these com-
plexity measures. Covariance measure of complexity has similar pattern to the growth of
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squeezing parameter rk. However, Nielsen’s complexity measure has more details on it.
This is reasonable as Nielsen’s complexity measure is sensitive to both rk and φk.

1. Matter cyclic model: For Bunch-Davies and Motta-Allen Vacua, covariance measure
of complexity has a similar pattern but with different magnitude. Until a = 0.35, it
is oscillatory in nature with small magnitude. After which, it takes a linear growth.
For α vacua, complexity grows at early values of a, then take a dip at a = 0.35, and
then grows linearly. Nielsen’s measure of complexity also has a similar pattern as
covariance but has a peak around a = 0.8.

2. Radiation cyclic model: Covariance measure of complexity has the similar pattern for all
three vacua. It grows at early values of a, then take a dip and then grows linearly. The
point of dip is different for each vacua. However, Nielsen’s measure of complexity
has more details coming from peaks at different values of a.

Comparison of Entanglement Entropy with Complexity

Entanglement entropy is a very popular probe to study the dynamics of quantum systems.
We would like to see if circuit complexity can also be a similar candidate. In Figures 16e
and 17e, we have plotted a comparison of Nielsen’s circuit complexity C1 and entanglement
entropy. We have chosen Nielsen’s measure of complexity because, both Covariance com-
plexity and entanglement entropy are independent of squeezing angle and depends linearly
on squeezing parameter rk. So, the pattern obtained from covariance measure of complexity
will be similar as to entanglement entropy except that both complexity measure C1 and C2 is
greater than entanglement entropy. However with Nielsen’s measure of complexity, we can
obtain more interesting details of the system.

1. Matter Cyclic Model: Both entanglement entropy and complexity measure has similar
growth pattern. However, complexity measure has more peaks visible around a = 0.8.

2. Radiation Cyclic Model: Both entanglement entropy and complexity measure has
similar growth pattern. However, complexity measure has more peaks. This shows
that complexity measure is able to carry more details regarding the system compared
to matter cyclic model.

Quantum Lyapunov Exponent

Circuit complexity has also been proposed as a tool to measure quantum chaos. In
particular, low growth of complexity indicates less chaotic system while higher growth of
complexity indicates highly chaotic system. So, slope of the complexity could be a measure
of quantum chaos. As a crude approximation, we will call the lyapunov exponent λi to be:

λi =
lnCi(point of saturation)− lnCi(point of rise)

a(point of saturation)− a(point of rise)
(293)

where i indicates the choice of vacua. For simplicity, we will restrict to Nielsen complexity
C1 and we will obtain lyapunov exponent λi.

1. Matter Cyclic Model:
λMotta−Allen = 1.83

λα = 1.33

λBunch−Davies = 3.16

(294)

Bunch-Davies Vacua has the largest lyapunov exponent, so it is the most chaotic
cosmological model followed by Motta-Allen and α vacua.

2. Radiation Cyclic Model:
λMotta−Allen = 2

λα = 0.33

λBunch−Davies = 2.5

(295)
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Bunch-Davies Vacua has the largest lyapunov exponent, so it is the most chaotic cosmo-
logical model followed by Motta-Allen and α vacua.

6.8. Black Hole Gas

In Figure 18, we have numerically plotted the squeezing parameters, derived circuit
complexity measures for Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua, comparison
of entanglement entropy with circuit complexity measure and quantum chaos in de Sitter
Model on super-horizon scales for the parameters k = 0.1, α = 0.2 and γ = 0.4. We have
set rk(a = 1) = 1, φk(a = 1) = 1 as our initial conditions.
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Figure 18. Black Hole Gas Model (a) Behaviour of the squeezing parameters in Black Hole gas
model for a∗ = 1 for Bunch-Davies, α and Motta-Allen Vacua (b–d) Circuit complexity C1 and C2 for
Bunch-Davies Vacua, α Vacua and Motta-Allen Vacua respectively using both Nielsen and Covariance
approach for same parameters as in (a), (e) comparison of entanglement entropy with Nielsen circuit
complexity C1 (f) Logarithm of Nielsen circuit complexity C1.

Squeezing Parameters

In Figure 18a, we have plotted squeezing parameters rk and φK for each vacua using
the parameters listed above. rk takes a constant growth while φk grows very quickly. Since
both circuit complexity and entanglement entropy are strongly dependent on the values
of these parameters, the behavior of these parameters are significant to understand the
dynamics of the system.

Complexity Measure

In Figure 18b–d, we have plotted the circuit complexity measures for Bunch-Davies
Vacua, α Vacua and Motta-Allen Vacua respectively using both Covariance as well as
Nielsen Approach using calculations from Section 4. Nielsen’s measure of complexity is
very oscillatory while Covariance measure grows similar to rk but with larger magnitude.
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Comparison of Entanglement Entropy with Complexity

Entanglement entropy is a very popular probe to study the dynamics of quantum systems.
We would like to see if circuit complexity can also be a similar candidate. In Figure 18e,
we have plotted a comparison of Nielsen’s circuit complexity C1 and entanglement entropy.
We have chosen Nielsen’s measure of complexity because, both Covariance complexity
and entanglement entropy are independent of squeezing angle and depends linearly on
squeezing parameter rk. So, the pattern obtained from covariance measure of complexity
will be similar as to entanglement entropy except that both complexity measure C1 and C2 is
greater than entanglement entropy. However with Nielsen’s measure of complexity, we can
obtain more interesting details of the system such as the oscillatory behavior of complexity
which is absent in entanglement entropy.

Quantum Lyapunov Exponent

Circuit complexity has also been proposed as a tool to measure quantum chaos. In
particular, low growth of complexity indicates less chaotic system while higher growth of
complexity indicates highly chaotic system. So, slope of the complexity could be a measure
of quantum chaos. Because Nielsen’s measure of complexity is too oscillatory and doesn’t
reach a saturation point, we will not be able to compute the lyapunov exponent term.

7. Conclusions

From our study we have the following final remarks:

• Compared to that calculated using the covariance matrix method, the circuit complex-
ity computed using Nielsen’s wave function approach offers a much better under-
standing because it relies on the squeezing angle and the squeezing parameter and
can therefore be linked to the entanglement entropy.

• We have computed the circuit complexity using both Nielsen’s wave function approach
and Covariance matrix approach. From the study of both approaches to compute com-
plexity in different cosmological models, it is clear that the overall pattern one obtain is
similar in both cases. However, the circuit complexity computed from Nielsen’s wave
function approach gives a much detailed understanding of the evolution of the system.
The reason is that covariance measure of complexity is insensitive to the squeezing angle.

• The behaviour of the squeezing parameter is also different for each vacua: Bunch-
Davies, α vacua and Motta-Allen Vacua. The reason for this is that dispersion relation
for each vacua is different. So, while solving the set of differential equations, we will
get different solutions for the squeezing parameter.

• We have computed the circuit complexity for all three vacua: Bunch-Davies, α vacua
and Motta-Allen Vacua. Because the dispersion relation for each vacua is different, the
solutions for the squeezing parameter is also different. This has the direct consequence
in the properties of complexity measure. In addition, Motta-Allen and α vacua have
more parameters than the simple Bunch-Davies vacua. This is also reflected in the
complexity measure. Most of the times, Motta-Allen vacua has the largest complexity
magnitude followed by α vacua and then Bunch-Davies vacua.

• The behavior of the entanglement entropy is also different for each vacua. Again,
this is the result of having different set of solutions for the squeezing parameter. The
values of entanglement entropy is bounded by the covariance measure of complexity
C1 and C2. Entanglement entropy has the similar pattern as the covariance measure
of complexity because both are independent of the squeezing angle φk. However,
entanglement entropy has the different behaviour than the Nielsen’s measure of
complexity. We are able to see more details in the complexity that is not visible in
entanglement entropy growth. This shows that, complexity could also be a probe
to detect important properties of a quantum system just like entanglement entropy.
Since entanglement entropy is sometimes ridiculously difficult to compute, complexity
could be a better alternative at those cases.
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• The behaviour of circuit complexity is very dependent on the model and scale factor
involved. For example: Nielsen’s measure of complexity is extremely oscillatory for
models like Polynomial bounce and Sinehyperbolic bounce while very smooth for
models like de-Sitter.

The future prospects of the work are:

• We have made qualitative comments on the relation between growth of complexity
and quantum chaos. It would be interesting to see if it can be rigorously proven.
One way could be to use the quantum speed limit properties to show the bound on
complexity. Using Random Matrix theory, one can associate the bound on quantum
speed limit to quantum chaos.

• For the framework of two-mode squeezed states, quantum complexity computed
using Covariance matrix show similar feature that of entanglement entropy. It would
be interesting to see if this holds true for other models.

• The relation between entanglement entropy and complexity can be studied in even
more detail.

• In this paper, we have only studied the complexity measure for various cosmological
models. It would be interesting to apply the lesson from these complexity plots to
study the physical evolution of these models and observe to what extent it actually
matches. Furthermore, concrete experimental prediction would be much desirable.
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Appendix A. Role of Squeezing in the Dispersion Relation for PGW

The general relation for the dispersion relation for PGW is given by:

Ωλ,k(τ) : =

{∣∣∣∣∣πλ,k(τ0)

(
cosh rλ,k(τ) exp(iθλ,k(τ)) + sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)

+H(τ) fλ,k(τ0)

(
cosh rλ,k(τ) exp(iθλ,k(τ))− sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)∣∣∣∣∣
2

+
(
k2 −H2(τ)

)
| fλ,k(τ0)|2∣∣∣∣∣

(
cosh rλ,k(τ) exp(iθλ,k(τ))− sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)∣∣∣∣∣
2}

.

=

{
|πλ,k(τ0)|2

∣∣∣∣∣
(

cosh rλ,k(τ) exp(iθλ,k(τ)) + sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)∣∣∣∣∣
2

+k2| fλ,k(τ0)|2∣∣∣∣∣
(

cosh rλ,k(τ) exp(iθλ,k(τ))− sinh rλ,k(τ) exp(i(θλ,k(τ) + 2φλ,k(τ)))

)∣∣∣∣∣
2

+H(τ)
(
π∗λ,k(τ0) fλ,k(τ0) + πλ,k(τ0) f ∗λ,k(τ0)

)
+iH(τ) sinh 2rλ,k(τ) sin 2φλ,k(τ)

(
πλ,k(τ0) f ∗λ,k(τ0)− π∗λ,k(τ0) fλ,k(τ0)

)}
.

(A1)

The dispersion relation for individual vacua are given by:

1. Motta-Allen (α, γ) vacua:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωλ,k(τ) = 4νPGW−2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2

[
2
√

2H(sinh(2α) cos(2− γ)− sinh(2r) sin(2φ)

−k sinh(2r) cos(2φ)(3 sinh(2α) sin(2− γ) + cosh(2α))

+k cosh(2r)(sinh(2α) sin(2− γ) + 3 cosh(2α))] (A2)

B. Heavy Hubble Effective Mass :=⇒

Ωλ,k(τ) =
1
16

e−π/2

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣[

−eπ/2 sinh(2α)
(√

2H(sin(2− γ) + cos(2− γ))

+ sinh(2r)
(√

2H sin(2φ)(cos(2− γ)− sin(2− γ))

+2k cos(2− γ) cos(2φ)))− 2
√

2H cosh2(α)(sinh(2r) sin(2φ) + 1)

+ k cosh(2r)
(

2eπ/2 sinh(2α) cos(2− γ) + 2eπ sinh2(α) + 2 cosh2(α)

+ cosh(2α) + 1)− 2eπk sinh2(α) sinh(2r) cos(2φ)
]

(A3)
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2. α vacua:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωλ,k(τ) = 22νPGW− 9
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2

(4H cos(2) sinh(2α)− 4H sinh(2r) sin(2φ)

+
√

2k(cosh(2r)(3 cosh(2α)

+ sin(2) sinh(2α))− sinh(2r) cos(2φ)(cosh(2α)

+3 sin(2) sinh(2α))))

(A4)

B. Heavy Hubble Effective Mass :=⇒

Ωλ,k(τ) =
1
16

e−π/2

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣(

−eπ/2 sinh(2α)
(√

2H(sin(2− γ) + cos(2− γ))

+ sinh(2r)
(√

2H sin(2φ)(cos(2− γ)− sin(2− γ))

+2k cos(2− γ) cos(2φ)))− 2
√

2H cosh2(α)

(sinh(2r) sin(2φ) + 1)

+ k cosh(2r)
(

2eπ/2 sinh(2α) cos(2− γ)

+2eπ sinh2(α) + 2 cosh2(α) + cosh(2α) + 1
)

−2eπk sinh2(α) sinh(2r) cos(2φ)
)

(A5)

3. Bunch-Davies vacuum:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωλ,k(τ) = 22νPGW− 9
2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2(√
2k(3 cosh(2r)− sinh(2r) cos(2φ))

−4H sinh(2r) sin(2φ))

(A6)

B. Heavy Hubble Effective Mass :=⇒

Ωλ,k(τ) =
1
8

e−π/2

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣(2k cosh(2r)−

√
2H(sinh(2r) sin(2φ) + 1)

)
(A7)

Appendix A.1. Sub-Hubble Limiting Result

In the sub-Hubble limit,−kτ � 1, it is expected to have very small contribution from
the squeezed parameter, rk(τ) for which one can use the following approximations:

cosh rk(τ) ≈ 1, sinh rk(τ) ≈ rk(τ) (A8)

Consequently, in the limit rk(τ) → 0, we get the following result for the dispersion
relation in the sub-Hubble region:
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1. Motta-Allen (α, γ) vacua:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) = 4νPGW−2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2

(sinh(2α)(
2
√

2H cos(2− γ)

+k sin(2− γ)) + 3k cosh(2α))

(A9)

B. Heavy Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) =

1
16

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

e−π/2
(
−eπ/2 sinh(2α)

(√
2H(sin(2− γ) + cos(2− γ))

−2k cos(2− γ)) +

cosh2(α)
(

4k− 2
√

2H
)
+ 2eπk sinh2(α)

)
(A10)

2. α vacua:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) = 22νPGW− 9

2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2

(
4H cos(2) sinh(2α) +

√
2k(3 cosh(2α) + sin(2) sinh(2α))

)
(A11)

B. Heavy Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) =

1
16

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣(

−2e−π/2 cosh2(α)
(√

2H − 2k
)

+ sinh(2α)
(

2k cos(2)−
√

2H(sin(2) + cos(2))
)

+2eπ/2k sinh2(α)
)

(A12)

3. Bunch-Davies vacuum:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) = 3k4νPGW−2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2

(A13)

B. Heavy Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) = −

1
8

e−π/2
(√

2H − 2k
)∣∣∣∣∣Γ(−i|νPGW|)

Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

(A14)
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Appendix A.2. Super-Hubble Limiting Result

In the super-Hubble limit,−kτ � 1, the dispersion relation takes the following form:

1. Motta-Allen (α, γ) vacua:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) = 4νPGW−2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2(
sinh(2α)

(
2
√

2H cos(2− γ)

+k sin(2− γ)(cosh(2r)− 3 sinh(2r)))
+k cosh(2α)(3 cosh(2r)− sinh(2r)))

(A15)

B. Heavy Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) =

1
16

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

e−π/2
(
−2
√

2H cosh2(α)

+ eπ/2 sinh(2α)
(

2ke−2r cos(2− γ)

−
√

2H(sin(2− γ) + cos(2− γ))
)
+ 2keπ−2r sinh2(α)

+4k cosh2(α) cosh(2r)
)

(A16)

2. α vacua:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) = 22νPGW− 9

2

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2

(
4H cos(2) sinh(2α) +

√
2k(cosh(2α)

(3 cosh(2r)− sinh(2r)) + sin(2) sinh(2α)(cosh(2r)− 3 sinh(2r))))
(A17)

B. Heavy Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) =

1
16

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣(

−
√

2H sinh(2α)(sin(2) + cos(2)) + e−π/2 cosh2(α)
(

4k cosh(2r)− 2
√

2H
)

+2ke−2r sinh(α)
(

eπ/2 sinh(α) + 2 cos(2) cosh(α)
))

(A18)

3. Bunch-Davies vacuum:

A. Massless & Partially Massless Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) = k

∣∣∣∣∣Γ(νPGW)

Γ
( 3

2
) ∣∣∣∣∣

2

4νPGW−2(3 cosh(2r)− sinh(2r))

(A19)
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B. Heavy Hubble Effective Mass :=⇒

Ωsub
λ,k(τ) = −

∣∣∣∣∣Γ(−i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣

∣∣∣∣∣Γ(i|νPGW|)
Γ
( 3

2
) ∣∣∣∣∣18 e−π/2

(√
2H − 2k cosh(2r)

)
(A20)
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