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Abstract

This paper analyses principal-agent contracts when the agent’s action generates infor-
mation not directly verifiable but used by the agent to make a risky decision. It consid-
ers a more general formulation than those studied previously, focusing on the impact
on the decision made and the contract between principal and agent. It establishes
a precise sense in which distorting decisions reduces the risk borne by a risk-averse
agent and conditions under which implementing an optimal decision rule imposes no
substantive restrictions on the contract. The paper also uses an application to bidding
to supply a good or service to illustrate those results and derive additional ones. A
risk-neutral agent with limited liability may optimally choose lower, less risky bids
or higher, more risky bids, according to which relaxes the limited liability constraint.
There are also natural conditions under which optimal contracts are monotone, possi-
bly with flat sections, like stock option rewards.

Keywords: Principal-agent contracts, project selection, optimal bidding, portfolio
selection, limited liability, risk aversion, asymmetric information

JEL classification: D82



1 Introduction

In the classic principal-agent problem studied by Mirrlees (1999), Holmström (1979)
and Grossman and Hart (1983), the agent takes unverifiable action that directly affects
the return to the principal. But in many practical applications, the agent’s action gen-
erates information that is used to make a decision influencing that return. Managers
are expected to investigate profitability before deciding how much to invest or which
project to undertake. Those bidding to supply goods and services are expected to find
out about the probability that any given bid will be accepted before deciding what to
bid. Portfolio managers are expected to find out about potential investments before
choosing portfolios for clients. General medical practitioners are expected to assess
what specialist services a patient requires before arranging for them. This paper is
concerned with two questions about such settings:

1. What effect does the agency relationship have on the decision made?

2. When does the addition of a decision affect the optimal contract between princi-
pal and agent?

If the information generated by the agent’s action is verifiable, information gen-
eration can be treated as a standard one-dimensional principal-agent problem with
the agent’s “output” the information itself, and the decision treated separately. But in
many of the applications, the information itself is not directly verifiable. What can be
verified is the return to the principal resulting from the agent’s decision and in some
applications the agent’s decision itself, but not the information on which the decision
was based. Demski and Sappington (1987) refer to this as delegated expertise. In such
situations, the contract between principal and agent must provide incentives for the
agent not only to acquire information but also to make an appropriate decision on the
basis of that information. Typically that affects the optimal contract between principal
and agent but there are interesting cases in which it does not.

There are a number of papers in the literature concerned with such settings but
they typically consider very special cases. Demski and Sappington (1987) has the
most general formulation but does not consider the first of the questions of concern
here. Other papers consider formulations that are restricted in a number of respects.
Lambert (1986), Biais and Casamatta (1999) and Feess and Walzl (2004) consider no
more than three levels of return to the principal on which payment to the agent can
be based, so the same incentives can be achieved by different forms of contract. More-
over, in all those papers, as in Core and Qian (2002), Barron and Waddell (2003), and
Gromb and Martimort (2003), the agent can choose between only two decisions, which
limits the scope in answering question 1 above. Some papers limit the distribution of
returns for each decision to those characterised by two parameters, the mean and risk-
iness of a portfolio (for example, Palomino and Prat (2003), in which it is also assumed
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that agent action gives access to different possible decisions, not information about
the distribution of returns to those decisions always available) or to normal distribu-
tions for which those two parameters characterise the whole distribution (Stoughton
(1993), Demski and Dye (1999), Barron and Waddell (2003), and Core and Qian (2002)).
That limits the ways in which the agent’s decision can affect the return to the prin-
cipal. Demski and Dye (1999), Stoughton (1993), and Feltham and Wu (2001) limit
contracts to certain predetermined forms rather than derive results on optimal forms.
In the literature on managerial compensation, a common restriction is to debt, equity
and stock options. Diamond (1998), Biais and Casamatta (1999), Palomino and Prat
(2003), Feess and Walzl (2004),and Gromb and Martimort (2003) are concerned only
with a risk-neutral agent who has limited liability. Innes (1990) analyses the classic
principal-agent problem with the output of the agent’s action verifiable and no addi-
tional decision but with the restrictions that the rewards to both agent and principal
are monotone in the output. Such monotonicity restrictions arise naturally in some
cases in which the agent’s action generates unverifiable information that is used sub-
sequently in making a decision, though Innes (1990) does not derive them in that way.
But again the analysis is restricted to a risk-neutral agent with limited liability. More-
over, in all these papers, the only verifiable information is the return to the principal
arising from the decision, not the decision itself, despite it being natural in many con-
texts for the decision (for example, the bid made in a takeover battle or the stocks
chosen for a portfolio) to be known to the principal.1

The present paper adopts a more general formulation. The agent can be risk averse
or risk neutral with limited liability, with no restriction on either the number of possi-
ble levels of return to the principal or the number of possible decisions by the agent,
and with decisions influencing the distribution of returns in quite general ways. The
contract between principal and agent is restricted only by the verifiability of informa-
tion, allowing for the agent’s decision itself to be verifiable, which is natural in some
applications. The paper illustrates its results with an important economic application,
a principal who wishes an agent to tender a bid to supply a good or service to a buyer
after first taking an action to acquire information about the probability of different
bids being accepted. That application has a continuum of possible decisions because
the agent can choose any bid. Moreover, there is positive probability that any bid

1Melumad et al. (1995) and Aghion and Tirole (1997) also consider an agent who makes decisions
in addition to taking action. There, however, the principal can monitor (and possibly over-rule) the
agent directly rather than having to rely on inducing the agent to reveal information. In Osband (1989),
the agent is a forecaster whom the principal wishes to induce to incur costs to refine the forecast and
also to truthfully report the forecast estimate but the forecaster makes no further decisions affecting the
principal’s payoff. Povel and Raith (2001) also analyse a model in which an agent observes information
that is not verifiable and then makes a choice that affects the principal’s payoff. But the choice in that
case concerns only a transfer, how much debt to repay. Crémer and Khalil (1992), Lewis and Sappington
(1997), Crémer et al. (1998a), Crémer et al. (1998b) and Szalay (2004) are concerned with incentives
for a supplier to acquire information in an otherwise standard procurement context before accepting a
contract with the principal, not after as in the other papers cited here.
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within some interval will be accepted, so the possible returns correspond to that in-
terval plus zero (because bids may also be rejected). Thus returns are not restricted to
isolated points for which different contract forms may have the same incentive effects.

On question 1 above, the paper shows that it is not, in general, optimal for the prin-
cipal to induce the agent to adopt an efficient decision rule that corresponds to what
the principal would have decided if the information were verifiable. The reason is that
deviations from such a rule have only second-order effects on the principal’s expected
return but can have a first-order effect on the expected payment to the agent. With a
risk-averse agent, as one would expect, profitable deviations reduce the risk the agent
bears but this is in a sense the paper makes precise that depends not only on the risk
characteristics of the decisions themselves but also on the characteristics of the con-
tract with the principal. Thus, even where decisions can be ordered by second-order
stochastic dominance, it is not necessarily the case that the principal gains by deviating
to a dominating decision. Deviating to a dominating decision does, however, increase
the principal’s payoff when optimal contracts for implementing an efficient decision
rule have certain characteristics. Those characteristics apply to the bidding applica-
tion with a risk-averse agent and unlimited liability. In that case, a risk-averse agent
is unambiguously induced to bid less aggressively (that is set a lower price for sup-
ply with a correspondingly higher probability the bid is accepted) than if the principal
were able to verify the agent’s information and so make the decision directly.

For a risk-neutral agent with binding limited liability, of course, there is no gain to
deviating from an efficient decision rule in order to change the risk borne by the agent.
In that case, deviations are worthwhile only if they relax the limited liability constraint.
Which deviations have this effect is far from obvious in the general case. Even for the
more restricted bidding application, optimal deviations can induce either higher, more
risky bids or lower, less risky bids. In their application to delegated portfolio choice,
Palomino and Prat (2003) reach a similar conclusion that optimal deviations may go
in the direction of either more, or less, risky decisions, but their result relies on the
“first-order approach” being valid, which they cannot guarantee. The result here does
not suffer from this limitation. In the case that limited liability results in less risky
decisions, managers are induced to make decisions in a way that makes it look as if
they are risk-averse — limited liability not only reduces the profits of firms but also
biases their decisions in a risk-averse direction.

As Grossman and Hart (1983) showed, there is little that can be said in general
about the characteristics of optimal principal-agent contracts. For that reason, the ap-
proach to question 2 taken here is not to solve directly for an optimal contract but to
ask when a decision rule will be chosen by the agent if not imposed as a constraint on
the optimization. For a contract conditioned only on the return to the principal, it will
be if the rule is first-order stochastically dominant and an appropriate monotone likeli-
hood ratio property (MLRP) holds. Essentially, the MLRP ensures that the contract has
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the reward to the agent increasing in the return to the principal and, with the reward
increasing in the return, the agent always prefers a decision rule that is first-order sto-
chastically dominant. Under certain conditions, a decision will also be chosen if it is
second-order stochastically dominant. Those conditions provide an interesting link to
the literature on the “first-order approach” to solving the classic principal-agent prob-
lem. The first-order approach is valid if the optimal contract makes the agent’s utility
a concave function of the return to the principal, see Jewitt (1988). But, with a utility
function concave in the return, the agent always prefers a decision rule that is second-
order stochastically dominant. The case of first-order stochastic dominance applies
quite naturally to the bidding application when limited liability is not binding and the
principal wishes the agent always to choose the highest bid that will certainly be suc-
cessful given the information received. Even where the MLRP does not hold, payment
to the agent in the bidding application is still monotone non-decreasing in the return
to the principal. Thus, in contrast to the classic principal-agent problem for which
monotonicity holds only when the MLRP holds, see Hart and Holmström (1987), the
application gives reasons for contracts to be monotone even when that property does
not hold. Moreover, the monotone contracts may have flat segments and there are
plausible circumstances in which a flat segment occurs for the lowest returns, so the
agent is protected from downside risks beyond a certain level, as with compensation
in the form of stock options that a manager does not have to exercise.

Binding limited liability limits the applicability of these stochastic dominance re-
sults. This is illustrated for a risk-neutral agent in the bidding application, a case suf-
ficiently straightforward to solve explicitly for the optimal contract when the MLRP
holds and the principal wants the agent to make the highest bid that will certainly be
successful. In the absence of the additional decision, it is optimal for the principal to
attach all payment to the return that has highest likelihood given the optimal action
choice. With the additional decision, payments are distributed over all returns. But the
optimal contract is not a debt contract, as derived by Innes (1990) when monotonicity
of rewards for both principal and agent is simply assumed. Nor is it a combination
of debt, equity and share options that Biais and Casamatta (1999) found optimal with
just two possible decisions and three possible levels of return to the principal. It is
not even a linear contract which, as in Diamond (1998), also induces a risk-neutral
agent to make efficient decisions. Diamond (1998) shows that, when a linear contract
is the only contract that ensures efficient decisions and the cost of inducing action is
small relative to the principal’s concern with making efficient decisions, a fully linear
contract becomes near-optimal. In this version of the bidding application, however,
there are other contracts that ensure efficient decisions at lower cost to the principal,
so Diamond’s result does not apply.

The remainder of this paper is organised as follows. Section 2 sets out the model
and the application to bidding. Section 3 analyses optimal deviations from efficient
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decision rules. Section 4 considers contracts to induce the agent to adopt decision
rules. Section 5 contains concluding remarks.

2 The model

2.1 General framework

In the framework used in this paper, a risk-neutral principal employs an agent to both
choose an action a 2 A and make a decision b 2 B with uncertain net monetary return
y 2 [y, y]. The decision may, for example, concern which of a set of projects to under-
take. The agent’s action may affect the monetary return to the principal directly, as in
the classic principal-agent model, but also yields the agent a signal s 2 [s, s] providing
information about the distributions of monetary returns to the possible decisions and,
hence, about which decision it is optimal to make. The probability density function for
s given a is denoted f (s; a)which, in order that action choice is potentially valuable, is
assumed to have f (s; a0) 6= f (s; a00) for some s 2 [s, s] and a0, a00 2 A. The probability
distribution function of the monetary return y given decision b and signal s is denoted
G (y; b, s). A useful benchmark is an efficient decision rule b� (.) that the principal would
use if receiving the signal s directly. Such a rule satisfies

b� (s) 2 arg max
b2B

Z y

y
ydG (y; b, s) , for all s 2 [s, s] . (1)

As conventional in principal-agent models, the agent’s utility is additively separa-
ble in income and action. The utility from being paid P and taking action a is denoted
u (P)� v (a) with the standard properties

u0 (P) > 0; u00 (P) � 0; v (a) strictly increasing and strictly convex. (2)

The agent’s reservation utility for accepting a contract with the principal is denoted U.
For simplicity, the analysis is restricted to cases in which the set of possible actions is
either an interval, so A = [a, a], or binary, so A = fa, ag.

The sequence of events is as follows. As in the classic principal-agent model, the
principal makes a “take it or leave it” offer of a contract to the agent. If accepted, the
agent chooses an action a, receives a signal s, and makes a decision b, in that order.
The return from the decision is then realised and the agent is paid according to the
contract. The essential difference from the classic principal-agent model is that the
signal received by the agent is not itself verifiable. If it were, the incentive issues here
would reduce to those of the classic model.
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2.2 An application to bidding

An important economic application that illustrates the results is that of a principal
who wishes the agent to tender a bid to supply a good or service to a purchaser whose
reservation value is unknown. (It is straightforward to reverse the analysis for a prin-
cipal who is a purchaser, as in a takeover bid or in the standard procurement models
in Laffont and Tirole (1993), though in the latter case with the cost of supply not veri-
fiable after the purchase has been completed.) By taking an action, the agent acquires
information about the purchaser’s reservation value and thus about the optimal price
to bid. That information corresponds to the signal s. The price to bid corresponds to
the decision b measured, for notational simplicity, net of the cost of supply so that b
is the net return to the principal from a successful bid. The net return from an unsuc-
cessful bid is zero. Because the focus here is less on the choice of action than on the
additional decision, the number of actions is restricted to two, a < a, so A = fa, ag.
For there to be a role for incentives for action, the principal is assumed to wish to in-
duce the agent to choose a. Without loss of generality, signals can be ordered so that
the likelihood ratio LR (s) � f (s; a) / f (s; a) is non-increasing in s.

Denote by π (b; s) the probability that a bid of b 2 [0, b] is successful given signal
s 2 [s, s]. In terms of the more general set-up, π (b; s) = 1 � G (0; b, s) for b > 0.
The economic context requires π (b; s) non-increasing in b for given s — a higher b
corresponds to setting a higher price for supply, so the probability the bid is successful
cannot increase — so it is natural to define π (0; s) = 1. It is convenient to assume that
π (b; s) is strictly decreasing in b where feasible (that is, πb (b; s) � ∂π (b; s) /∂b < 0
for all (b, s) such that π (b; s) > 0), twice differentiable with respect to b and s except
possibly for π (b; s) = 0 and π (b; s) = 1 and, to avoid trivial bidding, has the property
that for each s 2 [s, s] there exists some b 2 (0, b] for which π (b; s) > 0.

In this application, an efficient decision rule b� (.) satisfies

b� (s) 2 arg max
b2[0,b]

bπ (b; s) , for all s 2 [s, s] . (3)

It is immediate that b� (s) > 0 and π (b� (s) , s) > 0 for all s 2 [s, s] because the princi-
pal’s payoff bπ (b; s) from bidding b = 0 is zero and, by assumption, for each s there
exists some b > 0 for which π (b; s) > 0.

2.3 Contracts between principal and agent

A contract between principal and agent specifies the payment to the agent as a func-
tion of verifiable outcomes. The outcomes here are a, s, y and b. In keeping with the
classical principal-agent literature, a is taken to be information private to the agent —
without that, the contractual issues of interest here disappear. In keeping with the un-
derlying motivation of the paper that the outcome of the agent’s action is unverifiable
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information, s is also taken to be information private to the agent. In all the literature
discussed in the Introduction, it is assumed that the only verifiable outcome is y. But
that is not essential to the underlying motivation. There are obvious economic contexts
in which it is natural that the agent’s decision is public information—for example, bids
in a takeover battle. Thus the potentially verifiable outcomes on which the principal
may wish to contract in the present context are y and b.2 For the notation to cover all
cases, let x denote the verifiable subset of these, x � fy, bg, and X the set of all possible
verifiable outcomes. A contract P (.) specifies the payment P (x) from the principal to
the agent in the event of verifiable outcome x 2 X. To cover the possibility that the
agent has limited liability, the contract is required to have P (x) � P for all x, though
it may be that P is so low that this constraint never binds.

An agent facing contract P (.) who receives signal s and makes decision b has ex-
pected utility from the monetary compensation given by

û (b, s, P (.)) �
Z y

y
u (P (x)) dG (y; b, s) . (4)

The agent’s expected utility before the signal s is known from adopting the decision
rule b (.) for given action a is then

U (a, b (.) , P (.)) �
Z s

s
û (b (s) , s, P (.)) f (s; a) ds� v (a) . (5)

The principal’s expected payoff from decision b given signal s and contract P (.) is

r (b, s, P (.)) �
Z y

y
[y� P (x)] dG (y; b, s) , (6)

that from the agent choosing action a and decision rule b (.)

R (a, b (.) , P (.)) =
Z s

s
r (b (s) , s, P (.)) f (s; a) ds. (7)

An optimal contract maximises the principal’s payoff subject to feasibility, individ-
ual rationality and incentive compatibility for the agent. The optimal contract problem
can be written in the way standard with principal-agent problems as

2The contract might also be conditioned on a message the agent sends to the principal after observing
the signal. That possibility is not considered in the literature referred to in the Introduction and so is not
included in the main analysis here but some implications are mentioned in footnotes. The possibility of
messages also raises the broader question of whether the principal would do better by, where possible,
making the decision personally on the basis of the agent’s message. (It may not always be possible, for
example, in a medical emergency there may not be time to consult the principal.) That issue is discussed
in the separate literature on delegation, for example Aghion and Tirole (1997).
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max
a,b(.),P(.)

R (a, b (.) , P (.)) subject to (8)

U (a, b (.) , P (.)) � U; (9)

a 2 arg max
a02A

U
�
a0, b (.) , P (.)

�
; (10)

b (s) 2 arg max
b2B

û (b, s, P (.)) for all s 2 [s, s] ; (11)

P (x) � P, for all x 2 X. (12)

Constraint (9) is the individual rationality condition that the agent has expected utility
from the decision rule b (.) when choosing action a under contract P (.) no lower than
from not agreeing to the contract in the first place. Constraint (10) ensures that the
agent receives at least as high expected utility from choosing action a as from choosing
any other action a0 2 A. Constraint (11) ensures that the decision rule b (.) maximises
the agent’s payoff for each s. (Writing the constraints this way implicitly assumes that
an agent who is indifferent between two values of a or b chooses that preferred by the
principal.) Finally, constraint (12) ensures that any limited liability requirement for the
agent is satisfied. In what follows, it is assumed that an optimal contract exists.

3 Optimal departures from efficient decision rules

3.1 Optimal decision rules in the general framework

Any efficient decision rule b� (.) can be implemented by a contract P (.) that satisfies

u [P (y)] = u+ ky, for any constants u, k with k > 0, (13)

because replacing y in (1) by u [P (y)] from (13) does not change the values of b that
achieve a maximum. (The same is true for k = 0 if an agent indifferent between
two decisions makes that preferred by the principal but k = 0 gives no incentive for
the agent to take any action a > a.) But, given sufficient continuity, it is, in general,
worthwhile for the principal to have the agent deviate from an efficient decision rule
because a marginal deviation has only a second-order effect on the expected return
to the principal whereas any reduction in expected payment to the agent has a first-
order effect. It is natural to expect that, with a risk-averse agent, the deviation will be
in the direction of reducing the risk borne by the agent. But that risk depends on the
contract with the principal, not just on the inherent risk characteristics of the decisions,
so changes in risk based on such measures as stochastic dominance of the underlying
decisions do not capture the full impact. The first result makes precise the sense in
which a deviation from an efficient decision rule affects the risk borne by the agent.
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For this result, consider the optimal way for the principal to induce the agent to
adopt an implementable decision rule b (.), as given by the problem in (8)-(12) but
with the decision rule fixed at the specified b(.). Call an optimal solution, contract and
payoff for that problem constrained optimal for that b (.). As already noted, an efficient
decision rule b� (.) can always be implemented by a contract that satisfies (13).

Theorem 1 Suppose B =
h
b, b
i

and dG (y; b, s) is differentiable with respect to b for all
(y, s). Let P (.) be a constrained optimal contract that implements action a and efficient de-
cision rule b� (.) and is differentiable with respect to b (s) in the neighbourhood of b� (s) for
all s 2 [s, s].3 Then, if limited liability is not binding, a necessary and sufficient condition
for a marginal implementable change in the decision rule from b� (.) to increase the principal’s
payoff above the constrained optimal level is that the change satisfies

Z s

s

"
∂

∂b

Z y

y
P (x) dG (y; b, s) db

#
b=b�(s)

f (s; a) ds < 0. (14)

Proof. Let V (b (.)) denote the maximum value function for a constrained optimal
solution for implementable decision rule b (.). Note that, in view of the definition in
(5), the constraints (9) and (10) can be expressed entirely in terms of û (b (s) , s, P (.))
and v (a). Note also that, from (11), b (s) maximises û (b, s, P (.)) over all b. It follows
from differentiability of dG (y; b, s) and P (x) with respect to b that, if limited liability
is not binding for a constrained optimal contract, a marginal change in b (s) in the
neighbourhood of b� (s) has no first-order effect on any of the constraints. Thus, by
the envelope theorem and the definitions in (6) and (7),

dV (b (.)) =
Z s

s

�
∂

∂b
r (b, s, P (.)) db

�
b=b(s)

f (s; a) ds

=
Z s

s

"
∂

∂b

Z y

y
[y� P (x)] dG (y; b, s) db

#
b=b(s)

f (s; a) ds.

Moreover, from (1), b� (s) maximises
R y

y ydG (y; b, s) so, evaluated at b� (.),

dV (b� (.)) = �
Z s

s

"
∂

∂b

Z y

y
P (x) dG (y; b, s) db

#
b=b�(s)

f (s; a) ds, (15)

from which the result follows.
The result in Theorem 1 is a direct consequence of the envelope theorem applied

in two ways: (1) in a solution that implements b (.), the contract P (.) must be such

3Conditioning the contract on a message m (s) the agent sends to the principal revealing the signal s
does not affect the result in Theorem 1 because the constraint m (s) = s is unaffected by a change in b,
so the envelope theorem result used in the proof continues to apply.
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that b (s) maximises the agent’s expected utility given s so, by the envelope theorem,
a marginal change in b (s) by itself leaves the agent’s expected utility unchanged; and
(2) because b� (s) is, by definition, a decision that maximises the principal’s expected
return gross of payments to the agent, a marginal deviation from b� (s) leaves that ex-
pected return unchanged, again as a result of the envelope theorem. Together these
imply that, in the absence of limited liability, distorting the decision rule marginally
away from b� (.) affects the principal’s payoff only by the direct effect on the prin-
cipal’s expected payment to the agent. The expression on the left-hand side of (14)
corresponds to that direct effect. It is clear that its sign is driven by risk aversion — for
a risk-neutral agent, it is necessarily zero because the term in square brackets is just
ûb (b� (s) , s, P (.)) and, by (11), b� (s) maximises û (b, s, P (.)) over b. That is to be ex-
pected: for a risk-neutral agent without binding limited liability, it is straightforward
to achieve the first-best outcome, so distorting the decision rule away from efficiency
cannot increase the principal’s payoff. In particular, any reduction in the principal’s
expected payment to a risk-neutral agent must reduce the expected payoff of the agent
and thus, in the absence of binding limited liability, violate the agent’s individual ra-
tionality constraint (9). For a risk-averse agent, the effect of any particular distortion
depends not only on dG (y; b, s), which is determined by the underlying risk charac-
teristics of the decisions, but also on the contract with the principal. Theorem 1 makes
clear that the contract for a constrained optimal solution is the appropriate contract for
assessing the effect of a change in the decision rule on the risk borne by the agent.

When limited liability is binding, distorting the decision rule may also relax the
limited liability constraint (12), thus providing an additional way the principal can
benefit. With a risk-neutral agent for whom the effect in (14) is zero, relaxing the
limited liability constraint is the only way the principal can benefit. For a risk-neutral
agent, limited liability can be binding only when the individual rationality constraint
(9) is satisfied with strict inequality. Then relaxing a binding limited liability constraint
by a distortion in decision rule can reduce the principal’s expected payment to the
agent because, although it also reduces the agent’s payoff, doing that is feasible when
the individual rationality constraint is not binding. But, in general, it is not obvious
how even to characterise the direction of the distortion. The direction is explored
below in the context of the bidding application. For a strictly risk-averse agent with
binding limited liability, both this effect and that captured in (14) are at work. In that
case, the combined effects must increase the principal’s payoff for the principal to gain
from distorting the decision rule away from b� (.).

Standard measures of riskiness of decisions are concerned with a decision maker
whose payoff depends only on the return to the decision y. The following result relates
the result in Theorem 1 to one such measure, second-order stochastic dominance.

Theorem 2 Suppose the agent is strictly risk averse and the contract is conditioned only on
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y, so x = y. Then for any s 2 [s, s] for which b� (s) 2
�

b, b
�

and G (y; b, s) satisfies either

Z y

y
Gb (θ; b� (s) , s) dθ � 0, 8y 2

h
y, y
i

, with strict inequality for some y, (16)

or Z y

y
Gb (θ; b� (s) , s) dθ � 0, 8y 2

h
y, y
i

, with strict inequality for some y, (17)

the following properties hold.

1. For any contract P (.) twice-differentiable with respect to y that implements b� (s),
P00 (y) > 0 for some y for which strict inequality holds in (16) or (17).

2. If P00 (y) > 0 for all y 2
h
y, y
i
,

∂

∂b

Z y

y
P (y) dG (y; b� (s) , s) > 0, if (16) holds; (18)

< 0, if (17) holds.

Proof. Consider any twice-differentiable function ξ [P (x)]. When x = y,

∂

∂b

Z y

y
ξ [P (x)] dG (y; b, s) =

Z y

y
ξ [P (x)] dGb (y; b, s) .

Integration of the right-hand side by parts twice gives

Z y

y
ξ [P (x)] dGb (y; b, s)

=

"
ξ [P (x)]Gb (y; b, s)

#y=y

y=y

�
Z y

y
ξ 0 [P (x)] P0 (x)Gb (y; b, s) dy

= �
Z y

y
ξ 0 [P (x)] P0 (x)Gb (y; b, s) dy

= �
"

ξ 0 [P (x)] P0 (x)
Z y

y
Gb (θ; b, s) dθ

#y=y

y=y

+
Z y

y

"
ξ 0 [P (x)] P00 (x) + ξ 00 [P (x)] P0 (x)2

# "Z y

y
Gb (θ; b, s) dθ

#
dy

= �ξ 0 [P (y)] P0 (y)
Z y

y
Gb (y; b, s) dy

+
Z y

y

"
ξ 0 [P (x)] P00 (x) + ξ 00 [P (x)] P0 (x)2

# "Z y

y
Gb (θ; b, s) dθ

#
dy, (19)
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the second line following because G
�

y; b, s
�
= 0 and G (y; b, s) = 1 for all (b, s). The

first-order necessary conditions derived from (1) and (11) for b� (s) 2
�

b, b
�

are

∂

∂b

Z y

y
ydG (y; b� (s) , s) = 0, 8s, (20)

∂

∂b

Z y

y
u [P (x)] dG (y; b� (s) , s) = 0, 8s. (21)

For ξ [P (x)] = P (x) = y, so ξ 0 [P (x)] = P0 (x) = 1 and ξ 00 [P (x)] = P00 (x) = 0, (19)
implies

∂

∂b

Z y

y
ydG (y; b, s) = �

Z y

y
Gb (y; b, s) dy, 8s,

which, together with (20), implies

Z y

y
Gb (y; b� (s) , s) dy = 0, 8s. (22)

For ξ (.) = u (.), (19) and (22) imply

∂

∂b

Z y

y
u [P (x)] dG (y; b� (s) , s)

=
Z y

y

"
u0 [P (x)] P00 (x) + u00 [P (x)] P0 (x)2

# "Z y

y
Gb (θ; b� (s) , s) dθ

#
dy.

By (21), this must equal zero. Given (16) or (17), that can hold only if the term in the
first square bracket under the integral on the right-hand side is neither strictly negative
nor strictly positive for all y for which strict inequality holds in (16) or (17). But with
u0 (.) > 0 and u00 (.) < 0, this can be the case only if P00 (x) > 0 for some such x. That
establishes Part 1.

To establish Part 2, note that the expression in (18) whose sign is to be evaluated
corresponds to that in (19) when ξ [P (x)] = P (x), so ξ 0 [P (x)] = 1 and ξ 00 [P (x)] = 0.
With the use of (22), that gives, when evaluated at b = b� (s),

∂

∂b

Z y

y
P (y) dG (y; b� (s) , s) =

Z y

y
P00 (y)

"Z y

y
Gb (θ; b� (s) , s) dθ

#
dy.

Part 2 follows directly.
Conditions (16) and (17) correspond to b (s) marginally higher than b� (s) respec-

tively being stochastically dominated by b� (s), and stochastically dominating b� (s),
in the second-order sense. Since P (.) is a payment from principal to agent, the princi-
pal’s payoff is strictly concave when the contract has P00 (.) > 0. Thus increasing b (s)

12



marginally from b� (s) reduces the principal’s payoff in the first case and increases it
in the second. Combined with Theorem 1, therefore, Theorem 2 implies the following.

Corollary 1 Suppose the agent is strictly risk averse, the contract is conditioned only on y,
and limited liability is not binding for a constrained optimal contract P (.) that implements
b� (.). Then, for any s for which P00 (y) > 0 for all y 2

h
y, y
i
, the principal gains by distorting

the decision b (s) in a direction that second-order stochastically dominates b� (s).4

This conclusion is intuitive. Distorting the decision to be implemented for any s
in a direction that second-order stochastically dominates b� (s) reduces the inherent
riskiness of the decision but it may not itself benefit the principal for some contracts.
If, however, the contract makes payment to the agent strictly convex in the return y,
the principal’s payoff is strictly concave in that return so the principal gains from the
reduction in risk. Note that Part 1 of Theorem 2 guarantees that the contract is strictly
convex for some y. For the linear utility form in (13) that always induces the agent to
choose b� (s) for all s, the contract is actually strictly convex for all y. To see this note
that, with P (.) of the form in (13),

u0 [P (y)] P0 (y) = k or P0 (y) =
k

u0 [P (y)]
> 0, for k > 0,

and

u00 [P (y)] P0 (y)2 + u0 [P (y)] P00 (y) = 0 or P00 (y) = �u00 [P (y)] P0 (y)2

u0 [P (y)]
.

With P0 (y) 6= 0 and the agent strictly risk-averse (so u00 [P (y)] < 0), it follows directly
that P00 (.) > 0. As shown in Section 4.2, the linear utility form in (13) is not necessarily
constrained optimal for b� (.). But in some cases, as shown below for a version of
the bidding application, it is the only form of contract that implements b� (.), so it is
necessarily constrained optimal for b� (.) and Theorem 2 can then be applied directly.

3.2 Optimal bidding rules in the bidding application

The results of Theorem 2 and Corollary 1 can be illustrated by the bidding application.
The assumption used for that is the following.

Assumption 1 For the bidding application of Section 2.2, π (b; s) satisfies π (b; s) 2 (0, 1)
for all b 2

�
0, b
�

, π
�

b; s
�
= 0, and πb (b; s) /π (b; s) is continuous non-increasing in b for

all b 2 [0, b), for all s 2 [s, s]. The principal chooses a contract with the agent conditioned
only on y for which a = a is optimal.

4Conditioning the contract on a message m (s) the agent sends revealing the signal s does not affect
the results in Theorem 2 and Corollary 1 because specifying x = (y, m) does not affect the proofs.
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Note that, given the other assumptions of the model, this assumption guarantees
πb (b; s) < 0 for all s and b < b. The assumption that a bid of b has zero probability
of success is not seriously restrictive — it will be the case for a sufficiently high bid
if the buyer places a finite value on supply. More restrictive is the implication that
the probability of success drops to zero at the same bid level for all s but this avoids
the complication of needing to be concerned with boundary solutions. The following
lemma gives some useful properties of an efficient decision rule under Assumption 1.

Lemma 1 For the bidding application of Section 2.2, suppose Assumption 1 holds. Then

1. b� (s) 2
�

0, b
�

for all s 2 [s, s] ;

2. b� (s) is the unique solution to the first-order condition

b� (s)πb (b� (s) ; s) + π (b� (s) ; s) = 0, for all s 2 [s, s] ; (23)

3. b� (s) is strictly increasing (decreasing) if πb (b; s) /π (b; s) is strictly increasing (de-
creasing) in s for all s 2 [s, s] and all b 2

h
0, b
i

.

Proof. From (3), b� (s) satisfies

b� (s) 2 arg max
b2[0,b]

bπ (b; s) , 8s 2 [s, s] . (24)

The maximand in this is zero for b = 0 and, because by Assumption 2 π
�

b; s
�
= 0,

also for b = b. By assumption, for each s there exists some b > 0 for which π (b; s) > 0,
so the payoff from selecting some b 2

�
0, b
�

is strictly positive, establishing Part 1.
In view of Part 1, the first-order condition for the problem in (24) holds with equal-

ity and hence takes the form in (23). Since πb (b; s) < 0 for π (b; s) 2 (0, 1) and hence
for b 2

�
0, b
�

, that condition can be written

b� (s) = � π (b� (s) ; s)
πb (b� (s) ; s)

, 8s. (25)

By the assumptions, the right-hand side is strictly positive and strictly less than b as
b� (s) ! b for all s. Moreover, πb (b; s) /π (b; s) is non-increasing in b and hence so is
�π (b; s) /πb (b; s). Thus (25) has a unique solution. To see that this unique solution is
a maximum, note first that πb (b; s) /π (b; s) non-increasing in b implies

∂

∂b

�
πb (b; s)
π (b; s)

�
=

π (b; s)πbb (b; s)� πb (b; s)2

π (b; s)2
� 0,

or

πbb (b; s) � πb (b; s)2

π (b; s)
. (26)
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The second derivative with respect to b of the maximand in (24) evaluated at b� (s) is

b� (s)πbb (b� (s) ; s) + 2πb (b� (s) ; s)

= � π (b� (s) ; s)
πb (b� (s) ; s)

πbb (b� (s) ; s) + 2πb (b� (s) ; s)

� πb (b� (s) ; s) < 0,

the equality following from use of the first-order condition (25) and the weak inequal-
ity from (26) given πb (b� (s) ; s) < 0. Thus the second-order sufficient condition for a
maximum is satisfied at the unique solution to (23), establishing Part 2.

Part 3 follows directly from (25) and Assumption 1.
This result establishes that there is a unique efficient bidding rule under Assump-

tion 1 and specifies some of its characteristics. The next lemma gives results on imple-
menting bidding rules that are helpful for characterising an optimal contract.

Lemma 2 For the bidding application of Section 2.2, suppose Assumption 1 holds.

1. A bidding rule b (.) is implementable by the contract P (.) only if, for all s 2 [s, s],
b (s) 2

�
0, b
�

, P (b (s)) > P (0), and P (b) is non-decreasing for b = b (s).

2. Suppose πb (b; s) /π (b; s) is either strictly increasing or strictly decreasing in s for all
s 2 [s, s] and b 2

�
0, b
�

. Then necessary and sufficient conditions for a differentiable
contract P (.) accepted by the agent to implement b (.) are that b (s): (a) satisfies the
first-order condition

u0 [P (b (s))] P0 (b (s))π (b (s) ; s) + fu [P (b (s))]� u [P (0)]gπb (b (s) ; s) = 0,
(27)

for all s 2 [s, s], and (b) is non-decreasing (non-increasing) if πb (b; s) /π (b; s) is
strictly increasing (decreasing) in s.5

Proof. Part 1. Under the assumptions of the lemma, the condition corresponding
to (11) for the agent to choose b (s) given signal s is

b (s) 2 arg max
b2[0,b]

u (P (b))π (b; s) + u (P (0)) [1� π (b; s)] , for all s 2 [s, s] .

To induce the agent to take action a = a, it must be that P
�

b̂
�
> P (0) for some b̂ for

which π
�

b̂; s
�
> 0. Consider b (s) that, for some s, has P (b (s)) = P (0) or b (s) = b.

Then the agent’s expected utility from choosing b (s) given s is u [P (b (s))] = u (P (0)),

5This result also holds if “non-decreasing” and “non-increasing” are replaced by “strictly increasing”
and “strictly decreasing” respectively but b0 (s) = 0 is in fact inconsistent with the first-order condition
(27) holding for all s. The result is stated as in the text because it is more convenient later to work with
a weak, rather than a strict, inequality.
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in the former case because b (s) = 0, in the latter because π
�

b; s
�
= 0. But the agent

could have chosen b̂ when observing s and this would have yielded expected utility

u (P (0)) +
h
u
�

P
�

b̂
��
� u (P (0))

i
π
�

b̂; s
�

,

which is greater than u (P (0)) given π
�

b̂; s
�
> 0. Thus b (s) is not implementable.

Finally, if P (b (s)) is strictly decreasing in b, the agent’s payoff is strictly increased by
choosing some b < b (s) because π (b; s) is non-increasing in b for each s.

Part 2. Recall that π (b (s) ; s) is differentiable for π (b (s) ; s) 2 (0, 1). Necessity of
the first-order condition (27) then follows from b (s) interior to

h
0, b
i

and differentia-
bility of P (b). Let z (b) = u (P (b))� u (P (0)) and

W (b (s) , s) = z0 (b (s)) + z (b (s))
πb (b (s) ; s)
π (b (s) ; s)

.

The first-order condition (27) can then be written π (b (s) ; s)W (b (s) , s) = 0 for all s.
By Part 1, b (.) is implementable only if b (s) 2

�
0, b
�

for all s and, by Assumption 1,
π (b (s) ; s) 2 (0, 1) for all such b (s). So to implement b (.) requires W (b (s) , s) = 0 for
all s. It is sufficient for (27) to have at most one solution for each s, and for this solution
to be a maximum, that

πb (b (s) ; s)W (b (s) , s) + π (b (s) ; s)Wb (b (s) , s) < 0 for all s.

With W (b (s) , s) = 0 and π (b (s) ; s) > 0, that will certainly hold if Wb (b (s) , s) < 0
for each s. Because (27) must hold for all s, its total derivative with respect to s must
equal zero. With W (b (s) , s) = 0 and π (b (s) ; s) > 0 for all s, that implies

dW (b (s) , s)
ds

= Wb (b (s) , s) b0 (s) +Ws (b (s) , s) = 0. (28)

From the definition of W (b (s) , s),

Ws (b (s) , s) = z (b (s))
∂

∂s

�
πb (b (s) ; s)
π (b (s) ; s)

�
,

which, given P (b (s)) > P (0) and hence z (b (s)) > 0, is either strictly positive or
strictly negative under the conditions in Part 2(b). Thus (28) cannot be satisfied if
b0 (s) = 0. It can therefore be written

Wb (b (s) , s) = �Ws (b (s) , s) /b0 (s)

= �z (b (s))
b0 (s)

∂

∂s

�
πb (b (s) ; s)
π (b (s) ; s)

�
.
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Thus Wb (b (s) , s) > 0 if b0 (s) and ∂
∂s (πb (b (s) ; s) /π (b (s) ; s)) have opposite signs, so

any solution to the first-order condition cannot be a maximum, establishing necessity
of Part 2(b). Moreover, Wb (b (s) , s) < 0 under the conditions in Part 2(b), which
establishes sufficiency of those and the first-order conditions.

This lemma establishes conditions under which the first-order condition for the
agent’s bid decision is sufficient, as well as necessary, for an optimum so that one can
adopt a “first-order approach” to the principal-agent problem studied here — the re-
quirement that the agent’s bid must be optimal can be characterised by the first-order
condition for optimality. The underlying idea is the same as in the application of the
“first-order approach” in Rogerson (1985) and Jewitt (1988) but there the application
is to the agent’s choice of action, not the agent’s decision based on a signal that results
from that action. Lemma 2 makes use of the property that the agent’s first-order con-
dition must hold for all s. This imposes restrictions on how the agent’s expected utility
varies with s, which in turn imposes restrictions on how that expected utility can vary
with b given the function b (s). The conditions on πb (b; s) /π (b; s) are properties of
the exogenously given probability distribution. Thus in the principal’s optimization
problem the only constraint that needs to be applied to ensure incentive compatibility
in addition to the first-order condition is that on the appropriate sign of b0 (s). This is a
standard, and straightforward, constraint to impose. It is also one that can be expected
to bind only in perverse cases because, as shown in Part 3 of Lemma 1, it corresponds
to the bid b (s) changing with s in the same direction as b� (s), the bid the principal
would make given the same signal s as the agent.

To apply the results of the previous section to the bidding application under As-
sumption 1, consider what contracts implement the efficient bidding rule b� (.). From
Lemma 1, b� (s) 2

�
0, b
�

and satisfies (25). Moreover, the first-order condition for the
agent (27) must hold for all s for which the agent is to use the rule b� (.). Suppose
that is on the interval [s0, s00]. It is then clear from comparison with (25) that the agent
chooses bid b� (s) for all s 2 [s0, s00] only if

u0 (P (b)) P0 (b)
u (P (b))� u (P (0))

=
1
b

, for all b 2
�
b�
�
s0
�

, b�
�
s00
��

. (29)

Define z (b) = u (P (b))� u (P (0)) for given P (0). Then (29) can be written

z0 (b)
z (b)

=
1
b

, for all b 2
�
b�
�
s0
�

, b�
�
s00
��

,

which, by integration, has solution

z (b) = kb, for all b 2
�
b�
�
s0
�

, b�
�
s00
��

, (30)

for some constant of integration k. That leads to the following result.

17



Proposition 1 Suppose, in the bidding application of Section 2.2, Assumption 1 holds and
P (.) is differentiable.

1. A necessary condition for the agent to make an efficient bid b� (s) for all s 2 [s, s] is that
P (.) satisfies

u (P (b)) = u (P (0)) + kb, for all b 2 [b� (s) , b� (s)] , with k > 0. (31)

2. If the agent is strictly risk-averse, marginally reducing b (s) below b� (s) for any s 2
[s, s] increases the principal’s payoff above the constrained optimal level.

Proof. Part 1 follows because the solution for u (P (b)) implied by (30) for s0 = s
and s00 = s is that given by (31) and k > 0 from Part 1 of Lemma 2.

To establish Part 2, recall that the form of contract in (31) implies P00 (b) > 0 for all
b. When Assumption 1 holds

dG (y; b, s) =

8><>:
1� π (b; s) , for y = 0 (� y);
π (b; s) , for y = b;
0, otherwise;

so

G (y; b, s) =

(
1� π (b; s) , for y 2 [0, b);

1, for y 2
h
b, b
i

;

and

Gb (y; b, s) =

(
�πb (b; s) , for y 2 [0, b);

0, for y 2
h
b, b
i

.

It follows that
R y

y Gb (θ; b� (s) , s) dθ > 0 for all y 2
h
y, y
i

because πb (b; s) < 0 for all

b 2
�

0, b
�

. It then follows from Theorem 2 that the principal’s payoff is increased by
marginally reducing b (s) below b� (s) for any s.

Part 1 of Proposition 1 establishes that the form of contract that makes the agent’s
utility linear in y is not only, as shown at the start of Section 3.1, sufficient to induce the
agent to adopt b� (.) but also necessary when Assumption 1 holds. That allows The-
orem 2 to be applied directly to the bidding application because the form of contract
in (31) has P00 (b) > 0 for all b. That the principal’s payoff is increased by reducing
b (s) below b� (s) is to be expected. Reducing b (s) reduces the spread between the
payments for a bid’s success and failure. Moreover, the probability of success is de-
creasing in b, so implementing b (s) < b� (s) increases the probability of success. This
result contrasts with results in Lambert (1986) in which a risk-averse agent always
makes an efficient decision for extreme values of the information signal. In that paper,
the agent has only two possible decisions to choose from, a risky project and a safe
project. It is then not surprising that it is optimal for the principal to induce even a
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risk-averse agent to select the risky project if the expected return is sufficiently high
and to select the safe project if that expected return is sufficiently low. With a contin-
uum of possible decisions, as in the bidding application, the choice is not as stark. The
principal always has the possibility of inducing the agent to take a decision marginally
less risky than is efficient for which the cost in terms of efficiency is only second-order.

With a risk-neutral agent, the motivation for distorting the agent’s decision is not
to reduce the risk the agent bears but, as discussed in Section 3.1, to reduce the effect
of limited liability. In general, it is not obvious what direction the distortion takes. The
bidding application can, however, be used to show that the distortion may be towards
either more risky decisions or less risky decisions. To show this, it is convenient to
make use of the first-order approach. Part 2 of Lemma 2 established that, when As-
sumption 1 holds, the first-order condition (27), together with the condition that b (s)
is non-decreasing if πb (b; s) /π (b; s) is strictly increasing in s or the condition that
b (s) is non-increasing if πb (b; s) /π (b; s) is strictly decreasing in s, is necessary and
sufficient to induce the agent to select b (s) for all s. Imposing the conditions (27) and
either b (s) non-decreasing or b (s) non-increasing as appropriate, ensures, therefore,
that the first-order approach is valid. That approach is used in an appendix to demon-
strate the following result about how the bid optimally implemented by the principal
is related to the efficient bid.

Proposition 2 For the bidding application of Section 2.2, suppose Assumption 1 holds and
there is a binding lower bound on payments to the agent.6 Then, an optimal contract for a
risk-neutral agent implements:

1. b (s) > b� (s) for all s 2 (s, s), b (s) = b� (s) and b (s) � b� (s) if πb (b; s) /π (b; s)
is strictly increasing in s for all s 2 [s, s];

2. b (s) < b� (s) for all s 2 (s, s), b (s) = b� (s) and b (s) � b� (s) if πb (b; s) /π (b; s)
is strictly decreasing in s for all s 2 [s, s].

The essence of the result in Part 1 of Proposition 2 is illustrated in Figure 1. (That
for Part 2 is similar.) For a risk-neutral agent, it follows from Proposition 1 that only a
contract linear in b with positive slope induces the agent both to take action a and to
select bid b� (s) for all s. Let P̂ (b) in the figure illustrate the linear contract with the
least steep slope that satisfies both the incentive compatibility constraint for the agent
to choose action a and the individual rationality constraint with equality. To have a
binding lower bound on payments implies P > P̂ (0). One possible response of the
principal to such a bound would be to continue to implement b� (s) for all s by using
a linear contract with the same slope but with P (0) increased to P. That corresponds

6This proposition is also conditional on an appropriate constraint qualification being satisfied.
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Figure 1: Illustration of Proposition 2

to the dotted line in Figure 1. The incentive compatibility condition (corresponding to
(10) in the general framework) for a risk-neutral agent to choose action a is

P (0) +
Z s̄

s
[P (b (s))� P (0)]π (b (s) ; s) f (s; a) ds� v (a)

� P (0) +
Z s̄

s
[P (b (s))� P (0)]π (b (s) ; s) f (s; a) ds� v (a) , (32)

so adding the same constant to P (b) for all b leaves it still satisfied. But the expected
payment to the agent is given by the left-hand side of (32), so adding a positive con-
stant involves paying the agent more than required to satisfy the individual rationality
constraint. However, in view of the definition LR (s) � f (s; a) / f (s; a), (32) can, when
limited liability binds so that P (0) = P, be written

Z s̄

s
[P (b (s))� P]π (b (s) ; s) f (s; a) [1� LR (s)] ds � v (a)� v (a) . (33)

Thus the expected payment to the agent can be reduced while still satisfying (33) by
reducing payments for positive returns for which the likelihood ratio LR (s) is greater
than 1. Since s is ordered so that LR (s) is non-increasing and, by Lemma 1, b� (s) is
strictly increasing when πb (b; s) /π (b; s) is strictly increasing in s, this corresponds to
reducing payments for low, positive b. Because that increases the left-hand side of (33),
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it enables payments to be reduced for LR (s) < 1 too but never such as to make the
contract concave because then a less steep linear contract would also have satisfied the
constraint. Suppose the optimal contract corresponds to P� (b) in Figure 1. The effect
on the bid for given s can be seen from the agent’s first-order condition (27) which, for
a risk-neutral agent with binding limited liability (P (0) = P), can be written

�πb (b (s) ; s)
π (b (s) ; s)

=
P0 (b (s))

P (b (s))� P
. (34)

Consider the point b̂ in Figure 1 at which the dashed line has a steeper slope than the
dotted line and let s0 and s00 denote the values of s for which b̂ is bid under the contracts
represented by the dashed and the dotted lines respectively. At b̂, the denominator on
the right hand side of (34) is smaller for the contract represented by the dashed line
and the numerator is larger. Thus, from (34), s0 and s00 must satisfy

�
πb

�
b̂; s0

�
π
�

b̂; s0
� > �

πb

�
b̂; s00

�
π
�

b̂; s00
� . (35)

When πb (b; s) /π (b; s) is strictly increasing in s, that implies s0 < s00. Moreover, with
b (s) and b� (s) both increasing and b̂ = b (s0) = b� (s00), it follows that b (s00) > b� (s00).
The proof of Proposition 2 consists of showing that the same applies for all s 2 (s, s).

Proposition 2 shows the direction of the distortion of the optimal bid b (s) from the
efficient bid b� (s). Specifically, b (s) is distorted above b� (s) when πb (b; s) /π (b; s)
is strictly increasing in s for all s 2 [s, s] and below b� (s) when πb (b; s) /π (b; s) is
strictly decreasing in s for all s 2 [s, s]. In view of Part 3 of Lemma 1, that corresponds
to bids being increased above b� (s) when b� (s) is increasing and below it when b� (s)
is decreasing. The former corresponds to a higher, more risky bid, the latter to a lower,
less risky bid. The conclusion that the direction of the distortion from efficiency can
go either way mirrors that in Palomino and Prat (2003) in their application to del-
egated portfolio choice. Their result, however, relies on the “first-order approach”
being valid, which they cannot guarantee. For the bidding application used here, it
has been established that the first-order approach used is indeed valid.

Part 2 of Proposition 2 has an interesting implication. When limited liability binds,
even a risk-neutral agent is induced, for all values of the information signal apart from
those at the two extremes of its support, to make a lower, less risky bid, with a lower
return and a higher probability of success, than the principal would choose given the
same information. Thus the principal chooses a contract that more than compensates
for the incentive an agent otherwise has to make a more risky decision if limited liabil-
ity is imposed on a contract that would be optimal in the absence of limited liability.
In that case, managers with limited liability are induced to take decisions in a way that
makes it look as if they are risk-averse — limited liability not only reduces the profits
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of firms but also biases their decisions in a less risky direction.
Proposition 1 implies that, when Assumption 1 holds, only a contract with pay-

ment linear in y induces a risk-neutral agent to select b� (s) for all s, a condition under
which Diamond (1998) establishes the following “near-linearity” result. For a risk-
neutral agent with binding limited liability, an optimal contract to induce a > a con-
verges to linearity as the ratio of the return to the principal (gross of payment to the
agent) to the cost to the agent of taking actions a > a increases. The essence of the
result is that, as this ratio increases, the cost of inducing an action becomes smaller
relative to the gains from implementing efficient decisions and, if an efficient decision
rule is implemented only by a linear contract, an optimal contract approaches linear-
ity. But, as Diamond (1998) recognises and will be shown in the next section, a linear
contract is not necessarily the only contract that implements an efficient rule, in which
case his result may not apply.

4 Contracts to implement decision rules

The previous section was concerned with the decision rules it is optimal for the prin-
cipal to implement. This section is concerned with contracts to implement decision
rules. Some papers in the literature, for example, Demski and Sappington (1987), Di-
amond (1998) and Biais and Casamatta (1999), have been concerned with contracts to
implement efficient decision rules. But, as Theorem 1 showed, efficient decision rules
may not be optimal, so the analysis here is not restricted to efficient rules.

4.1 Results for the general framework

In general, adding a decision made by the agent to the classic principal-agent problem
affects the contract between principal and agent. A striking example is that with a con-
tinuum of possible decisions, so B = [b, b], and the probability distribution G (y; b, s)
for the return y given decision b and signal s taking the form Ĝ (y; s� b). In the ab-
sence of the additional decision, b is a fixed parameter. This gives rise to a standard
principal-agent problem in which the agent’s action a affects s which, in turn, affects
the distribution of returns y. Inducing the agent to choose a > a involves, in the usual
way, a trade-off between providing the agent with incentives to take the action and in-
suring the agent’s income. With the additional decision, however, an efficient decision
rule satisfies, from (1),

b� (s) 2 arg max
b2[b,b]

Z y

y
ydĜ (y; s� b) , for all s 2 [s, s] ,
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which is satisfied for all s by b� (s) = s� β� for constant β� that is a solution to

β� 2 arg max
β2[s�b,s�b]

Z y

y
ydĜ (y; β) .

The principal’s expected return is then
R y

y ydĜ (y; β�), which is independent of s. Thus
the principal no longer has reason to be concerned with the value of s and so has no
reason to provide the agent with incentives for action to influence its distribution. If,
moreover, the payment to the agent is made independent of the outcome, the agent is
indifferent as to which decision is made and hence will use an efficient decision rule
b� (.). Thus, in this case, the possibility of a decision in addition to an action removes
any need for the principal to use an incentive contract at all. Moreover, it does not
require the agent’s decision to be verifiable. This example is clearly special in that the
possibility of the decision makes any one signal as good as any other. But it serves to
illustrate the dramatic impact on incentive contracts that adding a decision may have.

Inducing the agent to implement a decision rule does not, however, necessarily af-
fect the contract between principal and agent. Suppose that, for each s, the decision
b (s) the principal wishes the agent to take stochastically dominates any other deci-
sion in either the first-order or the second-order sense. If the stochastic dominance is
first-order then, from a standard result, the agent prefers b (s) to any other decision for
each s provided only that the contract ensures the agent’s utility is increasing in y. If
the stochastic dominance is second-order then, again from a standard result, the agent
prefers b (s) to any other decision for each s provided only that the contract ensures
the agent’s utility is increasing and concave in y. With these forms of stochastic domi-
nance, the principal thus has substantial freedom in choosing an incentive contract to
implement b (.). To explore this formally, let

Y (a, b (.)) =
�

y 2
h
y, y
i
j
Z s

s
dG (y; b (s) , s) f (s; a) ds > 0

�
, for all a, b (.) . (36)

Y (a, b (.)) is the set of returns y that have strictly positive probability density given
action a and decision rule b (.). Next, let

L (y; a, b (.)) =

8>><>>:
R s

s dG(y;b(s),s) fa(s;a)dsR s
s dG(y;b(s),s) f (s;a)ds

, for y 2 Y (a, b (.)) , if A = [a, a] ;R s
s dG(y;b(s),s)[ f (s;a)� f (s;a)]dsR s

s dG(y;b(s),s) f (s;a)ds
, for y 2 Y (a, b (.)) , if A = fa, ag .

(37)

L (y; a, b (.)) is the relative rate of change with respect to a of the likelihood of y occur-
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ring, conditional on using the decision rule b (.). Finally, let

B̂ (s; a, b (.)) =

8>>>>>>><>>>>>>>:

B, if limited liability binds;

n
b 2 B j

R y00

y0 dG (y; b, s) = 0 for any y0, y00 2
h
y, y
i

with

y00 > y0 such that, for all y 2 [y0, y00] , y /2 Y (a, b (.))
o

,

if limited liability does not bind.

(38)

B̂ (s; a, b (.)) excludes, when limited liability is not binding, decisions with positive
probability mass of returns for which there is zero probability mass under b (.).

Theorem 3 Suppose the agent is strictly risk-averse and the principal implements action a >
a and decision rule b (.) with a contract conditioned only on y. Then, the conditions (11) for
the agent to adopt b (.) do not constrain optimal contract payments for returns y 2 Y (a, b (.))
if either of the following two sets of conditions hold:

1. (a) for each s 2 [s, s], G (y; b (s) , s) first-order stochastically dominates G (y; b, s) for
all decisions b 2 B̂ (s; a, b (.)); and (b) L (y; a, b (.)) is non-decreasing in y for y 2
Y (a, b (.)) for every a 2 A; in this case, P (y) is non-decreasing for all y 2 Y (a, b (.));

2. (a) for each s 2 [s, s], G (y; b (s) , s) second-order stochastically dominates G (y; b, s) for
all decisions b 2 B̂ (s; a, b (.)); (b) L (y; a, b (.)) is non-decreasing and concave in y for
y 2 Y (a, b (.)) for every a 2 A; (c) limited liability is not binding; and (d) the agent’s
utility function is such that

u
�

u0�1
�

1
z

��
is concave as a function of z for z > 0. (39)

Proof. A contract conditioned only on y takes the form P (y) independent of b. The
principal cannot do better than set P (y) = P for y /2 Y (a, b (.)). For limited liability
not binding, that rules out decisions b /2 B̂ (s; a, b (.)) without restricting the contract
for y 2 Y (a, b (.)). For limited liability binding, there are no decisions b /2 B̂ (s; a, b (.)).

Given those payments for y /2 Y (a, b (.)), suppose for y 2 Y (a, b (.)) the principal
were to ignore the constraints (11). Then, for A = [a, a], the principal’s first-order nec-
essary condition with respect to P (y) for an optimal contract is, for all y 2 Y (a, b (.))
for which limited liability is not binding,

�
Z s

s
dG (y; b (s) , s) f (s; a) ds+ λu0 (P (y))

Z s

s
dG (y; b (s) , s) f (s; a) ds

+ µu0 (P (y))
Z s

s
dG (y; b (s) , s) fa (s; a) ds = 0,
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where λ > 0 and µ are Lagrange multipliers corresponding to the constraints (9) and
(10) respectively. For A = fa, ag, the corresponding first-order condition is

�
Z s

s
dG (y; b (s) , s) f (s; a) ds+ λu0 (P (y))

Z s

s
dG (y; b (s) , s) f (s; a) ds

+ µu0 (P (y))
Z s

s
dG (y; b (s) , s) [ f (s; a)� f (s; a)] ds = 0.

With the definition of L (y; a, b (.)) in (37), in both cases the relevant necessary condi-
tion can be written in the standard optimal risk-sharing form

1
u0 (P (y))

= λ+ µL (y; a, b (.)) . (40)

With u0 (.) strictly decreasing and L (y; a, b (.)) non-decreasing in y, it follows from
(40) that P (y) is non-decreasing for all y 2 Y (a, b (.)) for which limited liability does
not bind if µ > 0 or non-increasing for all y 2 Y (a, b (.)) for which limited liability
does not bind if µ < 0. For y such that limited liability binds, the left-hand side of
(40) must be no greater than the right-hand side given P (y) = P. For L (y; a, b (.))
non-decreasing in y, this can apply only to an interval [y, ŷ] for some ŷ � y when
µ > 0 and an interval [ŷ, y] for some ŷ � y when µ < 0. That implies P (y) non-
decreasing for all y 2 Y (a, b (.)) or non-increasing for all y 2 Y (a, b (.)) according as
µ > 0 or µ < 0. Then, by an argument attributed to Lambert (see Rogerson (1985,
footnote 8)), µ > 0 since otherwise P (y) is non-increasing for all y 2 Y (a, b (.)) and
the agent would have no incentive to choose a > a given decision rule b (.). Thus P (y)
is non-decreasing for all y 2 Y (a, b (.)). It follows that u (P (y)) is non-decreasing as a
function of y for y 2 Y (a, b (.)). Thus, by the standard result in Laffont (1989, p. 32), an
agent receiving signal s always prefers b (s) if it is stochastically dominant in the first-
order sense to any other decision for which the return is always some y 2 Y (a, b (.)).
With the payments specified for y /2 Y (a, b (.)), decisions b 2 B̂ (s; a, b (.)) for which
the return is not always some y 2 Y (a, b (.)) are certainly no more attractive than if
P (y) for y /2 Y (a, b (.)) were increased to ensure P (y) non-decreasing for all y. Thus,
given first-order stochastic dominance, b (s) is also preferable to all such decisions.
This establishes that b (s) satisfies (11) for all s, as claimed in Part 1.

The proof of Part 2 follows that of Theorem 1 in Jewitt (1988). Given µ > 0, it fol-
lows from (40) and L (y; a, b (.)) non-decreasing concave in y that 1/u0 (P (y)) is non-
decreasing concave in y for all y 2 Y (a, b (.)). The condition in (39) ensures that u (P)
is a concave transformation of 1/u0 (P) and hence u (P (y)) is non-decreasing concave
in y for all y 2 Y (a, b (.)). With the payments specified for y /2 Y (a, b (.)), decisions
b 2 B̂ (s; a, b (.)) for which the return is not always some y 2 Y (a, b (.)) are certainly
no more attractive than if P (y) for y /2 Y (a, b (.)) were increased to ensure P (y) non-
decreasing concave for all y. It then follows from the standard result in Laffont (1989,
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p. 32-33) that an agent receiving signal s always prefers b (s) if it stochastically domi-
nates other b 2 B̂ (s; a, b (.)) in the second-order sense.

The cases covered by Theorem 3 are ones in which there is no conflict between
implementing the decision rule b (.) and providing the agent with efficient incentives
for action. In those cases, the requirement that the agent use the decision rule b (.)
does not constrain the optimal contract for returns y 2 Y (a, b (.)) and, since returns
y /2 Y (a, b (.)) are never realised, any constraints on the contract for these returns do
not affect the principal’s payoff. The essential reason is the following. A standard
result from principal-agent theory without the additional decision is that the shape
of the optimal contract is determined by the likelihood ratio of returns as a function
of the action — when that likelihood ratio is monotone, payment is non-decreasing
in the return to the principal. The corresponding likelihood term with the additional
decision included here is L (y; a, b (.)) defined in (37). When this is monotone, the
payment to the agent is non-decreasing in the return to the principal, so the agent
will make the desired decision if it is stochastically dominant in the first-order sense.
When the payment to the agent also results in expected utility that is concave, the
agent will make the desired decision if it is stochastically dominant in the second-
order sense. The restriction to contracts conditioned only on y does not necessarily
rule out application to cases in which the agent’s decision is itself verifiable because, as
discussed below in connection with the bidding application, the decision may convey
no useful additional information. But that restriction in any case applies to all the
related papers cited in the Introduction.

Proposition 3 in Demski and Sappington (1987) proves a related result on first-
order stochastic dominance. Part 1 of Theorem 3 extends that result in three significant
respects. The first is that it does not use an assumption on convexity of the underlying
distribution function. Such an assumption has been used in the literature on the valid-
ity of the first-order approach to principal-agent problems to ensure that the agent’s
first-order condition for choice of action is sufficient for a maximum, as well as nec-
essary. But that is not required here because the proof relies only on conditions that
are necessary for any a > a. Since it is widely recognised that such an assumption
is unappealing, see Jewitt (1988), removing the need for it is a worthwhile gain. The
second is that it extends the result to cases with binding limited liability. The third
is the extension to stochastic dominance that applies after excluding those decisions
for which there is positive probability mass of returns for which there is zero proba-
bility mass under b (.). From a pure theory perspective, that is straightforward. But
it is significant for applications. For example, as shown below, it makes the theorem
applicable to the bidding application of Section 2.2 when it would not otherwise be.
There is no counterpart in Demski and Sappington (1987) to Part 2 of Theorem 3.
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4.2 Implementing bidding rules in the bidding application

The bidding application from Section 2.2 provides an illustration of the results in The-
orem 3. Suppose the principal wants to be sure that the bid is successful at a price no
less than is necessary to achieve this, as specified in the following assumption.

Assumption 2 For the bidding application of Section 2.2, the principal chooses a contract to
ensure that the agent chooses a = a and uses a bidding rule b (.) that, for each s 2 [s, s], selects
the highest bid b (s) that will certainly be successful.

Such a bidding rule is of interest only when there is some positive bid that will
certainly be successful. For an example, let b0 denote the highest bid that will actually
be successful and suppose f (s; a) has support [ab0, b0] for a 2 fa, ag with 0 < a <
a < 1. Then the signal s is a random draw from a distribution with both lower and
upper supports no greater than b0 and a bid b = s will thus certainly be successful.
Moreover, higher a results in a signal s drawn from a distribution concentrated closer
to b0 and, as a approaches one, s corresponds to b0. This is illustrated for the case of
f (s; a) uniform in Figure 2. Under straightforward conditions, b = s is also an efficient
decision. Since π (b; s) has not been assumed differentiable with respect to b for (b, s)
such that π (b; s) = 1, let πb+(b; s) denote its right-hand derivative. Then if

sπb+(s; s) + 1 < 0,

or equivalently πb+(b; s) < �1/s, a bid b = s is a local optimum for the maximand
in (3). Under straightforward conditions, it is also a global optimum. Then b� (s) = s,
so an efficient bidding rule ensures that the bid always succeeds. Provided the cost of
inducing the agent to implement this rule is not too high, it will also be the optimal
bidding rule for the principal to implement. (Theorem 1 does not apply when π (b; s)
is not differentiable at b = b (s).)

From the set of bids that will be successful for sure, the principal’s payoff is obvi-
ously increased by having the agent choose the highest. In this case, the only useful
information in a signal is the highest bid b that will surely be successful. Thus, without
loss of generality, attention can be restricted to the case in which there is a one-to-one
correspondence between b and s and the inverse function b�1 (b) exists. Several things
are worth noting about this case. First, there is no loss to the principal from restrict-
ing the contract to one in which payment does not depend explicitly on the bid made
— the return from a successful bid necessarily reveals the bid and, since the bid the
agent is induced to make never actually fails, there is no loss from imposing the same
penalty for failure whatever bid is made. Second, there is no loss to the principal in
restricting the contract to one in which payment is a non-decreasing function of that
return. Recall that, for the bidding application, b is the return to the principal if the
bid is successful so, if the bidding rule to be implemented ensures that bids are always
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Figure 2: Example of f (s; a) for case of certain success

successful, a contract can be written P (b). Suppose P (b) were decreasing at some
point b0. Then the agent would always choose some bid b < b0 in preference to b0

because, if b0 would be successful for sure, so would b and b would also result in a
higher payment to the agent. But b would result in a lower return to the principal, so
the principal would do better to raise P (b0) to the same level as P (b) if the agent is to
choose b0 for any s. Even if the agent is not to choose b0 for any s, the principal does
not lose by doing this. Such a contract may have a flat section, as illustrated in Figure
3, but is non-decreasing everywhere.7

7There is also nothing to be gained from making payment depend on a message sent by the agent
after observing s. Formally, suppose the agent is required to send a message m 2 M and, if bid b is
made and message m sent, receives payment P̂ (b, m) if the bid is successful, P̂0 (b, m) if not. Then,
given signal s, the agent’s bid b (s) and message m (s) must satisfy

fb (s) , m (s)g 2 arg max
b2[0,b],m2M

u
�

P̂ (b, m)
�

π (b; s) + u
�

P̂0 (b, m)
�
[1� π (b; s)] , s 2 [s, s̄] .

But this would result in exactly the same bid and payoffs as a contract independent of the message that,
for b�1 (b) the signal (if any) for which bid b is chosen, satisfies

P (b) =

�
P̂
�
b, m

�
b�1 (b)

��
if b = b (s) for some s 2 [s, s̄] ;

minm2M P̂ (b, m) if b 6= b (s) for any s 2 [s, s̄] ;

P0 (b) =

�
P̂0
�
b, m

�
b�1 (b)

��
if b = b (s) for some s 2 [s, s̄] ;

minm2M P̂0 (b, m) if b 6= b (s) for any s 2 [s, s̄] .
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Figure 3: Optimal contract in the bidding application

The first of these properties allows Theorem 3 to be applied. When the bidding
rule b (.) to be implemented requires bids that are always successful, a return of zero
has probability zero if the agent adopts that rule and hence is not in the set Y (a, b (.)).
Thus, provided limited liability is not binding, any bid that may be unsuccessful given
s is not in the set B̂ (s; a, b (.)) and can be ruled out by a sufficiently large penalty for
an unsuccessful outcome. Moreover, the highest bid that guarantees success stochas-
tically dominates all lower bids. Thus the stochastic dominance properties of Part 1(a)
of Theorem 3 are satisfied. Moreover, with y = b for a successful bid b,

dG (y; b (s) , s) =

(
1, if y = b (s) ;
0, otherwise.

Application of this to (37) gives

L (b; a, b (.)) =
f
�
b�1 (b) ; a

�
� f

�
b�1 (b) ; a

�
f (b�1 (b) ; a)

= 1�
f
�
b�1 (b) ; a

�
f (b�1 (b) ; a)

. (41)

If this expression is non-decreasing in b, the remaining condition of Part 1 of Theorem
3, Part 1(b), is also satisfied and Theorem 3 applies. Given that s is ordered such that
LR (s) � f (s; a) / f (s; a) is non-increasing, L (b; a, b (.)) is non-decreasing in b as long
as b (s) is non-decreasing because then b�1 (b) is also non-decreasing. These results
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are collected here for convenience.

Proposition 3 For the bidding application of Section 2.2, suppose Assumption 2 holds.

1. There is no loss to the principal in restricting the contract to a form in which payment is
a non-decreasing function of the return to the principal and does not depend directly on
the bid made.

2. The conditions (11) for the agent to adopt b (.) do not constrain an optimal contract for
positive returns if (a) the agent is strictly risk-averse; (b) limited liability is not binding;
and (c) b (.) is non-decreasing.

That b (.) is non-decreasing is a natural characteristic under Assumption 2. The
only useful information in the signal s is about the highest bid that will certainly be
successful. Suppose s0 reveals that bid b will certainly be successful. Then one would
not expect a signal s > s0 with a higher relative likelihood of arising from greater action
by the agent to result in uncertainty about whether b will be successful. And provided
it does not, b (.)will be non-decreasing. But it is worth emphasising that, even if b (.) is
decreasing for some s, Part 1 of Proposition 3 still ensures that the payment schedule
is non-decreasing, though with a flat segment as in Figure 3. When that segment
corresponds to an interval at the lower end of values of b, the payment schedule looks
very much like a salary plus a performance-related bonus for performance above some
specified level. Stock options too are a reward with a flat section for an interval of low
returns.

With binding limited liability, the result in Part 2 of Proposition 3 may not hold
because the worst penalty the principal can impose may not be sufficient to deter the
agent from making a bid that may be unsuccessful, and such bids do not satisfy the
first-order stochastic dominance property in Part 1 of Theorem 3. To explore the im-
plications further, note that, in view of Part 1 of Proposition 3, if limited liability binds
it does so for P (0). Thus, with binding limited liability the condition corresponding
to (11) for the agent to choose b (s) given signal s is

b (s) 2 arg max
b2[0,b]

u (P (b))π (b; s) + u (P) [1� π (b; s)] , for all s 2 [s, s] . (42)

Under Assumption 2, with b (.) such that π (b (s) ; s) = 1 for all s, and hence π (b; s) =
1 for all b < b (s), this condition is satisfied for all b � b (s) if P (b) is non-decreasing.
If the signal s reveals the purchaser’s reservation value precisely (that is, it reveals not
only that bid b (s)will certainly be successful but also that any higher bid will certainly
be unsuccessful), then π (b; s) = 0 for b > b (s). In that case, (42) is satisfied for
b > b (s) as long as P (b (s)) � P. Then, as with non-binding limited liability, all that
is required to implement b (.) is that P (b) is non-decreasing and, as in Proposition 3,
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implementing b (.) does not constrain optimal contract payments for positive returns
if b (s) is non-decreasing.

But a signal that reveals the purchaser’s reservation value precisely is clearly a
rather special case. More generally, even if the signal reveals a bid level that will
certainly be successful, it will not rule out that a higher bid may also be successful.
Formally, that corresponds to π (b (s) + ε; s) 2 (0, 1) for sufficiently small ε > 0 for
all s 2 [s, s). Under Assumption 2, the bidding rule b (.) to be implemented always
satisfies π (b (s) ; s) = 1. Thus a necessary condition for b (s) to be preferred to any
b > b (s) for signal s is that

u0 [P (b (s))] P0 (b (s)) + fu [P (b (s))]� u (P)gπb+(b (s) ; s) � 0,

for all s 2 [s, s] . (43)

This necessary condition can be re-written

P0 (b (s)) � �πb+(b (s) ; s)
u [P (b (s))]� u (P)

u0 [P (b (s))]
, for all s 2 [s, s] . (44)

It is shown in an appendix that this condition is also sufficient provided b (s) and
πb (b; s) /π (b; s) are either both non-decreasing in s or both non-increasing in s for all
b 2

h
0, b
i

and s 2 [s, s]. The implication is that, to ensure the agent makes a bid that
is always successful, P (b) must not only be non-decreasing but also not increase too
fast. If it does, with π (b (s) + ε; s) > 0, the agent’s payoff is increased by making a
slightly higher bid, with a higher reward if successful but with a probability of success
strictly less than one.

The impact this has on the optimal contract can be seen most clearly with a risk-
neutral agent. Suppose the constraint (42) is not binding. Then limited liability reduces
the principal’s payoff only when it is not possible to satisfy the incentive compatibil-
ity condition for the agent to choose action a while satisfying the agent’s individual
rationality constraint with equality. The incentive compatibility condition in this case
(corresponding to (33) with π (b (s) ; s) = 1) when binding can be written

Z s̄

s
P (b (s)) f (s; a) [1� LR (s)] ds = v (a)� v (a) . (45)

As discussed above in connection with Proposition 2, the expected payment to the
agent can be reduced while keeping the incentive compatibility condition (45) satis-
fied by re-allocating rewards from b (s) for which LR (s) is high to b (s) for which
LR (s) is low. Since s is ordered so that LR (s) is non-increasing, that corresponds to
increasing the payments for low b if b (s) is decreasing and for high b if b (s) is increas-
ing. In the former case, the principal would wish to focus all payments above P on the
lowest b, but that would clearly violate the constraint that P (b) be non-decreasing. In
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the latter case, the principal would wish to focus all payments above P on the b (s) cor-
responding to the highest s, but that would necessarily violate the constraint (44) that
P (b) not increase too fast.8 Thus in both cases implementing b (.) necessarily imposes
a restriction on the optimal contract.

If b (s) is increasing (which corresponds to the monotone likelihood ratio property
(MLRP) that the expression in (41) is non-increasing), the constraint (44) necessarily
binds for all b and thus so does (43). That is sufficient to determine the form of the
optimal contract. Define z (b) = u (P (b))� u (P). Then (43) can be written

z0 (b) + z (b)πb+

�
b; b�1 (b)

�
� 0, for all b 2 [b (s) , b (s)] ,

which, when it is binding for all b, can be re-written

z0 (b)
z (b)

= �πb+

�
b; b�1 (b)

�
, for all b 2 [b (s) , b (s)] .

This has solution

z (b) = K exp
�
�
Z b

b(s)
πb+

�
b; b�1 (b)

�
db
�

, for all b 2 [b (s) , b (s)] ,

with K = z (b (s)). Translating that solution back into the original notation for a risk-
neutral agent gives the following result.

Proposition 4 For the bidding application of Section 2.2, suppose Assumption 2 holds, the
agent is risk-neutral with limited liability binding, and π (b (s) + ε; s) 2 (0, 1) for sufficiently
small ε > 0 for all s 2 [s, s). Then the following form of contract is optimal if b (s) is increasing
and πb (b; s) /π (b; s) is non-decreasing in s for all s 2 [s, s]:

P (b) =

(
P+ [P (b (s))� P] exp

h
�
R b

b(s) πb+
�
b; b�1 (b)

�
db
i

, for b 2 [b (s) , b (s)] ;

P, for b /2 [b (s) , b (s)] ;
(46)

with P (b (s)) ensuring that the incentive compatibility condition (45) is satisfied.

This result gives the formula for an optimal contract under the conditions speci-
fied. Everything in that formula is data for the model apart from P (b (s̄)), which is
set so that the incentive compatibility condition (45) is satisfied when the formula is
substituted for P (b). The formula is linear in the exponential term and so will not, in
general, result in a contract linear in b. If, for example, πb+

�
b; b�1 (b)

�
were constant,

8Formally, there is a standard open set issue in choosing an optimal contract when s is a continuous
variable. The principal’s payoff is increased by increasing P (b (s)) and reducing P (b (s)) for s 6= s
in such a way that incentive compatibility is maintained but, if P (b (s)) = P for all s 6= s, incentive
compatibility ceases to hold because P (b (s)) is received with probability only of order ds. The contract
described in the text is approximately optimal.
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P (b) would be exponentially increasing in b. That makes the contract very different
from the one with all payments above P concentrated on the b (s) for which LR (s) is
lowest that the principal would use if incentive compatibility of decisions were not
an issue. Note that the top line in (46) approaches a constant as πb+

�
b; b�1 (b)

�
ap-

proaches zero (because then the exponential term approaches one), in which case the
contract approaches one with provision for just two levels of payment, P and P (b (s)),
the former of which is never actually paid because it applies only to returns that do not
occur. That is like a fixed salary P (b (s)), with P corresponding to the threat of being
fired for a return that cannot occur if the agent uses the decision rule b (.). But that
limit can never actually be reached; for πb+

�
b; b�1 (b)

�
= 0, it would not be optimal

for the principal to implement b (.) because it would always be profitable to accept a
small risk of an unsuccessful outcome in order to relax the limited liability constraint.

It is instructive to compare the result in Proposition 4 with results in three papers
in which optimal contract forms are derived explicitly for a risk-neutral agent with
limited liability, Diamond (1998), Innes (1990), and Biais and Casamatta (1999). Di-
amond (1998) proves the near-linearity result described at the end of Section 3.2: if
the only contracts that induce the agent to select an efficient decision rule are linear,
an optimal contract converges to linearity as the ratio of the return to the principal
(gross of the payment to the agent) to the cost of actions a > a increases. Proposition
4 illustrates that this near-linearity result does not apply more generally. Although a
linear contract would implement an efficient decision rule b� (.), the non-linear con-
tract in (46) does so at lower cost to the principal, no matter what the magnitude of the
agent’s disutility of action a (conditional, of course, on it being worthwhile to employ
the agent to take that action).

In his Proposition 1, Innes (1990) shows that a debt contract is optimal when the
monotone likelihood ratio property holds and it is required that the principal’s (as
well as the agent’s) reward is monotonic in the return. In the notation used here, a
debt contract has P (b) = P (and hence P0 (b) = 0) for b < b̂ and P0 (b) = 1 for b > b̂
for some b̂. The contract in (46) clearly does not correspond to that. The reason for the
difference lies in the nature of the constraint on how fast P (b) can increase. A contract
monotonic for the principal implies that the reward to the agent cannot increase faster
than the realised return, that is, P0 (b) � 1. Thus the constraint P0 (b) � 1 replaces the
constraint (44). As discussed in connection with Proposition 4, under the monotone
likelihood ratio property, payment to the agent is reduced while maintaining incen-
tives for action by transferring rewards from lower values of b to higher values, which
results in the constraint P0 (b) � 1 becoming binding. As long as limited liability is
not so tight as to make that constraint bind for all b, a debt contract, with a flat section
for low b, is optimal. Thus, although the contracts differ, the underlying rationale for
a debt contract in Innes (1990) is similar to that for the contract in Proposition 4. The
difference is that the constraint (44) is not simply imposed but is derived from the need
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to make the bidding rule incentive compatible for the agent.
In Biais and Casamatta (1999), there is only a single decision that is ever worth-

while to the principal, no matter what signal the agent receives. Thus there is no issue
of trading off a different decision for a lower expected payment to the agent. They
show that an optimal contract can be implemented in terms of three instruments, debt,
equity and share options. Thus their result, like that in Proposition 4, serves to empha-
size that a debt contract is not in general optimal when a risk-neutral agent makes a
decision as well as choosing how hard to work. But with only three possible outcomes
in their model, it is not surprising that just three instruments can implement an opti-
mal contract. It remains to be seen what standard instruments (if any) can do so when,
as in the model studied here, the optimal decision for the principal depends on the
signal privately received and there is a continuum of possible outcomes.

5 Concluding remarks

This paper has been concerned with a principal-agent problem in which the agent’s
action reveals information that is not itself verifiable but is used by the agent to make
a decision on which the return is verifiable. It has used a formulation more general
than those in the literature. In such settings, the agent has to be induced not only to
take action to acquire information but also to make an appropriate decision given that
information. The analysis has focused on two issues: (1) the effect on the decision
made and (2) the effect on the contract between principal and agent.

On the second issue, the paper gives conditions for which inducing the agent to
adopt a decision rule that is first-order or second-order stochastically dominant im-
poses no substantive restriction on a contract that is optimal for inducing the agent to
take the optimal action to acquire the information. On the first, it is shown that the de-
cision is distorted in a direction that reduces the risk borne by a risk-averse agent in a
sense that is made precise. It differs from standard definitions of reducing risk because
it depends not only on the risk characteristics of the decisions themselves but also on
the contract with the principal but, for certain contract forms, is satisfied by second-
order stochastic dominance. The paper uses an application to bidding to supply a
good or service to show how those results can be applied directly. That application has
also been used to derive additional results. If the principal wishes the agent to choose
the highest bid that will always be successful or if payment to the agent can depend
only on the return to the principal, then an optimal contract is monotone — payment
to the agent is a non-decreasing function of the return to the principal from the deci-
sion — but it may have flat sections like rewards to managers that take the form of
stock options. For a risk-neutral agent with binding limited liability, the precise form
of the optimal contract is derived under certain conditions. It is not in general the
debt contract that Innes (1990) found to be an optimal monotone contract. Nor is it the
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combination of debt, equity and share options that Biais and Casamatta (1999) found
to be optimal in a model in which the agent makes decisions based on information
acquired by action but with a simpler decision framework and fewer outcomes than
the model used here. It does not even have the property discussed by Diamond (1998)
of approaching a linear contract as the ratio of the principal’s payoff to the cost of ac-
tion increases. Moreover, when the probability of a bid’s success lies strictly between
zero and one, the optimal bid by a risk-neutral manager under limited liability may
be distorted in the direction of either lower, less risky bids or higher, more risky bids,
depending on which relaxes the limited liability constraint. Thus limited liability for
managers may induce firms to make either more risky or less risky decisions.

There are numerous examples of agency in which the agent takes action to ac-
quire information that is subsequently used to make decisions. Much managerial ac-
tivity takes this form: investigating profitability before deciding how much to invest
or which project to undertake, making bids for the supply or purchase of goods and
services after investigating the probability that a given bid will be successful, making
portfolio decisions after acquiring information about stocks, and so on. Agency rela-
tionships of this type are a fundamental part of economic life. The results derived here
throw light on the implications of these types of relationships.

Appendix A Bidding application with Assumption 1

A.1 Agent and principal payoffs

The agent’s expected utility from bidding rule b (s) given signal s under contract P (.)
is

û (b (s) , s, P (.)) = u (P (b (s)))π (b (s) ; s) + u (P (0)) [1� π (b (s) ; s)] . (47)

For notational convenience, let h (b, s; a) = π (b; s) f (s; a) for all (b, s, a). Note, for
future reference that, since π (0; s) = 1 for all s, h (0, s; a) = f (s; a) and

hb (b, s; a)
h (b, s; a)

=
πb (b; s)
π (b; s)

, for all (b, s, a) . (48)
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The expected utility before s is revealed from bidding rule b (.) for given a is

U (a, b (.) , P (.)) =
Z s̄

s
û (s, b (s) , P (.)) f (s; a) ds� v (a) (49)

=
Z s̄

s

(
u (P (b (s)))π (b (s) ; s)

+ u (P (0)) [1� π (b (s) ; s)]

)
f (s; a) ds� v (a)

=
Z s̄

s

(
u (P (b (s))) h (b (s) , s; a) + u (P (0)) [h (0, s; a)

�h (b (s) , s; a)]

)
ds� v (a) , (50)

the final equality following from the definition of h (.).
The principal’s payoff conditional on a, b (.) and the contract P (.) is

R (a, b (.) , P (.)) =
Z s̄

s

(
[b (s)� P (b (s))]π (b (s) ; s) �P (0) [1� π (b (s) ; s)]

)
f (s; a) ds

=
Z s̄

s

(
[b (s)� P (b (s))] h (b (s) , s; a)

�P (0) [h (0, s; a)� h (b (s) , s; a)]

)
ds,

with again the final equality following from the definition of h (.).

A.2 The principal’s problem of contract choice

Under the Assumption 1, the optimal contract problem of Section 2.3 can be written

max
b(.),P(.)

R (a, b (.) , P (.)) subject to

U (a, b (.) , P (.)) � U;

U (a, b (.) , P (.)) � U (a, b (.) , P (.)) ; (51)

b (s) = arg max
b

u (P (b))π (b; s) +u (P (0)) [1� π (b; s)] for all s 2 [s, s] ;

P (b) � P, for all b 2
h
0, b
i

.

By Part 2 of Lemma 2, the first-order condition (27) and a condition on b (s) ( that
b (s) is non-decreasing if πb (b; s) /π (b; s) is strictly increasing in s or non-increasing
if πb (b; s) /π (b; s) is strictly decreasing in s) are necessary and sufficient to induce the
agent to select b (s) for all s. Imposing the conditions (27) and b (s) non-decreasing
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or non-increasing (as appropriate) on the principal’s optimization problem ensures,
therefore, that the first-order approach is valid. To implement the first-order approach,
the constraints (27) and b0 (s) � 0 or b0 (s) � 0 for all s 2 [s, s] replace the arg max
constraint in (51).

One complication in the principal’s problem (51) is that P (.) is a function of b (.)
which is in turn a function of the variable of integration s. One strategy for handling
that is the following. Define the variables ζ (s) and χ (s) by

ζ (s) = P (b (s)) , s 2 [s, s] , (52)

χ (s) = b0 (s) , s 2 [s, s] , (53)

so that
ζ 0 (s) = P0 (b (s)) b0 (s) . (54)

Choosing ζ (s) and b (s) optimally will determine P (b) for those values of b chosen
for some s but not for those values of b not chosen for any s. Part 1 of Lemma 2
showed that b = 0 can never be implemented. P (0) plays a central role in the first-
order condition (27), so an optimal contract must specify a value for it. For other
values of b not to be implemented for any s, it is sufficient to set P (b) = P (0). For
the optimization, this issue can be handled by introducing a parameter P0 specified
in the contract and setting P (b) = P0 for any b (including b = 0) that is not to be
implemented for any s. With this notation, the first-order condition (27) can be written

ζ 0 (s) = �χ (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
πb (b (s) ; s)
π (b (s) ; s)

= �χ (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

, (55)

the second equality following from (48). The condition b0 (s) � (�) 0 can, in this
notation, be written

χ (s) � (�) 0, for all s 2 [s, s] . (56)

Imposing the condition P0 � P is sufficient to ensure ζ (s) � P for all s because, by
Part 1 of Lemma 2, the first-order condition ensures b will be selected for s only if
P (b) > P0.

In writing the remaining constraints in terms of ζ (s), rather than P (b), it is conve-
nient to define the following function for the agent’s expected utility:

Z (a, b (.) , ζ (.) , P0) �
Z s

s

(
u (ζ (s)) h (b (s) , s; a) + u (P0) [h (0, s; a)

�h (b (s) , s; a)]

)
ds� v (a) . (57)
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The principal’s problem (51) can then be written

max
b(.),ζ(.),χ(.),P0

Z s

s
f[b (s)� ζ (s)] h (b (s) , s; a) �P0 [h (0, s; a)� h (b (s) , s; a)]g ds (58)

subject to the dynamic constraints

ζ 0 (s) = �χ (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

, for all s 2 [s, s] ; (59)

b0 (s) = χ (s) , for all s 2 [s, s] ; (60)

and the inequality constraints

Z (a, b (.) , ζ (.) , P0)�U � 0; (61)

Z (a, b (.) , ζ (.) , P0)� Z (a, b (.) , ζ (.) , P0) � 0; (62)

P0 � P � 0; (63)

for
hb (b, s; a)
h (b, s; a)

strictly increasing in s: χ (s) � 0, for all s 2 [s, s] ; (64)

for
hb (b, s; a)
h (b, s; a)

strictly decreasing in s: χ (s) � 0, for all s 2 [s, s] ; (65)

with free boundaries at s = s and s = s.

A.3 Hamiltonian and first-order conditions

To solve this problem, define the Hamiltonian in the standard way:

H (a, b (s) , ζ (s) , P0, s)

= [b (s)� ζ (s) + P0] h (b (s) , s; a)� P0h (0, s; a)

� ψ1 (s) χ (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

+ ψ2 (s) χ (s) , (66)

where ψ1 (s) and ψ2 (s) are multipliers attached to the constraints (59) and (60) respec-
tively. Then, provided the appropriate constraint qualification is satisfied, the Maxi-
mum Principle conditions, in which λ, µ, φ and ν (s) are multipliers attached in this
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order to the inequality constraints (61)–(64), are:

ψ01 (s) = �∂H (a, .)
∂ζ (s)

� λ
∂Z (a, .)
∂ζ (s)

� µ

�
∂Z (a, .)
∂ζ (s)

� ∂Z (a, .)
∂ζ (s)

�
= h (b (s) , s; a)� λu0 (ζ (s)) h (b (s) , s; a)

�µu0 (ζ (s)) [h (b (s) , s; a)� h (b (s) , s; a)]

+ψ1 (s) χ (s)
u0 (ζ (s))2 � [u (ζ (s))� u (P0)] u00 (ζ (s))

u0 (ζ (s))2
hb (b (s) , s; a)
h (b (s) , s; a)

; (67)

ψ02 (s) = �∂H (a.)
∂b (s)

� λ
∂Z (a, .)
∂b (s)

� µ

�
∂Z (a, .)
∂b (s)

� ∂Z (a, .)
∂b (s)

�
= �h (b (s) , s; a)� [b (s)� ζ (s) + P0] hb (b (s) , s; a)

�λ [u (ζ (s))� u (P0)] hb (b (s) , s; a) (68)

�µ [u (ζ (s))� u (P0)] [hb (b (s) , s; a)� hb (b (s) , s; a)]

+ψ1 (s) χ (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
h (b (s) , s; a) hbb (b (s) , s; a)� hb (b (s) , s; a)2

h (b (s) , s; a)2
;

0 =
∂H (a, .)
∂χ (s)

+ λ
∂Z (a, .)
∂χ (s)

+ µ

�
∂Z (a, .)
∂χ (s)

� ∂Z (a, .)
∂χ (s)

�
= �ψ1 (s)

u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

+ ψ2 (s) + ν (s) ; (69)

0 =
∂

∂P0

Z s

s
H (a, .) ds+ λ

∂Z (a, .)
∂P0

+ µ

�
∂Z (a, .)

∂P0
� ∂Z (a, .)

∂P0

�
+ φ

=
Z s

s

(
� [h (0, s; ē)� h (b (s) , s; ē)] + λu0 (P0) [h (0, s; a)� h (b (s) , s; a)]

+µu0 (P0) f[h (0, s; a)� h (b (s) , s; a)]� [h (0, s; a)� h (b (s) , s; a)]g

+ψ1 (s) χ (s)
u0 (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

)
ds+ φ; (70)

plus the original equality constraints

ζ 0 (s) = �χ (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

; (71)

b0 (s) = χ (s) ; (72)
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the complementary slackness conditions

Z (a, .)�U � 0; λ � 0; λ [Z (a, .)�U] = 0; (73)

Z (a, .)� Z (a, .) � 0; µ � 0; µ [Z (a, .)� Z (a, .)] = 0; (74)

P0 � P � 0; φ � 0; φ [P0 � P] = 0; (75)

for
hb (b, s; a)
h (b, s; a)

strictly increasing in s :

χ (s) � 0; ν (s) � 0; ν (s) χ (s) = 0, for all s 2 [s, s] ; (76)

for
hb (b, s; a)
h (b, s; a)

strictly decreasing in s :

χ (s) � 0; ν (s) � 0; ν (s) χ (s) = 0, for all s 2 [s, s] ; (77)

and the boundary conditions

ψ1 (s) = ψ2 (s) = 0; (78)

ψ1 (s) = ψ2 (s) = 0. (79)

It is convenient to re-arrange some of these conditions in order to derive some
preliminary results before proving the propositions in the main text. First, (67) and
(68) can be re-arranged respectively as

1
u0 (ζ (s))

�
1� ψ01 (s)

h (b (s) , s; a)

�
= λ+ µ

�
1� f (s; a)

f (s; a)

�
(80)

� ψ1 (s) χ (s)
h (b (s) , s; a)

1
u0 (ζ (s))

"
1� [u (ζ (s))� u (P0)] u00 (ζ (s))

u0 (ζ (s))2

#
hb (b (s) , s; a)
h (b (s) , s; a)

;

h (b (s) , s; a)
hb (b (s) , s; a)

+
ψ02 (s)

hb (b (s) , s; a)
(81)

= � [b (s)� ζ (s) + P0]�
�

λ+ µ

�
1� f (s; a)

f (s; a)

��
[u (ζ (s))� u (P0)]

+
ψ1 (s) χ (s)

h (b (s) , s; a)
u (ζ (s))� u (P0)

u0 (ζ (s))

�
hbb (b (s) , s; a)
hb (b (s) , s; a)

� hb (b (s) , s; a)
h (b (s) , s; a)

�
.

Second, note that
R s

s h (0, s; a) ds = 1 for all a because h (0, s; a) = f (s; a) by definition.
Use of this in (70) allows that condition to be re-arranged as�

1�
Z s

s
h (b (s) , s; a) ds

�
= λu0 (P0)

�
1�

Z s

s
h (b (s) , s; a) ds

�
�µu0 (P0)

�Z s

s
h (b (s) , s; a) ds�

Z s

s
h (b (s) , s; a) ds

�
+
Z s

s
ψ1 (s) χ (s)

u0 (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

ds+ φ. (82)
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Lemma 3 (69), (71), (72), (80) and (81) imply

πb (b (s) ; s) f (s; a)
�
�
�

π (b (s) ; s)
πb (b (s) ; s)

+ b (s)
�
+

�
ζ (s)� P0 �

u (ζ (s))� u (P0)

u0 (ζ (s))

��
+ ν0 (s) = ψ1 (s)

u (ζ (s))� u (P0)

u0 (ζ (s))
∂

∂s

�
πb (b (s) ; s)
π (b (s) ; s)

�
, for all s 2 [s, s] . (83)

Proof. Add [u (ζ (s))� u (P0)] times (80) to (81) noting that, from Lemma 2, ζ (s) >
P0 for all s and from (72) that χ (s) = b0 (s), to get

[u (ζ (s))� u (P0)]

u0 (ζ (s))

�
1� ψ01 (s)

h (b (s) , s; a)

�
+

h (b (s) , s; a)
hb (b (s) , s; a)

+
ψ02 (s)

hb (b (s) , s; a)

= �
"

b (s)� ζ (s) + P0

#

+
ψ1 (s) b0 (s)
h (b (s) , s; a)

u (ζ (s))� u (P0)

u0 (ζ (s))

�
hbb (b (s) , s; a)
hb (b (s) , s; a)

� hb (b (s) , s; a)
h (b (s) , s; a)

�hb (b (s) , s; a)
h (b (s) , s; a)

"
1� [u (ζ (s))� u (P0)] u00 (ζ (s))

u0 (ζ (s))2

#)

= �
"

b (s)� ζ (s) + P0

#

+ ψ1 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
b0 (s)

h (b (s) , s; a)

�
hbb (b (s) , s; a)
hb (b (s) , s; a)

+
hb (b (s) , s; a)
h (b (s) , s; a)

�
u (ζ (s))� u (P0)

u0 (ζ (s))
u00 (ζ (s))
u0 (ζ (s))

� 2
��

. (84)

From (69), it follows that

ψ2 (s) = ψ1 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

� ν (s) (85)

so, differentiating with respect to s,

ψ02 (s) = ψ01 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

� ν0 (s)

+ψ1 (s)

(
u0 (ζ (s))2 � [u (ζ (s))� u (P0)] u00 (ζ (s))

u0 (ζ (s))2
hb (b (s) , s; a)
h (b (s) , s; a)

ζ 0 (s)

+
u (ζ (s))� u (P0)

u0 (ζ (s))

"
h (b (s) , s; a) hbb (b (s) , s; a)� hb (b (s) , s; a)2

h (b (s) , s; a)2
b0 (s)

+
∂

∂s

�
hb (b (s) , s; a)
h (b (s) , s; a)

�#)
. (86)

41



The expression for ψ02 (s) in (86) can be re-arranged to give

ψ02 (s) = ψ01 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

� ν0 (s)

+ψ1 (s)

(�
1� u (ζ (s))� u (P0)

u0 (ζ (s))
u00 (ζ (s))
u0 (ζ (s))

�
hb (b (s) , s; a)
h (b (s) , s; a)

ζ 0 (s)

+
u (ζ (s))� u (P0)

u0 (ζ (s))

" 
hbb (b (s) , s; a)
h (b (s) , s; a)

� hb (b (s) , s; a)2

h (b (s) , s; a)2

!
b0 (s)

+
∂

∂s

�
hb (b (s) , s; a)
h (b (s) , s; a)

�#)
. (87)

Substitution for ζ 0 (s) from (71) and use of (72) gives

ψ02 (s) = ψ01 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

� ν0 (s)

+ψ1 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))

("�
u (ζ (s))� u (P0)

u0 (ζ (s))
u00 (ζ (s))
u0 (ζ (s))

� 1
��

hb (b (s) , s; a)
h (b (s) , s; a)

�2

+

 
hbb (b (s) , s; a)
h (b (s) , s; a)

� hb (b (s) , s; a)2

h (b (s) , s; a)2

!#
b0 (s) +

∂

∂s

�
hb (b (s) , s; a)
h (b (s) , s; a)

�)

= ψ01 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

� ν0 (s)

+ψ1 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))

("�
u (ζ (s))� u (P0)

u0 (ζ (s))
u00 (ζ (s))
u0 (ζ (s))

� 2
��

hb (b (s) , s; a)
h (b (s) , s; a)

�2

+
hbb (b (s) , s; a)
h (b (s) , s; a)

#
b0 (s) +

∂

∂s

�
hb (b (s) , s; a)
h (b (s) , s; a)

�)
.
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Use of this in (84) gives

[u (ζ (s))� u (P0)]

u0 (ζ (s))

�
1� ψ01 (s)

h (b (s) , s; a)

�
+

h (b (s) , s; a)
hb (b (s) , s; a)

+
ψ01 (s)

h (b (s) , s; a)
u (ζ (s))� u (P0)

u0 (ζ (s))

� ν0 (s)
hb (b (s) , s; a)

= �
"

b (s)� ζ (s) + P0

#

+ ψ1 (s)
u (ζ (s))� u (P0)

u0 (ζ (s))

(
b0 (s)

h (b (s) , s; a)

�
hbb (b (s) , s; a)
hb (b (s) , s; a)

+
hb (b (s) , s; a)
h (b (s) , s; a)

�
[u (ζ (s))� u (P0)]

u0 (ζ (s))
u00 (ζ (s))
u0 (ζ (s))

� 2
��

� 1
hb (b (s) , s; a)

""�
u (ζ (s))� u (P0)

u0 (ζ (s))
u00 (ζ (s))
u0 (ζ (s))

� 2
��

hb (b (s) , s; a)
h (b (s) , s; a)

�2

+
hbb (b (s) , s; a)
h (b (s) , s; a)

#
b0 (s) +

∂

∂s

�
hb (b (s) , s; a)
h (b (s) , s; a)

�#)
.

or, re-arranging and cancelling terms,

[u (ζ (s))� u (P0)]

u0 (ζ (s))
+

h (b (s) , s; a)
hb (b (s) , s; a)

� ν0 (s)
hb (b (s) , s; a)

= �
"

b (s)� ζ (s) + P0

#

+
ψ1 (s) b0 (s)
h (b (s) , s; a)

u (ζ (s))� u (P0)

u0 (ζ (s))

(
hbb (b (s) , s; a)
hb (b (s) , s; a)

+
hb (b (s) , s; a)
h (b (s) , s; a)

�
[u (ζ (s))� u (P0)]

u0 (ζ (s))
u00 (ζ (s))
u0 (ζ (s))

� 2
�

�
�

u (ζ (s))� u (P0)

u0 (ζ (s))
u00 (ζ (s))
u0 (ζ (s))

� 2
�

hb (b (s) , s; a)
h (b (s) , s; a)

�hbb (b (s) , s; a)
hb (b (s) , s; a)

)
� ψ1 (s)

hb (b (s) , s; a)
u (ζ (s))� u (P0)

u0 (ζ (s))
∂

∂s

�
hb (b (s) , s; a)
h (b (s) , s; a)

�

from which all the terms in ψ1 (s) b0 (s) cancel to give

[u (ζ (s))� u (P0)]

u0 (ζ (s))
+

h (b (s) , s; a)
hb (b (s) , s; a)

� ν0 (s)
hb (b (s) , s; a)

= �
"

b (s)� ζ (s) + P0

#
� ψ1 (s)

hb (b (s) , s; a)
u (ζ (s))� u (P0)

u0 (ζ (s))
∂

∂s

�
hb (b (s) , s; a)
h (b (s) , s; a)

�
.

In view of (48), this can be re-arranged to give (83).

Lemma 4 For the bidding application of Section 2.2, suppose Assumption 1 holds. Then,
provided the constraint b0 (s) � 0 (b0 (s) � 0) is not binding in the neighbourhoods of s, s, an
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optimal contract implements b (s) with the property b (s) < b� (s) for s = s, s for a risk-averse
agent and b (s) = b� (s) for s = s, s for a risk-neutral agent.

Proof. Any solution for b (s) must satisfy the the Maximum Principle conditions
(67)-(79), so Lemma 3 applies. By hypothesis, ∂

∂s (πb (b (s) ; s) /π (b (s) ; s)) is either
strictly positive for all s or strictly negative for all s and, by Lemma 2, ζ (s) [� P (b (s))] >
P0 for all s. Thus, the right-hand side of (83) in Lemma 3 equals zero if and only if
ψ1 (s) = 0. It follows from (78) that ψ1 (s) = 0, so the right-hand side of (83) equals
zero for s = s. It follows from (76) that, provided the constraint on b0 (s) [� χ (s)] is not
binding in the neighbourhood of s, ν (s) = 0 in that neighbourhood and thus ν0 (s) = 0
also. A corresponding argument applies for s = s. Since πb (b (s) ; s) = 0 is ruled out
by Assumption 1 and Lemma 2, it must be that, for both s and s, the term in braces on
the left-hand side of (83) equals zero.

For a risk-averse agent with ζ (s) > P0 for all s,

ζ (s)� P0 < [u (ζ (s))� u (P0)] /u0 (ζ (s))

by strict concavity of u (.), so the term in the second square bracket on the left-hand
side of (83) is negative. Thus it must be the case that an optimal b (s) satisfies

π (b (s) ; s)
πb (b (s) ; s)

+ b (s) < 0 for s = s, s. (88)

For b (s) = b� (s) and 0 < π (b� (s) ; s) < 1, it follows from (25) that the left-hand
side of (88) would have to be zero. But πb (b; s) /π (b; s) is non-increasing in b, so the
left-hand side of (88) is increasing in b (s). It follows from (25) that b (s) < b� (s) for
s = s, s.

For a risk-neutral agent

ζ (s)� P0 = [u (ζ (s))� u (P0)] /u0 (ζ (s)) ,

so both terms in square brackets on the left-hand side of (83) are zero for s = s, s. It
then follows from (25) that b (s) = b� (s) for s = s, s.
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A.4 Proofs

Proof of Proposition 2. Any solution for b (s)must satisfy the the Maximum Principle
conditions (67)-(79), so Lemma 3 applies. Integration of (67) over s 2 [s, s] gives

Z s

s
ψ01 (s) ds =

Z s

s

(
h (b (s) , s; a)� λu0 (ζ (s)) h (b (s) , s; a)

�µu0 (ζ (s)) [h (b (s) , s; a)� h (b (s) , s; a)]

+ψ1 (s) χ (s)
u0 (ζ (s))2 � [u (ζ (s))� u (P0)] u00 (ζ (s))

u0 (ζ (s))2
hb (b (s) , s; a)
h (b (s) , s; a)

)
ds

=
Z s

s
h (b (s) , s; a) ds� λ

Z s

s
u0 (ζ (s)) h (b (s) , s; a) ds

�µ
Z s

s
u0 (ζ (s)) [h (b (s) , s; a)� h (b (s) , s; a)] ds (89)

+
Z s

s

"
ψ1 (s) χ (s)

u0 (ζ (s))2 � [u (ζ (s))� u (P0)] u00 (ζ (s))
u0 (ζ (s))2

hb (b (s) , s; a)
h (b (s) , s; a)

#
ds.

Now
R s

s ψ01 (s) ds = ψ1 (s)� ψ1 (s) and, from (78) and (79), ψ1 (s) = ψ1 (s) = 0. Thus,

(89) can be used to substitute for
R s

s h (b (s) , s; a) ds in (82) to get

� 1+ λ
Z s

s
u0 (ζ (s)) h (b (s) , s; a) ds+ µ

Z s

s
u0 (ζ (s)) [h (b (s) , s; a)� h (b (s) , s; a)] ds

�
Z s

s

(
ψ1 (s) χ (s)

u0 (ζ (s))2 � [u (ζ (s))� u (P0)] u00 (ζ (s))
u0 (ζ (s))2

hb (b (s) , s; a)
h (b (s) , s; a)

)
ds

+ λu0 (P0)

�
1�

Z s

s
h (b (s) , s; a) ds

�
� µu0 (P0)

�Z s

s
h (b (s) , s; a) ds

�
Z s

s
h (b (s) , s; a) ds

�
+
Z s

s
ψ1 (s) χ (s)

u0 (P0)

u0 (ζ (s))
hb (b (s) , s; a)
h (b (s) , s; a)

ds+ φ = 0,

or

� 1+ λu0 (P0)

�
1+

Z s

s

�
u0 (ζ (s))
u0 (P0)

� 1
�

h (b (s) , s; a) ds
�

+ µu0 (P0)
Z s

s

�
u0 (ζ (s))
u0 (P0)

� 1
�
[h (b (s) , s; a)� h (b (s) , s; a)] ds

+
Z s

s
ψ1 (s) χ (s)

hb (b (s) , s; a)
h (b (s) , s; a)

"
u0 (P0)

u0 (ζ (s))
� 1+

[u (ζ (s))� u (P0)] u00 (ζ (s))
u0 (ζ (s))2

#
ds+φ = 0.

For a risk-neutral agent with u0 (.) constant and u00 (.) = 0, this reduces to

λu0 (P0) = 1� φ. (90)
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Consider first values of s for which ψ1 (s) = 0. Use of (90) in (80) for a risk-neutral
agent (with the normalization u0 (.) = 1) for any such s allows (80) to be written

� ψ01 (s)
h (b (s) , s; a)

= �φ+ µ

�
1� f (s; a)

f (s; a)

�
. (91)

Since s is ordered such that f (s; a) / f (s; a) is non-increasing in s, there exists ŝ such
that

f (s; a)
f (s; a)

� 1 for s � ŝ;
f (s; a)
f (s; a)

< 1 for s > ŝ.

Note that φ, µ > 0 if the lower bound on P0 is binding. Thus the right-hand side
of (91) is negative for s = s and increasing in s. So, either the right-hand side of
(91) is negative for all s or there exists an s̃ > ŝ such that it is negative for s � s̃
and positive for s > s̃. It follows either that, for any s � s̃ for which ψ1 (s) = 0,
ψ01 (s) > 0 and, for any s > s̃ for which ψ1 (s) = 0, ψ01 (s) < 0, or that ψ01 (s) > 0 for
all s for which ψ1 (s) = 0. The second of these cannot, however, be the case because
we know from (78) and (79) that ψ1 (s) = ψ1 (s) = 0. Thus, as s increases from s,
ψ1 (s) becomes positive and cannot change sign because, to do so, ψ01 (s) would have
to become negative and, since ψ01 (s) would remain negative for all higher s, ψ1 (s)
would not be able to satisfy ψ1 (s) = 0. Thus ψ1 (s) > 0 for all s 2 (s, s).

With a risk-neutral agent, the second square bracket on the left-hand side of (83)
in Lemma 3 is always zero. When ψ1 (s) > 0 and ζ (s) > P0 for all s 2 (s, s), the
right-hand side of (83) is positive if πb (b; s) /π (b; s) is everywhere strictly increasing
in s and negative if πb (b; s) /π (b; s) is everywhere strictly decreasing in s. The com-
bined term multiplying the brace on the left-hand side is negative under Assumption
1. Thus, provided the constraint on b0 (s) [� χ (s)] is not binding for any s, so that
ν (s) = 0 for all s from (76) and thus also ν0 (s) = 0 for all s, it must be that

π (b (s) ; s)
πb (b (s) ; s)

+ b (s) > 0 for s 2 (s, s) if
∂

∂s

�
πb (b; s)
π (b; s)

�
> 0 for all s;

π (b (s) ; s)
πb (b (s) ; s)

+ b (s) < 0 for s 2 (s, s) if
∂

∂s

�
πb (b; s)
π (b; s)

�
< 0 for all s.

But πb (b; s) /π (b; s) is non-increasing in b, so the left-hand sides of these conditions
are increasing in b (s). By the argument in the proof of Lemma 4, It follows from (25)
that b (s) > b� (s) for s 2 (s, s) if πb (b; s) /π (b; s) is everywhere strictly increasing in
s and b (s) < b� (s) for s 2 (s, s) if πb (b; s) /π (b; s) is everywhere strictly decreasing
in s.

That establishes the result for all s 2 (s, s) provided the constraint on b0 (s) does
not bind for any s (and hence ν (s) = ν0 (s) = 0 for all s). To show that the result is un-
affected by having that constraint bind for some s, start with the case πb (b; s) /π (b; s)
everywhere strictly increasing in s in which that constraint takes the form b0 (s) � 0.
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Consider first s = s. It follows from Lemma 4 that, if the constraint did not bind,
b (s) = b� (s). Thus the constraint can bind only if b (s� ε) > b� (s) as ε ! 0
from above and the effect of the constraint cannot be to reduce b (s). Thus certainly
b (s) � b� (s). Moreover, by Part 3 of Lemma 1, b� (s) is strictly increasing so, if
b (s� ε) = b (s) � b� (s), it is certainly the case that b (s� ε) > b� (s� ε). In addition,
for any s such that b (s) > b� (s), a similar argument implies b (s� ε) > b� (s� ε) as
ε ! 0 from above even when the constraint binds. Thus b (s) > b� (s) for all s 2 (s, s)
whether or not the constraint binds. Finally, b (s+ ε) > b� (s+ ε) as ε ! 0 from above
implies b (s+ ε) > b� (s), so having b (s) = b� (s), as implied by Lemma 4 if the con-
straint does not bind, cannot result in the constraint binding. Thus b (s) = b� (s). That
completes the proof of Part 1 of the proposition.

Now consider the case πb (b; s) /π (b; s) everywhere strictly decreasing in s in which
the constraint on b0 (s) takes the form b0 (s) � 0. It follows from Lemma 4 that, if the
constraint does not bind at s = s, then b (s) = b� (s). Thus the constraint can bind at
s = s only if b (s� ε) < b� (s) as ε ! 0 from above and the effect of the constraint can-
not be to increase b (s). Thus certainly b (s) � b� (s). Moreover, by Part 3 of Lemma
1, b� (s) is strictly decreasing so, if b (s� ε) = b (s) � b� (s), it is certainly the case
that b (s� ε) < b� (s� ε). In addition, for any s such that b (s) < b� (s), a similar ar-
gument implies b (s� ε) < b� (s� ε) as ε ! 0 from above even when the constraint
binds. Thus b (s) < b� (s) for all s 2 (s, s) whether or not the constraint binds. Fi-
nally, b (s+ ε) < b� (s+ ε) as ε ! 0 from above implies b (s+ ε) < b� (s), so having
b (s) = b� (s), as implied by Lemma 4 if the constraint does not bind, cannot result in
the constraint binding. Thus b (s) = b� (s). That completes the proof of Part 2.

Appendix B Bidding application with Assumption 2

This appendix shows that condition (44) is sufficient, as well as necessary, for the agent
to bid b (s) in the bidding application under Assumption 2 of Section 4.2.

Lemma 5 Suppose b (s) satisfies, for s, s0, s00 2 [s, s],

u (P) +
�
u
�

P
�
b
�
s0
���

� u (P)
�

π
�
b
�
s0
�

; s0
�

� u (P) +
�
u
�

P
�
b
�
s00
���

� u (P)
�

π
�
b
�
s00
�

; s0
�

; (92)

u (P) +
�
u
�

P
�
b
�
s00
���

� u (P)
�

π
�
b
�
s00
�

; s00
�

� u (P) + [u (P (b (s)))� u (P)]π
�
b (s) ; s00

�
. (93)
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Then, for s � s00 � s0 or s0 � s00 � s,

u (P)+
�
u
�

P
�
b
�
s0
���

� u (P)
�

π
�
b
�
s0
�

; s0
�
� u (P)+ [u (P (b (s)))� u (P)]π

�
b (s) ; s0

�
(94)

if b (s) and πb (b; s) /π (b; s) are either both non-decreasing in s or both non-increasing in s
for all s 2 [s, s] and all b 2

h
0, b
i
.

Proof. The two inequalities hypothesised in the lemma respectively imply�
u
�

P
�
b
�
s0
���

� u (P)
�

π
�
b
�
s0
�

; s0
�
�

�
u
�

P
�
b
�
s00
���

� u (P)
�

π
�
b
�
s00
�

; s0
�

,�
u
�

P
�
b
�
s00
���

� u (P)
�
� [u (P (b (s)))� u (P)]

π (b (s) ; s00)
π (b (s00) ; s00)

.

Together these imply

�
u
�

P
�
b
�
s0
���

� u (P)
�

π
�
b
�
s0
�

; s0
�
� [u (P (b (s)))� u (P)]

π (b (s00) ; s0)
π (b (s00) ; s00)

π
�
b (s) ; s00

�
.

Thus the lemma certainly holds if

π (b (s00) ; s0)
π (b (s00) ; s00)

π
�
b (s) ; s00

�
� π

�
b (s) ; s0

�
, for s � s00 � s0 and s0 � s00 � s,

or, equivalently,

π (b (s00) ; s0)
π (b (s00) ; s00)

� π (b (s) ; s0)
π (b (s) ; s00)

, for s � s00 � s0 and s0 � s00 � s. (95)

This clearly holds with equality for s = s00. But

d
ds

�
π (b (s) ; s0)
π (b (s) ; s00)

�
=

b0 (s)
π (b (s) ; s00)2

�
π
�
b (s) ; s00

�
πb
�
b (s) ; s0

�
� π

�
b (s) ; s0

�
πb
�
b (s) ; s00

��
= b0 (s)

π (b (s) ; s0)
π (b (s) ; s00)

�
πb (b (s) ; s0)
π (b (s) ; s0)

� πb (b (s) ; s00)
π (b (s) ; s00)

�
,

which is non-positive for s0 � s00 and non-negative for s00 � s0 if b (s) and πb (b; s) /π (b; s)
are either both non-decreasing in s or both non-increasing in s for all s 2 [s, s] and all
b 2

h
0, b
i
. This implies (95).

An implication of this result is the following. Suppose P (b) is set such that P (b) =
P for any b that is not to be selected for any s, as a result of which no such b is chosen
for any s. Then if, under the conditions given, P (b) is such that the agent prefers
b (s0) to b (s00) given signal s0 and b (s00) to b (s) given signal s00 for any signal s the
opposite side of s00 from s0, the agent also prefers b (s0) to b (s) given signal s0. Letting
s00 approach s0 establishes that, under the conditions of Lemma 5, a local optimum is
also a global optimum. As a result, (43) (or alternatively, (44)) is sufficient to ensure
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that no b > b (s) is preferred to b (s) when b (s) and πb (b; s) /π (b; s) are either both
non-decreasing in s or both non-increasing in s for all s 2 [s, s] and all b 2

h
0, b
i
.
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