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PRINCIPAL 2-BLOCKS OF THE SIMPLE GROUPS
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Abstract. The decomposition numbers in characteristic 2 of the groups of Ree
type are determined, as well as the Loewy and socle series of the indecomposable
projective modules. Moreover, we describe the Green correspondents of the simple
modules. As an application of this and similar works on other simple groups with
an abelian Sylow 2-subgroup, all of which have been classified apart from those
considered in the present paper, we show that the Loewy length of an indecom-
posable projective module in the principal block of any finite group with an abelian
Sylow 2-subgroup of order 2" is bounded by max{2n + 1, 2"}. This bound is the
best possible.

Introduction. The purpose of this paper is to determine the algebra structure of
the principal 2-blocks B of the simple groups R(q) of Ree type of order \R(q)\ =
(q3 + \)q\q - 1), where q = 32n+1, and n = 1, 2,_

Let (F, R, S) be a splitting 2-modular system for R(q), where F has characteris-
tic 2, and S and R have characteristic zero. The character table of the groups R(q)
was determined by Ward [15] up to a few but very essential values missing because
of the incomplete classification of these groups. Ward [15] also showed that B
contains eight ordinary irreducible characters £„ all of height zero, and five
nonisomorphic simple FR(q)-moàxx\cs op,, i = 1,2,..., 5, where <pl = / denotes
the trivial FR(q)-module. In [7], Fong determined the decomposition matrix up to
three parameters a, b and c. He also showed that we may choose notation so that
<p2 and <p3 are algebraically invariant and self-dual, while <p4 and <p5 are the duals
and the algebraic conjugates of each other.

In §§2 and 3 we complete the decomposition matrix of B by showing that a = 2
and b = c = 1 for every « = 1,2,... (Theorem 3.9).

If M is a finitely generated FG-module, G a finite group, then soc(A/) = 5,(M)
denotes the socle of M which is the sum of all simple FG-modules of M. Let
Si+i(M)/Si(M) = S,(M/5,(A/)).  Then  0 < S,(M) < S2(M) < < ^_,(A/)
< Sk(M) — M is called the socle series of M, and k is the socle length of M which
coincides with the Loewy length j(M) of M. If / denotes the Jacobson radical of
FG, then j{M) is the uniquely determined integer j with MJ'~X ^ 0 = MJJ. In
order to describe the socle series of an FG-module M, we associate to M a matrix
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84 PETER LANDROCK AND G. O. MICHLER

which in the z'th row vector has the composition factors of Si(M)/Si_l(M) with
their multiplicities.

Let D be a Sylow 2-subgroup of R(q). Then D is an elementary abelian group D
of order \D\ — 8. Its normalizer N = NR^(D) is a holomorph of D by a noncyclic
Frobenius group F21 of order |F21| = 21. Hence FN is a block algebra. Its structure
was determined by the authors in [12]. It has five nonisomorphic simple FN-xnod-
ules, / and four others denoted by 1, 1*, 3 and 3*, where our notation indicates the
degree of the simple FTV-module, and where m* denotes the dual of m. By Knörr's
theorem [10], each simple B-module op, has vertex vx(op,) =R^D. Therefore we
consider the Green correspondence / with respect to D between the indecompos-
able FÄ(<7)-modules of B and the indecomposable FAZ-modules. The main results
of §§2 and 5 are collected in Theorem 5.3 which asserts that the socle series of the
Green correspondents/(op,) are:

(a)/(/) = /,/(<p4) = 1*, and/(op5) = 1,
(b)/(<P2) = 33*,

3
(c)/(<p3) = 3 3*.

3*
These Green correspondents are used to compute the parameters a and b of the

decomposition matrix of B in §§2 and 3. Furthermore, they enable us to find the
structure of the indecomposable projective B-modules P¡, where P¡ denotes the
projective cover of op,, i = 1, 2, . .. , 5.

Theorem 4.1. The indecomposable projective FR(q)-modules of the principal 2-
block B of any simple group R(q) of Ree type have Loewy and socle series:

(a)

/
<P2

<p3 <p4 <ps I
P,: <Pi 9i

<P3 <P4 "P5 I
<p2

/

(b)
<p2

/ <p3 <p4 <p5
op2 <p2 <p2

P2: I    <p5     <p4    <p3     <p4     <ps      I
<p2 <p2 <p2

/ <p3 <p4 <p5
<p2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PRINCIPAL 2-BLOCKS 85

(C)
<P3
<P2

op4      /     op5

P3: <P2
op4      /     op5

op2

fi

(d)
<f>4

"P2

<?3 ^4 "PS 7
F4 =   Pf- <t>2 <Pl

93 <P4 «PS 7
<P2
<P4

Finally combining Theorem 4.1 together with recent work of J. Alperin [1], K.
Erdmann [5] and the authors [12] we show in §6 that every indecomposable
projective 50-module P of the principal 2-block B0 of an arbitrary finite group G
with an abelian Sylow 2-subgroup D of order \D\ = 2" has Loewy length j(P) <
max{2n + 1, 2"} (Theorem 6.1). This upper bound is sharp.

Concerning our terminology and notation we refer to Dornhoff [4], Feit [6],
Gorenstein [8], and Green [9]. Discussions with L. Scott have been helpful.

1. Known results on the groups of Ree type. In this section we collect some known
facts on the groups R(q) of Ree type of order \R(q)\ = (q3 + l)q3(q — 1), where
q = 32n+1> m = 3", and n = 0,1,2.These results either can be found in
Ward's paper [15] or are due to Fong [7].

Throughout this section, (F, R, S) denotes a splitting 2-modular system for R(q)
and all its subgroups.

By En we denote an elementary abelian group of order n. Let Es be a fixed Sylow
2-subgroup of R(q) and fix an involution 1 =^= u e Es. All involutions of R(q) are
conjugate.

If U is a subgroup of R(q), then N(U) and C(U) denote its normalizer and
centralizer respectively in R(q). By Ward [15], in each group R(q) of Ree type the
centralizer of the involution u has the form

C = C(u) = <«> X PSL(2, q),
where q s 3 mod 8, and E4 is a Sylow 2-subgroup of PSL(2, q).

Let iV = N(E6). Then N is a holomorph of Es by the Frobenius group F21 of
order 21. Let E be the normal subgroup of N with index 3. Then E = E% • Z, is a
Frobenius group, where Zr denotes the cyclic group of order r. Furthermore,

K = N n C = <» X 9l4.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



86 PETER LANDROCK AND G. O. MICHLER

Let F be a fixed Sylow 3-subgroup of R(q) such that its normalizer L = N(P)
contains the involution u. By [15], L is a holomorph of P by <«> X Z(ï_ 1)/2, and

H= Ln C=<m> x(£?-Z(9_1)/2),

where Eq ■ Z(9_1)/2 is a Frobenius group. Furthermore, C, L and N are maximal
subgroups, and

T = L n TV = <u> X Z3.

Thus we have the following diagram of subgroups of R(q):

I or /G denotes the trivial (modular) representation of any group G, and P¡ denotes
the projective cover of I.

Throughout, B = (B = eFG, B = êRG, Bs = B ®Ä S) denotes the principal
2-block of R(q), where e and ê denote the block idempotents of B and B
respectively. As in [15], let £,, i = 1, 2, . . ., 8, £, = /, denote the ordinary irreduc-
ible characters of B. We also let op,, i = 1, 2, ... , 5, op, «■ /, denote the Brauer
characters of the corresponding simple FÄ(#)-modules.

Let F, be the projective cover of op,, i = 1, 2, . . . , 5, P{ = P,. In order to
determine the socle series of F, we have to compute the three parameters a, b and c
in Fong's [7] decomposition matrix of B:

character <P2 93 <P4 9$ degree

q+l

u a - 1 q(q2 -q-\)

Uq - l)m(q + 1 + 3m)

Uq - \)m(q + 1 + 3m)

c - 1 ±(<7 - l)m(q + 1 - 3m)

Uq - \)m(q + 1 - 3m)
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PRINCIPAL 2-BLOCKS 87

Our computation of the integers a, b and c requires the following character
tables and subsidiary results.

The principal 2-block of C = PSL(2, q) is denoted by b0 = b0(C). It has four
ordinary characters /, x,, x' and x"> and three modular characters /, x' and x" •
Furthermore, x" = (x)*- Let P'¡, P'x, and P'x, be the projective covers of the simple
¿>0-modules of C.

Lemma 1.1. (a) The indecomposable projective modules of the principal block b0 of
PSL(2, q), q = 3 mod 8, have socle and Loewy series

I x' x"
P'r-X' X",       P*: 1 X",       P'x: I X'-

I X' X"

(b) The simple modules of b0 may also be considered as the simple modules of
G = Z2 X PSL(2, q), q = 3 mod 8, in which group their projective covers have socle
and Loewy series

I X' X"
/   x"        p   ml   *    /       p   m'   X"    X'
/   x"'       x'    /   x'   V       x"    /   x"   x'
/ x' x"

(c) Consider again \' and x" as PSL(2, q)-modules. Then

XJg(4 = 1 © projectives,   x|a4 = 1* © projectives.

Proof, (a) See K. Erdmann [5].3
(b) Since G contains a central involution, this follows from (a) and Green's

theorem (see Dornhoff [4, p. 329]).
(c) By K. Erdmann [5], 1 is the Green correspondent of x' in 2^4» which is the

normalizer of a Sylow 2-subgroup. Moreover, PSL(2, q) contains a dihedral sub-
group of order q — 1. Let 1, 1 ~ be the irreducible characters of the principal block
of this group. Any other block is of defect 0. We then compute

(x', i)=i,     (x',i-) = o,

which shows that X\z2 = I ® projectives. Hence no component of x'\%4 has Z2 as a
vertex. Since x" = (x)* assertion (c) follows.

In order to restate the character table of C we use Ward's notation [15] for
representatives of conjugacy classes of C = PSL(2, q). Thus the Ä(#)-conjugacy
class of u is identified with the one of J.

3This result is due to J. L. Alperin who announced it without details in his paper Minimal resolutions.
Finite Groups 1972, North-Holland, Amsterdam, 1973, pp. 1-2. MR 50 # 1045.

Pi-
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PRINCIPAL 2-BLOCKS

Character table of C = PSL(2, g)

central
index W - 1) Ht2 -1) ?(? + 1) 9(4 - 1) •7(9 - O

89

-;<?(? -1»

element Steven Si,yodd

1 1
-1

\(1 - 1) i(-l+' q) ■10 +1 ?)

K? -1) -4(1+' 9) K-1+1 9) 1

X* -(<> + e-Jk) -(e>k + e-Jk) -2(-l)*

q+ 1 0

Where 1 < h,j, k, l < r = ±(<? - 3),

e = **/<'-», ¿  e* + e">* = -1 - (-1)*,
y=i

»-e^/^+«),        ¿(ww + w-A/)= -L
/-i

all characters x* belong to blocks of defect 1, and all characters Xi belong to blocks
of defect zero of C.

From this character table and Ward's character table of R(q) ([15, pp. 87-88])
we deduce

Lemma 1.2. Let ê be the block idempotent of the principal 2-block B of R(q). Let I,
x', x" and Xq be the ordinary irreducible characters of the principal block b0 of
C = PSL(2, q), q = 3 mod 8. Then:

(a) IR^ê = / © £2 © 3£3 © £4,
(b) x'R™ê - qÍ3 © (9 - 2)¿4 © «É7 © m£8,
(c) X"*(,)¿ = qÍ3 ®(q~ 2)¿4 © w|5 © m£6,
(d) x/(í)e = U2 © 29í3 © 2<7|4 © (m + 1)£5 © (m - 1& © (m + 1)£7 ©

(m - 1)¿8.

Using Fong's description [7, Lemma 2] of the Sylow 3-subgroup F of /?(?), it is
not difficult to compute the character table of its normalizer L = N(P). In fact we
show that it is uniquely determined although the structure of P is not completely
known. Again we use Ward's notation [15] of representatives of conjugacy classes.
(See the Character table of the normalizer L of a Sylow 3-subgroup of R(q).)

From this and Ward's character table [15, pp. 87-88], we obtain

Lemma 1.3. (a) £2\l = I    + \-
(b) ¿3|l = I_+ qA9 + mAmjf mXm + A, + I(m + l)Am/2 + \{m - l)Am/2

+ \{m + l)Am/2 + i(m - l)A-/2.

(c) U\l =î(w - !)A, + Am/2, £5|£ =\{m + 1)A, + A"/2.
(d) îs\L = ï(m - 1)A? + AOT/2, £7|¿ ={-(m + 1)A, + A~/2.
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90 PETER LANDROCK AND G. O. MICHLER

As in [12], centralizers of involutions play an important role in the course of the
proofs. If M is an FG-module or an FG-module and u ^ 1 is an involution of the
finite group G, then

annw(l - u) = {m e M\m{\ - u) = 0}

is called the centralizer of u in M.
If X is an F-form of the irreducible character £ of the finite group G, and if

X = X/Xtt, where -nR is the maximal ideal of R, then we write

zx(£) = dimf(annjp(l - «)).

For the irreducible characters £2 and £,, /' = 5, 6, 7, 8, of the groups R{q) of Ree
type, this dimension zx{£) of a centralizer of the involution u ¥= 1 is independent of
the choice of the F-form X by the following result.

Lemma 1.4. (a) z^J -±(|2(í) + 1).
(b) Zxii) =î«,(l) + î(9 - 1)), i = 5, 6, 7, 8.
(c) dim^ann^Xl - u)) =\(q - l) + \ dimf <p„ i = 4, 5.

Proof, (a) Let X be an F-form of £2. Then Lemma 1.3(a) asserts that X\L = A,
© /, because Aq is a projective FL-module by the character table of L. Therefore,

zx(Q = dinv(annr(l - u)) = 1 +| dim Aq

= \+^-q)=^2(l)+l).

(b) Let X be an F-form of £8. Then Lemma 1.3(d) asserts that X\L = \{m — 1)A?
© Am/2, because A, is a projective FL-module by the character table of L.
Furthermore, Am/2 belongs to a block of L with defect group conjugate to <«).
Now H = C n L = CL(w) = <h> X (Eq • Z(9_,w2), and the second direct factor is
a Frobenius group. Let / be the Green correspondence between L and H with
respect to <m>. Then

A(m/2)|// = y(Am/z) ® projective F//-modules. (*)

Thus /(Am/2) is an irreducible F//-module of degree \{q — 1) with u in its kernel.
Therefore (b) follows for £g. By Lemma 1.3 the same argument applies to the other
characters as well.

(c) Again let X be an F-form of |8. Then by Fong's decomposition matrix there
is an integer c such that X has composition factors op5 + (c — l)op2. Since op2|¿ = Aq
is a projective FL-module, it follows that

X\L = 95\L © (C -   l)<p2.

Hence from Lemma 1.3(d) and the Krull-Remak-Schmidt theorem we obtain

95\l - ï(« + 1 - 2c)A9 © X-/2.
As Aq is projective, equation (*) now implies that

dinv(ann <¡p5(l - u)) = \(q - 1) + |(dmv op5 - \(q - 1))

= K<7 - O'+l dimops.
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Hence (c) holds for op5. The same argument applies to op4, too.
For the sake of completeness we now restate the following inequality due to the

first author [11]

Lemma 1.5. Let X be a liftable FG-module of the form X = X/Xm. Let x be the
character of X ®R S.Ifuj^ 1 is any involution of the finite group G, then

dim^ann^l - u)) > \[x(l) +|x(«)|]-

Another subsidiary result is

Lemma 1.6. Let A be a finite-dimensional algebra over a field F. Let
S, Tx, T2, . . . , Tn be simple A-modules such that dim^ Ext^(F,, S) = 1 for i =
1, 2, . . . , n. If the A-module M has a submodule M0 3= rS such that M/M0 — Tx ©
F2 © ■ • • © Tn, where r > 2, then M is not indecomposable, and every direct
summand has simple socle.

Proof. By induction we may assume that r = 2. Hence A/0 = S, © S2 = soc M,
where S¡ = 5 for / = 1, 2. Let Mx = M / Sx. Then Mx is a direct sum of a
semisimple A -module £/, and an A -module V2 with soc V2 = S2 and V2/S2 =s T¡
© • • • ®T¡. Let U be the preimage of Ux and V the one of V2. Then our
hypothesis implies that U has simple socle soc U = Sx and that V » V2 © Sv
Hence V has a direct sum decomposition V = Vx © Sx, where V2 œ Vx + Sx/Sx
s Vx. Thus M = U © Vx.

We complete this section by restating some useful definitions and notations of
[12].

Let G be an arbitrary finite group. For any pair of FG-modules X, Y and a
subgroup U of G, denote (X, Y)v := Hom^£/(Ar, Y). X ° Y denotes any extension
of X by Y, so that there exists an exact sequence 0 -» Y —» X ° Y -» X —» 0. SIX
denotes the Heller module of X, so that there exists an exact sequence 0 —* &X —» F
—* X —> 0, whenever F is a projective cover of X.

(X, Y)XG consists of all FG-module homomorphisms from X into Y factorizing
through a projective FG-module F, and

(X, Y)'G = (X, Y)G/ (X, y)1>G.
Definition. Let G be a finite group, p\ \G\ a prime number, and F a splitting

field for all subgroups of G of characteristic p > 0. Let H be a subgroup of G, and
U an indecomposable FG-module which is //-projective. If a component /*( U) of
UH is the only direct summand E of UH satisfying U\EG, then/*(£/) is called a
generalized Green correspondent of U in H.

2. The Green correspondents of op2, op4 and cp5. In this section we determine the
Green correspondents of the simple FF(çr)-modules op,, i G (2, 4, 5}, of the prin-
cipal 2-block B of the groups R{q) of Ree type. We also show that c = 1.

In order to derive these assertions we study the structure of two permutation
modules. Let U = (/L)Ä(<?) be the permutation module belonging to the 2-fold
transitive permutation representation of R(q), see Ward [15]. Then U ®R S = / ffi
¿3, and U is a self-dual indecomposable FF(^)-module belonging to B with the
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92 PETER LANDROCK AND G. O. MICHLER

following properties, of which assertion (d) is due to L. Scott [14].

Lemma 2.1. (a) S(U) = I s* U/UJ.
(b) ExtJ^,//, /) = 0 = Ext^(9)(7, /).
(c)S2(U)/S(U) = <p2.

/
(d) The projective cover P, of I has a submodule 9i.

I
(e) U has vertex vx(f7) = R(q) <w> = £2.
(f) U has a minimal projective resolution 0*- U *r- F7 <— ñ t/ <— 0, and U — QU.

Proof. As U is a permutation module, it is liftable, self-dual, / occurs in the
head U/UJ and in the socle of U. Since Û <S>Ä 5 = / © £3, dim,, EndFG(U) = 2.
If U were not indecomposable, then EndFG( U) = F © F, and / would be a direct
summand of U. However, F2 = <«> is a Sylow 2-subgroup of L, which implies that
each component of U is F2-projective. But vx(7) =RM Fg. Hence U is inde-
composable, and its vertex vx( U) = A(ç) F2. Furthermore, / = soc( U) s¿ {// UJ.
Thus (a) and (e) hold.

By [9], the Heller operator fi commutes with induction from L to R(q). Hence (f)
follows.

As N is also the normalizer of the Sylow 2-subgroup of the smallest Janko group
Jx, assertion (b) follows from [12], Lemma 1.1 and the proof of Lemma 6.3.

By Fong's decomposition matrix of B the character £2 has an F-form X such that
X = X/Xm = ^2. As Ext^(i)(7,1) = 0 by (b), the argument of L. Scott [14] yields
the existence of the uniserial module

/
92-
I

Thus (d) holds.
Furthermore, the same reasoning shows the existence of

/
T¡ = 9¡,

I
whenever      belongs to the second socle S2( U) of U. Since op3 has multiplicity 1 in
U by (f) and Fong's decomposition matrix

/
U * <P2.

/
Therefore by (a) and (d), its Loewy length j(U) > 3. If T¡ were a submodule of U,
then it would therefore be a proper submodule of U. Hence the multiplicity of / in
U would be at least 3 by (a). Thus by (f), the Cartan invariant cu > 2 • 3 = 6. But
c,, = 4 by Fong's decomposition matrix. This contradiction proves (c) and com-
pletes the proof.

Besides the permutation module U = (/Z.)Ä<,) we consider the component W in
the principal block B <-» e of the permutation module (7C)Ä(,), i.e. W = (Ic)R(q)e.
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Before we can determine its main properties, we have to study the restrictions of op2
to C and L.

Lemma 2.2. (a) op2|L = Aq is a simple and projective FL-module.
(b) // e0 denotes the block idempotent of the principal 2-block b0 of C, then op2|Ce0 is

indecomposable and has socle series

92^0-j    x,     x„,
where I, x', and x" are tne simple FC-modules of b0. Furthermore, its vertex is E%.

(c) <p2|C(l — e0) is a projective FC-module.
(d) If e0 also denotes the principal 2-block idempotent of C, then also op2|C-e0 is

indecomposable with E4as a vertex and has socle series

m     »   -l    X'    X"
92^0-j    x,     x„-

(e) op2|C(l — e0) is a projective FC'-module.

Proof, (a) holds by Lemma 1.3(a), Fong's decomposition matrix of B, and the
character table of L.

(b) Since every nonprincipal 2-block of C has defect at most 1, any nonprojec-
tive component V of op2|C.(l — e0) has vertex vx(K) = c. E2. However all involu-
tions of R(q) are conjugate. Hence V is projective by (a). Thus V = 0.

(c) is an immediate consequence of (e) by Nagao's lemma, see Dornhoff [4, p.
353].

(d) By Lemma 1.2, A' = op2|C.e0 has composition factors 21 + 2x' + 2x"'■ Since
all involutions of R(q) are conjugate, it follows from (a) that ^4'|<0> is projective for
every involution v of C. Therefore the sources of the components of A' are
even-dimensional. Hence every component of A ' has an even number of composi-
tion factors. As op2 is self-dual and algebraically invariant, Lemma 1.1 implies that
A' is indecomposable and projective free. Therefore vx(A') = F4, and (d) follows.

(e) Certainly A = op2iCe0 is indecomposable by (d). By Knörr's theorem [10],
vx(op2) = R(q) Eg. Hence Es is a vertex of A. Furthermore, (a) implies

dim,, ann^(l — u) =\ dim A.

Again the self-duality and algebraic invariance of A imply that ann^(l — u) is
semisimple. Hence (b) follows, because soc A = ann^(l — u). This completes the
proof of Lemma 2.2.

Lemma 2.3. The FR(q)-module W = (Ic)Riq)e of the principal 2-block B++e of
R{q) has the following properties:

(¿)W®RS= / © 2£3,
(b) End^W) « End^IfO/TrEndWIf'),
(c) dimF EndFR(q)( W) = 5,
(d) dim,, HomFR(q)(U, W) = 3 = dim,, Horn,R(q)(W, U),
(e) W = / © V © V*, where the dual B-modules V and V have socles soc V =

<p2 and soc V* = op3.
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94 PETER LANDROCK AND G. O. MICHLER

Proof, (a) follows immediately from Ward's character table [15] and the
Frobenius relations.

(b) Y = (/C)Ä(,) is a permutation module. Thus,

EndFR(q)(Y) m End^Y)/vEnd^Y).

Since W = Yê,
End^W^End^y)]*,

which implies (b).
(c) follows from (a) and (b).
(d) As Û ®R S = / © £3 we obtain from (a) that

dims HomM(f)((/ ®R S, W ®R S) = 3 = dims WomSR(q){W ®R S, Û ®Ä S)

Since U and Y are permutation modules, it follows that

Hom„Ä(?)(i/, W) « KomRRiq){Û, W)/trHomRR(q){Û, W),
because W = Yê. Interchanging U and W we obtain the other isomorphism. Thus,

dim,, Homra(?)( U, W) = 3 = dim,, HomfÄ{?)( W, U).
(e) As K = N n C we have a Green correspondence gx between K and C with

respect to F8. Since g,(7) = I,

(iKf * /c © e,
where Ö; is a direct sum of indecomposable FC-modules with vertices contained in
Klein four subgroups of C.

The index \N : K\ = 1. Thus (IK)N has composition factors I, 3 and 3* by [12].
Clearly F8 is normal in N and has odd index. Therefore (IE)N is a semisimple
FJV-module. As IK has vertex F8 it is a component of (7£ )*. Hence (IK)N is a direct
summand of the semisimple FA/-module (IE )N, which implies

(/*)" m IN 0 3 © 3*.

Now let g be the Green correspondence between N and R(q) with respect to Es.
Then

(/JÄ(9)s/©g(3)©g(3*)©^,

where /I is a direct sum of indecomposable FF(^)-modules with smaller vertices
than F8. So

(/*)äw=(c*)cr?) - cc)ä(?) © cÄ(9)
yields

W = (/?(?))e « / © g(3) © g(3*) © W0.

As
dimf(End^(?)(/ © g(3) © g(3*)) > 5,

(c) implies IV0 = 0. Hence W = I © V © K* for some indecomposable FR(q)-
module K.
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By Lemma 2.2(b) op2 occurs once in the socle of W. Hence V and V* are
algebraically invariant. As dim,, EadFR,¿ÁW) = 5 it follows that neither op4 nor op5
occurs in the socle of W. Furthermore, we may assume without loss of generality
that soc V = op2. Hence soc V* = op3 which completes the proof.

Proposition 2.4. Let e0 be the block idempotent of the principal 2-block b0 of C.
Then:

(a) c = 1,
(b) <P4|cc0 = X" © \{m - 1)FX„,

(c) <P5|ce0 = x' © \{m - 1)FX,.

Proof. Let T be an F-form of £8. Then by Fong's decomposition matrix,
T = T/Ttt has composition factors op5 + (c — l)op2. By Lemma 2.2(b), <p2\Ce0 has
composition factors 2/ + 2x' + 2x". Therefore Lemma 1.2 implies that op5|Ce0 has
composition factors

(m + 1 - 2c)/ + (2m + 1 - 2c)x' + (m + 1 - 2c)x". (*)
Since the involution u ¥= 1 is in the center of C = <m> X C, Y = ann^^l — u) is
an FC-submodule of op5|C. As u acts trivially on Y, it follows that Y is an
FC '-module. In particular, every nonprojective component of Y has Loewy length
2, because C = PSL(2, q), q = 3 mod 8. Since Ic does not occur in the socles of
op5|C and op4|C by Lemma 2.3, it follows that Ic does not occur in the socle and the
head of Y, because op* = op5. Hence by Donovan-Freislich [3] every indecomposa-
ble summand U of Ye0 is isomorphic to one of the following indecomposable
FC '-modules:

X',X", X',X',^'andPx„.
XX

x'        x"Let r, s, t and u be the multiplicities of x'> X ">    „ and    , respectively in Ye0, and
X X

let/) be the number of indecomposable projective summands of Ye0. Then

dim„ Ye0 = p(q + \(q - 1)) + \(r + s)(q - 1) + (u + t)(q - 1).       (**)

Hence by Lemma 1.1, the multiplicity of the composition factor Ic in Ye0 is p.
Let X = (1 — t/)op5|C. Then X Ç. Y, and by Lemma 1.4(c),

dimF{Y/X)={-(p-\).

As the multiplicity of Ic in op5|C is

m + \-2c=\ Víq + I - 2c < \{q - 1),
it follows from the character table of PSL(2, q) that Y/X is isomorphic to x' or X "•
Thus,

Y/X s Ye0/Xe0. (***)

As <p5e0/ Ye0 ̂  Xe0, it follows that Ic occurs \(m + 1 — 2c) times as a composi-
tion factor of Ye0. Hence/) = ^(w + 1 — 2c).
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By (•),

dim,, <p5e0 = (m + \)q + — (q - 1) - 2cq.

Hence (***) implies
m + 1 m + 1 . .

dim,, Ye0-^— a + —4— W - 1) ~ c?-

Inserting the value of p into (***) we also obtain

dim„ Ye0 -\(m + 1 - 2c)(<z + ¿(9 - 1)) + ¿(r + s)(<7 - 1) + (w + /)(,, - 1).

Thus,

\(q - \)c = \{r + s)(q - 1) + (u + t)(q - 1),

and
c = r + s + 2(u + t).

Let x be the multiplicity of the direct summand P'x, in Ye0 and let.y be the one of
P'x„. Then

x + y = p = j-(m + 1 — 2c).

By Lemma 1.1, the multiplicity of x" in xP'x, © yPx~ is x + 2y. Since (*) and the
simplicity of Ye0/Xe0 imply that x" occurs \{m + 1 — 2c) times as a composition
factor of Ye0, it follows that

x + 2y < i(m + 1 - 2c).

Therefore y = 0, and x = ^(/n + 1 — 2c). Hence Lemma 1.1 asserts that t = u = s
= 0, and c = r. Thus

yc0 = cX'©K'« + i-2c)Fx,.

Since Ic is not contained in the head of XeQ, it follows from (***) that

op5c0/ Ye0 m Xe0 m (c - l)x' © K™ + 1 " Wx-

Restricting op5 now to C we obtain

^. - <P5|c^o = (2c - l)x' © (m + 1 - 2c)Fx,.

Let c ^ 1 be an involution of C', and let z^ (t>) = dim^ann^ (1 — v)). Since by
Lemma 1.1, the Green correspondent/(x) of x' m ^4 is one-dimensional and has a
projective complement, we obtain

zA¡(v) = 2c - 1 + \{2c - l)(dmv x' ~ ') + \(m + 1 - 2c)dimf Px,

= i(2c - 1 + dim^i).

We now choose the F-form T of £8 so that op5 = soc(F), see [4, Lemma 68.10],
due to J. Thompson. By Lemma 1.3, F has the following composition factors:

f\c. = {m- \)I + (2m - l)x' + (m - 1)X"
r/2 r/2 r

+ m 2   X2.-1 + (m - 2) £   X2s + (m - 0 2  Xi-
J=l i=l /-l
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Lemma 1.4(b) asserts

'M -ï(60) +|(? - 1)) =\[m(q - \)(q + 1 - 3m) + q - 1].
Let F, = F|c,e0 and T2 — T\c,(\ - e0), where e0 denotes the block idempotent of
the principal 2-block of C. By Lemma 1.5,

zt,(v) > {-{{-Ml -\) + (m- l)q + 1) = c„

because F, has odd dimension. Likewise,

zT2(v) >\[{m- 2)(q - \)(q - 3) + (m - l)(q + l)(q - 3) + (q + l)(q - 3)]
- c2.

An easy computation shows

zt(£s) = zt,(v) + zt2(v) > c, + c2 = zr(£8).

Hence   zT(v) = c, =^(dimf Fj + 1).   Since   T  has   composition   factors   op5 +
(c — l)op2, and as <p2|<c> is projective,

zTi(ü) = zA¡(v) + (c - l)dimf ann^^.Coíl - u)

= zA¡(v) + (c - 1)?

= ¿(2c - 1 + dim Ax) + (c - \)q

= {(2c - 1 -r-dim^F,).

Thus 2c — 1 = 1, and c = 1, which proves (a).
Furthermore, op5|C-e0 = Ax = x' © (m ~ 1)PX'' anc* Ye0 = x' © \(m ~ l)Px- ^s

the involution u acts trivially on x' and as C = («> X C, it follows from the
decomposition of Ax that x' is a direct summand of op5iCe0 = x' © U, where U
denotes a complement of x' in 9s\ceo- Since <p5\ce0 and Ye0 have the same socle,
they also have the same injective hull, which is a direct sum of |(w + 1) copies of
Px,. By Lemma 1.1, U and \(m — 1)FX- have the same composition factors
including multiplicities. Thus U =\(m - 1)FX-, which proves (c). Now (b) follows
by duality. This completes the proof of Proposition 2.4.

Proposition 2.5. The simple FR(q)-modules <p2, op4 and op5 have Green correspon-
dents with the following socle and Loewy series:

3*(a)/(op2) = 3>and 9i\n = /(<P2> ® projectives.

(b)/(op4) = 1*, and<p4{N = /(<p4) © E2-projectives.
(c)/(op5) = 1> and <p5{N = /(op5) © E2-projectives.

Proof, (a) By Lemma 2.2(b) and (c),

92\c = j    X,    X„ © projectives,
"* A. A.

where the nonprojective summand is indecomposable with vertex F8. By Lemmas
1.1(c) and 2.2(d),

92\%t = Ij     j     j* ©projectives,
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where the nonprojective summand is indecomposable with vertex E4. Using the
argument of Lemma 2.2(b), it follows that

92\k=Ij    |     j*© projectives, (*)

where the nonprojective summand is indecomposable with vertex E8. As K = N n
C and N is 2-closed,

Ä92)\K = j j. •

Hence self-duality of /(op2) implies that its composition factors are 2/ + 2 • 1* + 2
• 1 or 3 + 3*. If the first possibility occurs, an element of order 7 is in the kernel of
/(opj). Thus the kernel of /(op2) contains E. However, Es is not in kernel, since

3        3*Ä9i)\e2 is projective. Therefore/(opj) equals * or J , as its Loewy length is 2. Now

92\n = /(<P2) © projective

by (*). Hence Lemma 1.1 of [12] and Lemma 2.1(d) imply that

Y = f
I

cp2

I
is an indecomposable FA/-module. Since Y is the only nonprojective summand of
7 3*
<P2, it is not projective. Thus Proposition 2.3 of [12] implies/(opj) =      .
/

(b) By Proposition 2.4(b) and Lemma 1.1(c), <p4^K has only one summand with
vertex EB, namely 1. As in the proof of (a), we obtain f(<p4)\K = 1. Thus/(op4) = 1.

(c) follows now from (b) by duality.

3. The decomposition matrix of B. In this section we determine the parameters a
and b of Fong's decomposition matrix of the principal 2-block B of the groups
R(q) of Ree type.

Lemma 3.1. F has Carian matrix

92 <p3 9a <Ps
2a 2b 2b

<p2 2a 2a2 - 2a + 4 2a - 1 2ab - b + 1 2ab - b + 1
op3 2a - 1 lb 2b

9a 2b 2ab - b + 1 26 2¿>2 + 2 2b2

<P5 2b 2ab - b + 1 lb 2b2 2b2 + 2

Proof. By Proposition 2.4(a) we know that c = 1. Inserting this number into
Fong's decomposition matrix, Lemma 3.1 follows from Theorem 48.8 of Dornhoff
[4].

Corollary 3.2. Ext],Ä(9)(ap3, op3) = 0.

Lemma 3.3. dim,, ExtFR{q)(<p2, opj) < 1.
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3*Proof. By Propositionn 2.4(a), op2|Ar =     © projectives. Hence

dim,, ExtJ,Ä(i)(op2, <p2) < dim,, ExtFN(f(<p2), f(<p2))

by Lemma 1.1 of [12]. Now Proposition 2.3 of [12] asserts that fi/iop^ has Loewy
series

/      1      1* 3*
ß/(<P2)=       3*     3     3 (*)

3*
By Feit [6],

dim,, ExtlFN(f(<p2),f(<p2)) = dimF(Qf(<p2),f(<p2)yN

< dim,,(fl/(op2),/(op2)) = 1,

where the last equality follows from (*) and Proposition 2.3 of [12].

Lemma 3.4. dim,, Ext-Ä(9)(op,, opj) = 1 for i = 4, 5.

Proof. By Fong's decomposition matrix of B,

dim,, ExtFR(q)(<p4, op2) > 1.

Let op4 ° <p2 be any nonsplit extension of op2 by op4. As dimF(op4 ° opj) is odd, it has
vertex Es.

By Lemma 2.2 and Proposition 2.4, op2 and op4 have generalized Green correspon-
dents/*(op2) and/*(op4) in C. Furthermore,

(<P4 ° 92>\c = f*(94) °f*(92) © F2-projectives.

By the definition of relative projectivity ([4, p. 322]), also Y = /*(op4) ° /"(op^ is a
nonsplit indecomposable extension with vertex vx(y) = c Es. Since f*(y>2)\<u> is
projective,

annr(92)(l - u) ^ I ® X'® X" < Y(l - u).

As y has seven composition factors, we obtain

y(l -!/) = /© x' © X" and annr(l - u)/ Y(\ - u) - x"■
Hence y/y(l — u) is a semisimple FC-module. As 7(1 - «) < /*(<Pi)> tms implies
that y has Loewy length j( Y) = 2. Since Y is indecomposable, Lemma 1.6 asserts
that anny(l — u) is not a semisimple FC-module. Hence Y\C, is indecomposable,
because /*(<p2)|c *s indecomposable. Therefore fiy^c* has only one nonsplit
extension by x" as Lemma 1.1(a) shows. This completes the proof.

Lemma 3.5. ExtJ,Ä(9)(op„ op,) = 0 for i = 4, 5.

Proof. Suppose op4 ° op4 is a nonsplit extension. By Proposition 2.4(b),

94\ceo = x" © projectives.

Therefore by the definition of relative projectivity,

(<P4 ° 9a)\c*o = X" ° X" © projectives, (*)

where x" ° x" is a nonsplit extension. Hence x" ° x" has vertex F4 by Lemma 1.1
and Green's theorem. Moreover, (*) and Lemma 1.1 imply
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(<P4 ° <P4)|ceo = X" © X" © projectives.

Since op4 o <p4 is C'-projective, relative projectivity now asserts that op4 ° op4 is a split
extension. By duality the other part of the lemma follows.

Lemma 3.6. Ext),Ä(9)(op„ <pß = 0, i,j G (4, 5} and i =£j.

Proof. Suppose op4 ° cp5 is a nonsplit extension. As in the proof of the previous
lemma, this implies

(<P4 ° 9s)\c-eo = X" ° X' © projectives,

where x" ° x' again is a nonsplit extension. Moreover, u lies in the kernel of
X" ° X- Thus

(x" « x'V - (x" ° x%<
considered as a Ä"-module by the trivial action of u. From Lemma 1.1(c) follows

(<P4 ° 95)\k = (x' ° x")\k ® F2-projectives

= 1* ° 1 © F2-projectives. (*)

As op4 » op5 has vertex F8, its Green correspondent /(op4 ° op5) is a component of
(1* o 1)^. Since N is 2-closed,/(op4 ° op5) has Loewy length 2 by (*). By Lemma 2.6
of [12] every F2-projective FA"-module has Loewy length at least 3. Hence
/(°r>4 ° 95)\k = 1* ° 1 by (*). Thus dim,, /(op4 ° op5) = 2, a contradiction to Proposi-
tion 2.3 of [12].

Lemma 3.7. For each op E {/, op4, op5} there exists at most one uniserial FR(q)-mod-
•P2

ule  <p .
92

Proof. Suppose there are two nonisomorphic FF(^)-modules with Loewy series
«P2
/ . By Lemma 2.1(c), their largest isomorphic submodule is      . Amalgamating it,

„. t2"P2
we obtain an FF(ç)-module with socle series

<P2 <P2

/
op2

which is a contradiction to Lemma 2.1(c).
Since op2 is self-dual, Lemma 3.4 asserts

dim,, ExtJ,Ä(9)(op2, <p4) = 1 = dim,, ExtJ^^op,,, op2).

Therefore the above argument shows that there exists at most one uniserial
FF(<7)-module

?2

9a.
<p2

As op4 and op5 are algebraic conjugate, the proof is complete.
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After all these preparations we now can compute the remaining parameters a
and b of Fong's decomposition matrix of the principal 2-block B of the groups
R(q) of Ree type.

Proposition 3.8. (a) Let V be the indecomposable FR(q)-module of Lemma 2.3.
Then it has socle series

op3

y **
9a      I      «Ps

<p2

(b) The permutation module U of Lemma 2.1 has socle series

I
<p2

U: 9a    «P3     9s
<P2

/
(c) a = 2 and b = 1.

Proof. Let U be the permutation module of Lemma 2.1 and let W be the one of
Lemma 2.3. By the latter,

W s / © V © V*,
where soc V = op2 and soc V* = cp3. Furthermore, it follows from Lemma 2.3(a)
and (e) that modulo itR, any F-form of £3 has the same composition factors
(including multiplicities) as V. Hence / has multiplicity 1 in F by Fong's decom-
position matrix.

Since
/
9i
I

is not projective by Lemma 2.1, it follows from the proof of Proposition 2.5(a) that
|ce0 has Loewy length 2. Therefore Lemma 2.2(b) implies that / occurs twice in

the head of _   |r. Henceop2 il-

Therefore is a submodule of V, and dim,,( U, J0/?(9) = 1 by the multiplicity of /
in V.

Now Lemma 2.3(d) asserts that dimf({/, V)R(q) = 1. Hence there exists a sub-
module T of V* with soc F = op3 and head(F) = /.

Since dwcipiy*, V) = 1 by Lemma 2.3(c) and (e), there is no submodule of V
<p2

with socle series       , because by Lemma 3.3, there exists at most one nonsplit
extension of op2 by itself. Lemma 3.1 asserts that op3 occurs only once as a
composition factor of V, namely as the head of V. Furthermore, the Loewy length
j(V) > 3, because a > 2 by Lemma 2.1. Since  V is algebraically invariant, it
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follows that either
op2

9a ,    9sI     or    m     and    „
<p2 ** 92

exist as submodules of V. By Lemma 3.7 there is at most one uniserial FR(q)-mod-
ule

op2

/ •
92

If it were a submodule of V, then Lemma 2.3 would imply that 2 <
dim,,(F*, V)R(q) = 1, a contradiction. Hence the second socle of V is S2(V)/tp2 »
q>4 ® I ® op5 by Lemma 3.4.

By Lemma 2.1(c), ExtFR^(<p¡, /) = 0 for / = 4, 5. Therefore Lemma 3.6 implies
that only op2 can occur as a composition factor of the third socle S3( V) of K.

If the multiplicity of op2 in the third socle of V is not 1, then V has a submodule
y with socle series

<p2 <p2

y = / op4 op5
op2

We claim that one of the FF(^)-modules

op2      <p2 op2

/ ,    <P4    and    Ç>5
op2      op2 op2

is a submodule of Y.
By Lemma 1.6, the FF(çr)-module y/op2 is not indecomposable. As soc(Y/<p2) =

I ® op4 © op5, one of the direct summands is uniserial with op2 in its head. This
proves our claim.

Now Lemma 3.7 and the claim yield 2 < dim^F*, F)Ä(i) = 1, a contradiction.
Therefore S3(V)/S2(V) » op2.

As dimf( V, t/)Ä(9) = 1 it now follows that there is a short exact sequence

q_^9a *i_i,y^,T*-*0.
<p2

Since op2 occurs a times in V, it has multiplicity a — 1 in T*.
Now T* is isomorphic to a submodule of U, and gp3 is the head of T*. Lemmas

2.1 and 3.1 assert that op3 occurs only once as a composition factor of U. Since op2
and U are self-dual FF(<7)-modules, and since F is a factor module of U with
soc( T) = op3, we obtain

2(a - 1) < a,
because op2 has multiplicity a in U by Lemmas 2.1 and 3.1. Hence a < 2. Therefore
a = 2.
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Applying now Lemmas 2.1, 3.4, 3.5 and 3.6, it follows that U has one of the
following socle series

/
/ 92

op2 op4 op5

9a    <P3     <P5    or <P3
op2 op4 op5

/ 92
/

If the second possibility were true, then F would have socle series

/
T= 92

?4 <Ps'
<P3

As F < F*, it follows that
9>3

9a 9s
V = 92

op4      /     op5

92

In particular, b = 2, and Lemma 2.1 implies that F, has socle series

/
92

9a      I      <P5
op3 <p2

F,: op4     op5 op4     <p5.
op2 op3

9a     I     <Ps
<p2

/

Therefore F, has one of the following factor modules

/ /
v      **    nr   v (P2A, =   ,     or   A,= .

1       / 2     <P4      7     «Ps
<P2 Op2

In any case there is a self-dual indecomposable FF(#)-module X with soc(A") = op2
= head(A') such that there is a nonsplit short exact sequence

0^>I^>X?^>X^>0
for some i e {1, 2}. Therefore by [14] we have

0 r* Ext^(9)(/, X*) - Extj^J, X) -* 0,

because Ext],Ä(c)(/, /) = 0 = Ext2FR(q)(I, I). By the structure of F,,

dim,, Ext),Ä(9)(/, JSf) — 1.
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Hence either

/ /
<P2 1P2
/     or    op4     /     op5

92 <p2
/ /

exists. However, / is not a composition factor of the fifth socle of F,, a contradic-
tion. Thus U has socle series

/
92

94       93       9s
92
I

Hence 6=1, and V has a socle series as asserted in (a). This completes the proof
of Proposition 3.8.

Combining Proposition 2.4 with Proposition 3.8, we obtain

Theorem 3.9. (a) The principal 2-block B of a group R(q) of Ree type has
decomposition matrix

character op2 op3 94 9s degree

1 0 0 0 0 1

q2-q+l

e« q(q2 -q+l)

\(q - \)m(q + 1 + 3m)

ii Uq - \)m(q + 1 + 3m)

Uq - l)m(q + 1 - 3m)

\(q - \)m(q + 1 - 3m)

(b) B has Cartan matrix

<p2 <P3 9a <P5

op2

<?3

94

95
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4. Socle series of the indecomposable projective F-modules. In this section we
determine the structure of the indecomposable projective FF(<7)-modules F„, n G
{/, 2, . . . , 5} belonging to the principal 2-block F of a group R(q) of Ree type.

Theorem 4.1. Let B be the principal 2-block of a group R(q) of Ree type. Then the
nonisomorphic indecomposable projective FR(q)-modules P¡, P2, . . . , P5 of B have
socle and Loewy series as stated in the introduction.

Proof. By Lemma 2.1 and Proposition 3.8(b), the indecomposable projective
F-module F, has the asserted socle and Loewy series.

The structure of F3 follows immediately from Proposition 3.8(a), Theorem 3.9
and the self-duality of F3. Hence the socle series of P,/1 and F3/op3 are

/ 93
92 92

D ,. J     94     9s  93    ,  „ ,   94 !      95
F,//:   „,      „     and F3/œ3:    „" 92      92 3/ T3     92

/     <p4 <p5     op3 <p4      /      <p5

92 92

Furthermore, in both modules the socle and Loewy series coincide. By Lemma 2.3,
F2 contains a submodule Y with socle and Loewy series

92

y = 94   7   9s
92

which is not self-dual.
Let X = F,//. Then Lemma 1.6 asserts that

s,W/s,W-(;   l   Je (J).
Hence

92
93
92

exists. Thus Y * Y* implies now that 53(F2)/S2(F2) > op2 © <p2 © op2.
Since F2 is self-dual, and since tp2 has multiplicity 8 in F2, by Theorem 3.9 and

Lemma 3.1, it follows that Ext],Ä(i)(op2, opj) = 0, and

92 92 92
£3(^2) = l 94 95 93 •

92

Using the self-duality of F2, the structure of F,// and F3/op3, it is now easy to see
that F2 has the asserted socle and Loewy series.

As F4 s (F5)*, it suffices to determine the structure of F4. The socle series of F3
implies

Ext/*(?)(94» 93) = ° = Exti-Ä(i)(93> 94)-
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Furthermore, Ext-„((?)(/, op3) = 0. Therefore Corollary 3.2 and Lemma 3.4 assert
that S2(F4)/ap4 = op2.

Considering now the homomorphisms from F3 into F4 we find two submodules
of F4 with socle series

93
92 <p3

<p4     I     <p5    and    92.
92 94
94

Hence S2(P4)/S2(P4) = <p4 © / © tp5 ffi <p3 by the socle series of F2. By Lemma 3.1
and Theorem 3.9, tp3 has multiplicity 2 in F4. Therefore the existence of the two
above submodules of F4 implies that F4 has Loewy length j(P4) = 7. Since <p2 is the
second socle of F,, F4 and F5, it follows from Lemma 3.1 and Theorem 3.9 that
S4(P4)/ S3(P4) = <p2 ® q>2. Using the duality between F4 and F5, it is now easy to
complete the proof of Theorem 4.1.

5. The Green correspondents of all simple 5-modules. Let / be the Green
correspondence between R(q) and N = NR^(ES) with respect to a Sylow 2-sub-
group F8 of a group R(q) of Ree type. By Proposition 2.5 it suffices to determine
the structure of /(<p3). This is done in this section.

Lemma 5.1. <p3,L is a projective FL-module.

Proof. Let X be an F-form of £, such that X = X/X-tt has socle <p2. Then
Theorem 3.9 and Theorem 4.1 imply that X has socle series

- = /    <p3 94     95 /,)
92

By Lemma 2.2, <p2|£ = Aq is projective. Lemma 1.3 asserts

9a\l = k(m - 1)A, © Am/2,       <p5]L = \{m - \)Aq © Xm/2.
Therefore there are two indecomposable 5-modules Y and Y' with soc(y) = <p4
and soc(y') = tps such that

(Am/2)R{9)e - Y ©K« - l)/>3,       (Âm/2r?)* = Y' ®i-(m - 1)F3,

and £2 is a vertex of Y and Y'. By means of Nakayama's relations it follows that
Am/2 and Am/2 occur both \(m — 1) times in the socle of <p3|¿. Hence,

Ê4|i = 1- +Ax + (q- 1)A, + m(Am + Am) + ¿(w + l)Am/2

+ i(m - l)A"/2 +{(m + l)Xm/2 +\(m - \)A~/2

I © Am/2 © Xm/2 © A, © (q - 1)A, © m(Am © ÄJ

©i(m- \)Pm/2®{{m- \)Pm/2,

implies

X\L
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where Pm/2 and Pm/2 denote the projective covers of Am/2 and Am/2 respectively.
On the other side, (*) implies

X\l = / © Am/2 © Am/2 © <p3|L © mAq.

Therefore op3|L is a projective FL-module by the character table of L and the
Krull-Remak-Schmidt theorem.

Proposition 5.2. (a) The Green correspondent /(op3) of the simple FR(q)-module op3
in FN has socle and Loewy series

3
/(93) = 3 3* •

3*

(b) 93|jv = /(93) ® projectives.
(c) tp3 has a periodic projective resolution, and ß7(<p3) = <p3.

Proof. Let e0 be the block idempotent of the principal 2-block b of C, and let
Y = (93|c)eo- By Lemma 1.2, Y has composition factors

2(q - m)I + [3(q - m) - 2]X' + [3(q - m) - 2]X". (*)

Let X = anny(l - «). Then X *= Y(\ - u) by Lemma 5.1, because all involutions
of R(q) are conjugate. Furthermore, A' is a self-dual, algebraically invariant
FC-module.

By Lemma 2.3(e), / has multiplicity 1 in soc^) = soc(y). Let X¡ be the
indecomposable component of X with / in the socle. Then X¡ has one of the
following socle series

Í X'    X" 1Moreover, any other nonprojective component of X belongs to < x', X ">    „ >    , \

by Donovan-Freislich [3]. Since P'x. and Fx» occur with the same multiplicity as a
direct summand of X, and since the even number (q — m) is the multiplicity of / in
X, Lemma 1.1 implies that X¡ ¥= I. Let Xx = X¡ if X¡ is self-dual, and let
Xx = X, © Xf otherwise. Then there are integers r, s, t G N such that

X=XX® t(x' ® x") © Á X'„ ® X", ) + s(Px, © Px„). (*•)
\ A. A.    /

If xx is the multiplicity of x' in Xx and x2 is the one of /, then (*) and (**) imply

xx + t + 2r + 3s = j \3(q — m) — 2],       x2 + 2s = q — m.

Hence 2xx < 2xx + 4r + 2t = 3x2 - 2, which shows that

Mi  *   *   X"   A
If A7 = F,', then t = 1 and r = 0. From (**) follows

* = f; © x' © x" © *(** © px-)-
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As soc( Y) = soc(A'), we obtain

Xy = f, © A, © A„ © s(px, ® fx„).
A. A.

Hence Y is F4-projective, which is a contradiction, because <p3 has vertex vx(<p3) =
E% by Knörr's theorem [10]. Thus X¡ ^ F,,, and in any of the remaining two cases
(»*) implies

X = Xx © s(Px. © Fx„),
where s = \(q - m — 2). Furthermore, sociA',) = / © x' © x"-

Let T be the nonprojective part of Y. Then

soc(F) = soc(A\) = / © x' © X" = head(F),

S2(F)/S1(F) = 2/©2X'©2X",
and F has Loewy lengthy'( F) = 3. If F were decomposable, then

Tnx-X   ;   x'mx,   •   x,.
Since F(l - u) = F n X and F have the same socle, it follows that F = Tx® T\*

y' y"for some indecomposable FC-module, F, satisfying F, n X = A A  . Hence,

F,=x'     /    X"sß(7)
/

by Lemma 1.1. Therefore F, and hence <p3 are F4-projective. Again by Knörr's
theorem [10], this is a contradiction. Thus T is an indecomposable FC-module, and

op3ic = F © projective FC-modules (***)

by Nagao's lemma [4, p. 353]. Furthermore,

F n X = annr(l - u) = F(l - u) = *    X'    X"

or

*' X"©   ,     7      „•
/ X X

In particular, F n A" is an FC-module. By Lemma 1.1, its restriction to K
decomposes as follows.

(m%=| !*© projective F9I4-modules

or

(F n X\K = l l* ©       7 © projective F5!t4-modules.

As F restricted to any involution is projective, the socles of T\K and (F n X)\K =
F^il - u) coincide. Since there is a Green correspondence between C and K with
respect to F8, it follows that
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/       1      1*
T\K = I     1     1*     /      1      1* ©projective FAT-modules,

/      1     1*
where the nonprojective part of T\K is indecomposable.

Now let f(q>3) be the Green correspondent of <p3 in N. Since N is 2-closed, f(<p3)\K
is indecomposable and coincides with the nonprojective part of T\K. Therefore,
dimFf(<p3) = 12. As <p3 is self-dual and algebraically invariant, Proposition 2.3 of
[12] implies that /(qo3) has composition factors 2 • 3 + 2 • 3. Since f(<p3)\K has
Loewy length 3, also/(<p3) has Loewy length 3. Thus

3 3*
either   /((jp3) = 3 3*    or   /(<jp3) = 3 3*.

3* 3
In either case, (***) implies

93\n = X93) © projective FN-modules,

which proves assertion (b).
By Theorem 4.1, dim,, ExtJ,A(ç)(<p3, cp^ = 1. Hence,

dim, Ext^/foj),/^) = dim^(Q(/(op3)),/(<p2))^ ¥• 0
by (b), Proposition 2.5(a) and Lemma 1.1 of [12]. If

3*
/(93) = 3 3*,

3
then

/ 1 1*
ß(/(93))=        3 3*

3*
and

Hom™(ß(/(<p3)),/(<p2)) = (fl(/(93)),/(92))!v - 0
by Proposition 2.5(a). This contradiction proves assertion (a).

In order to prove (c) by Green [9, p. 151], it suffices to show that ß7/(<p3) — f(<p3)-
From (a) and Proposition 2.3 of [12], it follows that

0^/(9j) «- P3 «- ¿V «- ?* «- (P, ®Pi® Pi>) ^P3^P3^P3. <-/(93) «-0
is a minimal projective resolution of/(<p3). Hence fi7(<p3) = <p3, which completes the
proof of Proposition 5.2.

Combining the results of Propositions 2.5 and 5.2, we have shown

Theorem 5.3. The simple FR(q)-modules belonging to the principal 2-block B of a
group R(q) of Ree type have Green correspondents in FN with the following socle and
Loewy series:

(a)/(/) - /,/(<p4) = 1*, andf(<p5) = 1,
(b)/(92)=33*>

3
(c)/(93) = 3 3*.

3*
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6. An application. By means of Theorem 4.1 and recent work of J. Alperin [1], K.
Erdmann [5] and the authors [12] it is now easy to give a sharp upper bound for the
Loewy lengths j(P) of the indecomposable projective FG-modules F belonging to
the principal 2-block B0 of an arbitrary finite group G with an abelian Sylow
2-subgroup. Since the index of nilpotency of the Jacobson radical J = J(FG) is
preserved by field extensions, the following result holds for arbitrary 2-modular
systems (F, R, S) for G.

Theorem 6.1. Every indecomposable projective FG-module P of the principal
2-block B0 of a finite group G with an abelian Sylow 2-subgroup D of order \D\ = 2"
has Loewy length j(P) < max{2rt + 1, 2"}.

Proof. Let 0(G) be the maximal normal subgroup of G with odd order. Then
by J. Walter's theorem (see Gorenstein [8, p. 485]) G contains a normal subgroup
F > O(G) with odd index \G : T\ such that T/0(G) is a direct product of a
2-group and simple groups of the following types:

(a) G « PSL(2, q), q > 3, q = 3 or 5 mod 8.
(b) G = PSL(2, 2"), a > 1.
(c) G s /j, the smallest Janko group of order |7,| = 175, 560.
(d) G » R(q), a simple group of Ree type.
Let j(A) be the index of nilpotency of the Jacobson radical of an algebra A.

Then for every indecomposable projective F0-module F we have./(F) < j(B¿) = /
Since B0 is the principal 2-block of G, the elements of O(G) act trivially on B0.

Hence we may assume that O(G) = 1. As \G : F| is odd, Villamayor's theorem (see
[13, p. 524]) asserts that j(FG) = j(FT). Thus we may also assume that G = T.

If G = Gxx G2, then FG = FGX ®F FG2. From Theorem 71.10 of Curtis-
Reiner [2, p. 485], it follows easily that Jacobson radical

J(FG) = J(FGX) ® FG2 + FGX ® J(FG2).

Therefore j(B0(G)) = j(B0(Gx)) + j^^G^) - 1. Now suppose that the assertion
of Theorem 6.1 holds in Gx and G2. Letpdl be the order of a Sylow 2-subgroup S¡ of
G,, i = 1,2. Then Sx X S2 is a Sylow 2-subgroup of G = G, X G2 with order
pVi+dJ. Hence

j(B0(G)) < max{2¿, + 1, 2ä<) + max{2¿2 + 1, 2^} - 1

< max{2(í/, + d2) + 1, 2(d> + d¿}.

Therefore we may assume that G is either an abelian 2-group or one of the
simple groups of Walter's list (a)-(d). If G is abelian, theny'(F0) < \D\. In case (a),
j(B0) < max{2n + 1, 2") (see K. Erdmann [5]4). In case (b), j(B0) - In + 1 by
Theorem 4 of J. Alperin [1]. In case (c),j(B0) = 7 = 2« — 1 by Theorem 6.7 of [12].
Finally, Theorem 4.1 asserts that alsoy'(F0) = 7 = 2/i - 1, if G is a group R(q) of
Ree type. Thus Theorem 6.1 holds.

4See Footnote 3.
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