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Abstract. Modified expansion rates in the early Universe prior to big bang nucleosyn-
thesis are common in modified gravity theories, and can have a significant impact on the
generation of dark matter, matter-antimatter asymmetry, primordial black holes and the pri-
mordial gravitational wave (PGW) spectrum. Here we study the PGW spectrum in modified
gravity theories, in early Universe cosmology. In particular, we consider scalar-tensor and
extradimensional scenarios, investigating the detection prospects in current and future GW
observatories. For the scalar-tensor case, PGW could be potentially observed by laser inter-
ferometers operating in the high-frequency range, while for the extradimensional case they
could be detected even at low frequencies with pulsar timing arrays. We find that data from
the planned network of several GW detectors operating across various frequency ranges could
be able to distinguish between various modified gravity scenarios.
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1 Introduction

Probes of the early Universe include measures of the primordial abundances of light elements
generated during big bang nucleosynthesis (BBN), cosmic microwave background (CMB)
radiation, etc. Recently, the detection of gravitational waves (GW) by LIGO [1] and Virgo [2]
has opened up the opportunity to probe fundamental physics, otherwise not accessible via
other interactions. Hitherto all the GW signals observed so far are of astrophysical origin,
e.g. compact binary systems [3, 4], but in a foreseeable future we expect to be able to
explore the same of cosmological origin. In particular, primordial GW (PGW) could originate
from quantum fluctuations during the inflationary period of the early Universe or phase
transitions [5].

The propagation of PGW carries information of the expansion history of the Universe
through its evolution in the post-inflationary phase. Thus, such GW serve as a useful tool
to probe the cosmological history of our Universe prior to BBN, for example, the reheating
temperature [6, 7], the equation-of-state parameter [8], the quark-hadron phase transition in
QCD [9, 10], and properties of possible hidden sectors beyond the standard model (SM) [11].

We investigate this probe of the early Universe expansion rate to understand PGW
signals predicted in various modified gravity theories of the early Universe. Modifications
of general relativity (GR) naturally imply variations to the Hubble expansion rate of the
Universe from the metric level of the theory, leaving an imprint on any processes that carry
information of the expansion history, and have potential observational signatures. However,
the success of BBN strongly favors a standard history for temperatures below ∼ 4 MeV [12–14].
Nonstandard cosmological scenarios can affect the dark matter (DM) relic density [15–26], the
matter-antimatter asymmetry [27–34], the spectrum of PGW [6, 35–40] and the abundance
of primordial black holes [41–47] and microhalos [48–52]. See Ref. [53] for a recent review.

The fact that Einstein’s theory of gravity breaks down in the UV motivates the considera-
tion of modifications of GR [54, 55]. Deviations from GR follow in different frameworks, such
as Brans-Dicke and scalar-tensor (ST) theories [56–58], braneworld theories [59–64], f(R)
and f(φ, R, R2) theories [65–68], noncommutative geometry [69], and compactified extra
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dimension/Kaluza-Klein models [70–75]. Moreover, they can also be generated from higher-
order terms in the curvature invariants, nonminimal couplings to the background geometry
in the Hilbert-Einstein Lagrangian [76–79] or to curvature invariants such as R2, RµνR

µν ,
RµναβRµναβ , R�R, or R�kR, corresponding equivalently to Einstein’s gravity plus one or
multiple conformally coupled scalar fields [80–83]. Additional terms into the action of grav-
ity may also come from string loop effects [84], dilaton fields in string cosmology [85], and
nonlocally modified gravity induced by quantum loop corrections [86].

In this article, we study PGW spectra in modified gravity theories, namely, ST gravity
and braneworld cosmology. We identify parameter spaces that give a substantial boost to the
PGW spectrum to be detectable by current and future GW detectors, thereby providing a
test for deviations from GR in the early Universe.

The paper is arranged as follows. In Sec. 2 we describe the generation and evolution of
PGW in the standard Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology. In Sec. 3, a
general parametrization for different theories of gravity affecting the expansion of the Universe
is described. Next, we present estimations of PGW in ST (Sec. 4) and braneworld (Sec. 5)
cosmological scenarios to understand the propagation of GW in early Universe. Finally, we
conclude in Sec. 6.

2 PGW in standard cosmology

In this section, we briefly review the computation of the PGW spectrum in the standard cos-
mological scenario. GWs correspond to spatial metric perturbations satisfying the transverse
traceless conditions: ∂ihij = 0 and hii = 0. The equation of motion for tensor perturbation at
the first order of cosmic perturbation theory can be written as (following Refs. [37, 87, 88])

ḧij + 3H ḣij −
∇2

a2
hij = 16πGΠTT

ij , (2.1)

where the dots correspond to derivatives with respect to the cosmic time t, and G is the
Newton’s constant. The conformal time τ is related to the standard time as dt = a dτ and
a′ = a2H, where the prime corresponds to a derivative with respect to τ . The Hubble
expansion rate H in GR is given by

HGR ≡ ȧ

a
=

√

8π

3
Gρ , (2.2)

where

ρ(T ) ≡ π2

30
g(T )T 4 (2.3)

is the SM energy density, and g(T ) corresponds to the effective number of relativistic degrees
of freedom of SM radiation, as a function of the SM temperature T . Here we use the data of
Ref. [89] to consider the effect of the thermal evolution of SM degrees of freedom. This effect
is mostly important around the QCD epoch T ≃ 150 MeV and the electroweak transition
T ≃ 100 GeV where the Higgs, the electroweak gauge bosons and the top quark decoupling
happens. In fact, the effects of the QCD equation of state and the lepton asymmetry on
PGW can have an impact up to a few percent around the QCD and electroweak epochs [9].
Finally, let us add that in the right hand side of Eq. (2.1), ΠTT

ij is the transverse-traceless
part of the anisotropic stress tensor Πij defined as

Πij ≡
Tij − p gij

a2
, (2.4)
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where Tij is the stress-energy tensor, gij the metric tensor, and p the background pres-
sure. ΠTT

ij can be the source for tensor perturbations at frequencies smaller than 10−10 Hz
(corresponding to temperatures T . 4 MeV) due to the free streaming of neutrinos and pho-
tons [88, 90]. However, here we focus on a higher frequency range and therefore this term will
be disregarded. To solve the tensor perturbation equations, one can rewrite it in the Fourier
space as [37, 87, 88]

hij(t, ~x) =
∑

λ

∫

d3k

(2π)3
hλ(t, ~k) ǫλij(

~k) ei
~k·~x , (2.5)

where λ = +, × corresponds to the two independent polarization states, and ǫλ is the spin-2
polarization tensor satisfying the normalization condition

∑

ij ǫ
λ
ijǫ

λ′
∗

ij = 2δλλ
′

. The tensor
perturbation can be written in terms of

hλ(t,~k) = hλprim(~k)X(t, k) , (2.6)

where X is a transfer function and hλprim(~k) is the amplitude of the primordial tensor pertur-
bations. The tensor power spectrum can be expressed as [37, 87, 88]

P(k) =
k3

π2

∑

λ

∣

∣

∣
hλprim(~k)

∣

∣

∣

2

=
2

π2
GH2

∣

∣

∣

∣

k=aH

. (2.7)

Equation (2.1) can therefore be rewritten as

X ′′ + 2
a′

a
X ′ + k2X = 0 , (2.8)

and behaves like a damped oscillator. Let us note that, as the scale factor and the conformal

time are related via the equation of state as a ∝ τ
2

1+3ω , the damping term in Eq. (2.8) can be
rewritten as

2
a′

a
=

4

1 + 3ω

1

τ
. (2.9)

In standard cosmology, the relic density of PGW from first-order tensor perturbation
becomes [37, 87, 88]

ΩGW(τ, k) =
PT (k) [X

′(τ, k)]2

12 a2(τ)H2(τ)
≃ 1

24
PT (k)

[

ahc

a(τ)

]4 [ Hhc

H(τ)

]2

, (2.10)

where in the last step we used the fact that after averaging over periods of oscillations
X ′(τ, k) ≃ kX(τ, k) ≃ k ahc/(

√
2 a(τ)) ≃ a2hcHhc/(

√
2 a(τ)), with k = 2π f = ahcHhc

for the horizon crossing moment.1 The PGW relic density today (τ = τ0) as a function of the

1At super-horizon scales (k ≪ aH) the transfer function X(τ, k) → 1. The initial conditions for the
transfer function (at superhorizon scale) can be written as

X(0, k) = 1 , X
′(0, k) = 0 . (2.11)

Since the numerical computation of Eq. (2.8) from the early Universe before horizon crossing until today is
numerically expensive, one can use WKB approximation. After horizon crossing (hc)

X(τ, k) =
X

a(τ)
sin(k τ + δ) , (2.12)

where the parameters X and δ can be fixed using WKB approximation for X and its derivative at horizon
crossing.
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Figure 1. PGW spectrum ΩGWh
2 as a function of the frequency f assuming a scale invariant pri-

mordial tensor spectrum (nT = 0) with a tensor-to-scalar ratio r = 0.07, for the standard cosmological
scenario. The colored regions correspond to projected sensitivities for various GW observatories, and
to the BBN constraint described in the text.

wave number is therefore

ΩGW(τ0, k)h
2 ≃ 1

24

[

g(Thc)

2

] [

h(T0)

h(Thc)

]4/3

PT (k) Ωγ(T0)h
2, (2.13)

where h(T ) corresponds to the effective number of relativistic degrees of freedom contributing
to the SM entropy density s defined by [89]

s(T ) ≡ 2π2

45
h(T )T 3 . (2.14)

The scale dependency of the tensor power spectrum is given by

PT (k) = AT

(

k

k̃

)nT

, AT = r AS , (2.15)

where k̃ = 0.05 Mpc−1 is a characteristic pivot scale, and the tensor spectral index nT . The
amplitude of the tensor perturbation is denoted by AT , which is written in terms of the
tensor-to-scalar ratio r and the scalar perturbation amplitude AS . The PLANCK mission has
measured AS ≃ 2.1× 10−9 at the CMB scale, and put an upper bound on r . 0.07 [91].

Figure 1 represents an example of a PGW spectrum ΩGWh
2 versus the frequency f with

a dashed gray line, assuming a primordial tensor spectrum with nT = 0, AS = 2.1×10−9 and
r = 0.07, computed following Eq. (2.13), for the standard cosmological scenario. Additionally,
the colored regions correspond to projected sensitivities for various GW observatories [92]. In
particular, we consider constraints from the space-based LISA [93] interferometer, the ground-
based Einstein Telescope detector (ET) [94] as well as the successor experiments BBO [95] and
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(B-)DECIGO [96, 97]. Moreover, we include pulsar timing arrays, in particular the currently
operating NANOGrav [98] and EPTA [99], as well as the future SKA [100] telescope. The
BBN bound comes from the constraint on the number of effective neutrinos, a variation of
which affects the primordial element abundances measurements during BBN [101–103].

3 PGW in modified cosmological histories: generalized study

Hereafter we only consider modification of gravity due to the change of Hubble rate at sub-
horizon scales, which is compatible with LIGO observations of binary neutron stars and black
hole mergers. In fact, the tensor perturbation equation in a modified gravity scenario may
produce GW with a speed different from the speed of light [104–108]. However, due to the
constraint from LIGO, we study modified gravity scenarios that can mainly modify the Hub-
ble rate [109–111]. Additionally, using the constraints on the tensor-to-scalar ratio and the
scalar spectral index [112, 113] the variation of the number of e-folds from inflationary phase
is constrained by the CMB observation to be |∆Ninf| . 10 [114]. Any modification of GR or
nonstandard cosmology in the pre-BBN era should satisfy this bound as explained in Ref. [37].
Modified gravity dominated eras during the pre-BBN epoch that we consider here naturally
respect this bound.

We will not investigate modified gravity theories affecting the standard cosmology during
the post-BBN era and especially the formation of structures at large scales. Depending on
the details of a modified cosmology scenario, the primordial density perturbations might grow
that can boost the formation of small structures [37, 52, 115]. Modified gravity can enhance
the density perturbation at small scales, however, due to Silk damping these perturbations
will dilute and not be effective at the time of structure formation which happens around
∼ 1 eV (matter-radiation equality) [116, 117].

3.1 Parametrization

Modifications to GR lead to cosmological histories with expansion rates H of the Universe
larger than the Hubble expansion rate HGR of standard cosmology. The expansion rate of
the Universe in modified cosmologies can be parameterized as follows [16, 118–121]

H(T ) ≡ A(T )HGR(T ) , (3.1)

where A(T ) is the so-called amplification factor. Since the pre-BBN epoch is not directly
constrained by cosmological observations, for temperatures larger than TBBN, A(T ) can be
significantly different from unity, leading to modified cosmological expansion histories. How-
ever, after BBN (i.e. T ≤ TBBN) the standard cosmology should be at work. According to
this, the amplification factor A(T ) 6= 1 at early times, and A(T ) → 1 at the onset of the BBN
period. Typically, it is parameterized as

A(T ) = 1 + η

(

T

T⋆

)ν

, (3.2)

where T⋆ is a temperature scale, and η and ν are dimensionless parameters, all depending
on the specific cosmological model under consideration. Alternatively, it can also be written
as [16]

A(T ) =

{

1 + η
(

T
T⋆

)ν
tanh T−Tre

Tre
for T > Tre ,

1 for T ≤ Tre ,
(3.3)
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where T⋆ ≥ Tre > TBBN. In the limit T ≫ Tre and ν ≥ 0, the parametrization in Eqs. (3.2)
and (3.3) coincide. However, the latter has the advantage of allowing the exploration of
negative values for ν.

Different values for the parameter ν appear in various modified cosmological scenar-
ios [16, 118–122]: ν = 2 in Randall-Sundrum type II brane cosmology [123], ν = 1 in kination
models [124–126], ν = 0 in cosmologies with an overall boost of the Hubble expansion rate
like in the case of a large number of additional relativistic degrees of freedom in the thermal
plasma [16], ν = 2/n− 2 in f(x) cosmology with f(x) = x+αxn, where x = R, T ; R and T
being the scalar curvature and the scalar torsion, respectively [127–130].2

If the evolution of the Universe is adiabatic, and therefore the SM entropy is conserved,
the temperature and the scale factor are related via

dT

da
= − 1

1 + T
3h

dh
dT

T

a
. (3.4)

The nontrivial behavior due to the variation of h(T ) will be kept in our numerical computa-
tions; however, for the analytical estimations we will ignore it, simply assuming

T (a) ∝ 1

a
, (3.5)

which is valid up to variations in the number of relativistic degrees of freedom. This scaling
allows to find the frequencies fre and f⋆ corresponding, respectively, to the temperatures Tre

and T⋆ used in Eq. (3.3):

fre =
kre

2π
=
areH(are)

2π
=
a0
2π

T0
Tre

HGR(Tre) =
a0
3

√

πg

5

T0 Tre

MP
, (3.6)

f⋆ =
k⋆
2π

=
a⋆H(a⋆)

2π
=
a0
2π

T0
T⋆
A(T⋆)HGR(T⋆) ≃

a0
3
(1 + η)

√

πg

5

T0 T⋆
MP

, (3.7)

for T⋆ ≫ Tre. In the following, the two limiting cases corresponding to T ≪ Tre and T ≫ T⋆
(or equivalently f ≪ fre and f ≫ f⋆) will be studied in detail.

The upper panels of Fig. 2 show the amplification factor A as a function of the frequency
f for T⋆ = Tre = 100 GeV (or equivalently f⋆ = fre ≃ 2.5 × 10−6 Hz), taking η = 1 (blue
dashed lines), η = 10 (green dot-dashed lines), η = 100 (red dotted lines), and ν = −1 (left
panels), ν = 0 (central panels), ν = 1 (right panels).

3.2 f ≪ fre

In the range of frequencies f ≪ fre, or equivalently for temperatures T ≪ Tre, cosmology
should converge to GR, and therefore before the onset of BBN one has that

H(a) = HGR(a) = H(are)
(are

a

)2

, (3.8)

where are is the scale factor at T = Tre. The PGW relic density in Eq. (2.10) becomes

ΩGW(τ0, k) =
PT (k)

24

(

are

a0

)4(H(are)

H0

)2

∝ PT (k) , (3.9)

showing the same scale dependence as the primordial tensor power spectrum PT (k), as ex-
pected from the standard cosmology.

2See Refs. [131, 132] for cosmological and further theoretical motivations for such theories.
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Figure 2. Amplification factor A (upper panels) and PGW spectrum ΩGWh
2 (lower panels) as a

function of the frequency f for T⋆ = Tre = 100 GeV (or equivalently f⋆ = fre ≃ 2.5 × 10−6 Hz) and
η = 1 (blue dashed lines), η = 10 (green dot-dashed lines), η = 100 (red dotted lines), and ν = −1 (left
panels), ν = 0 (central panels), ν = 1 (right panels). For reference, the PGW for standard cosmology
is depicted with gray dashed lines, assuming a scale invariant primordial tensor spectrum (nT = 0)
and a tensor-to-scalar ratio r = 0.07. The colored regions in the lower panel correspond to projected
sensitivities for various GW observatories, and to the BBN constraint described in the text.

3.3 fre ≪ f

Contrary to the previous case, in the range of frequency fre ≪ f the amplification factor A
plays a major role. In the following subsections, the regimes where ν > 0, ν = 0, and ν < 0
will be studied separately.

Case ν > 0

If ν takes positive values, the Hubble rate can be expressed as

H(a) ≃ H(are)
(are

a

)2+ν
, (3.10)

which allows to express the PGW relic density in Eq. (2.10) as

ΩGW(τ0, k) =
PT (k)

24 a4
0
H2

0

[

H(are) k
ν a2+ν

re

]
2

1+ν ∝ PT (k) k
2ν

1+ν . (3.11)

The PGW spectrum gains an extra factor k
2ν

1+ν , and is therefore blue-tilted with respect to the
original tensor power spectrum. This enhancement in the PGW spectrum can alternatively
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be understood by examining the friction term in Eq. (2.9):

2
a′

a
=

4

1 + 3ω

1

τ
≃ 2

1 + ν

1

τ
. (3.12)

With respect to the standard case where the Universe is dominated by radiation (ω = 1/3),
the friction term is reduced and therefore the PGW spectrum is enhanced for ω > 1/3 or
equivalently ν > 0.

Case ν = 0

In this simple case, the Hubble rate is enhanced by a constant factor A = 1 + η. The PGW
spectrum is therefore not distorted, just showing an overall shift of A2:

ΩGW(τ0, k) ≃
(1 + η)2

24
PT (k)

[

ahc

a0

]4 [Hhc

H0

]2

∝ PT (k) . (3.13)

Case ν < 0

If ν takes negatives values, both for low (f ≪ fre) and high frequencies (f ≫ fre) the
amplification factor tends to 1. However, it is interesting to note that A reaches a maximum
at f = f̄ & fre given by

A(f̄) ≃ η

(

Tre

T⋆

)ν

. (3.14)

The PGW spectrum has the same tilt as the original tensor power spectrum, but featuring a
characteristic bump at k = k̄ = 2π f̄ , with an amplitude given by

ΩGW(τ0, k̄) ≃
1

24
η2

(

Tre

T⋆

)2ν

PT (k̄)

[

ahc

a0

]4 [Hhc

H0

]2

. (3.15)

The lower panels of Fig. 2 show the PGW spectrum ΩGWh
2 as a function of the frequency

f for T⋆ = Tre = 100 GeV (or equivalently f⋆ = fre ≃ 2.5× 10−6 Hz) and η = 1 (blue dashed
lines), η = 10 (green dot-dashed lines), η = 100 (red dotted lines), and ν = −1 (left panels),
ν = 0 (central panels), ν = 1 (right panels). For reference, the PGW spectrum in the case of
standard cosmology is depicted with gray dashed lines, assuming a scale-invariant primordial
tensor spectrum (nT = 0) and a tensor-to-scalar ratio r = 0.07. The colored regions in the
lower panel correspond to projected sensitivities for various GW observatories. As expected
from the analytical estimations in Eqs. (3.11), (3.13) and (3.15), the PGW spectra are boosted
due to the variation of the Hubble expansion rate. Such boosts clearly follow the evolution
of the amplification factor A. The effect of the modified cosmologies could give a localized
boost, an overall boost, or a change in the frequency dependence, for ν < 0, ν = 0, or ν > 0,
respectively.

4 PGW in scalar-tensor theories

Having described the impact of a general parameterization of modified gravity models on the
PGW spectrum, we now concentrate on a simple model which allows for explicit calculations.
We will like to understand analytically how the boost to the PGW spectrum is related to
conformal parameters in a specific modified gravity model: the ST theory of gravity.
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ST theories are defined by the action S ≡ SST + Sm [16] (see also Refs. [17, 118–121]),

SST =
1

16πG∗

∫

d4x
√−g [F (φ)R(g)− Z(φ) gµν ∂µφ∂νφ− 2V (φ)] , (4.1)

where R is the Ricci scalar, F and Z are arbitrary dimensionless functions of the field φ (also
dimensionless), and Sm = Sm[ψm, gµν ] is the matter action (here ψm denotes the matter fields
that couple to the metric tensor gµν). The action (4.1) reduces to the well-known Brans-Dicke
theory when F (φ) = φ, Z(φ) ∝ φ−1 and V (φ) = 0. Additionally, let us note that this action
is formulated in the Jordan frame.

The conformal transformation

gµν = A2
C(φ∗) g∗µν , (4.2)

together with the change of variables

(

dφ∗
dφ

)2

=
3

4

[

d lnF (φ)

dφ

]2

+
Z(φ)

2F (φ)
, (4.3)

AC(φ∗) = F−
1

2 (φ) , (4.4)

V∗(φ∗) =
V (φ)

2F 2(φ)
, (4.5)

yield the action in the Einstein frame

SST =
1

16πG∗

∫

d4x∗
√−g∗ [R∗(g∗)− 2gµν

∗
∂µφ∗∂νφ∗ − 4V∗(φ∗)] , (4.6)

while Sm = Sm[ψm, A
2
C g∗µν ]. The FLRW cosmological field equations in the Einstein frame

are given by [15–17]

3H2
∗
≡ 3

(

ȧ∗
a∗

)2

= 8πG∗ρ∗ + φ̇2
∗
+ 2V∗(φ∗) , (4.7)

3
ä∗
a∗

= −4πG∗(ρ∗ + 3p∗)− 2φ̇2
∗
+ 2V∗(φ∗) , (4.8)

φ̈∗ + 3H∗ φ̇∗ +
dV∗
dφ∗

= −4πG∗ α(φ∗) (ρ∗ − 3p∗) , (4.9)

where the dots denote derivatives with respect to the time variable t∗. Deviations of ST
theories from GR are parameterized by

α(φ∗) ≡
d lnAC(φ∗)

dφ∗
, (4.10)

where in the limit α→ 0, AC becomes a constant, the two frames coincide, and therefore the
ST theory reduces to GR.

We define the number of e-folds in the Einstein frame as N = ln(a∗/a∗0), where the
subindex ‘0’ labels quantities evaluated at present. By definition, the conformal factor at
present time is AC(φ∗0) = 1. Additionally, the relations between scale factor, time, energy
density, and pressure in the Jordan and Einstein frames are

a = AC(φ∗) a∗ , dt = AC(φ∗) dt∗ , ρ =
ρ∗

A4
C(φ∗)

, p =
p∗

A4
C(φ∗)

. (4.11)
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Figure 3. Evolution of the equation-of-state parameter ω with respect to the photon temperature T .
For reference, ω = 1/3 corresponding to radiation domination is also shown.

Therefore, the Hubble rates in the two frames are related by

H =
H∗ + α(φ∗) φ̇∗

AC(φ∗)
= H∗

1 + α(φ∗)
dφ∗

dN

AC(φ∗)
, (4.12)

where the factor 1+α(φ∗)
dφ∗

dN has to be positive. Additionally, the relation between gravita-
tional constants in GR and the Einstein frame is given by [133, 134]

G = G∗A
2
C(φ∗0)

[

1 + α2(φ∗0)
]

. (4.13)

Finally, Eqs. (4.9) and (4.12) can be rewritten as3

H =
AC(φ∗)

AC(φ∗0)

1 + α(φ∗)
dφ∗

dN

√

1 + α2(φ∗0)

√

1− 1

3

(

dφ∗

dN

)2
HGR , (4.14)

2

3−
(

dφ∗

dN

)2

d2φ∗
dN2

+ [1− ω]
dφ∗
dN

+ α(φ∗) [1− 3ω] = 0 , (4.15)

where ω = ω(T ) varies from 1/3 to −1 after reheating. In particular, during radiation-
domination era, its evolution is given by the variation of the effective number of degrees of
freedom

ω(T ) =
4

3

h(T )

g(T )
− 1 . (4.16)

Let us note that ω has to be understood as the equation-of-state parameter of the SM bath.
That means that after neutrino decoupling, only photons and electrons/positrons contribute
to ω. Figure 3 shows the evolution of the equation of state as a function of T . Deviations
from ω = 1/3 correspond to thresholds where SM particles become non-relativistic and to
the effect of particle interactions. In particular, the funnels at T ≃ 0.5 MeV, T ≃ 150 MeV,

3Hereafter we set V∗ = 0.
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and T ≃ 100 GeV correspond to the neutrino decoupling, QCD crossover, and electroweak
crossover, respectively [89]. Finally, by noticing that entropy is conserved in the Jordan frame,
the evolution of the SM temperature is given by

T =

[

h(T0)

h(T )

]
1

3 AC(φ∗0)

AC(φ∗)
T0 e

−N . (4.17)

Going further in the analysis requires fixing the conformal factor. One usual choice
corresponds to [17, 135–137]

AC(φ∗) = e
1

2
β φ2

∗ , (4.18)

which implies that α(φ∗) = β φ∗. In our numerical study, the ST model is fully set by fixing
β, the initial value of the field φ∗in and its derivative (dφ/dN)

∗in, at a high temperature
Tin = 1014 GeV. For the sake of simplicity, here we focus on the case (dφ/dN)

∗in = 0.
Additionally, the specific choice of Tin is not important, as long as it is much higher than the
electroweak scale. In fact, as it will be seen, for T ≫ TEW the field φ∗ does not evolve.

To analytically understand the behavior of the Hubble expansion rate and the PGW
spectrum, it is convenient to introduce two scales, one being the electroweak and the other
the BBN scale. The corresponding frequencies are

fEW =
kEW

2π
≃ a0

3

√

πg(TEW)G

5
T0 TEW e

1

2
βφ2

in , (4.19)

fBBN =
kBBN

2π
≃ a0

3

√

πg(TBBN)G

5
T0 TBBN . (4.20)

With respect to the two scales previously introduced, we study the following cases:

Case f ≤ fBBN

For small frequencies f ≤ fBBN, or equivalently low temperatures T ≤ TBBN (but still higher
than the matter-radiation equality), the Universe energy density is dominated by SM radiation
and therefore

ΩGW(τ0, k) ≃
PT (k)

24

(

aBBN

a0

)4(H(aBBN)

H0

)2

∝ PT (k) , (4.21)

meaning that the PGW spectrum keeps the same scale dependence as the primordial tensor
power spectrum PT (k), as expected from the standard cosmology.

Case fEW ≪ f

In the opposite limit, for temperatures higher than TEW we are deep in the radiation-
dominated era, with an equation of state constant and equal to 1/3. Therefore, the field
φ∗ is not rolling, staying at the value φ∗ = φ∗in. The Hubble expansion rate reduces to

H ≃ e
1

2
β φ2

∗in HGR , (4.22)

where φ∗0 = 0 was taken to recover GR at late times. The spectrum of PGW is given by

ΩGW(τ0, k) ≃
PT (k)

24

(

aEW

a0

)4(H(aEW)

H0

)2

eβ φ2
∗in ∝ eβ φ2

∗in PT (k) , (4.23)

where aEW is the scale factor at T = TEW. Equation (4.23) shows an overall boost factor of
eβ φ2

∗in on the PGW spectrum, and hence the same scale dependence as the primordial tensor
power spectrum.
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Figure 4. Evolution of φ∗ (left panel) and dφ∗/dN (right panel) with respect to the frequency f ,
for the benchmark points [β, φ∗in] = [1, 2] (blue solid line) and [5, 1] (red dotted line). We also took
Tin = 1014 GeV and (dφ∗/dN)in = 0.

Case fBBN < f < fEW

Once the Universe cools down to temperatures T ≃ TEW, SM particles start to become non-
relativistic. In fact, when the temperature drops below the mass of each of the particle types,
the equation of state decreases, significantly differing from 1/3 (see Fig. 3), and therefore
an important reduction of φ∗ takes place induced by the term proportional to α (1 − 3ω) in
Eq. (4.15).

Figure 4 shows the nontrivial evolution of the scalar field φ∗ (left panel) and its derivative
dφ∗/dN (right panel) as a function of the temperature T , for the benchmark points [β, φ∗in] =
[1, 2] (blue solid line) and [5, 1] (red dotted lines). The figure shows that at high temperatures
T > TEW, the field stays at its initial value φ∗in. At the electroweak crossover, the reduction
of the equation-of-state parameter induces a relaxation of the field that starts to roll to the
minimum of its potential. We notice that its velocity dφ∗/dN tends to track the evolution
of ω. Finally, at low temperatures T . TBBN the field φ∗ → 0 and therefore GR is recovered
[17, 137]. In this way, the constraint on the speed of GW from LIGO is naturally avoided.

Figure 5 shows the corresponding PGW spectra produced for the same benchmark points
used in Fig. 4 (i.e. [β, φ∗in] = [1, 2] (blue solid line) and [5, 1] (red dotted line)), and assuming
a scale invariant primordial tensor spectrum (nT = 0) with a tensor-to-scalar ratio r = 0.07.
For reference, the gray dashed line shows the PGW in the case of GR. Additionally, the
colored regions correspond to projected sensitivities for various GW observatories, and to the
BBN constraint described in the text. For frequencies f . fBBN, the PGW spectrum follows
the one in GR. However, for f > fBBN there is a sizable scale-dependent boost that becomes
constant at f ≃ fEW.
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Figure 5. Scalar-Tensor Gravity: PGW spectrum, for the benchmark points [β, φ∗in] = [1, 2] (blue
solid line) and [5, 1] (red dotted line), and assuming a scale invariant primordial tensor spectrum
(nT = 0) with a tensor-to-scalar ratio r = 0.07. We also took Tin = 1014 GeV and (dφ∗/dN)in = 0.
For reference, the gray dashed line shows the PGW in the case of GR. The colored regions correspond
to projected sensitivities for various GW observatories, and to the BBN constraint described in the
text.

5 PGW in braneworld cosmology

Here we investigate braneworld cosmological models as another example of modified gravity
theories, to understand its impact on the spectrum of PGW.4 In the braneworld cosmology,
the Friedmann equation for a spatially flat Universe is found to be [144–147]

H2 =
8πG

3
ρ
(

1 +
ρ

σ

)

, (5.1)

where ρ is the SM energy density and the parameter σ is the brane tension.5 Then the brane
tension parameter is related to the 5-dimensional Planck mass M5 as

σ ≡ 96πGM6
5 . (5.2)

To have a Universe dominated by SM radiation at T = TBBN, it is required that σ ≫
ρ(TBBN). It is therefore possible to define an effective temperature scale Tσ from which the
contribution of brane tension becomes important

σ =
π2

30
g(Tσ)T

4
σ . (5.3)

4In these models, other cosmological aspects as the impact in the DM relic density have been intensively
investigated in Refs. [138–143].

5For simplicity, we set the 4-dimensional cosmological constant and the so-called dark radiation parameter
to zero [148].
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The Hubble expansion rate can be approximated as

H2 ≃







8πG
3
ρ for T ≪ Tσ ,

8πG
3

ρ2

σ for T ≫ Tσ .
(5.4)

Taking into account that in braneworld cosmologies the entropy is conserved, it is possible to
find the frequency fσ corresponding to the temperature Tσ:

fσ =
kσ
2π

=
a0
π

T0
Tσ
HGR(Tσ) =

2

3

√

π g

5

T0 Tσ
MP

. (5.5)

The PGW spectrum in the limiting cases presented in Eq. (5.4) become:

Case f ≪ fσ

At small frequencies f ≪ fσ, or equivalently low temperatures T ≪ Tσ ≪ TBBN, the Universe
energy density is dominated by SM radiation and therefore

ΩGW(τ0, k) ∝ PT (k) , (5.6)

meaning that the PGW spectrum keeps the same scale dependence as the primordial tensor
power spectrum PT (k), as expected from standard cosmology.

Case f ≫ fσ

However, for high frequencies f ≫ fσ, Eq. (2.10) can be rewritten as

ΩGW(τ0, k) =
PT (k)

24 a4
0
H2

0

[

H(aσ) k
2 a4σ

]
2

3 ∝ PT (k) k
4

3 . (5.7)

The PGW spectrum gains an extra factor k
4

3 , and is therefore blue-tilted with respect to the
original tensor power spectrum, as expected from Eq. (3.11) in the case ν = 2.

Figure 6 shows the amplification factor A (left panel) and the PGW spectrum ΩGWh
2

(right panel) as a function of the frequency f for Tσ = 10 MeV (black solid lines), Tσ = 1 GeV
(blue dashed lines), Tσ = 100 GeV (dot dashed green lines) and Tσ = 10 TeV (dotted red
lines). For reference, the PGW for standard cosmology is depicted with gray dashed lines,
assuming a scale-invariant primordial tensor spectrum (nT = 0) and a tensor-to-scalar ratio
r = 0.07. The colored regions in the lower panel correspond to projected sensitivities for
various GW observatories, and to the BBN constraint described in the text.

LIGO observations at late time posit an interesting bound on the parameter Tσ, that
can be derived from Eqs. (5.5) and (5.7). In fact,

ΩGW, LIGOh
2(f ∼ 10 Hz) ≃ 2× 10−8 ≃ 2× 10−16

( r

0.07

)

(

f

fσ,min

)4/3

. (5.8)

This gives Tσ,min ≃ 300 GeV and fσ,min ≃ 10−5 Hz as the minimum values of characteristic
temperature and frequency allowed by LIGO.
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Figure 6. Braneworld Gravity: Amplification factor A (plot above) and PGW spectrum ΩGWh
2 (plot

below) as a function of the frequency f for Tσ = 10 MeV (black solid lines), Tσ = 1 GeV (blue dashed
lines), Tσ = 100 GeV (dot dashed green lines) and Tσ = 10 TeV (dotted red lines). For reference, the
PGW for the standard cosmology case is depicted with gray dashed lines, assuming a scale invariant
primordial tensor spectrum (nT = 0) and a tensor-to-scalar ratio r = 0.07. The colored regions in
the lower panel correspond to projected sensitivities for various GW observatories, and to the BBN
constraint described in the text.

6 Summary and conclusions

Modified cosmologies, based on UV-completions of GR, predict modified expansion histories
in the early Universe, which are typically unconstrained by cosmological observations hitherto.
However, current and upcoming GW detectors will open up the possibility of directly probing
such era via PGW.

We investigated modified gravity theories which generate nonstandard Hubble expan-
sions of the Universe in the pre-BBN epoch, looking for possible enhancements in the relic
density of the PGW spectrum. In Sec. 3 we considered a general parametrization for various
theories of gravity affecting the expansion of the Universe. Examples of modified PGW spec-
tra were shown in Fig. 2. In Sec. 4 we focused on the case of scalar-tensor theories that modify
Einstein’s gravity due to an additional scalar degree of freedom which couples to the Ricci
scalar. Fig. 5 shows examples of typical PGW spectra enhanced by scalar-tensor cosmologies,
which can be detectable by DECIGO. The same behavior happens in braneworld scenarios
described in Sec. 5. In fact, depending on the values of brane tension parameter σ, one may
get an enhanced spectrum of the PGW, as shown in Fig. 6.

Finally, GW experiments provide complementary tests of gravity in the early Universe
and enlighten us what modifications to Einstein gravity may really explain phenomena over
different cosmic scales consistently. In addition to other gravity tests, PGW detection will
narrow down the parameter space for the modification of GR in the early Universe. However,
one requires to do a detailed analysis of how the bounds from such laboratory/astrophysical
probes of gravity compete/complement that by PGW, any such analysis is beyond the scope
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of our current paper.
The analysis presented in this paper should only be regarded as a first step in the quest of

modified gravity probes in the pre-BBN era via PGW. Such modifications in the early universe
lead to modifications on the dark matter relic density, the matter-antimatter asymmetry, and
the abundance of primordial black holes and microhalos.

Overall, the cosmological era between the end of inflation and the beginning of radiation-
dominated era is unknown and remains largely unexplored. Several UV-complete scenarios
motivate nonstandard cosmology or modified gravity epochs prior to BBN. The present in-
vestigation is timely because several decades of frequency ranges of various GW amplitudes
should be accessible to the next generation GW experiments. Consequently, additional con-
straints or signals from these experiments could point to new physics in the era prior to
BBN.

For future investigations in this direction, we would like to relax our assumptions re-
garding the initial primordial tensor spectrum generated during inflation, and correlate the
PGW probes with other tests-of-gravity experiments.6 We believe that with the network of
GW detectors that are planned for heralding and advancing GW astronomy, it will soon be
possible to make the dream of understanding UV completion of gravity a reality.
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