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Primordial trispectrum from inflation
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We use the δN-formalism to describe the leading order contributions to the primordial power
spectrum, bispectrum and trispectrum in multiple-field models of inflation at leading order in a
perturbative expansion. In slow-roll models where the initial field fluctuations at Hubble-exit are
nearly Gaussian, any detectable non-Gaussianity is expected to come from super-Hubble evolution.
We show that the contribution to the primordial trispectrum can be described by two non-linearity
parameters, τNL and gNL, which are dependent upon the second and third derivatives of the local
expansion with respect to the field values during inflation.
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I. INTRODUCTION

The simplest models of inflation predict a quasi scale invariant spectrum of nearly Gaussian, adiabatic perturba-
tions [1]. While observations are consistent with this picture, it is important to measure any deviations from these
predictions, in order to constrain the many models of inflation. Non-Gaussianity is a potentially powerful discriminant
between different models. Currently most efforts to constrain the non-Gaussianity have focused on the 3-point func-
tion of perturbations, the bispectrum [2, 3, 4]. However the 4-point function, or trispectrum can also be constrained
by increasingly accurate measurements [5, 6, 7].

The δN -formalism [8, 9, 10, 11] identifies the primordial curvature perturbation with a perturbation in the local
value of the integrated expansion,

N(x) =

∫ tp

ti

H(x, t)dt , (1)

with respect to the expansion in the background spacetime

N̄ =

∫ tp

ti

H̄(t)dt . (2)

This enables one to calculate the non-linear primordial curvature perturbation (e.g., at the epoch of primordial
nucleosynthesis) in terms of initial scalar field fluctuations during inflation [11]. In particular the primordial curvature
perturbation on uniform-density hypersurfaces, ζ, corresponds to the perturbation in the local expansion defined
with respect to an initial spatially flat hypersurface [10]. In the long-wavelength limit where spatial gradients and
anisotropic shear becomes small, the integrated expansion along a worldline can be calculated from solutions to the
unperturbed Friedmann equation.

We have

ζ = N(φA) − N̄ , (3)

where φA represents the initial values for the scalar fields on the initial spatially-flat hypersurface. If we decompose
the local scalar field values into a homogeneous background value plus perturbation,

φA = φ̄A + ϕA , (4)

we can write the curvature perturbation as a Taylor expansion

ζ =
∑

n

1

n!
NA1A2...An

ϕA1ϕA2 . . . ϕAn . (5)
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There is an implicit sum over the fields for all of the repeated indices Ai. We are thus able to describe the non-
Gaussianity of the primordial curvature perturbation given an initial distribution of scalar field perturbations. In
practice, scalar fields during slow-roll inflation are expected to have a nearly Gaussian distribution during inflation, at
least on scales slightly larger than the Hubble scale, i.e., shortly after Hubble exit [12]. In single-field inflation this is
sufficient to guarantee that the non-Gaussianity of the primordial curvature perturbation is very small [13, 14, 15]. It is
suppressed by slow-roll parameters since one can express derivatives of the expansion in terms of slow-roll parameters.
However in multi-field models the perturbed expansion cannot necessarily be related to slow-roll parameters at Hubble-
exit, and the primordial curvature perturbations may deviate strongly from a Gaussian distribution.

II. PERTURBATIVE EXPANSION

In linear perturbation theory the initial free-field fluctuations describe Gaussian random fields, which we will denote
by ϕA

1 (t, xi). In a perturbative expansion higher-order interactions and non-linear evolution lead to higher-order terms
which are non-Gaussian

ϕA = ϕA
1 +

1

2
ϕA

2 +
1

6
ϕA

3 + · · · . (6)

From the definition of Gaussian statistics, the n-point correlator of the Gaussian fluctuation is zero for odd n and
can be reduced to (disconnected) products of two-point functions for even n.

A. Power spectrum

In Fourier space the power spectrum is given by

〈ϕA
k ϕB

k′〉 = CAB(k)(2π)3δ 3(k + k
′) . (7)

This is second and higher order in a perturbative expansion.
At leading order in the field perturbations and in the slow-roll limit the fluctuations are independent and we have

CAB(k) = δABP (k) , (8)

where δAB is the Kronecker delta-function, and the variance per logarithmic interval in k-space is given by

P(k) =
4πk3

(2π)3
P (k) =

(

H∗

2π

)2

, (9)

where the Hubble parameter H is evaluated at Hubble-exit, k = (aH)∗. At zeroth order in slow-roll parameters, P is
independent of wavenumber, i.e. we have a scale invariant spectrum for the field fluctuations.

In general the fields are correlated at Hubble-exit, at first order in the slow-roll parameters. In the case of two field
inflation, using the methods of [16], (see also [17]), we find for the power spectra and cross-correlation respectively,

C11 = Pϕ1
=

(2π)3

4πk3

(

H∗

2π

)2
[

1 − 2
Ḣ

H2
+ C

(

4
Ḣ

H2
+

1

m2
p

φ̇2
1

H2
− 1

m2
p

φ̇2
2

H2
− 2m2

p

Vφ1φ1

V

)]

, (10)

C22 = Pϕ2
=

(2π)3

4πk3

(

H∗

2π

)2
[

1 − 2
Ḣ

H2
+ C

(

4
Ḣ

H2
+

1

m2
p

φ̇2
2

H2
− 1

m2
p

φ̇2
1

H2
− 2m2

p

Vφ2φ2

V

)]

, (11)

C12 =
(2π)3

4πk3

(

H∗

2π

)2

C

(

2

m2
p

φ̇1φ̇2

H2
− 2m2

p

Vφ1φ2

V

)

, (12)

where C = 2− ln 2− γ ≃ 0.7296 and γ is the Euler-Mascheroni constant. Overdots represent derivatives with respect
to time, and Vφ1

= ∂V/∂φ1.
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B. Bispectrum

The first signal of non-Gaussianity comes from the bispectrum, which at lowest order is

〈ϕAϕBϕC〉 = 〈ϕA
1 ϕB

1 ϕC
2 〉 + perms , (13)

and therefore is fourth order in perturbations.
The bispectrum of the distribution is given by

〈ϕA
k1

ϕB
k2

ϕC
k3
〉 ≡ BABC(k1, k2, k3)(2π)3δ 3(k1 + k2 + k3) . (14)

This is fourth and higher order. This was originally calculated by Maldacena, [13] for single field inflation, and
by Seery and Lidsey, [12], for multiple fields. They show that it only depends on the amplitude of the k vectors.
Specifically they calculate the quantity AABC at leading order in slow roll, which is related to BABC by

BABC(k1, k2, k3) =
4π4

∏

k3
i

P2AABC(k1, k2, k3) . (15)

They find AABC ∼ O(ǫ1/2) so it vanishes in the slow-roll limit.

C. Trispectrum

From Wick’s theorem, the first-order, Gaussian perturbations do not contribute to the connected part of the four-
point function,

〈ϕA
1 ϕB

1 ϕC
1 ϕD

1 〉c = 0 . (16)

Note there is a disconnected part of the four-point function which is a product of two two-point functions which is
only fourth order in slow roll and arises even for purely Gaussian statistics. This disconnected term is only non-zero
if, e.g., the momenta satisfy k1 + k2 = 0 and k3 + k4 = 0.

The second-order field perturbations, ϕA
2 , are generated from the product (or the convolution in Fourier space) of

two first order variables that have Gaussian distributions, so they do not contribute to the (connected) four-point
function at lowest possible order,

〈ϕA
1 ϕB

1 ϕC
1 ϕD

2 〉c = 0 . (17)

Hence the leading order contribution to the connected four-point function comes from two terms, [5],

〈ϕ1ϕ1ϕ1ϕ3〉c and 〈ϕ1ϕ1ϕ2ϕ2〉c . (18)

Both of these terms are sixth-order in perturbations.
In Fourier space the connected part of the four-point function is sixth order, and given by

〈ϕA
k1

ϕB
k2

ϕC
k3

ϕD
k4
〉c ≡ T ABCD(k1,k2,k3,k4)(2π)3δ 3(k1 + k2 + k3 + k4) . (19)

This was recently calculated at leading order by Seery, Lidsey and Sloth [18]. They show this quantity depends on
both the magnitude and direction of the k vectors, specifically it depends on ki = |ki| and ki · kj .

III. THE PRIMORDIAL N-POINT FUNCTIONS

So far we have calculated the two-, three- and four-point function of the field fluctuations. To link these to
observations, we need to calculate the n-point functions of the primordial curvature perturbation ζ. We do this using
the δN expansion for ζ, (5).
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A. The primordial power spectrum

At leading order the primordial power spectra depends purely on ζ1, from Eq. (5),

ζ1 = NAϕA
1 . (20)

The power spectrum is thus

〈ζkζk′〉 = Pζ(k)(2π)3δ 3(k + k
′) , (21)

where

Pζ(k) = NANBCAB(k) . (22)

In the slow-roll limit, (8), this reduces to

Pζ(k) = NANAP (k) . (23)

B. The primordial bispectrum

To leading order in the field perturbations, the 3-point function of the curvature perturbations depends on ζ1, (20)
and

ζ2 = NAϕA
2 + NABϕA

1 ϕB
1 . (24)

The primordial bispectrum is thus

〈ζk1
ζk2

ζk3
〉 = NANBNC〈ϕA

k1
ϕB

k2
ϕC

k3
〉

+
1

2
NA1A2

NBNC

[

〈
(

ϕA1 ∗ ϕA2

)

k1

ϕB
k2

ϕC
k3
〉 + (2 perms)

]

, (25)

where ′∗′ denotes the convolution, defined by

(

ϕA ∗ ϕB
)

k
=

1

(2π)3

∫

d3k′ϕA
k−k′ϕB

k′ . (26)

Hence the bispectrum of the curvature perturbation is

〈ζk1
ζk2

ζk3
〉 ≡ Bζ(k1, k2, k3)(2π)3δ 3(k1 + k2 + k3) , (27)

where to leading order [19]

Bζ(k1, k2, k3) = NANBNCBABC(k1, k2, k3)

+NANBCND

[

CAC(k1)C
BD(k2) + CAC(k2)C

BD(k3) + CAC(k3)C
BD(k1)

]

. (28)

In the slow-roll limit we can write the bispectrum as [20]

Bζ(k1, k2, k3) = 4π4

∑

i k3
i

∏

i k3
i

P2
ζ

(

−1

4m2
pNCNC

F(k1, k2, k3)
∑

i k3
i

+
NABNANB

(NCNC)
2

)

, (29)

where the form factor F is defined by

F(k1, k2, k3) =
∑

i

k3
i −

∑

i6=j

kik
2
j − 8

∑

i>j k2
i k2

j

k1 + k2 + k3

. (30)
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C. The primordial trispectrum

From the discussion in sec. II C the four-point function of the curvature perturbation at leading order will depend
on ζ1, (20), ζ2, (24), and

ζ3 = NAϕA
3 + NAB

(

ϕA
1 ϕB

2 + ϕA
2 ϕB

1

)

+ NABCϕA
1 ϕB

1 ϕC
1 (31)

The four-point function at leading order is

〈ζk1
ζk2

ζk3
ζk4

〉c = NANBNCND〈ϕA
k1

ϕB
k2

ϕC
k3

ϕD
k4
〉c

+
1

2
NA1A2

NBNCND

[

〈
(

ϕA1 ∗ ϕA2

)

k1

ϕB
k2

ϕC
k3

ϕD
k4
〉 + (3 perms)

]

+
1

4
NA1A2

NB1B2
NCND

[

〈
(

ϕA1 ∗ ϕA2

)

k1

(

ϕB1 ∗ ϕB2

)

k2

ϕC
k3

ϕD
k4
〉 + (5 perms)

]

+
1

3!
NA1A2A3

NBNCND

[

〈
(

ϕA1 ∗ ϕA2 ∗ ϕA3

)

k1

ϕB
k2

ϕC
k3

ϕD
k4
〉 + (3 perms)

]

. (32)

All of the terms shown are sixth order in the field perturbations.
The first term of the expansion above is the intrinsic 4-point function of the fields, as calculated, [18]. The

disconnected part of this term would only give a contribution if the sum of any two k vectors is zero, e.g. if k1+k2 = 0.
We will exclude this case, which is equivalent to neglecting parallelograms of the wavevectors.

The second term of (32) consists of permutations of terms of the form

1

2
NA1A2

NBNCND
1

(2π)3

∫

d3q〈ϕA1

q ϕA2

k1−qϕB
k2

ϕC
k3

ϕD
k4
〉 (33)

This five-point function is zero for the first-order, Gaussian, perturbations, hence the leading order contribution is
sixth-order, due to the second order contribution of one of the fields. Hence we use Wick’s theorem to split the 5-point
function in to lower point functions. There is no contribution to (33) from the split into a four-point and a one-point
function. Only the split into a two-point and three-point function gives a contribution. However the first possible
contraction in (33), 〈ϕA1

k1−qϕ
A2

q 〉, does not contribute since it is only non-zero when k1 = 0. Therefore we can reduce
the above term into a power spectra and a trispectrum in 6 different ways, which gives three distinct pairs of terms.
In total the second term of (32) is

NA1A2
NBNCND

[

CA1B(k1)B
A2BC(k12, k3, k4) + (11 perms)

]

(2π)3δ 3(kt) , (34)

where we use the shortened notation kij = |ki + kj | and kt = k1 + k2 + k3 + k4. The 12 permutations come from
having 3 distinct choices for the indices of the wavenumber kij (only three distinct choices because kij = kji and
k12 = k34 etc). We then choose which two wavenumbers form the remaining arguments of BABC , either ki, kj or the
other pair of wavenumbers, and finally we choose which of the two indices i or j is attached to the wavenumber ki

that is the argument of C.
Continuing this argument for the second and third terms of (32), we find the connected part of the trispectrum of

the curvature perturbation is

〈ζk1
ζk2

ζk3
ζk4

〉c ≡ Tζ(k1,k2,k3,k4)(2π)3δ 3(k1 + k2 + k3 + k4) , (35)

where

Tζ(k1,k2,k3,k4) = NANBNCNDT ABCD(k1,k2,k3,k4)

+NA1A2
NBNCND

[

CA1B(k1)B
A2BC(k12, k3, k4) + (11 perms)

]

+NA1A2
NB1B2

NCND

[

CA2B2(k13)C
A1C(k3)C

B1D(k4) + (11 perms)
]

+NA1A2A3
NBNCND

[

CA1B(k2)C
A2C(k3)C

A3D(k4) + (3 perms)
]

. (36)

IV. GAUSSIAN SCALAR FIELDS

If the scalar field perturbations are independent, Gaussian random fields, as we expect shortly after Hubble-exit
during inflation in the slow-roll limit [12, 13] then the bispectrum for the fields, BABC , and connected part of the
trispectrum, T ABCD, both vanish.
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In this case the bispectrum of the primordial curvature perturbation (28) at leading (fourth) order, can be written
as

Bζ(k1,k2,k3) =
6

5
fNL [Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)] . (37)

where the dimensionless non-linearity parameter1 is given by [11]

fNL =
5

6

NANBNAB

(NCNC)
2

. (38)

The trispectrum (36) in this case reduces to

Tζ(k1,k2,k3,k4) = NABNACNBNC [P (k13)P (k3)P (k4) + (11 perms)]

+NABCNANBNC [P (k2)P (k3)P (k4) + (3 perms)] , (39)

Hence we can write the trispectrum as

Tζ(k1,k2,k3,k4) = τNL [Pζ(k13)Pζ(k3)Pζ(k4) + (11 perms)]

+
54

25
gNL [Pζ(k2)Pζ(k3)Pζ(k4) + (3 perms)] . (40)

where comparing the above two expressions, and using (23) we see

τNL =
NABNACNBNC

(NDND)3
, (41)

gNL =
25

54

NABCNANBNC

(NDND)3
. (42)

The expression for τNL from multiple fields was given in the arXiv version of [21]. Note that we have factored
out products in the trispectrum with different k dependence in order to define the two k independent non-linearity
parameters τNL and gNL. This gives the possibility that observations may be able to distinguish between the two
parameters [5].

A. Single field dependence

In many cases there is single direction in field-space, ϕ, which is responsible for perturbing the local expansion,
N(ϕ), and hence generating the primordial curvature perturbation, ζ. For example this would be the inflaton field in
single field models of inflation, or it could be the late-decaying scalar field in the curvaton scenario [22].

In the case where a single field dominates, the curvature perturbation (5) is given by

ζ = N ′ϕ +
1

2
N ′′ϕ2 +

1

6
N ′′′ϕ3 + · · · , (43)

where we use the shorthand N ′ = dN/dϕ. If in addition we assume that the field perturbation is purely Gaussian,
ϕ = ϕ1, then the non-Gaussianity of the primordial perturbation has a simple “local form” where the full non-linear
perturbation at any point in real space, ζ(x), is a local function of a single Gaussian random field, ϕ1. Thus we can
write [4, 23]

ζ = ζ1 +
3

5
fNLζ2

1 +
9

25
gNLζ3

1 + · · · , (44)

where ζ1 is Gaussian because it is directly proportional to the initial Gaussian field perturbation, ϕ1, and the dimen-
sionless non-linearity parameters, fNL and gNL, are given by

fNL =
5

6

N ′′

(N ′)2
, (45)

gNL =
25

54

N ′′′

(N ′)3
, (46)

1 Some papers use a different sign convention for fNL. For example, Refs. [11, 20] use the opposite sign convention.
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The numerical factors in Eq. (44) arise because the original definition is given in terms of the Bardeen potential on
large scales (in the matter dominated era, md), ΦHmd = (3/5)ζ1, so we have [4, 5, 6],

3

5
ζ = ΦHmd + fNLΦ2

Hmd + gNLΦ3
Hmd + · · · . (47)

The primordial bispectrum and trispectrum are then given by Eqs. (37) and (40), where the non-linearity parameters
fNL and gNL, given in Eqs. (38) and (42), reduce to Eqs. (45) and (46) respectively, and τNL given in Eq. (41) reduces
to

τNL =
(N ′′)2

(N ′)4
=

36

25
f2

NL . (48)

Notice that the bispectrum depends linearly on ζ2 while the trispectrum has both a quadratic dependence upon ζ2

and a linear dependence on ζ3. Thus τNL is proportional to f2
NL (shown in [5] using the Bardeen potential, and in

[24] using this notation). However the trispectrum could be large even when the bispectrum is small because of the
gNL term [5, 23].

1. Inflaton scenario

In the case of standard single field inflation, where the primordial curvature perturbation is generated solely by
the inflaton field, we can calculate the non-linearity parameters fNL and gNL in terms of the slow-roll parameters at
Hubble-exit. Because the large-scale perturbations are adiabatic, ζ is non-linearly conserved on large scales [10, 25, 26]
and the derivatives of the expansion, N ′, N ′′ and N ′′′ can be calculated at Hubble-exit. Using the definition (1), we
find

N ′ =
H̄
˙̄ϕ
≃ 1√

2

1

mp

1√
ǫ
∼ O

(

ǫ−
1

2

)

, (49)

N ′′ ≃ −1

2

1

m2
p

1

ǫ
(η − 2ǫ) ∼ O (1) , (50)

N ′′′ ≃ 1√
2

1

m3
p

1

ǫ
√

ǫ

(

ǫη − η2 +
1

2
ξ2

)

∼ O(ǫ
1

2 ) , (51)

where we have used the potential slow roll parameters

ǫ ≡
m2

p

2

(

V ′

V

)2

, (52)

η ≡ m2
p

V ′′

V
, (53)

ξ2 ≡ m4
p

V ′V ′′′

V 2
. (54)

Hence the non-linearity parameters for single field inflation (45–46) are given by

fNL =
5

6
(η − 2ǫ) , (55)

τNL = (η − 2ǫ)2 , (56)

gNL =
25

54

(

2ǫη − 2η2 + ξ2
)

. (57)

Note however that we have not calculated the full bispectrum and trispectrum at leading order in slow roll, be-
cause we assumed that the initial field fluctuations were Gaussian. If we included the contribution from the non-
Gaussianity of the fields at Hubble exit, the bispectrum would have one extra term (19) and the trispectrum would
have two extra terms, (36). The extra term for the trispectrum is at the same order in slow roll, because [12]

BABC(k1,k2,k3) ∼ O(ǫ
1

2 ) and the second term of (36) is also of the same order. However Seery, Lidsey and Sloth
find [18], T ABCD(k1,k2,k3,k4) ∼ O(1) which means the first term of (36) is suppressed by one less order in slow
roll then the other three terms. However they find the contribution of this term is still too small to be observable,
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even in the multiple field case [18]. All of these extra terms from the non-Gaussian field fluctuations are momentum
dependent, while all of the non-linearity parameters are independent of momentum.

In single field inflation, ζ is conserved at all orders on superhorizon scales. Therefore no evolution of the bispectrum
and trispectrum is possible after Hubble exit. Hence neither will be detectable in cosmic microwave background or
large scale structure experiments, but from the 21 cm background there is the possibility that fNL ∼ 0.01 might be
observable [27].

2. Curvaton scenario

In the curvaton scenario a weakly-coupled field (the curvaton field, χ) which is light, but subdominant during
inflation comes to contribute a significant fraction of the energy density of the universe sometime after inflation. After
it eventually decays, it is the fluctuations in this field that produce the primordial curvature perturbation, ζ [22].

In general, the energy density of the curvaton is some function of the field value at Hubble-exit, ρχ ∝ g2(χ∗), and
hence the primordial curvature perturbation when the curvaton decays is of local form (44). In the sudden-decay
approximation the non-linearity parameters are [11, 28]

fNL =
5

4r

(

1 +
gg′′

g′2

)

− 5

3
− 5r

6
, (58)

and [23]

gNL =
25

54

[

9

4r2

(

g2g′′′

g′3
+ 3

gg′′

g′2

)

− 9

r

(

1 +
gg′′

g′2

)

+
1

2

(

1 − 9
gg′′

g′2

)

+ 10r + 3r2

]

, (59)

and τNL satisfies (48), where the parameter r, is given by

r =

[

3ρχ

3ρχ + 4ρr

]

decay

, (60)

where ρχ is the density of the curvaton field and ρr is the density of radiation and hence r satisfies 0 < r ≤ 1, .
One can obtain significant non-Gaussianity if the curvaton does not dominate the total energy density of the

Universe when it decays, r ≪ 1, in which case we have

fNL ≃ 5

4r

(

1 +
gg′′

g′2

)

, (61)

gNL ≃ 25

24r2

(

g2g′′′

g′3
+ 3

gg′′

g′2

)

. (62)

One obtains a significant bispectrum, fNL ≫ 1 for r ≪ 1 if gg′′/g′2 6= −1. On the other hand if gg′′/g′2 ≃ −1 the
bispectrum can be small even for r ≪ 1 [29] and the first signal of non-Gaussianity could come from the trispectrum
through gNL ≫ 1 [23].

V. CONCLUSIONS

In this paper we have given a general expression characterising the distribution of the primordial curvature pertur-
bation due to an initial distribution of scalar field fluctuations during multiple-field inflation, using the δN -formalism.

We have given expressions for the power spectrum, bispectrum and trispectrum including all terms at leading
order in a perturbative expansion, allowing for scale dependence and cross-correlations of the fields. In particular
the connected part of the primordial trispectrum consists of four terms each with a different momentum dependence.
One term depends upon the intrinsic connected part of the trispectrum of the field fluctuations and one term depends
upon the bispectrum of the fields.

At lowest order in a slow-roll expansion the field fluctuations shortly after Hubble-exit are expected to be Gaussian
and scale-invariant. In this case Lyth and Rodriguez [11] showed that the bispectrum from multiple-field inflation
can be parameterised by a single non-linearity parameter fNL dependent upon the second-derivatives of the local
expansion, N , with respect to the field values, given in Eq. (38). The connected part of the trispectrum can be
parameterised by two further non-linearity parameters, τNL and gNL, given in Eqs. (41) and (42). τNL is another
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function of the second derivatives of N [21], whereas gNL is a dependent on the third derivative. In the particular
case where only one field generates the primordial perturbation we have τNL ∝ f2

NL [5, 24]. However gNL can give
rise to a connected part of the trispectrum at the same order [23] and hence constraints on the primordial bispectrum
do not necessarily constrain the primordial trispectrum in such models.

In the case of standard single field inflation the trispectrum will be too small to ever be observed, but in alternative
models such as DBI inflation [30] or the curvaton scenario [23] the trispectrum may be observable and could be an
important test of such models.

Note added: While writing up this work, similar results appeared on the arXiv [31].
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