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A measurement of primordial non-gaussianity will be of paramount importance to distinguish
between different models of inflation. Cosmic microwave background (CMB) anisotropy observations
have set unprecedented bounds on the non-gaussianity parameter fNL but the interesting regime
fNL . 1 is beyond their reach. Brightness-temperature fluctuations in the 21-cm line during the
dark ages (z ∼ 30 − 100) are a promising successor to CMB studies, giving access to a much
larger number of modes. They are, however, intrinsically non-linear, which results in secondary
non-gaussianities orders of magnitude larger than the sought-after primordial signal. In this paper
we carefully compute the primary and secondary bispectra of 21-cm fluctuations on small scales.
We use the flat-sky formalism, which greatly simplifies the analysis, while still being very accurate
on small angular scales. We show that the secondary bispectrum is highly degenerate with the
primordial one, and argue that even percent-level uncertainties in the amplitude of the former lead
to a bias of order ∆fNL ∼ 10. To tackle this problem we carry out a detailed Fisher analysis,
marginalizing over the amplitudes of a few smooth redshift-dependent coefficients characterizing
the secondary bispectrum. We find that the signal-to-noise ratio for a single redshift slice is reduced
by a factor of ∼ 5 in comparison to a case without secondary non-gaussianities. Setting aside
foreground contamination, we forecast that a cosmic-variance-limited experiment observing 21-cm
fluctuations over 30 ≤ z ≤ 100 with a 0.1-MHz bandwidth and 0.1-arcminute angular resolution
could achieve a sensitivity of order f local

NL ∼ 0.03, f equil
NL ∼ 0.04 and fortho

NL ∼ 0.03.

I. INTRODUCTION

Increasingly precise cosmic microwave background
(CMB) [1, 2] and large-scale structure [3, 4] measure-
ments have zeroed in on a rather simple model of the
cosmos, requiring only a handful of parameters. In par-
ticular, initial fluctuations seem to be mostly scalar and
highly gaussian [5–7]. They are well described by a sim-
ple power-law spectrum, whose slope is consistent with
a single scalar field driving inflation while slowly rolling
down a very flat potential [8, 9]. Proposed experiments
like EUCLID [10] and PRISM [11] will measure the in-
flationary parameters even more precisely, and possibly
extract additional quantities, such as the running of the
scalar tilt [12]. This should further constrain the form of
the inflaton potential during the quasi-de-Sitter phase.
While single-field inflation has the merit of simplic-

ity, a plethora of alternative models remain consistent
with current data [13–17]. The main characteristic that
differentiates them from the simplest inflationary sce-
nario is that they can generate significant primordial
non-gaussianities (PNGs). The simplest form of PNG is
a non-vanishing three-point function for the primordial
curvature perturbation ζ, parametrized by a dimension-
less amplitude fNL ∼ 〈ζ3〉/〈ζ2〉2. Single-field inflation
leads to a small three-point function, corresponding to
fNL ∼ 10−2 [18, 19]. Alternative models typically gener-
ate fNL ∼ 1, as a result of interactions with other fields
[20, 21], higher-derivative terms in the Lagrangian [22–
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24], or other mechanisms [13]. Measuring fNL . 1 is
therefore a natural target for future experiments to start
significantly constraining the physics of inflation [25].

The best constraints on fNL to date are obtained from
CMB studies [26], and are consistent with zero, though
with a large uncertainty, σfNL

∼ 5−40 depending on the
shape considered. CMB measurements are now cosmic-
variance limited in temperature down to the photon dif-
fusion scale corresponding to multipole ℓ ∼ 2000. The
anticipated improvement in polarization measurements
is expected to only marginally tighten the constraints on
fNL. Reaching the fNL ∼ 1 frontier will therefore most
likely require other data sets.

Fluctuations in the brightness temperature of the 21-
cm line of neutral hydrogen have the potential to open a
new window on the high-redshift universe [27, 28]. This
observable can in principle allow us to probe a fantas-
tic number of modes, largely surpassing those available
from CMB observations alone. First, fluctuations are un-
damped down to the baryon Jeans scale (with wavenum-
ber k ∼ 300 Mpc−1) three orders of magnitude smaller
than the photon diffusion scale (k ∼ 0.2 Mpc−1). In
addition, whereas CMB anisotropies probe a single sur-
face, a line such as the 21-cm transition makes it possible
to observe the early universe in tomography, and to co-
add the information from each independent redshift slice.
While the 21-cm line can in principle be observed all the
way to cosmological reionization, at z ∼ 10, the signal is
cleaner at higher redshifts z & 30, the dark ages preced-
ing the formation of the first luminous objects. We focus
on this redshift range in this paper.

The technical challenges to observe high-redshift 21-cm
fluctuations are daunting, and will most likely require a
telescope array on the far side of the Moon [29], as well as
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foreground-removal of the Galactic synchrotron radiation
to an exquisite accuracy. We will not tackle these prob-
lems in the present work, but focus on another source of
contamination: the intrinsic non-gaussian nature of 21-
cm fluctuations, even for perfectly gaussian initial condi-
tions.
While the baryon-photon fluctuations are highly linear

at the epoch of last-scattering z ∼ 1100, the perturba-
tions in the cold dark matter (CDM) and baryon fluids
have significantly grown by z ∼ 50. Even if they remain
small enough that no bound structure has formed yet,
gravitational growth leads to a non-linear dependence of
the density field on initial conditions. In addition, the
21-cm brightness temperature depends non-linearly on
the local baryon density, velocity gradient, and tempera-
ture. Both effects give rise to a non-vanishing three-point
function for the 21-cm brightness temperature, orders of
magnitude larger than that resulting from PNG. Unless
treated appropriately, this can jeopardize the usefulness
of 21-cm fluctuations to measure PNG.
Two previous studies have partially addressed this is-

sue. Ref. [27] computed the bispectrum of 21-cm fluc-
tuations resulting from non-linear gravitational growth,
but treated it approximately as a confusion noise rather
than a bias. Ref. [28] computed all contributions of the
secondary bispectrum, but did not account for it in their
final forecasts. In addition they only computed the bis-
pectrum for specific triangle configurations. These two
groups moreover get significantly different final results.
In this paper we compute the primary and secondary

bispectra using the flat-sky formalism. This accurately
reproduces the full-sky calculation with a much lower
computational cost, and greatly simplifies the analysis.
We show that the shapes of the primary and secondary
bispectra overlap significantly. Unsubtracted, the sec-
ondary bispectrum would lead to a bias ∆fNL ∼ 103.
Even percent-level residuals after subtraction would lead
to a non-zero non gaussianity of order ∆fNL ∼ 10. This
warrants a Fisher analysis, fitting simultaneously for the
amplitude of PNG and for nuisance parameters charac-
terizing the residual secondary bispectrum after a best-
estimate is subtracted. For a single redshift slice, we find
that the uncertainty in fNL after marginalizing over the
nuisance parameters is increased by a factor of ∼ 3 − 6
in comparison to an ideal case without secondaries. Fi-
nally, we optimally combine redshift slices accounting for
the smoothness of the secondary bispectrum as a func-
tion of redshift. Our forecasts for a cosmic-variance-
limited experiment targeting 30 ≤ z ≤ 100 with a band-
width of 0.1 MHz and angular resolution of 0.1 arcminute
are: σf local

NL
∼ 0.03, σfequil

NL

∼ 0.04, and σfortho
NL

∼ 0.03.

For the same angular resolution but a bandwidth of 1
MHz our forecast is σf local

NL
∼ 0.12, σfequil

NL

∼ 0.39, and

σfortho
NL

∼ 0.29.

The paper is structured as follows, in Section II, we
briefly review the basic physics of the 21-cm transition
and the flat-sky formalism. In Section III, we compute
the different sources of non-gaussianities, both primordial

and secondary. In Section IV, we forecast the potential
signal-to-noise ratio reachable for cosmic-variance limited
experiments. We conclude in Section V.

II. BASIC ASSUMPTIONS AND NOTATION

A. 21-cm brightness temperature

The spin temperature of neutral hydrogen Ts is defined
as usual through the ratio of the abundance of atoms in
the triplet state and in the singlet state:

n1

n0
= 3 e−T∗/Ts , (1)

where T∗ = 0.068 K = 5.9 µeV is the energy difference
between the two hyperfine levels. The abundances n0

and n1 can be obtained to high accuracy in the steady-
state approximation by equating the rate of upward and
downward transitions:

n0(C01 +R01) = n1(C10 +R10), (2)

where the Cij are the collisional transition rates, pro-
portional to the gas density and dependent on the gas
temperature Tgas, and the Rij are the rates of radiative
transitions mediated by CMB blackbody photons (specif-
ically, R10 includes spontaneous and stimulated emission,
and R01 accounts for absorption). Since we are concerned
with the dark ages preceding the formation of the first
luminous objects, we do not account for transitions re-
sulting from inelastic scattering of Lyman-α photons (the
Wouthuysen-Field effect [30–32]). The steady-state ap-
proximation is very accurate as Cij + Rij ≫ H at all
times [33]. In the limit T∗ ≪ Tgas, Tcmb, valid at all
times, the spin temperature is then given by

Ts = Tcmb +
C10

C10 +A10
Tgas

T∗

(Tgas − Tcmb), (3)

where A10 is the Einstein-A coefficient of the hyperfine
transition.
The brightness temperature (or more accurately, the

brightness temperature contrast with respect to the
CMB) resulting from the resonant interaction of CMB
photons with the hyperfine transition is given by

T loc
21 = (Ts − Tcmb)(1− e−τ ), (4)

where the superscript “loc” emphasizes that this is the
local brightness temperature, at the location of the ab-
sorbing gas.
The optical depth τ is a function of the local neutral

hydrogen density nH0 = nH(1− xe) (where xe is the free
electron fraction) and the gradient ∂rvr of the peculiar
velocity along the direction of propagation [34]:

τ =
3

32π

T∗

Ts
nH0λ3

21

A10

H(z) + (1 + z)∂rvr
, (5)
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where λ21 ≈ 21 cm is the transition wavelength. The
second term in the denominator accounts for the per-
turbation of the optical depth due to the perturbed ex-
pansion rate along the direction of propagation1. The
21-cm transition is optically thin (τ ≪ 1) in the regime
of interest, so that T loc

21 ≈ τ(Ts − Tcmb). The brightness
temperature observed today is then just

T obs
21 =

T loc
21

1 + z
= τ

Ts − Tcmb

1 + z
. (6)

B. Fluctuations of the 21-cm brightness

temperature

We define δv ≡ −(1 + z)(∂rvr)/H(z). Up to terms of
third order in the fluctuations, the observed brightness
temperature (we shall drop the superscript “obs”) takes
the form [37]2

T21 = T 21(1 + δv + δ2v) +
(

Tb δb + TT δTgas

)

(1 + δv)

+Tbb δ2b + TbT δbδTgas
+ TTT δ2Tgas

, (7)

where δb ≡ δnb/nb is the fractional fluctuation of the
baryon density and δTgas

is the fractional fluctuation of
the gas temperature, which affect T21 through the col-
lision rates. This equation neglects fluctuations of the
ionization fraction xe ∼ 10−4 at the redshifts of interest,
as they lead to negligible fluctuations of T21 which is pro-
portional to (1− xe). We compute the coefficients in the
above equation as described in Ref. [37]. They ought to
be used for detailed prediction when actual data is avail-
able. For this study, however, we shall make simplifying
assumptions regarding the gas temperature fluctuations
in order to keep calculations tractable. We now describe
our approximations.
The evolution of the gas temperature can be obtained

from the first law of thermodynamics. Neglecting fluctu-
ations of the CMB temperature and the effect of gravi-
tational potentials, the full non-linear equation is [37]

δ̇Tgas
−

2

3
δ̇b
1 + δTgas

1 + δb
=

ΓC

[

T cmb − T gas

T gas

δxe
−

(

T cmb

T gas

+ δxe

)

δTgas

]

, (8)

1 This term is often mislabeled as a “redshift-space distortion”.
It indeed has the same form in the optically thin limit, but has
a qualitatively different origin [35]. On the one hand, redshift-
space distortions arise from the Jacobian of the transform from
real to redshift space to which the observer has access. On the
other hand the local velocity gradient modifies the local expan-
sion rate and hence the optical depth (or escape probability) of
21-cm photons, regardless of the relative velocity between the
observer and the emitter. This effect is analogous to the per-
turbation of the Lyman-α escape probability which is one of the
sources of perturbed recombination [33, 36].

2 Our definition of δv differs from that of Ref. [37] by a minus sign.

where ΓC × (Tcmb − Tgas) is the rate at which Thomson
scattering of CMB photons by free electrons heats up the
gas. Since ΓC ∝ T 4

cmbxe, the fluctuations of the gas tem-
perature are coupled to those of the free-electron fraction
δxe

. In principle this equation should be solved simulta-
neously with the evolution of δxe

, obtained by perturbing
the recombination rate [37]. We find that neglecting δxe

leads to errors of order ∼ 10% for the linear evolution
and we shall set δxe

→ 0 for simplicity. With this simpli-
fication, the equation for δTgas

to second order is

δ̇Tgas
−

2

3
δ̇b

(

1− δb + δTgas

)

+
T cmb

T gas

ΓCδTgas
= 0. (9)

We shall consider scales larger than the baryonic Jeans
scale: k ≪ kJ ∼ 300 Mpc−1. On these scales baryons
behave just like CDM, so their evolution equation does
not depend on Tgas. Given δb, we can therefore solve
for the gas-temperature fluctuations. We decompose the
baryon-density fluctuation into a piece linear in the initial

conditions δ
(1)
b and a quadratic piece δ

(2)
b resulting from

non-linear gravitational collapse. We can then solve for
the linear and quadratic parts of δTgas

:

δ̇
(1)
Tgas

+
T cmb

T gas

ΓCδ
(1)
Tgas

=
2

3
δ̇
(1)
b , (10)

δ̇
(2)
Tgas

+
T cmb

T gas

ΓCδ
(2)
Tgas

=
2

3
δ̇
(2)
b +

2

3
δ̇
(1)
b (δ

(1)
Tgas

− δ
(1)
b ).(11)

Our final approximation is to assume that δ
(1)
b is uni-

formly proportional to the scale factor a, i.e. δ
(1)
b (x, a′) =

(a′/a)δ
(1)
b (x, a), independently of the position x, and

similarly that δ
(2)
b ∝ a2. We then solve Eqs. (10) and

(11) starting at z = 1000 with vanishing initial condi-
tions. The mean free-electron fraction xe required for
ΓC and mean gas temperature T gas are obtained from
HyRec [38, 39]. This allows us to obtain three coeffi-
cients C1(z), C2(z) and C ′

2(z) such that

δ
(1)
Tgas

(x, z) = C1(z)δ
(1)
b (x, z), (12)

δ
(2)
Tgas

(x, z) = C2(z)[δ
(1)
b (x, z)]2 + C ′

2(z)δ
(2)
b (x, z),(13)

which we show in Fig. 1.

The assumption that δ
(1)
b ∝ a and δ

(2)
b ∝ a2 is not quite

correct. Indeed this assumes that baryons behave exactly
like CDM. In reality, they start with different “initial”
conditions at z ≈ 1000, after they decouple from the pho-
ton fluid shortly after cosmological recombination: their
overdensity is typically significantly smaller than that of
the CDM on sub-horizon scales, and their velocity field,
though comparable to that of the CDM in magnitude, has
a very different scale dependence (hence leading to the
relative-velocity effect [40]). Baryons therefore take some
time to “catch up” to the CDM, and their growth rate at
early times differs from δb ∝ a, and is scale-dependent.
Given that Thomson scattering maintains Tgas = Tcmb at
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C1

C
0
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FIG. 1. Coefficients of the approximate decomposition of
the gas-temperature fluctuations as a quadratic function of

baryon density fluctuations: δTgas(x, z) ≈ C1(z)δ
(1)
b (x, z) +

C2(z)[δ
(1)
b (x, z)]2 + C′

2(z)δ
(2)
b (x, z). At high redshift, Comp-

ton heating is efficient and maintains Tgas = Tcmb, with neg-
ligible fluctuations, so C1 ≈ C2 ≈ C′

2 ≈ 0. At low redshift,
the gas decouples thermally from the CMB and starts cooling

down adiabatically, asymptoting towards Tgas ∝ n
2/3
b , which

implies C1 ≈ C′
2 → 2/3 and C2 → −1/9.

z & 200, regardless of the exact value of δb, this should
not be a major issue, but should be properly accounted
for in a detailed analysis.
With these caveats in mind, we substitute our approx-

imation δTgas
= C1δ

(1)
b +C2[δ

(1)
b ]2 +C ′

2δ
(2)
b into equation

(7) and obtain the following simpler expression for the
21-cm brightness temperature fluctuations to second or-
der, with which we shall work for the rest of this paper:

δT21 ≈ T 21(δ
(1)
v + δ(2)v + [δ(1)v ]2)

+ α(z)δ
(1)
b (1 + δ(1)v ) + β(z)[δ

(1)
b ]2 + γ(z)δ

(2)
b .(14)

The effective coefficients α, β, and γ are straightfor-
wardly obtained from the coefficients of Eq. (7) and
C1, C2, C

′
2 and are shown in Figure 2.

C. Neglected sources of fluctuations

The above analysis is only valid on subhorizon scales,
and does not account for several relativistic effects. First,
the gas is not at rest with respect to comoving observers.
We have already accounted for the resulting perturbation
to the local Hubble expansion rate due to the velocity
gradient. In addition, a local velocity leads to (i) a dif-
ference between the proper time in the baryon rest frame
and the comoving frame, (ii) a dipolar anisotropy of the
CMB intensity in the baryon rest frame, and (iii) an ad-
ditional redshifting of the observed frequency. Gravita-
tional potentials also affect the observed brightness tem-
perature through: (i) a time dilation, (ii) a perturbation
to the local expansion rate, (iii) the Sachs-Wolfe and

-

-

-

-

+

(
)

T 21

α

β

γ

FIG. 2. Coefficients of the approximate decomposition of the
21-cm brightness temperature given in Eq. (14), in mK. In

solid black we plot T 21, in blue dashed α = ∂T21/∂δ
(1)
b , in

red dotted β = 1
2
∂2T21/∂δ

2
b , and in purple dot-dashed γ =

∂T21/∂δ
(2)
b .

integrated Sachs-Wolfe effects3, and (iv) lensing by in-
tervening structure, as is familiar from CMB studies. All
these relativistic corrections are rigorously accounted for
using the relativistic Boltzmann equation in Ref. [33].
They lead to fluctuations on scales comparable to the
horizon at the redshift of absorption, i.e. k . 10−3

Mpc−1 [33]. We will neglect them in this study, which is
justified as we shall see that most of the signal-to-noise for
PNGs comes from small scales, with k ≫ 10−3 Mpc−1.
Redshift-space distortions are an additional source of

non-linear fluctuations. The observer has only access to
the total redshift zobs ≡ λobs/λ21 − 1, and will compute
the angular power spectrum on slices of fixed zobs. The
observed redshift is the sum of the cosmological redshift
z and the redshift due to the relative peculiar velocity v||
along the line of sight: zobs = z + v||/c. The observed
brightness temperature at wavelength λobs is therefore

T obs
21 (λobs, n̂) =

T loc
21 (z, n̂)

1 + zobs
, (15)

where the true redshift z ≡ zobs−v||(z, n̂)/c depends im-
plicitly on the unknown local velocity. The angular power
spectrum at fixed zobs therefore has additional non-linear
terms [33, 35, 42]. We shall not account for those in this
study but they should of course be modeled accurately
when actual data is available.
Finally, Ref. [37] showed that the non-linear depen-

dence of the 21-cm fluctuation on the local baryon den-
sity and temperature leads to enhanced large-scale fluctu-
ations due to the relative velocity effect [40]. The mag-
nitude of the enhanced fluctuations is δT21 ∼ β∆〈δ2s〉,
where β is the coefficient of quadratic terms in the

3 See Ref. [41] for a discussion of the ISW effect for 21-cm surveys.
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brightness-temperature fluctuations, and ∆〈δ2s〉 is the
large-scale fluctuation of small-scale power due to the
relative velocity effect. These enhanced fluctuations are
most important for scales k . 0.1 Mpc−1, and we will not
account for them in this study, where we focus mostly on
smaller scales. The relative-velocity effect also leads to
a suppression of the average small-scale power, but this
takes place at scales k & 100 Mpc−1, which we do not
consider.

D. Flat-sky formalism

1. Fourier transform

We consider a small patch on the sky, across which we
can assume that the line of sight n̂ is a constant direction.
We then define the Fourier transform of the brightness
temperature as

δT (k) ≡

∫

drd2x⊥e
−ik·xδT (rn̂,x⊥). (16)

Assuming matter domination and that the baryons have
caught up to the dark matter so that δb ∝ a, at linear or-

der the peculiar velocity term is δv(k) = (k̂ · n̂)2δb(k).
The linear terms of Eq. (14) therefore contribute a
Fourier transform

δT lin(k) = [α+ T 21(k̂ · n̂)2]δb(k). (17)

The power spectrum of 21-cm fluctuations is therefore
anisotropic: to lowest order, and defining k|| ≡ k · n̂,

PδT (k) =
(

α+ T 21 k2||/k
2
)2

Pδb(k). (18)

Similarly, the bispectrum BδT (k1,k2,k3) is anisotropic,
and depends on the orientation of the wavenumbers with
respect to the line of sight. It is defined as usual through

〈δT21(k1)δT21(k2)δT21(k3)〉 = (2π)3δD(k1 + k2 + k3)

×BδT (k1,k2,k3). (19)

2. Harmonic transform

Since we focus on small angular scales, we adopt a
flat-sky formalism [43, 44]. We assume that the 21-cm
temperature is observed with a finite window function
W in frequency. The observed temperature is therefore
the convolution of the underlying temperature with W ,
which we shall denote by W ∗ δT . We define the flat-sky
harmonic transform

δT (r, ℓ) ≡

∫

A

d2x⊥

r2
e−iℓ·x⊥/r(W ∗ δT )(rn̂,x⊥), (20)

where n̂ is the line of sight, assumed constant over the
small survey area A, and x⊥ is perpendicular to the line

of sight. In terms of the Fourier modes of δT , this gives

δT (ℓ) =

∫

d3k

(2π)3
eirk||W̃ (k||)δT (k)(2π)

2δ̃D(rk⊥ − ℓ),

(21)

where W̃ (k||) is the Fourier transform of the window
function and we have defined

δ̃D(ℓ) ≡
1

(2π)2

∫

A

d2x⊥

r2
eix⊥·ℓ/r. (22)

The function δ̃D peaks at the origin, with value δ̃D(0) =
fsky/π, where fsky is the fraction of sky subtended by

the survey. If has a characteristic width ∆ℓ ∼ (fsky)
−1/2

and integrates to unity. Finally, a convolution of δ̃D with
itself gives δ̃D back.
The covariance of δT (ℓ) at equal r is given by

〈δT (ℓ)δT ∗(ℓ′)〉 =

∫

d2k⊥(2π)
2δ̃D(rk⊥ − ℓ)δ̃∗D(rk⊥ − ℓ

′)

×

∫

dk||

2π
|W̃ |2(k||)PδT

(

k||,k⊥

)

. (23)

For ℓ ≫ (fsky)
−1/2, we may approximate k⊥ ≈ ℓ/r in

the inner integral. Carrying out the outer integral, we
arrive at

〈δT (ℓ)δT ∗(ℓ′)〉 ≈ (2π)2δ̃D(ℓ
′ − ℓ)Cℓ, (24)

where [44]

Cℓ ≡
1

r2

∫

dk||

2π
|W̃ |2(k||)PδT

(

k||, ℓ/r
)

. (25)

We show the flat-sky power spectrum Cℓ computed with
different widths of the window function and for several
redshift slices in Fig. 3.

z=100

z=50

z=30

��� ��� ���� ���� ����� ����� ������

����
����

����
�

�

ℓ

(�
ℓℓ� /�

π)�/� [
��

]

FIG. 3. Flat-sky power spectrum Cℓ in the limit of infinitely
narrow window function, for redshifts (top to bottom) z = 50
(blue), z = 100 (black) and z = 30 (red). We also show the
Cℓ at redshift z = 50 for a Gaussian window function of width
0.1 MHz (blue dashed) and width of 1 MHz (blue dotted).

Similarly, the three-point function of δT (ℓ) defines our
flat-sky bispectrum:

〈δT (ℓ1)δT (ℓ2)δT (ℓ3)〉 = (2π)2δ̃D(ℓ1 + ℓ2 + ℓ3)Bℓ1ℓ2ℓ3 ,
(26)
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with [44]

Bℓ1ℓ2ℓ2 ≡

∫

dk1||dk2||

(2π)2r4
W̃ (k1||)W̃ (k2||)W̃ (−k1|| − k2||)

BδT

(

k1||, ℓ1/r; k2||, ℓ2/r
)

, (27)

where we have dropped the dependence on k3 in the k-
space bispectrum since it is fixed by the triangle condition
given k1 = k1||n̂+ ℓ1/r and k2 = k2||n̂+ ℓ2/r. Note that
we do not use the Limber approximation and perform the
full integrals over k||’s.

We now describe and compute the different contribu-
tion to Bℓ1ℓ2ℓ3 .

III. BISPECTRUM OF 21-CM FLUCTUATIONS

The bispectrum gets contributions from primordial
non-gaussianities, which we would like to extract from
the data, but also from secondary non-gaussianities, aris-
ing from the non-linear relation between the observable
and the initial conditions, even if the latter are perfectly
gaussian.

We only consider multipoles ℓ & 100, which correspond
to wavenumbers k & 0.01 Mpc−1, as most of the signal-
to-noise ratio for bispectrum measurements is expected
to come from small-scale modes. We therefore neglect
the contributions of relativistic terms to the bispectrum,
in particular the ISW-lensing bispectrum, which is the
dominant secondary bispectrum for CMB anisotropies
[45–48].

A. Primordial non-gaussianities

The contribution of PNG to the bispectrum of 21-cm
fluctuations can be obtained to lowest order by only con-
sidering the linear terms in Eq. (14), and assuming that
they are linearly related to the primordial curvature fluc-
tuations. The Fourier transform of the linear terms is
given in Eq. (17). We define M(k, z) ≡ δb(k, z)/Φ(k),
where Φ = (3/5)ζ is Bardeen’s gravitational potential.
The bispectrum of brightness-temperature fluctuations
gets a contribution

Bprim
δT (k1,k2,k3) =

3
∏

i=1

(α+ T 21µ
2
i )M(ki)

×BΦ(k1, k2, k3) (28)

from primordial non-gaussianities, where µi ≡ (ki ·n̂)/ki.

We now review the different shapes of the initial po-
tential bispectrum BΦ(k1, k2, k3) that we will consider
in this paper (see e. g. Ref. [26] for a larger variety of
shapes).

1. Local

The simplest form of PNG is of the local type, where
the primordial potential Φ is a local non-linear function
of a gaussian field φ:

Φ(x) = φ(x) + f local
NL

(

φ2(x)− 〈φ〉
2
)

. (29)

This implies a non-vanishing bispectrum for Φ, given to
lowest order by

Blocal
Φ (k1, k2, k3) = 2f local

NL [PΦ(k1)PΦ(k2) + 2 perm.] .(30)

This form of the bispectrum peaks in the squeezed con-
figuration (k1 ≪ k2 ∼ k3 and permutations).
Local-type PNG typically arises in multi-field inflation

models, such as the curvaton model or modulated reheat-
ing [49].

2. Equilateral

PNGs of the equilateral type arise when there are non-
standard kinetic terms in the inflation Lagrangian, which
are included in the so-called P (X) models of inflation
[23], concrete examples of which are k-inflation [24, 50]
and Dirac-Born-Infield inflation [22, 51]. In these models
the effective sound speed cs can be very different from the
speed of light (c = 1), and the non-gaussianity parameter

is related to this departure via f equil
NL = −(35/108)(c−2

s −
1) [23].
This shape peaks when the three modes cross the hori-

zon at the same time, and hence k1 ∼ k2 ∼ k3. A good
template for it is [52],

Bequil
Φ (k1, k2, k3) = 6f equil

NL A2
Φ

{

−

[

1

(k1k2)4−ns

+ 2 perm.

]

−
2

(k1k2k3)
2 4−ns

3

+

[

1

(k1k22k
3
3)

4−ns

3

+ 5 perm.

]}

,(31)

where AΦ is the normalization of the power spectrum of
Φ: PΦ(k) = AΦ/k

4−ns .

3. Orthogonal

The “orthogonal” shape of PNG was defined
in Ref. [53] to be orthogonal to the equilat-
eral shape for the scalar product Ba · Bb ≡
∑

k1,k2,k3
Ba

k1,k2,k3
Bb

k1,k2,k3
/[PΦ(k1)PΦ(k2)PΦ(k3)]. Its

form is

Bortho
Φ (k1, k2, k3) = 6fortho

NL A2
Φ

{

[

−3

(k1k2)4−ns

+ 2 perm.

]

−
8

(k1k2k3)
2 4−ns

3

+

[

3

(k1k22k
3
3)

4−ns

3

+ 5 perm.

]}

.(32)



7

The models of Galileon inflation [54] and ghost infla-
tion [55] predict very high values of fortho

NL . In general,
in terms of the Lagrangian for the Goldstone boson π
during inflation, both equilateral and orthogonal shapes
arise from cubic kinetic interactions, and the fNLs are
linearly related to the coefficients of the π̇3 and π̇(∂π)2

terms [53].
It is interesting to also mention the folded form of non-

gaussianity [56], where the shape of the bispectrum peaks
at flattened (folded) triangles (k1 = k2 = k3/2 and per-
mutations). Initial conditions different from the stan-
dard Bunch-Davies vacuum would give rise to this kind
of PNG [57]. It can be expressed as a combination of the
two above, as Bfolded =

(

Bequil −Bortho
)

/2.

4. Directional dependence

In some models where inflation is driven by a gauge
vector field [58] or in solid inflation [59] there is an addi-
tional form of PNG, that induces an extra dependence in
the angle between the ki vectors. In this case the bispec-
trum can be decomposed in Legendre polynomials [60],
where each component would be

B
(J)
Φ (k1, k2, k3) = f

(J)
NL

[

PΦ(k1)PΦ(k2)PJ(cos θ12)

+ 2 perm.
]

, (33)

where PJ is the Legendre polynomial of order J , and
θ12 is the angle between k1 and k2, whose cosine can be
expressed as cos θ12 = (k23 −k21 −k22)/2k1k2. We consider
J = 1, 2 and 3.

B. Secondary non-gaussianities

1. Non-linear gravitational collapse

The growth of overdensities by gravitational collapse
is a fundamentally non-linear process, leading to a non-
vanishing 3-point function, even when starting from per-
fectly gaussian initial conditions. The resulting bispec-
trum can be computed from second-order perturbation
theory (see e.g. Ref. [61]). The correlation of two linear
perturbations with a second-order density perturbation
or normalized velocity divergence (θ ≡ −∇ · v/H) takes
the form

〈δ(1)(k1)δ
(1)(k2)δ

(2)(k3)〉
′ = 2F (k1,k2)P1P2, (34)

〈δ(1)(k1)δ
(1)(k2)θ

(2)(k3)〉
′ = 2G(k1,k2)P1P2, (35)

where 〈...〉′ is the three-point function divided by
(2π)3δD(k1 + k2 + k3), and Pi ≡ Pδ(ki) is the power
spectrum of the linear overdensity. The mode-coupling
kernels F (k1,k2) and G(k1,k2) are both of the form

[61, 62]4

K(k1,k2) = c1+c2 k̂1 ·k̂2

(

k1
k2

+
k2
k1

)

+c3(k̂1 ·k̂2)
2. (36)

For a CDM-only universe, (c1, c2, c3) = ( 57 ,
1
2 ,

2
7 ) for F

and ( 37 ,
1
2 ,

4
7 ) for G. In reality, however, baryons start

clustering after recombination, while the CDM overden-
sities have already been growing since their scales en-
tered the horizon. Their density and velocity fields at
recombination are therefore very different and the sub-
sequent growth factor of matter fluctuations is therefore
not justD(a) ∝ a. It moreover has a scale dependence, as
baryons, though they start with effectively zero overden-
sity at recombination (δb ≪ δc on sub-horizon scales),
have a velocity comparable to that of the CDM, but
with a different scale dependence. Different wavenumbers
therefore grow at slightly different rates. The coefficients
ci in Eq. (36) are therefore in reality weakly dependent
on redshift and, perhaps to a lesser extent, on scale [66].
We shall ignore these complications here and take their
standard values.
Assuming δb = δ and using δv(k) = µ2θ(k) and

δ
(1)
v (k) = µ2δ

(1)
b (k) [note that this last relation only holds

for the first-order perturbations], the bispectrum of 21-
cm fluctuations due to gravitational collapse is straight-
forwardly obtained from Eq. (14):

Bgrav
δT (k1,k2,k3) = 2(α+ T 21µ

2
1)(α+ T 21µ

2
2)

×
(

γF (k1,k2) + T 21(µ1 + µ2)
2G(k1,k2)

)

P1P2

+2 perm. (37)

2. Non-linear relation between brightness temperature and

baryon density

The relationship between the 21-cm brightness temper-
ature and the underlying density and velocity field is fun-
damentally non-linear, due to (i) the non-linear depen-
dence of the optical depth on the local peculiar velocity
gradient (τ ∝ 1/(1− δv)), (ii) the non-linear dependence
of the spin temperature on the baryon density and tem-
perature, and (iii) the non-linear dependence of the gas
temperature on the baryon density. Therefore even for
a perfectly gaussian underlying density field, this non-
linear mapping leads to a non-vanishing bispectrum.
This contribution to the bispectrum can be obtained

from the following three-point functions:

〈δb(k1)δb(k2)[δ
2
b ](k3)〉

′ = 2P1P2, (38)

〈δb(k1)δb(k2)[δbδv](k3)〉
′ = (µ2

1 + µ2
2)P1P2, (39)

〈δb(k1)δb(k2)[δ
2
v ](k3)〉

′ = 2µ2
1µ

2
2P1P2, (40)

4 These coupling kernels are derived in the sub-horizon limit. Since
we are mostly interested in small scales we shall not concern
ourselves with subtle issues regarding the squeezed limit of the
gravitational bispectrum on horizon scales [63–65].
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where the superscript (1) is implicit in all the fluctua-
tions. Using Eq. (14), the explicit expression for the bis-
pectrum arising from the non-linearity of δT21 as a tracer
is then

Bnl
δT (k1,k2,k3) = (α+ T 21µ

2
1)(α+ T 21µ

2
2)

×
(

2β + α(µ2
1 + µ2

2) + 2T 21µ
2
1µ

2
2

)

P1P2

+2 perm. (41)

The total secondary bispectrum is obtained by sum-
ming Eqs. (37) and (41). Note that the bispectrum aris-
ing from Eq. (37) requires the kernels F and G to be
non-zero, whereas the bispectrum from (41) does not.

C. Numerical evaluation and comparison

Inserting the Fourier-space primordial bispectra
Eq. (28) and secondary bispectra Eqs. (37) and (41) into
Eq. (27), we obtain the harmonic-space bispectra in the
flat-sky limit.

We show the total secondary bispectrum in Fig. 4,
along with the bispectra resulting from local, equilateral
and orthogonal PNGs. As found by previous authors
[28], we find that the secondary bispectrum is typically
at least two orders of magnitude larger than the bispec-
trum due to PNGs for fNL = 1. This order-of-magnitude
difference can be understood quite simply: the ratio of
secondary to primary bispectra is of order

Bsec

Bprim
∼

〈δδδδ〉

〈δδδfNLΦ〉
∼

δ(z)

fNLΦ
. (42)

We know that δ(z = 0) ∼ 1 at the non-linear scale
kNL(z = 0) ≈ 0.1 Mpc−1. Scaling back to z = 100 gives
δ(z = 100) ∼ 10−2 at k ∼ 0.1, with an amplitude increas-
ing logarithmically with wavenumber. The primordial
gravitational potential is nearly scale-independent and of
order Φ ∼ 3 × 10−5. We therefore obtain Bsec/Bprim ∼
few × 100 for fNL = 1, consistent with our more detailed
calculation.

Note that our estimates for both the primary and the
secondary bispectra neglected higher-order terms, for ex-
ample terms of order 〈δ2δ1δ3〉 in the secondary bispec-
trum. These terms are suppressed by an additional factor
of order δ2 ∼ 10−4 at z ≈ 100, and are therefore compa-
rable to the primary bispectrum only if fNL ∼ few times
10−2. We will not consider them in this study, but they
should be accounted for in a final data analysis aiming
for a few percent uncertainty in fNL.

In practice, we carry out the integrals up to some max-
imum multipole ℓmax corresponding to the resolution of
the observations.

Secondary

Local

Equilateral

Orthogonal

��� ��� ���� ���� ����� ����� ������

��-��

��-��

��-��

��-��

ℓ

|�
(ℓ�ℓ�ℓ

)|
[�
��

]

Secondary

Local

Equilateral

Orthogonal

��� ��� ���� ���� ����� ����� ������

��-��

��-��

��-��

��-��

ℓ
|�
(ℓ�ℓ�ℓ/

��
)|
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��

]

FIG. 4. Bispectra of 21-cm brightness-temperature fluctua-
tions resulting from secondary non-gaussianities and different
shapes of primordial non-gaussianity, with fNL = 1, at z = 50.
The top panel shows the bispectra for equilateral triangles
(ℓ ≡ ℓ1 = ℓ2 = ℓ3). The bottom panel shows the bispectra for
squeezed triangles (ℓ ≡ ℓ1 = ℓ2 ≫ ℓ3 = ℓ/50). In dashed blue
we plot local, in dotted orange equilateral and in dash-dotted
green orthogonal non-gaussianity. In solid black we plot the
secondary bispectrum. The bispectra are computed in the
flat-sky approximation for an infinitesimally narrow redshift
slice.

IV. FISHER ANALYSIS

A. Bias due to secondary non-gaussianities

Assuming a single type of primordial non-gaussianity
with bispectrum Bℓ1ℓ2ℓ3 = fNLb

prim
ℓ1ℓ2ℓ3

, if secondary non-
gaussianities were negligible the minimum-variance cubic
estimator for fNL from a single redshift z would be [67–
69]

f̂NL =
(bprim, Bobs)z
(bprim, bprim)z

, (43)

where we defined

Bobs
ℓ1,ℓ2,ℓ3 ≡

1

4πfsky
δT (ℓ1)δT (ℓ2)δT (ℓ3), (44)
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and the scalar product ( , )z is constructed as

(Bi, Bj)z ≡ 4πfsky

∫∫∫

ℓ1≥ℓ2≥ℓ3

d2ℓ1d
2ℓ2d

2ℓ3
(2π)4

δD(ℓ1 + ℓ2 + ℓ3)

×
Bi

ℓ1ℓ2ℓ3
Bj

ℓ1ℓ2ℓ3

Ctot
ℓ1

Ctot
ℓ2

Ctot
ℓ3

. (45)

In this equation Ctot
ℓ is the total variance of δT (ℓ), due to

cosmic variance and all other sources of noise, including
the instrument and foregrounds. We assume throughout
that the noise can be approximately computed neglecting
non-gaussian contributions to δT (ℓ). In practice, all our
results will be quoted in the cosmic-variance limit, i.e. for
Ctot

ℓ = Cℓ given in Eq. (25) 5.
We saw in the previous Section that the bispectrum

resulting from secondary non-gaussianities is much larger
than the one arising from PNGs, typically by two to three
orders of magnitude for fNL = 1. Using the estimator,
Eq. (43), would therefore lead to a bias

∆fNL =
(bprim, Bsec)z
(bprim, bprim)z

≡ cprim,sec

√

(Bsec, Bsec)z
(bprim, bprim)z

,

(46)
where cprim,sec ∈ [−1, 1] quantifies the shape overlap or
degeneracy of the primordial and secondary bispectra [ge-
ometrically, cprim,sec is the cosine of the angle between the
two bispectra, for the scalar product (45)]. The shapes
of primordial and secondary non-gaussianity being dif-
ferent, one may hope that their overlap is small [27]6.
However, assuming a cosmic-variance-limited experiment
with an infinitely narrow window function and a resolu-
tion of ∼ 0.1′ (corresponding to ℓmax = 105), we find that
cloc,sec = 0.89, cequi,sec = 0.79, and cortho,sec = −0.83.
The unsubtracted secondary bispectrum would therefore
lead to large biases ∆f loc

NL = 870, ∆f equi
NL = 3900, and

∆fortho
NL = −3900. For maximum resolution of 1′ (corre-

sponding now to ℓmax = 104), the values of the degener-
acy coefficients would be cloc,sec = 0.80, cequi,sec = 0.89,
and cortho,sec = −0.88, which in turn would make the bi-

ases ∆f loc
NL = 420, ∆f equi

NL = 2400, and ∆fortho
NL = −2100.

Such a strong degeneracy may seem surprising at first,
given the large number of triangles on which the scalar
product depends. However, because the bispectra are es-
sentially smooth featureless functions of ℓ for small angu-
lar scales, they can have significant overlap in the sense

5 Note that in order to have tenth-of-arcminute resolution at red-
shift z = 100 one would need a baseline D & 350 km. In order to
reach cosmic variance limit at z = 50 and for resolution of one
arcminute, the parameters of the interferometer would have to
be really optimistic, with complete coverage fcover = 1, a base-
line of order the diameter of the moon D = 3500 km, and a time
of observation of 2 years.

6 Ref. [27] treat the secondary non-gaussianity as a source of noise
instead of a bias, which is inappropriate.

defined in Eq. (46)7. The equilateral and orthogonal-
type bispectra have more complex shapes in k and ℓ-
space than the local type, which is why their overlap
with the secondary bispectrum decreases with increasing
ℓmax while it increases for the latter.
In the next section we describe how to deal with these

degeneracies.

B. Estimators for a single redshift slice

One could in principle try and model the secondary
bispectrum from first principles and subtract the result-
ing bias ∆fNL from the estimated PNG amplitude. This
strategy is the one adopted for the bispectrum of CMB
anisotropies, where the main contaminant is the ISW-
lensing bispectrum. Given the now well-measured cos-
mological parameters, the latter can indeed be modeled
to sufficient accuracy, i.e. with an error smaller than the
statistical uncertainty in fNL [26, 43, 70, 71]. In the case
of 21-cm fluctuations, however, even percent-level resid-
uals in the modeled secondary bispectrum would lead
to biases of order ∆fNL ∼ 10, significantly larger than
the statistical errors one may hope to achieve. Reaching
sub-percent accuracy would require, first, a very careful
treatment of subtle microphysical processes affecting the
population of the hyperfine levels [72]. In addition, it will
be limited by the accuracy of cosmological parameters.
The amplitudes of all the secondary bispectra depend

on the coefficients ci in Eq. (36) for the kernels F and
G. Although we use the values derived for a matter-
dominated, CDM-only universe in our analysis, we as-
sume that the exact values could be computed exactly
should one want to do so [66]. On the other hand, the
four parameters Ai ≡ T 21, α, β, γ in Eq. (14) depend on
the detailed microphysics of the hyperfine transition. For
now we assume that they can be modeled up to subper-
cent accuracy and denote their best estimates by A0

i .
Our model for the bispectrum is

Bℓ1ℓ2ℓ3 = Bsec,0
ℓ1ℓ2ℓ3

+ fNL bprimℓ1ℓ2ℓ3
+

4
∑

i=1

fi b
i
ℓ1ℓ2ℓ3 , (47)

where Bsec,0
ℓ1ℓ2ℓ3

is the best estimate for the secondary bis-

pectrum obtained with the A0
i , fi ≡ ∆Ai are the un-

known residuals of the four coefficients and biℓ1ℓ2ℓ3 ≡
∂Bsec

ℓ1ℓ2ℓ3
/∂Ai. To make the notation more compact

we denote8 f0 ≡ fNL and b0ℓ1ℓ2ℓ3 ≡ bprimℓ1ℓ2ℓ3
, and recall

7 Consider for instance the 1-dimensional scalar product 〈F.G〉 =
∫ ℓmax

ℓmin
F (ℓ)G(ℓ)dℓ, with ℓmin ≪ ℓmax. If F (ℓ) ∝ ℓα and

G(ℓ) ∝ ℓβ , then their degeneracy coefficient is approximately
c =

√
1 + 2x/(1+x), where x ≡ (β−α)/(2α+1). This is greater

than 0.4 for x ≤ 10.
8 Note that fNL and fi do not have the same dimensions, but this
does not affect the analysis.
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that we search for one type of PNG at a time. No-
tice that we disregard higher order correction terms,
proportional to ∆α2 and ∆T̄ 2

21, since we will be able
to model those two parameters to a precision better
than 0.3%, as shown in Tab. II, which would mean that
the bias in the non-gaussianity amplitude is of order
∆fNL ∼ 103(3× 10−3)2 . 10−2.
We fit simultaneously for the amplitude of the PNG

and for the residual coefficients of the secondary bispec-
trum. We treat the latter as nuisance parameters over
which we will marginalize. In geometrical terms, we con-
struct an estimator for the PNG by projecting the ob-
served bispectrum on the component of the primordial
bispectrum orthogonal to all shapes of secondary non-
gaussianity.
The minimum-variance cubic estimators for the pa-

rameters fi are given by [67]

f̂i ≡
∑

j

(F−1)ij(b
j , Bobs −Bsec,0)z, (48)

where F−1 is the inverse of the Fisher matrix F whose
components are

Fij ≡ (bi, bj)z. (49)

The variances of these estimators are [73]

σ2
f̂i

= (F−1)ii, (50)

and the signal-to-noise ratio (SNR) for fNL is

fNL/
√

(F−1)00.
We show in Fig. 5 the forecasted SNR for the local-type

PNG, for a single narrow redshift slice around z = 50,
as a function of the maximum multipole moment ℓmax

(with ℓmin = 100). We also show for reference the SNR
one would obtain if one neglected the secondary non-
gaussianities, i.e. when substituting (F−1)00 → 1/F00 as
in Ref. [28]. We see that properly accounting for sec-
ondary non-gaussianities and their correlation with the
primordial bispectrum reduces the SNR by a factor of
∼ 6.
We also show the SNR integrated starting from ℓmax =

105 down to a minimum ℓmin, as a function of the latter.
It plateaus for ℓmin ∼ 103, so modes with smaller ℓ do
not contribute significantly to the signal-to-noise ratio,
which justifies our neglect of several contributions to the
bispectrum on large scales.
In Fig. 6 we show the forecasted SNRs for the

other shapes of PNG we considered. Secondary non-
gaussianities are less correlated with these shapes than
the they are with the local type, so the reduction in SNR
is not as dramatic (a factor of ∼ 3).
We summarize the forecasted SNR in Table I for a

single narrow redshift-slice at z = 50, for ℓmax = 104

(corresponding of an angular resolution of roughly 1 ar-
cmin) and ℓmax = 105 (0.1 arcmin angular resolution),
assuming a cosmic-variance-limited experiment (i.e. tak-
ing Ctot

ℓ = Cℓ, and neglecting additional thermal noise).

1

F
-1

00

F00

1

F rev
-1

00

/

no secondary

secondary marginalized

`max = 105, vary `min

FIG. 5. Signal-to-noise ratio (SNR) for PNG of the local type
with fNL = 1, for a single narrow redshift slice at z = 50 and
assuming fsky = 1. The blue dashed curve shows (F00)

1/2,
the SNR obtained if one neglected secondary non-gaussianity.
The black solid and red dotted curves show [(F−1)00]

−1/2,
the SNR after marginalization over the unknown residual am-
plitudes of the secondary bispectrum, as a function of ℓmax

(black solid) and as a function of ℓmin at fixed ℓmax = 105

(red dotted).

Equilateral

Orthogonal

J=1

J=2

J=3

��� ��� ���� ���� ����� ����� ��������-�

�����

�����

�����

�

ℓ
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�

FIG. 6. SNR for different shapes of PNGs (with fNL = 1),
after marginalization over the residual amplitudes of the
secondary bispectrum. The different lines correspond to
equilateral-type PNG (solid black), orthogonal-type PNG
(blue dashed), and the three direction-dependent shapes J =
1, 2 and 3 in dotted green, dash-dotted brown, and long-
dashed red, respectively.

In particular, we find that values of f loc
NL ∼ 1.3 and ∼ 0.23

could be reached for ℓmax = 104 and 105, respectively.
The bigger improvement for better resolution for the or-
thogonal and equilateral shapes with respect to the local
one is due to the fact that they become less degenerate
with the secondary bispectra as more modes are added
in the analysis, as argued in Section IVA.

It is interesting to discuss how well we could probe the
four secondary coefficients, T 21, α, β, and γ. In Tab. II we
show the relative errors reachable for each of them with
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PNG type σfNL
(arcmin) σfNL

(0.1 arcmin)

Local 1.3 0.23

Equilateral 14 0.71

Orthogonal 11 0.71

J = 1 83 5.3

J = 2 4.5 0.83

J = 3 40 3.1

TABLE I. Detection forecasts for different shapes of PNG for
a cosmic-variance-limited experiment observing the full sky
at a single narrow redshift slice at z = 50. The central col-
umn gives the results for ℓmax = 104 (equivalent to having an
experiment with arcminute resolution), and the right column
those for ℓmax = 105 (one tenth of arcminute).

a 0.1 arcminute resolution, as well as the correlation with
the rest of parameters.

T 21 α β γ fNL

T 21 5.9× 10−4

α −0.95 2.6× 10−3

β −0.97 0.91 0.012

γ 0.41 −0.63 −0.43 7.2× 10−4

fNL 0.89 0.85 −0.92 0.36 0.23

TABLE II. Fractional error and correlation coefficients of fNL

and secondary bispectrum amplitudes. The diagonal elements
are the fractional errors for each parameter, calculated as
√

(F−1)00 for the case of fNL and
√

(F−1)ii/A
0
i for the rest.

The off-diagonal elements are the correlations between param-
eters, defined as (F−1)ij/

√

(F−1)ii(F−1)jj . For these results
we considered local non gaussianity, at redshift z = 50 and a
resolution of 0.1 arcminutes.

C. Choice of nuisance parameters

In our analysis we have marginalized over the residuals
of the four coefficients T 21, α, β, γ. Here we discuss how
different choices would affect our results.
On the optimistic side, if we were able to relate the

four secondary coefficients to each other to high preci-
sion we could choose to marginalize over a single overall
amplitude for the secondary bispectrum.
On the pessimistic side, we may choose to marginalize

over all geometrically distinct contributions to the sec-
ondary bispectrum. This would account for unknown
redshift dependences in the ci coefficients. Recalling
that the kernels F and G are made of three geometri-
cally distinct pieces, Eq. (37) gives 18 different geomet-
ric shapes. Equation (41) adds three independent shapes.
This amounts to a total of 21 distinct geometric shapes,
the amplitudes of which we marginalize over.
We show the resulting SNRs in Fig. 7, where for refer-

ence we also show the SNR in the absence of secondary

non-gaussianities, and our main result, which considers
4 nuisance parameters. As expected, our result lies be-
tween the optimistic and pessimistic cases, which act as
bounds for the SNR when considering additional sec-
ondary bispectra.
In particular, in the optimistic approach, the SNR is

improved by a factor of ∼ 5: we find detection limits

f local
NL ∼ 0.12, f equil

NL ∼ 0.75, fortho
NL ∼ 0.58, fJ=1

NL ∼ 5.7,
fJ=2
NL ∼ 0.88, fJ=3

NL ∼ 13 at arcminute resolution and

f local
NL ∼ 0.0063, f equil

NL ∼ 0.032, fortho
NL ∼ 0.030, fJ=1

NL ∼
0.19, fJ=2

NL ∼ 0.04, fJ=3
NL ∼ 0.40 at maximum resolution

for a single redshift slice at z = 50.
In a real experiment, a χ2-like test should be carried

out to find out whether additional secondary bispectra
to the four proposed here need to be considered.

no secondary

1 shape

4 shapes

21 shapes

��� ��� ���� ���� ����� ����� �����������

�����

�����

�

��

ℓ

�/
�

FIG. 7. SNR for local-type PNG with fNL = 1 as a function
of ℓmax, when neglecting secondary non-gaussianities (top,
solid black curve), marginalizing over an overall amplitude of
the secondary bispectrum (blue dashed), marginalizing over
4 coefficients as we do in the main text (red, dashed), and
marginalizing over the amplitudes of the 21 geometrically
distinct shapes of secondary bispectra (bottom, green dash-
dotted).

D. Tomography

So far we have been studying the bispectrum on a sin-
gle redshift slice, which would correspond to observing
the 21-cm line with a single frequency channel. However,
one of the great advantages of the 21-cm line is that it
enables us to coadd information from different redshifts.
Before thinking of how to add different redshift shells

we will study whether they contain the same or different
information. Let us construct a measure of the correla-
tion between two slices at a radial distance ∆r from each
other. We define the correlation length ξr(ℓ) as the radial
separation beyond which the cross-correlation between
two redshift-slices is less than 1/2 the power spectrum:

Cℓ[∆r = ξ(ℓ)] =
1

2
Cℓ[∆r = 0], (51)
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where the cross-power spectrum Cℓ[∆r] is obtained from

Cℓ[∆r] ≡
1

r2

∫

dk||

2π
PδT

(

k||, ℓ/r
)

eik||∆r. (52)

�� ��� ���� ��������
�����

�����
�����

�����

ℓ

ζ ν[�
��

]

FIG. 8. Correlation length ξν as a function of ℓ, defined as
the separation in frequency beyond which two redshift slices
are correlated by less than 1/2. This curve was calculated
with an infinitely narrow bandwidth at z = 50, and for each
ℓ the correlation would increase to match the value of the
bandwidth if it is bigger than the ξν in the plot.

From the correlation length in radial comoving sepa-
ration ξr we obtain the characteristic correlation length
in frequency space ξν through

ξν =
dν

dz

dz

dr
ξr = ν0H0

√

ΩM (1 + z)−1/2ξr (53)

≈ 1 MHz

(

51

1 + z

)1/2 (
ξr

60 Mpc

)

, (54)

where ν0 = 1.4 GHz is the rest-frame frequency of the
21-cm transition.
We show the function ξν(ℓ) in Figure 8. For ℓ . 100

(corresponding to k . keq ∼ 0.01 Mpc−1), P (k||, ℓ/r)
peaks at k|| ∼ keq, independently of ℓ, and the cross-
correlation Cℓ[∆r] has a characteristic length scale ξν ≈
0.3 MHz, independent of ℓ. For ℓ & 100, the function
P (k||, ℓ/r) has a characteristic turnaround scale at k|| ∼
ℓ/r, which leads to a correlation length ξν(ℓ) ∝ 1/ℓ.

In order to compare with previous results in the liter-
ature [27, 28] we will assume bandwidths ∆ν of 1 MHz
and 0.1 MHz. As argued above (Fig. 5) most of the sig-
nal comes from large-ℓ modes (ℓ & 1000), for which the
correlation length ξν < 0.1 MHz, so in both cases we
may assume that different redshift slices are completely
uncorrelated. An observation of 21-cm fluctuations be-
tween 14 MHz (z = 100) and 45 MHz (z = 30) with fre-
quency resolution ∆ν would therefore have Nslices ≈ 30×
1 MHz/∆ν independent redshift slices.
The simplest analysis would consist in finding the best-

fit fNL for each redshift slice and coadd the estima-
tors with inverse-variance weighting. This procedure is
not optimal, however, as the secondary bispectrum (and

by extension, the residual after subtraction of the best-
estimate Bsec,0) is a smooth function of redshift. The
redshift dependence of the residuals fi = ∆Ai can there-
fore be modeled by a linear combination of a few basis
functions and depends on a few coefficients instead of
Nslices independent amplitudes:

fi(z) =

Nbases
∑

j=0

fijPj(z). (55)

Several choices of basis functions could be made. We
found that in the redshift range 30−100 the coefficients
Ai(z) could be fit to ∼ 1, 0.1, and 0.01 percent accuracy
with third, fifth, or seventh-order polynomials in log(z),
respectively. We assume that this will also hold for the
residuals. We therefore adopt Pj(z) = [log(z/50)]j for
j = 0 to Nbases = 3 or 7 as our basis set. Our full model
for the redshift-dependent bispectrum is therefore

Bℓ1ℓ2ℓ3(z) = Bsec,0
ℓ1ℓ2ℓ3

(z) + fNLb
prim
ℓ1ℓ2ℓ3

(z)

+

4
∑

i=1

Nbases−1
∑

j=0

fijb
(ij)
ℓ1ℓ2ℓ3

(z), (56)

where b
(ij)
ℓ1ℓ2ℓ3

(z) ≡ Pj(z)× biℓ1ℓ2ℓ3(z).
We now fit simultaneously for fNL and 4×Nbases nui-

sance parameters fij . Because we assume the redshift
slices are uncorrelated (specifically, the noise is uncorre-
lated in different slices, but the signal is not), the total
scalar product between two bispectra is simply obtained
by summing the single-redshift scalar product over red-
shift slices:

(bn, bm) ≡
∑

z

(bn, bm)z, (57)

where n ≡ (ij) is a generalized index, and (bn, bm)z is
the scalar product of two bispectra at redshift z defined
in Eq. (45). The usual Fisher analysis leads to σ2

f̂NL

=

(F−1)00, where the (1 + 4Nbases) × (1 + 4Nbases) Fisher
matrix Fnm is now defined from the total scalar product
(57). We find that using seventh-order instead of third-
order polynomials degrades the SNR by no more than
∼ 20 %. The final results we quote are obtained using
third-order polynomials.
Our final results are shown in Table III, where we quote

the minimum fNL detectable for fsky = 1 and ℓmax = 105

for two different bandwidths (∆ν =1 and 0.1 MHz). For
fsky < 1 all the results scale as σfNL

∝ f−1
sky.

In summary, with a bandwidth of 1 MHz we could
cross the fNL = O(1) threshold, enabling us to rule out a
big class of models of inflation if no PNG is detected. In-
creasing the frequency resolution to 0.1 MHz the numbers
improve to fNL ∼ few 10−2, which would be close to the
ultimate limit of the consistency relation (fNL ∼ ns− 1),
and hence should be present even in the simplest model
of inflation.
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PNG type σfNL
(1 MHz) σfNL

(0.1 MHz)

Local 0.12 0.03

Equilateral 0.39 0.04

Orthogonal 0.29 0.03

J = 1 1.1 0.1

J = 2 0.33 0.05

J = 3 0.85 0.09

TABLE III. Minimum fNL detectable integrating all redshift
slices between z = 30 and z = 100 for fsky = 1. In the central
column we show the result for a bandwidth of ∆ν = 1 MHz
and in the right column for ∆ν = 0.1 MHz.

V. CONCLUSIONS

Now that the information from the CMB on non-
gaussianity has been almost fully mined, it is time to
consider other potential data sets. Intensity fluctuations
in the 21-cm line during the dark ages offer a window into
yet unexplored times and scales, and a promising future
probe of PNGs.

The technical challenges that need to be overcome be-
fore the required experiments see the light of day are
daunting. Because of atmospheric attenuation it would
require an observatory on the Moon. Even then, care
should be taken with intense Galactic foreground emis-
sion. Nevertheless, this is not an impossible task.

An additional issue is that the 21-cm signal is intrinsi-
cally highly non-gaussian, due to non-linear gravitational
growth, and the non-linear mapping between brightness
temperature and the underlying density field. In this pa-
per we have, for the first time, addressed this issue with
a rigorous Fisher analysis approach, assuming cosmic-
variance limited experiments with a finite angular and
frequency resolution. We have shown that for a single
redshift slice the secondary bispectrum is significantly
degenerate with the primordial one, which results in a
noticeable decrease of the forecasted signal-to-noise ratio
(SNR) for PNGs. This contrasts with the results of pre-
vious work, where this degeneracy was either neglected
when forecasting the SNR [28], or where it was claimed to
be weak [27]. We then co-added the information of inde-
pendent redshift slices while enforcing a smooth variation
of the secondary bispectrum amplitudes with redshift.

For a full-sky experiment with ∆ν = 0.1 MHz and 0.1-
arcminute resolution, we forecast a sensitivity σf local

NL
≈

0.03, which would enable us to check the famous inflation-
ary consistency relation. We also forecast σfequil ≈ 0.04,

σfortho
≈ 0.04, fJ=1 ≈ 0.1, fJ=2 ≈ 0.05, and fJ=3 ≈ 0.09.

Measurements of 21-cm fluctuations therefore have the
potential to significantly improve upon cosmic-variance-
limited CMB bounds.
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[64] R. de Putter, O. Doré and D. Green, arXiv:1504.05935.
[65] N. Bartolo et al., arXiv:1506.00915.
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