PRINCIPAL BUNDLE STRUCTURE ON JET PROLONGATIONS OF FRAME BUNDLES

J. Brajerčík* - M. Demko* - D. Krupka**
(Communicated by Július Korbaš)

Abstract

In this paper, we introduce the structure of a principal bundle on the r-jet prolongation $J^{r} F X$ of the frame bundle $F X$ over a manifold X. Our construction reduces the well-known principal prolongation $W^{r} F X$ of $F X$ with structure group G_{n}^{r}. For a structure group of $J^{r} F X$ we find a suitable subgroup of G_{n}^{r}. We also discuss the structure of the associated bundles. We show that the associated action of the structure group of $J^{r} F X$ corresponds with the standard actions of differential groups on tensor spaces.

1. Introduction

The concept of jet prolongations of principal and associated bundles is a fundamental tool in higher order differential geometry, the theory of differential invariants, and in applications (see, e.g., Brajerčík [2], Doupovec and Mikulski [3], Janyška [4, Koláŕ, Michor and Slovák [7], Kowalski and Sekizawa [9], Krupka [11], Kureš [13], Paták and Krupka [15]). This paper is a contribution to the structure theory of the prolongations.

One of the structure problems is the existence of a principal bundle structure on a jet prolongation of a principal bundle. This problem was originally studied by Koláŕ. His analysis was based on the works by Ehresmann and Libermann.

[^0]For a principal G-bundle P over an n-dimensional manifold X he introduced a new principal bundle $W^{r} P$, where a structure group is the (r, n)-prolongation of G, denoted by G_{n}^{r} [5, 6]. Later, a modified prolongation formula was stated in [10], and the theory was explained in a more systematic way in [7] and [12].

The principal prolongation $W^{r} P$ has found numerous applications in the geometry of differential invariants, calculus of variations, etc. In most of them, the underlying principal bundle was a bundle $F X$ of frames over X. It was shown, in particular, that many applications utilize only the subgroup L_{n}^{r}, the differential group, and do not require properties of the whole structure group G_{n}^{r}. Geometrically it means, that in many applications only a reduction of G_{n}^{r} to a subgroup is needed (e.g., differential invariants, natural Lagrange structures, gauge theories). In the case of a frame bundle $F X$ over a manifold X it is possible to use reduction of $W^{r} F X$ to the bundle $F^{r+1} X$ of frames of order $r+1$, where the structure group G_{n}^{r} is reduced to the differential group L_{n}^{r+1} ([12]).

Jet prolongations of $F X$ are also studied by Libermann in connection with prolongations of higher order connections [14. She showed that the first jet prolongation $J^{1} F X$ can be naturally identified with the principal bundle of second order semi-holonomic frames over X (see also [8]). Also a correspondence between the bundle of semi-holonomic r-jets of sections of $F X$ and the bundle of semi-holonomic frames of order $r+1$ over X was described.

The aim of this paper is to study the existence of principal bundle structures on holonomic frame bundle of order $r, J^{r} F X$. Our main result consists in finding a Lie group which defines a principal bundle structure of $J^{r} F X$. The construction gives us a reduction of the principal prolongation $W^{r} F X$ to $J^{r} F X$. We also study the associated actions of this newly introduced group on the corresponding associated fibre bundles. These actions generalize the standard tensor actions of differential groups to a broader class of type fibres.

Note that the prolongation procedure presented in this paper can be applied to an arbitrary principal L_{n}^{1}-bundle P. As an example we can take a principal L_{n}^{1}-bundle $J^{r} P$ over the bundle $C^{r} P$ of r-th order connections of P for any r (see, e.g., [1]).

2. Preliminaries

Let G be a Lie group, and denote by $T_{n}^{r} G$ the set of all r-jets with source at the origin $0 \in \mathbb{R}^{n}$ and target in $G . T_{n}^{r} G$ is a closed submanifold of $J^{r}\left(\mathbb{R}^{n}, G\right)$ of r-jets with source in \mathbb{R}^{n} and target in G.

Let $\mathcal{S}, \mathcal{T} \in T_{n}^{r} G, \mathcal{S}=J_{0}^{r} s, \mathcal{T}=J_{0}^{r} t$, where $s, t: \mathbb{R}^{n} \rightarrow G$, be any elements. The rule

$$
\mathcal{S} \cdot \mathcal{T}=J_{0}^{r}(s \cdot t)
$$

where $(s \cdot t)(x)=s(x) \cdot t(x)$ is the group multiplication in G, defines a structure of Lie group on $T_{n}^{r} G$.

Let us consider the r-th differential group of \mathbb{R}^{n}, denoted L_{n}^{r}, which consists of all invertible r-jets of mappings $\alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with source and target at the origin $0 \in \mathbb{R}^{n}$, and multiplication is given by the composition of jets. Each element $A=J_{0}^{r} \alpha \in L_{n}^{r}$ defines a mapping $\varphi(A): T_{n}^{r} G \rightarrow T_{n}^{r} G$ by the formula $\varphi(A)(\mathcal{S})=$ $\mathcal{S} \circ A^{-1} . \varphi(A)$ is an automorphism of the Lie group $T_{n}^{r} G$, and the mapping $A \mapsto \varphi(A)$ is a homomorphism of the Lie group L_{n}^{r} into the group Aut $T_{n}^{r} G$ of automorphisms of $T_{n}^{r} G$. The exterior semi-direct product $L_{n}^{r} \times{ }_{\varphi} T_{n}^{r} G$, associated with the homomorphism φ (see [12]), is a Lie group with the multiplication

$$
(A, \mathcal{S}) \cdot(B, \mathcal{T})=\left(A \cdot B, \mathcal{S} \cdot\left(\mathcal{T} \circ A^{-1}\right)\right)
$$

where $A, B \in L_{n}^{r}, \mathcal{S}, \mathcal{T} \in T_{n}^{r} G$. This Lie group is called the (r, n)-prolongation of G and is denoted by G_{n}^{r}.

Let $F^{r} X$ denote the set of all r-frames, i.e., invertible r-jets $Z=J_{0}^{r} \zeta$ with source at the origin $0 \in \mathbb{R}^{n}$ and target in the n-dimensional manifold $X . F^{r} X$ is endowed with a natural structure of principal bundle with the structure group L_{n}^{r} and is called the bundle of r-frames over X.

Let P be a principal bundle over an n-dimensional manifold X, let π be its projection. Let $J^{r} P$ denote the r-jet prolongation of P. The r-jet of a section γ of P at a point $x \in X$ is denoted by $\Upsilon=J_{x}^{r} \gamma$.

Consider the fibre product $W^{r} P=F^{r} X \oplus J^{r} P$, i.e., the submanifold in $F^{r} X \times J^{r} P$ of pairs (Z, Υ) such that Z and Υ belong to the fibre over the same point of X. For every $(Z, \Upsilon) \in W^{r} P, Z=J_{0}^{r} \zeta, \Upsilon=J_{x}^{r} \gamma$, where $x=\zeta(0)$, and every $(A, \mathcal{S}) \in G_{n}^{r}, A=J_{0}^{r} \alpha, \mathcal{S}=J_{0}^{r} s$, we put

$$
\begin{equation*}
(Z, \Upsilon) \cdot(A, \mathcal{S})=\left(Z \cdot A, \Upsilon \cdot\left(\mathcal{S} \circ Z^{-1}\right)\right)=\left(J_{0}^{r}(\zeta \circ \alpha), J_{x}^{r}\left(\gamma \cdot\left(s \circ \zeta^{-1}\right)\right)\right) \tag{1}
\end{equation*}
$$

where $\left(\gamma \cdot\left(s \circ \zeta^{-1}\right)\right)(x)=\gamma(x) \cdot s\left(\zeta^{-1}(x)\right)$ is the right action of G on P. Then (11) is a right action of the group G_{n}^{r} on $W^{r} P$ which defines a structure of principal G_{n}^{r}-bundle on $W^{r} P . W^{r} P$ is called the (principal) r-prolongation of P.

In this paper we consider a frame bundle over an n-dimensional manifold X instead of P. A frame at a point $x \in X$ is a pair $\Xi=(x, \xi)$, where $\xi=$ $\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ is an ordered basis of the tangent space $T_{x} X$. The set of all frames in all points of X is denoted by $F X$ and the structure $\mu: F X \rightarrow X$ is a principal bundle with the structure group $G l_{n}(R)$ (the general linear group of \mathbb{R}^{n}); the dimension of a fibre is n^{2}.

For every chart $(U, \varphi), \varphi=\left(x^{i}\right)$, on $X, x \in U$, the associated chart (V, ψ), $\psi=\left(x^{i}, x_{j}^{i}\right)$, on $F X$, is defined by $V=\mu^{-1}(U)$, and

$$
x^{i}(\Xi)=x^{i}(\mu(\Xi)), \quad \xi_{j}=x_{j}^{i}(\Xi)\left(\frac{\partial}{\partial x^{i}}\right)_{x}
$$

where $\Xi \in V$.
$F X$ can be identified with the bundle $F^{1} X$ of all invertible 1-jets with source at the origin $0 \in \mathbb{R}^{n}$ and target in X. To every $\Xi=(x, \xi) \in F X, x \in U$, we assign a 1 -jet $Z=J_{0}^{1} \zeta$ such that $\zeta(0)=x$ and $D_{j}\left(x^{i} \circ \zeta\right)(0)=x_{j}^{i}(\Xi)$. This
J. BRAJERČÍK — M. DEMKO - D. KRUPKA
defines a bijection between the bundles $F X$ and $F^{1} X$. Due to this identification, in what follows, we will use the notation $F X$ also for $F^{1} X$.

Let us consider a local trivialization of the principal bundle $F X$. For every $x \in X$ there exists an open subset $U \subset X$ and a diffeomorphism ϕ, such that the diagram

commutes. By $p_{1}\left(p_{2}\right)$ we denote the projection onto the first (second) component. Let $J_{0}^{1} \zeta \in \mu^{-1}(U), \zeta(0)=x$, and let $t_{z}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, z \in \mathbb{R}^{n}$, be a translation of \mathbb{R}^{n} given by $t_{z}(w)=w-z$. Then an identification $\phi: \mu^{-1}(U) \rightarrow U \times L_{n}^{1}$, associated with a chart (U, φ), is defined by $J_{0}^{1} \zeta \mapsto\left(\zeta(0), J_{0}^{1} \tilde{\zeta}\right)$, where $\tilde{\zeta}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is given by

$$
\begin{equation*}
\tilde{\zeta}=t_{\varphi(x)} \circ \varphi \circ \zeta . \tag{3}
\end{equation*}
$$

If $\Xi=J_{0}^{1} \zeta \in \mu^{-1}(U)$, and $\left(a_{j}^{i}\right)$ are the (first) canonical coordinates on L_{n}^{1}, then $\phi(\Xi)=(\mu(\Xi), A)$, where $a_{j}^{i}(A)=x_{j}^{i}(\Xi)$.

Let $F X \times L_{n}^{1} \ni(\Xi, A) \mapsto \Xi \cdot A \equiv R_{A}(\Xi) \in F X$ be a right action of the structure group L_{n}^{1} on $F X$, in the corresponding coordinates given by

$$
\bar{x}^{i}=x^{i} \circ R_{A}=x^{i}, \quad \bar{x}_{j}^{i}=x_{j}^{i} \circ R_{A}=x_{k}^{i} \cdot a_{j}^{k}(A)
$$

The mapping $\chi=p_{2} \circ \phi: \mu^{-1}(U) \rightarrow L_{n}^{1}$ satisfies

$$
\begin{equation*}
\chi\left(R_{A}(\Xi)\right)=\chi(\Xi) \cdot A \tag{4}
\end{equation*}
$$

for every $\Xi \in \mu^{-1}(U)$ and every $A \in L_{n}^{1}$.
By $J^{r} F X$ we denote the r-jet prolongation of $F X$. The r-jet of a section γ of $F X$, at a point $x \in X$, is denoted by $J_{x}^{r} \gamma$, and the assignment $x \mapsto J^{r} \gamma(x)=J_{x}^{r} \gamma$ is the r-jet prolongation of γ. The canonical jet projections $\mu^{r, 0}: J^{r} F X \rightarrow F X$ (the target projection), and $\mu^{r}: J^{r} F X \rightarrow X$ (the source projection), are defined by $\mu^{r, 0}\left(J_{x}^{r} \gamma\right)=\gamma(x)$, and $\mu^{r}\left(J_{x}^{r} \gamma\right)=x$, respectively. With a chart (U, φ) we also associate a chart $\left(V^{r}, \psi^{r}\right)$ on $J^{r} F X$, where $V^{r}=\left(\mu^{r}\right)^{-1}(U)$, and $\psi^{r}=$ $\left(x^{i}, x_{j}^{i}, x_{j, k_{1}}^{i}, x_{j, k_{1} k_{2}}^{i}, \ldots, x_{j, k_{1} k_{2} \ldots k_{r}}^{i}\right)$.

It is well known that $J^{r} F X$ has a structure of fibre bundle with the standard fibre $T_{n}^{r} L_{n}^{1}=J_{0}^{r}\left(\mathbb{R}^{n}, L_{n}^{1}\right)$ (the manifold of all jets of mappings from $\mathbb{R}^{n} \rightarrow L_{n}^{1}$ with source in $0 \in \mathbb{R}^{n}$ and target in L_{n}^{1}). To describe a fibre bundle structure on $J^{r} F X$, we take a local trivialization of $F X$, consisting of pairs (U, ϕ) (see (2)), and we introduce the corresponding local trivialization of $J^{r} F X$. Let (U, φ) be a coordinate chart on X. Over U we have the mapping

$$
\begin{equation*}
\Phi:\left.J^{r} F X\right|_{U}=\left(\mu^{r}\right)^{-1}(U) \rightarrow U \times T_{n}^{r} L_{n}^{1} \tag{5}
\end{equation*}
$$

in the form $\left.J^{r} F X\right|_{U} \ni J_{x}^{r} \gamma \mapsto\left(x, J_{0}^{r} \bar{\gamma}\right)$, where $\bar{\gamma}: \mathbb{R}^{n} \rightarrow L_{n}^{1}$ is defined by

$$
\begin{equation*}
\bar{\gamma}=\chi \circ \gamma \circ \varphi^{-1} \circ t_{-\varphi(x)} . \tag{6}
\end{equation*}
$$

Obviously, Φ is smooth. Its inverse $\Phi^{-1}: U \times\left. T_{n}^{r} L_{n}^{1} \rightarrow J^{r} F X\right|_{U} ;\left(x, J_{0}^{r} s\right) \mapsto J_{x}^{r} \delta$, with $\delta: U \rightarrow F X, \delta(y)=\phi^{-1}\left(y,\left(s \circ t_{\varphi(x)} \circ \varphi\right)(y)\right), y \in U$, is also smooth.

Thus, the collection of pairs (U, Φ) represent the local trivializations of $J^{r} F X$ such that the diagram

commutes. In (7), $\rho: T_{n}^{r} L_{n}^{1} \rightarrow L_{n}^{1}$ is the projection (of the fibred manifold) defined by $T_{n}^{r} L_{n}^{1} \ni J_{0}^{r} s \mapsto s(0) \in L_{n}^{1}$.

3. Principal bundle structure on $J^{r} F X$

In contrast with 7.12, in this section we introduce a modified group operation on $T_{n}^{r} L_{n}^{1}$, denoted *, and a structure of principal bundle on $J^{r} F X$ with the structure group ($T_{n}^{r} L_{n}^{1}, *$).

Let us recall that $T_{n}^{r} L_{n}^{1}$ consists of all jets of smooth mappings from $\mathbb{R}^{n} \rightarrow L_{n}^{1}$ with source in $0 \in \mathbb{R}^{n}$ and target in L_{n}^{1}. The identification $T_{n}^{r} L_{n}^{1}=J_{0}^{r}\left(\mathbb{R}^{n}, L_{n}^{1}\right)$ (closed submanifold of $J^{r}\left(\mathbb{R}^{n}, L_{n}^{1}\right)$) induces a structure of smooth manifold (also a structure of fibred manifold $\rho: T_{n}^{r} L_{n}^{1} \rightarrow L_{n}^{1}$). Moreover, $T_{n}^{r} L_{n}^{1}$ is endowed with a Lie group structure, where multiplication is given as follows (see, e.g., [12]). Let $\mathcal{S}, \mathcal{T} \in T_{n}^{r} L_{n}^{1}, \mathcal{S}=J_{0}^{r} s, \mathcal{T}=J_{0}^{r} t$, where $s, t: \mathbb{R}^{n} \rightarrow L_{n}^{1}$, then

$$
\mathcal{S} \cdot \mathcal{T}=J_{0}^{r}(s \cdot t)
$$

where $(s \cdot t)(x)=s(x) \cdot t(x)$ (the group multiplication in L_{n}^{1}). In what follows we wish to introduce another Lie group structure on $T_{n}^{r} L_{n}^{1}$. Under the correspondence between the general linear group $G l_{n}(\mathbb{R})$ and the differential group L_{n}^{1} we have the following
Lemma 1. For every $S \in L_{n}^{1}$ there exists a unique linear automorphism s_{0} of \mathbb{R}^{n} such that $S=J_{0}^{1} s_{0}$.

```
J. BRAJERČÍK - M. DEMKO - D. KRUPKA
```

As a direct consequence of Lemma 1 we have:
Corollary 1. For every $\mathcal{S}=J_{0}^{r} s \in T_{n}^{r} L_{n}^{1}$ there exists a unique linear automorphism $s_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $s(0)=J_{0}^{1} s_{0}$.

The mapping s_{0} is said to be associated with \mathcal{S}.
For every $\mathcal{S}, \mathcal{T} \in T_{n}^{r} L_{n}^{1}$, we define a multiplication on $T_{n}^{r} L_{n}^{1}$, denoted $*$, by

$$
\begin{equation*}
\mathcal{S} * \mathcal{T}=J_{0}^{r}\left(s \cdot\left(t \circ s_{0}^{-1}\right)\right) \tag{8}
\end{equation*}
$$

where • denotes the group multiplication in L_{n}^{1}, and $s_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the mapping associated with \mathcal{S}.

Lemma 2. $\left(T_{n}^{r} L_{n}^{1}, *\right)$ is a Lie group.
Proof. $T_{n}^{r} L_{n}^{1}$ has a structure of smooth manifold. Obviously, $\mathcal{S} * \mathcal{T} \in T_{n}^{r} L_{n}^{1}$ for every $\mathcal{S}, \mathcal{T} \in T_{n}^{r} L_{n}^{1}$.

Further, we show that $(\mathcal{S} * \mathcal{T}) * \mathcal{U}=\mathcal{S} *(\mathcal{T} * \mathcal{U})$. Let $\mathcal{S}, \mathcal{T}, \mathcal{U} \in T_{n}^{r} L_{n}^{1}$, $\mathcal{S}=J_{0}^{r} s, \mathcal{T}=J_{0}^{r} t, \mathcal{U}=J_{0}^{r} u, s, t, u: \mathbb{R}^{n} \rightarrow L_{n}^{1}$. By Lemma 1, there exist mappings $s_{0}, t_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $s(0)=S=J_{0}^{1} s_{0}, t(0)=T=J_{0}^{1} t_{0}$. If we denote $\mathcal{S} * \mathcal{T}=J_{0}^{r} v$, then by (8), $v(0)=\left(s \cdot\left(t \circ s_{0}^{-1}\right)\right)(0)=s(0) \cdot t(0)=S \cdot T$, and the mapping $v_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ associated with $\mathcal{S} * \mathcal{T}$ is of the form $v_{0}=s_{0} \circ t_{0}$. Indeed, $J_{0}^{1}\left(s_{0} \circ t_{0}\right)=J_{0}^{1} s_{0} \cdot J_{0}^{1} t_{0}=S \cdot T=v(0)$, and $s_{0} \circ t_{0}$ is linear, thus, by Corollary [1, we get $v_{0}=s_{0} \circ t_{0}$. Further,

$$
\begin{aligned}
(\mathcal{S} * \mathcal{T}) * \mathcal{U} & =J_{0}^{r}\left(s \cdot\left(t \circ s_{0}^{-1}\right)\right) * J_{0}^{r} u=J_{0}^{r}\left(s \cdot\left(t \circ s_{0}^{-1}\right) \cdot\left(u \circ\left(s_{0} \circ t_{0}\right)^{-1}\right)\right) \\
& =J_{0}^{r}\left(s \cdot\left(t \circ s_{0}^{-1}\right) \cdot\left(u \circ t_{0}^{-1} \circ s_{0}^{-1}\right)\right)=J_{0}^{r}\left(s \cdot\left(t \cdot\left(u \circ t_{0}^{-1}\right) \circ s_{0}^{-1}\right)\right) \\
& =J_{0}^{r} s * J_{0}^{r}\left(t \cdot\left(u \circ t_{0}^{-1}\right)\right)=\mathcal{S} *(\mathcal{T} * \mathcal{U}) .
\end{aligned}
$$

The identity element of $*$ defined on $T_{n}^{r} L_{n}^{1}$ is $\mathcal{E}=J_{0}^{r} e$, where $e: \mathbb{R}^{n} \rightarrow L_{n}^{1}$ is the constant mapping assigning the identity matrix $E \in L_{n}^{1}$ to every $z \in \mathbb{R}^{n}$. The corresponding mapping $e_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with the property $J_{0}^{1} e_{0}=e(0)$ is $\operatorname{id}_{\mathbb{R}^{n}}$. Note, that \mathcal{E} coincides with the identity element of $\left(T_{n}^{r} L_{n}^{1}, \cdot\right)$.

The inverse \mathcal{S}^{-1} of an element $\mathcal{S}=J_{0}^{r} s \in T_{n}^{r} L_{n}^{1}$ is given by $\mathcal{S}^{-1}=J_{0}^{r} s^{-1}$, where $s^{-1}(z)=\left(\left(s \circ s_{0}\right)(z)\right)^{-1}$. The mapping associated with \mathcal{S}^{-1} is s_{0}^{-1}.

Denoting for a moment the group multiplication in L_{n}^{1} by Ψ, we obtain (8) in the form

$$
\mathcal{S} * \mathcal{T}=J_{(S, T)}^{r} \Psi \circ J_{0}^{r}\left(s \times\left(t \circ s_{0}^{-1}\right)\right)=J_{(S, T)}^{r} \Psi \circ(\mathcal{S}, \mathcal{T}) \circ\left(J_{0}^{r} \operatorname{id}_{\mathbb{R}^{n}}, J_{0}^{r} s_{0}^{-1}\right)
$$

Since the composition of jets is smooth, the product $\mathcal{S} * \mathcal{T}$ depends smoothly on \mathcal{S} and \mathcal{T}, and we see that the group structure in $\left(T_{n}^{r} L_{n}^{1}, *\right)$ is compatible with its smooth structure. Thus $\left(T_{n}^{r} L_{n}^{1}, *\right)$ is a Lie group.

Let $\left(a_{j}^{i}, a_{j, k}^{i}, a_{j, k l}^{i}\right)$ denote the coordinates on $T_{n}^{2} L_{n}^{1}$, let $\left(b_{j}^{i}\right)$ be the second canonical coordinates on L_{n}^{1}, i.e., $a_{k}^{i} \cdot b_{j}^{k}=\delta_{j}^{i}$. Then, for any $\mathcal{S}, \mathcal{T} \in T_{n}^{2} L_{n}^{1}$, the
coordinate expressions of $*$ on $T_{n}^{2} L_{n}^{1}$ are

$$
\begin{aligned}
a_{j}^{i}(\mathcal{S} * \mathcal{T})= & a_{k}^{i}(\mathcal{S}) a_{j}^{k}(\mathcal{T}), \quad b_{j}^{i}(\mathcal{S} * \mathcal{T})=b_{k}^{i}(\mathcal{T}) b_{j}^{k}(\mathcal{S}), \\
a_{j, k}^{i}(\mathcal{S} * \mathcal{T})= & a_{l, k}^{i}(\mathcal{S}) a_{j}^{l}(\mathcal{T})+a_{l}^{i}(\mathcal{S}) a_{j, m}^{l}(\mathcal{T}) b_{k}^{m}(\mathcal{S}), \\
a_{j, k l}^{i}(\mathcal{S} * \mathcal{T})= & a_{m, k l}^{i}(\mathcal{S}) a_{j}^{m}(\mathcal{T})+a_{m, k}^{i}(\mathcal{S}) a_{j, p}^{m}(\mathcal{T}) b_{l}^{p}(\mathcal{S}) \\
& +a_{m, l}^{i}(\mathcal{S}) a_{j, p}^{m}(\mathcal{T}) b_{k}^{p}(\mathcal{S})+a_{m}^{i}(\mathcal{S}) a_{j, p q}^{m}(\mathcal{T}) b_{l}^{q}(\mathcal{S}) b_{k}^{p}(\mathcal{S}),
\end{aligned}
$$

and the coordinates of the identity element \mathcal{E} of $T_{n}^{r} L_{n}^{1}$ are

$$
\begin{equation*}
a_{j}^{i}(\mathcal{E})=\delta_{j}^{i}, \quad a_{j, k_{1} k_{2} \ldots k_{m}}^{i}(\mathcal{E})=0, \quad 1 \leq m \leq r . \tag{9}
\end{equation*}
$$

Unless otherwise stated, from now on by the Lie group $T_{n}^{r} L_{n}^{1}$ we mean $\left(T_{n}^{r} L_{n}^{1}, *\right)$. Now we are in a position to define an action of $T_{n}^{r} L_{n}^{1}$ on $J^{r} F X$. Let $\Upsilon=J_{x}^{r} \gamma$ $\in J^{r} F X$, where $\gamma: U \rightarrow F X$ is a smooth section, $x \in U \subset X$. Using the local trivialization of $F X$, mentioned in Section 2, and Lemma 11 we have

Lemma 3. For every $\Upsilon=J_{x}^{r} \gamma \in J^{r} F X$ there exists a unique invertible smooth mapping $\gamma_{0}: \mathbb{R}^{n} \rightarrow X$ such that $\gamma_{0}(0)=x, J_{0}^{1} \gamma_{0}=\gamma(x)$, and $\tilde{\gamma}_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, defined by (3), is a linear mapping.

The mapping γ_{0} is said to be associated with Υ. Let $\mathcal{S} \in T_{n}^{r} L_{n}^{1}, \mathcal{S}=J_{0}^{r} s$. We define a mapping $J^{r} F X \times T_{n}^{r} L_{n}^{1} \ni(\Upsilon, \mathcal{S}) \mapsto \Upsilon * \mathcal{S} \in J^{r} F X$ by

$$
\begin{equation*}
\Upsilon * \mathcal{S}=J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right) \tag{10}
\end{equation*}
$$

Lemma 4. (10) defines a right action of $T_{n}^{r} L_{n}^{1}$ on $J^{r} F X$.
Proof. Let $\Upsilon=J_{x}^{r} \gamma \in J^{r} F X, \gamma: U \rightarrow F X$ and $\mathcal{S}, \mathcal{T} \in T_{n}^{r} L_{n}^{1}, \mathcal{S}=J_{0}^{r} s$, $\mathcal{T}=J_{0}^{r} t$. Let us denote $\Upsilon * \mathcal{S}=J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}{ }^{-1}\right)\right)=J_{x}^{r} \delta$. First, we notice that the corresponding mapping δ_{0} associated with $J_{x}^{r} \delta$ is equal to $\gamma_{0} \circ s_{0}$. Indeed,

$$
\left(\gamma_{0} \circ s_{0}\right)(0)=\gamma_{0}\left(s_{0}(0)\right)=\gamma_{0}(0)=x=\delta_{0}(0)
$$

Further,

$$
\begin{aligned}
x_{j}^{i}\left(J_{0}^{1}\left(\gamma_{0} \circ s_{0}\right)\right) & =D_{j}\left(x^{i}\left(\gamma_{0} \circ s_{0}\right)\right)(0)=D_{k}\left(x^{i} \circ \gamma_{0}\right)\left(s_{0}(0)\right) \cdot D_{j}\left(a^{k} \circ s_{0}\right)(0) \\
& =D_{k}\left(x^{i} \circ \gamma_{0}\right)(0) \cdot D_{j}\left(a^{k} \circ s_{0}\right)(0)=x_{k}^{i}\left(J_{0}^{1} \gamma_{0}\right) \cdot a_{j}^{k}\left(J_{0}^{1} s_{0}\right) \\
& =x_{k}^{i}(\gamma(x)) \cdot a_{j}^{k}(s(0)),
\end{aligned}
$$

and

$$
x_{j}^{i}(\delta(x))=x_{j}^{i}\left(\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right)(x)\right)=x_{k}^{i}(\gamma(x)) \cdot a_{j}^{k}(s(0)) .
$$

Thus $\delta(x)=\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right)(x)=J_{0}^{1}\left(\gamma_{0} \circ s_{0}\right)$. Moreover, denoting $\omega_{0}=\gamma_{0} \circ s_{0}$, by (3) we have that

$$
\tilde{\omega}_{0}=t_{\varphi(x)} \circ \varphi \circ \gamma_{0} \circ s_{0}=\tilde{\gamma}_{0} \circ s_{0}
$$

is linear, and therefore, using Lemma 3, we can conclude that

$$
\begin{equation*}
\delta_{0}=\gamma_{0} \circ s_{0} \tag{11}
\end{equation*}
$$

J. BRAJERČÍK — M. DEMKO — D. KRUPKA

Now, by (10) and (11) we can write

$$
\begin{aligned}
(\Upsilon * \mathcal{S}) * \mathcal{T} & =J_{x}^{r}\left(\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right) \cdot\left(t \circ\left(\gamma_{0} \circ s_{0}\right)^{-1}\right)\right) \\
& =J_{x}^{r}\left(\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right) \cdot\left(t \circ s_{0}^{-1} \circ \gamma_{0}^{-1}\right)\right) \\
& =J_{x}^{r}\left(\gamma \cdot\left(\left(s \cdot\left(t \circ s_{0}^{-1}\right)\right) \circ \gamma_{0}^{-1}\right)\right)=\Upsilon *(\mathcal{S} * \mathcal{T}) .
\end{aligned}
$$

Finally, it is obvious that $\Upsilon * \mathcal{E}=J_{x}^{r}\left(\gamma \cdot\left(e \circ \gamma_{0}^{-1}\right)\right)=J_{x}^{r} \gamma=\Upsilon$, because $e(z)=E$ for all $z \in \mathbb{R}^{n}$.

Let $\left(x^{i}, x_{j}^{i}, x_{j, k}^{i}, x_{j, k l}^{i}\right)$ denote the fibred coordinates on $J^{2} F X$, and let y_{k}^{j} be the inverse matrix of x_{j}^{i}. For any $\Upsilon \in J^{2} F X, \mathcal{S} \in T_{n}^{2} L_{n}^{1}$, the coordinate expressions of (10) on $J^{2} F X$ are given by

$$
\begin{align*}
x^{i}(\Upsilon * \mathcal{S})= & x^{i}(\Upsilon), \\
x_{j}^{i}(\Upsilon * \mathcal{S})= & x_{k}^{i}(\Upsilon) a_{j}^{k}(\mathcal{S}), \quad y_{j}^{i}(\Upsilon * \mathcal{S})=b_{k}^{i}(\mathcal{S}) y_{j}^{k}(\Upsilon), \\
x_{j, k}^{i}(\Upsilon * \mathcal{S})= & x_{l, k}^{i}(\Upsilon) a_{j}^{l}(\mathcal{S})+x_{l}^{i}(\Upsilon) a_{j, m}^{l}(\mathcal{S}) y_{k}^{m}(\Upsilon), \tag{12}\\
x_{j, k l}^{i}(\Upsilon * \mathcal{S})= & x_{m, k l}^{i}(\Upsilon) a_{j}^{m}(\mathcal{S})+x_{m, k}^{i}(\Upsilon) a_{j, p}^{m}(\mathcal{S}) y_{l}^{p}(\Upsilon) \\
& +x_{m, l}^{i}(\Upsilon) a_{j, p}^{m}(\mathcal{S}) y_{k}^{p}(\Upsilon)+x_{m}^{i}(\Upsilon) a_{j, p q}^{m}(\mathcal{S}) y_{l}^{q}(\Upsilon) y_{k}^{p}(\Upsilon) .
\end{align*}
$$

Theorem 1. $J^{r} F X$ with the right action (10) becomes a principal $T_{n}^{r} L_{n}^{1}$-bundle.
Proof. $J^{r} F X$ has a structure of fibre bundle with the standard fibre $T_{n}^{r} L_{n}^{1}$; its local trivialization is described in Section 2. The action (10) of $T_{n}^{r} L_{n}^{1}$ on $J^{r} F X$ is free. Indeed, if we suppose that for some $\Upsilon=J_{x}^{r} \gamma \in J^{r} F X$ and $\mathcal{S}=J_{0}^{r} s \in T_{n}^{r} L_{n}^{1}$, we have $\Upsilon * \mathcal{S}=\Upsilon$, then by (10),

$$
\begin{equation*}
J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right)=J_{x}^{r} \gamma . \tag{13}
\end{equation*}
$$

This implies $\left(\gamma \cdot\left(s \circ \gamma_{0}{ }^{-1}\right)\right)(x)=\gamma(x) \cdot s(0)=\gamma(x)$, which gives us $s(0)=E$ (identity element of L_{n}^{1}), i.e., $a_{j}^{i}(s(0))=a_{j}^{i}(\mathcal{S})=\delta_{j}^{i}$, because the action of L_{n}^{1} on $F X$ is free. Further, from (13), $x_{j, k}^{i}(\Upsilon * \mathcal{S})=x_{j, k}^{i}(\Upsilon)$, and using (12), we get $a_{j, k}^{i}(\mathcal{S})=0$. Since relations similar to equations (12) hold for any r, continuing analogously, we finally get that $a_{j, k_{1} k_{2} \ldots k_{m}}^{i}(\mathcal{S})=0$ for all $1 \leq m \leq r$, which by (9) means that $\mathcal{S}=\mathcal{E}$ and (10) is free.

Finally, using the local trivialization of $J^{r} F X$, consisting of the collection of pairs (U, Φ), where the diffeomorphism Φ (5) is defined by (6), we shall show that Φ is equivariant with respect to the right action (10) of $T_{n}^{r} L_{n}^{1}$ on $J^{r} F X$ and the group operation (8) on $T_{n}^{r} L_{n}^{1}$. Let $\Upsilon=\left.J_{x}^{r} \gamma \in J^{r} F X\right|_{U}$ and $\mathcal{S}=J_{0}^{r} s \in T_{n}^{r} L_{n}^{1}$. Let us denote $\tau=p_{2} \circ \Phi$. We wish to show that $\tau(\Upsilon * \mathcal{S})=\tau(\Upsilon) * \mathcal{S}$. We have $\tau(\Upsilon)=J_{0}^{r} \bar{\gamma}$ with $\bar{\gamma}: \mathbb{R}^{n} \rightarrow L_{n}^{1}$ given by (6), and by (8) we get

$$
\begin{equation*}
\tau(\Upsilon) * \mathcal{S}=J_{0}^{r}\left(\bar{\gamma} \cdot\left(s \circ \bar{\gamma}_{0}^{-1}\right)\right)=J_{0}^{r}\left(\left(\chi \circ \gamma \circ \varphi^{-1} \circ t_{-\varphi(x)}\right) \cdot\left(s \circ \bar{\gamma}_{0}^{-1}\right)\right), \tag{14}
\end{equation*}
$$

where $\bar{\gamma}_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is associated with $\bar{\gamma}$, i.e., $J_{0}^{1} \bar{\gamma}_{0}=\bar{\gamma}(0)=\chi(\gamma(x))$.

In addition, let us denote $\Upsilon * \mathcal{S}=J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}{ }^{-1}\right)\right)=J_{x}^{r} \delta$, where $\gamma_{0}: \mathbb{R}^{n} \rightarrow X$ is associated with Υ. Then $\tau(\Upsilon * \mathcal{S})=J_{0}^{r} \bar{\delta}$, where $\bar{\delta}$ is defined by (6), and using (4), we get

$$
\begin{align*}
\bar{\delta} & =\chi \circ\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right) \circ \varphi^{-1} \circ t_{-\varphi(x)} \tag{15}\\
& =\left(\chi \circ \gamma \circ \varphi^{-1} \circ t_{-\varphi(x)}\right) \cdot\left(s \circ \gamma_{0}^{-1} \circ \varphi^{-1} \circ t_{-\varphi(x)}\right) .
\end{align*}
$$

Using (6) and according to Corollary 1 and Lemma 3, we have

$$
J_{0}^{1} \bar{\gamma}_{0}=\bar{\gamma}(0)=\chi(\gamma(x))=\chi\left(J_{0}^{1} \gamma_{0}\right)=J_{0}^{1} \tilde{\gamma}_{0}
$$

where both $\bar{\gamma}_{0}$ and $\tilde{\gamma}_{0}$ are linear. Corollary 1 gives us that $\bar{\gamma}_{0}=\tilde{\gamma}_{0}$, and (3) implies $\gamma_{0}{ }^{-1} \circ \varphi^{-1} \circ t_{-\varphi(x)}=\bar{\gamma}_{0}^{-1}$. Using it, $J_{0}^{r} \bar{\delta}$ for $\bar{\delta}$ (15) coincides with (14) which means that $\tau(\Upsilon * \mathcal{S})=\tau(\Upsilon) * \mathcal{S}$. Since Υ and \mathcal{S} are arbitrary, this completes the proof.

4. Prolongation of associated bundles

Let Q be a left L_{n}^{1}-manifold and let $F_{Q} X$ be a bundle with fibre Q, associated with the principal L_{n}^{1}-bundle $F X$; a point of $F_{Q} X$ is, by definition, the equivalence class $[\Xi, q]$ of a pair $(\Xi, q) \in F X \times Q$ with respect to the right action

$$
((\Xi, q), A) \mapsto\left(\Xi \cdot A, A^{-1} \cdot q\right)
$$

of L_{n}^{1} on $F X \times Q$.
Let $\left(T_{n}^{r} L_{n}^{1}, *\right)$ be a Lie group as in Section 3. Consider the mapping

$$
\begin{equation*}
T_{n}^{r} L_{n}^{1} \times T_{n}^{r} Q \rightarrow T_{n}^{r} Q ; \quad\left(J_{0}^{r} s, J_{0}^{r} f\right) \mapsto J_{0}^{r}\left(s \cdot\left(f \circ s_{0}^{-1}\right)\right) \tag{16}
\end{equation*}
$$

Lemma 5. (16) defines a left action of $\left(T_{n}^{r} L_{n}^{1}, *\right)$ on $T_{n}^{r} Q$.
Proof. The proof is a modification of the proof of Lemma 2
The action (16) will be denoted by $J_{0}^{r} s * J_{0}^{r} f=J_{0}^{r}\left(s \cdot\left(f \circ s_{0}^{-1}\right)\right)$.
Let $J^{r} F X$ be a principal $T_{n}^{r} L_{n}^{1}$-bundle with the structure group $\left(T_{n}^{r} L_{n}^{1}, *\right)$. Using (16) we can construct a bundle $\left(J^{r} F X\right)_{Y}$ with type fibre $Y=T_{n}^{r} Q$, associated with $J^{r} F X$. The group $\left(T_{n}^{r} L_{n}^{1}, *\right)$ acts on $J^{r} F X \times Y$ by the formula

$$
\left(\left(J_{x}^{r} \gamma, J_{0}^{r} f\right), \mathcal{S}\right) \rightarrow\left(J_{x}^{r} \gamma * \mathcal{S}, \mathcal{S}^{-1} * J_{0}^{r} f\right)
$$

where $\mathcal{S}^{-1}=J_{0}^{r} s^{-1}$ is the inverse of $\mathcal{S}=J_{0}^{r} s \in\left(T_{n}^{r} L_{n}^{1}, *\right)$ defined in the proof of Lemma 2. The corresponding invertible linear mapping $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, associated with \mathcal{S}^{-1}, is s_{0}^{-1}. Thus we can write

$$
\begin{equation*}
\left(J_{x}^{r} \gamma * \mathcal{S}, \mathcal{S}^{-1} * J_{0}^{r} f\right)=\left(J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right), J_{0}^{r}\left(s^{-1} \cdot\left(f \circ s_{0}\right)\right)\right), \tag{17}
\end{equation*}
$$

where $\gamma_{0}: \mathbb{R}^{n} \rightarrow X$ is the mapping associated with the r-jet $J_{x}^{r} \gamma$.

J. BRAJERČÍK — M. DEMKO - D. KRUPKA

Theorem 2. The r-jet prolongation $J^{r} F_{Q} X$ of $F_{Q} X$ has a structure of fibre bundle with fibre $T_{n}^{r} Q$, associated with the principal $T_{n}^{r} L_{n}^{1}$-bundle $J^{r} F X$.

Proof. Let $\left(J^{r} F X\right)_{Y}$ be a fibre bundle with fibre $Y=T_{n}^{r} Q$, associated with the principal $T_{n}^{r} L_{n}^{1}$-bundle $J^{r} F X$. We are going to show that there exists an isomorphism of manifolds $\Psi:\left(J^{r} F X\right)_{Y} \rightarrow J^{r} F_{Q} X$, commuting with the projections onto the base X of $F X$.

Let $\gamma_{0}: \mathbb{R}^{n} \rightarrow X$ be the mapping associated with $J_{x}^{r} \gamma \in J^{r} F X$, where $\gamma: U \rightarrow F X$ is a local section over an open subset $U \subset X, x \in U$. Putting

$$
\begin{equation*}
\gamma_{Q}(z, q)=\left[\gamma \gamma_{0}(z), q\right] \tag{18}
\end{equation*}
$$

we obtain a mapping $\gamma_{Q}: \gamma_{0}^{-1}(U) \times Q \rightarrow F_{Q} X$. Consider

$$
\Psi:\left(J^{r} F X\right)_{Y} \rightarrow J^{r} F_{Q} X ; \quad\left[J_{x}^{r} \gamma, J_{0}^{r} f\right] \mapsto J_{x}^{r} \beta
$$

where $\beta(y)=\gamma_{Q}\left(\gamma_{0}^{-1}(y), f\left(\gamma_{0}^{-1}(y)\right)\right)$, i.e., $\beta=\gamma_{Q} \circ\left(\operatorname{id}_{\gamma_{0}^{-1}(U)} \times f\right) \circ \gamma_{0}^{-1}$. Clearly, β is a local section of $F_{Q} X$ defined on $U \subset X$. To show that Ψ is a well-defined mapping, take any pair $\left(J_{x}^{r} \gamma^{\prime}, J_{0}^{r} f^{\prime}\right) \in\left[J_{x}^{r} \gamma, J_{0}^{r} f\right]$. There exists $\mathcal{S} \in\left(T_{n}^{r} L_{n}^{1}, *\right)$, $\mathcal{S}=J_{0}^{r} s$, such that

$$
\left(J_{x}^{r} \gamma^{\prime}, J_{0}^{r} f^{\prime}\right)=\left(J_{x}^{r} \gamma * \mathcal{S}, \mathcal{S}^{-1} * J_{0}^{r} f\right)
$$

In (17), $\left(J_{x}^{r} \gamma * \mathcal{S}, \mathcal{S}^{-1} * J_{0}^{r} f\right)=\left(J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right), J_{0}^{r}\left(s^{-1} \cdot\left(f \circ s_{0}\right)\right)\right)$, denote $\delta=\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)$ and $h=s^{-1} \cdot\left(f \circ s_{0}\right)$. Consider the r-jet $J_{x}^{r}\left(\delta_{Q} \circ\left(\mathrm{id}_{\delta_{0}^{-1}(U)} \times h\right) \circ \delta_{0}^{-1}\right)$ and take its representative $y \mapsto \delta_{Q}\left(\delta_{0}^{-1}(y), h\left(\delta_{0}^{-1}(y)\right)\right)$. In view of (18), we have

$$
\begin{aligned}
\delta_{Q}\left(\delta_{0}^{-1}(y), h\left(\delta_{0}^{-1}(y)\right)\right) & =\left[\delta(y), h\left(\delta_{0}^{-1}(y)\right)\right] \\
& =\left[\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right)(y),\left(s^{-1} \cdot\left(f \circ s_{0}\right)\right)\left(\delta_{0}^{-1}(y)\right)\right] \\
& =\left[\gamma(y) \cdot s\left(\gamma_{0}^{-1}(y)\right), s^{-1}\left(\delta_{0}^{-1}(y)\right) \cdot f\left(s_{0}\left(\delta_{0}^{-1}(y)\right)\right)\right]
\end{aligned}
$$

Using $s^{-1}(y)=\left(s \circ s_{0}(y)\right)^{-1}$ and (11) we obtain

$$
\begin{aligned}
& \delta_{Q}\left(\delta_{0}^{-1}(y), h\left(\delta_{0}^{-1}(y)\right)\right) \\
= & {\left[\gamma(y) \cdot s\left(\gamma_{0}^{-1}(y)\right),\left(\left(s \circ s_{0}\right)\left(\delta_{0}^{-1}(y)\right)\right)^{-1} \cdot f\left(s_{0}\left(\delta_{0}^{-1}(y)\right)\right)\right] } \\
= & {\left[\gamma(y) \cdot s\left(\gamma_{0}^{-1}(y)\right),\left(\left(s \circ s_{0} \circ s_{0}^{-1} \circ \gamma_{0}^{-1}\right)(y)\right)^{-1} \cdot\left(f \circ s_{0} \circ s_{0}^{-1} \circ \gamma_{0}^{-1}\right)(y)\right] } \\
= & {\left[\gamma(y) \cdot s\left(\gamma_{0}^{-1}(y)\right),\left(s\left(\gamma_{0}^{-1}(y)\right)\right)^{-1} \cdot\left(f \circ \gamma_{0}^{-1}\right)(y)\right] } \\
= & {\left[\gamma(y), f \circ \gamma_{0}^{-1}(y)\right]=\left(\gamma_{Q} \circ\left(\mathrm{id}_{\gamma_{0}^{-1}(U)} \times f\right) \circ \gamma_{0}^{-1}\right)(y) . }
\end{aligned}
$$

This proves the independence of the r-jet $J_{x}^{r}\left(\gamma_{Q} \circ\left(\mathrm{id}_{\gamma_{0}^{-1}(U)} \times f\right) \circ \gamma_{0}^{-1}\right)$ of the choice of $\left(J_{x}^{r} \gamma^{\prime}, J_{0}^{r} f^{\prime}\right) \in\left[J_{x}^{r} \gamma, J_{0}^{r} f\right]$. Thus

$$
\Psi:\left(J^{r} F X\right)_{Y} \rightarrow J^{r} F_{Q} X ; \quad\left[J_{x}^{r} \gamma, J_{0}^{r} f\right] \mapsto J_{x}^{r}\left(\gamma_{Q} \circ\left(\mathrm{id}_{\gamma_{0}^{-1}(U)} \times f\right) \circ \gamma_{0}^{-1}\right)
$$

is a well-defined mapping. Moreover, it can be verified that this mapping has the inverse Ψ^{-1} defined by the formula

$$
\Psi^{-1}: J^{r} F_{Q} X \rightarrow\left(J^{r} F X\right)_{Y} ; \quad J_{x}^{r} \beta \mapsto\left[J_{x}^{r} \gamma, J_{0}^{r}\left(p_{2} \circ \gamma_{Q}^{-1} \beta \gamma_{0}\right)\right],
$$

where γ is any local section of $F X$ over $U \subset X, x \in U$, and $p_{2}: \mathbb{R}^{n} \times Q \rightarrow Q$ is the second projection. Thus Ψ is a bijection. The differentiability of both Ψ and Ψ^{-1} follows from the differentiability of γ_{Q} and the composition of jets. The commutativity of Ψ with the projections onto X is obvious.

5. Reduction of $W^{r} F X$ to $J^{r} F X$

Let P (resp. P_{1}) be a principal G-bundle (resp. G_{1}-bundle) over a manifold X. We say that P is a reduction of P_{1} if there exists a pair $\left(\nu_{X}, \nu\right)$, where $\nu: G \rightarrow G_{1}$ is an injective homomorphism of Lie groups and $\nu_{X}: P \rightarrow P_{1}$ is a homomorphism of principal fibre bundles over id_{X}, i.e., ν_{X} is smooth with $\operatorname{proj} \nu_{X}=\operatorname{id}_{X}$ and $\nu_{X}(p \cdot g)=\nu_{X}(p) \cdot \nu(g)$ for all $p \in P$ and $g \in G$.

The aim of this section is to show that the principal $T_{n}^{r} L_{n}^{1}$-bundle $J^{r} F X$ with the structure group $\left(T_{n}^{r} L_{n}^{1}, *\right)$ is a reduction of the principal $\left(L_{n}^{1}\right)_{n}^{r}$-bundle $W^{r} F X$.

Consider the mapping ν assigning to $\mathcal{S} \in T_{n}^{r} L_{n}^{1}, \mathcal{S}=J_{0}^{r} s$, the element $\nu(\mathcal{S}) \in$ $\left(L_{n}^{1}\right)_{n}^{r}$ defined by the formula

$$
\nu(\mathcal{S})=\left(J_{0}^{r} s_{0}, J_{0}^{r} s\right)
$$

where s_{0} is the mapping associated with \mathcal{S}. Clearly, ν is a well-defined mapping.
Let $\mathcal{S}=J_{0}^{r} s, \mathcal{T}=J_{0}^{r} t$ be elements of the Lie group $\left(T_{n}^{r} L_{n}^{1}, *\right)$. Since $\mathcal{S} * \mathcal{T}=J_{0}^{r} u$, where $u=s \cdot\left(t \circ s_{0}^{-1}\right)$ and for the mapping $u_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, associated with $J_{0}^{r} u$, we have $u_{0}=s_{0} \circ t_{0}$ (see proof of Lemma (2), we can write

$$
\nu(\mathcal{S} * \mathcal{T})=\left(J_{0}^{r}\left(s_{0} \circ t_{0}\right), J_{0}^{r}\left(s \cdot\left(t \circ s_{0}^{-1}\right)\right)\right)
$$

Additionally, with respect to the operation defined on $\left(L_{n}^{1}\right)_{n}^{r}$, we have

$$
\nu(\mathcal{S}) \cdot \nu(\mathcal{T})=\left(J_{0}^{r} s_{0}, J_{0}^{r} s\right) \cdot\left(J_{0}^{r} t_{0}, J_{0}^{r} t\right)=\left(J_{0}^{r}\left(s_{0} \circ t_{0}\right), J_{0}^{r}\left(s \cdot\left(t \circ s_{0}^{-1}\right)\right)\right)
$$

Thus ν is a homomorphism of groups. Clearly, ν is an injective smooth mapping, and therefore we can conclude that ν is an injective immersion of the Lie group $\left(T_{n}^{r} L_{n}^{1}, *\right)$ to $\left(L_{n}^{1}\right)_{n}^{r}$.

Now, consider

$$
\nu_{X}: J^{r} F X \rightarrow W^{r} F X ; \quad J_{x}^{r} \gamma \mapsto\left(J_{0}^{r} \gamma_{0}, J_{x}^{r} \gamma\right)
$$

where $\gamma_{0}: \mathbb{R}^{n} \rightarrow X$ is the mapping associated with $J_{x}^{r} \gamma$. It is easy to see that ν_{X} is a well-defined injective smooth mapping and $\operatorname{proj} \nu_{X}=\mathrm{id}_{X}$. We are going to show that

$$
\begin{equation*}
\nu_{X}(\Upsilon * \mathcal{S})=\nu_{X}(\Upsilon) \cdot \nu(\mathcal{S}) \tag{19}
\end{equation*}
$$

for all $\Upsilon \in J^{r} F X$ and $\mathcal{S} \in\left(T_{n}^{r} L_{n}^{1}, *\right)$.
First, we notice that the mapping associated with $\Upsilon * \mathcal{S}$, where $\Upsilon=J_{x}^{r} \gamma$, $\mathcal{S}=J_{0}^{r} s$, is equal to $\gamma_{0} \circ s_{0}$ (see Proof of Lemma (4). Now, we can write

$$
\begin{aligned}
\nu_{X}(\Upsilon * \mathcal{S}) & =\nu_{X}\left(J_{x}^{r} \gamma * J_{0}^{r} s\right)=\nu_{X}\left(J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right)\right) \\
& =\left(J_{0}^{r}\left(\gamma_{0} \circ s_{0}\right), J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right)\right)
\end{aligned}
$$

and (using the action of $\left(L_{n}^{1}\right)_{n}^{r}$ on $W^{r} F X$)

$$
\nu_{X}(\Upsilon) \cdot \nu(\mathcal{S})=\left(J_{0}^{r} \gamma_{0}, J_{x}^{r} \gamma\right) \cdot\left(J_{0}^{r} s_{0}, J_{0}^{r} s\right)=\left(J_{0}^{r}\left(\gamma_{0} \circ s_{0}\right), J_{x}^{r}\left(\gamma \cdot\left(s \circ \gamma_{0}^{-1}\right)\right)\right) .
$$

Thus (19) is true.
Summarizing, we obtain the following main result of this paper.
Theorem 3. The principal bundle $J^{r} F X$ with the structure group $\left(T_{n}^{r} L_{n}^{1}, *\right)$ is a reduction of the principal $\left(L_{n}^{1}\right)_{n}^{r}$-bundle $W^{r} F X$.

This is analogous to the result on reduction of $W^{r} F X$ to the principal bundle $F^{r+1} X$ with the structure group L_{n}^{r+1} (see [12]).
Remark 1. We have an injective homomorphism of Lie groups

$$
\begin{equation*}
\iota: L_{n}^{r+1} \rightarrow T_{n}^{r} L_{n}^{1}, \quad J_{0}^{r+1} \alpha \mapsto J_{0}^{r} \tilde{\alpha} \tag{20}
\end{equation*}
$$

where $\tilde{\alpha}: \mathbb{R}^{n} \rightarrow L_{n}^{1}$ is for any $z \in \mathbb{R}^{n}$ given by

$$
\tilde{\alpha}(z)=J_{0}^{1}\left(t_{z} \circ \alpha \circ t_{-\alpha_{0}^{-1}(z)}\right),
$$

and $\alpha_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear mapping satisfying $J_{0}^{1} \alpha_{0}=J_{0}^{1} \alpha$.
Using (20) and the corresponding local trivializations of principal bundles $F^{r+1} X$ and $J^{r} F X$ we obtain that $F^{r+1} X$ is a reduction of $J^{r} F X$. Thus, we have the sequence of reductions

$$
F^{r+1} X \longrightarrow J^{r} F X \longrightarrow W^{r} F X
$$

Remark 2. Let $\bar{F}^{2} X$ be the semi-holonomic frame bundle of order 2. In [14, it is stated that there exists a natural diffeomorphism from $J^{1} F X$ onto the principal bundle $\bar{F}^{2} X$ (without any reference to the principal bundle structure on $\left.J^{1} F X\right)$. Considering the holonomic frame bundle $F^{2} X$, this statement transforms into the following one: The mapping

$$
\iota_{X}: F^{2} X \rightarrow J^{1} F X ; \quad \iota_{X}\left(J_{0}^{2} \zeta\right)=J_{x}^{1}\left(J^{1} \zeta \circ \zeta^{-1}\right)
$$

is a homomorphism of principal fibre bundles over id_{X}.
Remark 3. Let Q be a left L_{n}^{1}-manifold. By the general prolongation theory, $T_{n}^{r} Q$ has a (canonical) structure of a left L_{n}^{r+1}-manifold. For any $J_{0}^{r+1} \alpha \in L_{n}^{r+1}$, $J_{0}^{r} f \in T_{n}^{r} Q$, a left action of L_{n}^{r+1} on $T_{n}^{r} Q$ is given by

$$
\begin{equation*}
J_{0}^{r+1} \alpha \cdot J_{0}^{r} f=J_{0}^{r}\left(\bar{\alpha} \cdot\left(f \circ \alpha^{-1}\right)\right), \tag{21}
\end{equation*}
$$

where $\bar{\alpha}$ is defined by

$$
\bar{\alpha}(z)=J_{0}^{1}\left(t_{z} \circ \alpha \circ t_{-\alpha^{-1}(z)}\right)
$$

Denoting $\iota\left(J_{0}^{r+1} \alpha\right)=J_{0}^{r} \tilde{\alpha}$, and $\alpha_{0} \circ \alpha^{-1}=\beta$, we have

$$
\begin{align*}
J_{0}^{r+1} \alpha \cdot J_{0}^{r} f & =J_{0}^{r}\left(\bar{\alpha} \cdot\left(f \circ \alpha^{-1}\right)\right) \\
& =J_{0}^{r}\left(\left(\bar{\alpha} \circ \alpha \circ \alpha_{0}^{-1} \circ \alpha_{0} \circ \alpha^{-1}\right) \cdot\left(f \circ \alpha_{0}^{-1} \circ \alpha_{0} \circ \alpha^{-1}\right)\right) \tag{22}\\
& =J_{0}^{r}\left(\left(\tilde{\alpha} \cdot\left(f \circ \alpha_{0}^{-1}\right)\right) \circ\left(\alpha_{0} \circ \alpha^{-1}\right)\right) \\
& =\left(J_{0}^{r} \tilde{\alpha} * J_{0}^{r} f\right) \cdot J_{0}^{r} \beta .
\end{align*}
$$

Let us denote by $\pi_{n}^{r+1,1}: L_{n}^{r+1} \rightarrow L_{n}^{1}$ the canonical jet projection, by $\iota_{n}^{1, r+1}$: $L_{n}^{1} \rightarrow L_{n}^{r+1}$ the canonical injective Lie group morphism, and put $K_{n}^{r+1,1}=$ $\operatorname{Ker} \pi_{n}^{r+1,1}$. Then L_{n}^{r+1} is the interior semi-direct product of $\iota_{n}^{1, r+1}\left(L_{n}^{1}\right)$ and $K_{n}^{r+1,1}$.

Consider the subgroup $\iota\left(L_{n}^{r+1}\right)$ of $T_{n}^{r} L_{n}^{1}$, defined by ι (20). Then (22) means that the left action (21) of L_{n}^{r+1} on $T_{n}^{r} Q$ corresponds with the action (16) of $\iota\left(L_{n}^{r+1}\right)$ on $T_{n}^{r} Q$ through the element $J_{0}^{r} \beta \in K_{n}^{r+1,1}$.
Remark 4. The action (16) of $T_{n}^{r} L_{n}^{1}$ on $T_{n}^{r} Q$ is in some sense more general than the left action (21) of L_{n}^{r+1} on $T_{n}^{r} Q$ given by the general prolongation theory. Consider a vector bundle with type fibre Q with $\operatorname{dim} Q=m$. Let Q be a left L_{m}^{1}-manifold. Let $\left(z^{I}\right)$ denote coordinates on $Q, 1 \leq I \leq m$. Then (16) allows us to consider actions of L_{m}^{1} on Q of the form

$$
\bar{z}^{I}=P_{J}^{I}\left(x^{k}\right) z^{J},
$$

where $P_{J}^{I}: U \rightarrow L_{m}^{1}$ are arbitrary smooth mappings.
The first author wishes to thank Professor Donghua Shi for kind hospitality and discussions during his stay at Beijing Institute of Technology, China,

REFERENCES

[1] BRAJERČÍK, J.: Invariant variational problems on principal bundles and conservation laws, Arch. Math. (Brno) 47 (2011), 357-366.
[2] BRAJERČÍK, J.: Second order differential invariants of linear frames, Balkan J. Geom. Appl. 15 (2010), 14-25.
[3] DOUPOVEC, M.-MIKULSKI, W. M.: Reduction theorems for principal and classical connections, Acta Math. Sin. (Engl. Ser.) 26 (2010), 169-184.
[4] JANYŠKA, J.: Higher order Utiyama-like theorem, Rep. Math. Phys. 58 (2006), 93-118.
[5] KOLÁŘ, I.: Canonical forms on the prolongations of principal fibre bundles, Rev. Roumaine Math. Pures Appl. 16 (1971), 1091-1106.
[6] KOLÁŘ, I.: On the prolongations of geometric object fields, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 17 (1971), 437-446.
[7] KOLÁŘ, I.-MICHOR, P. W.—SLOVÁK, J.: Natural Operations in Differential Geometry, Springer Verlag, Berlin, 1993.
[8] KOLÁŘ, I.-VADOVIČOVÁ, I.: On the structure function of a G-structure, Math. Slovaca 35 (1985), 277-282.
[9] KOWALSKI, O.-SEKIZAWA, M.: Invariance of the naturally lifted metrics on linear frame bundles over affine manifolds, Publ. Math. Debrecen (To appear).

J. BRAJERČÍK — M. DEMKO - D. KRUPKA

[10] KRUPKA, D.: A setting for generally invariant Lagrangian structures in tensor bundles, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. XXII (1974), 967-972.
[11] KRUPKA, D.: Natural Lagrangian structures. In: Differential Geometry. Banach Center Publ. 12, Polish Scientific Publishers, Warsaw, 1984, pp. 185-210.
[12] KRUPKA, D.—JANYŠKA, J.: Lectures on Differential Invariants, Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 1, Masaryk Univ., Brno, 1990.
[13] KUREŠ, M.: Torsions of connections on tangent bundles of higher order. In: Proc. 17th Winter School "Geometry and Physics", (J. Slovák, M. Čadek, eds.); Rend. Circ. Mat. Palermo (2) Suppl. 54 (1998), 65-73.
[14] LIBERMANN, P.: Introduction to the theory of semi-holonomic jets, Arch. Math. (Brno) 33 (1997), 173-189.
[15] PATÁK, A.-KRUPKA, D. Geometric structure of the Hilbert-Yang-Mills functional, Int. J. Geom. Methods Mod. Phys. 5 (2008), 387-405.

Received 11. 1. 2012
Accepted 16. 7. 2012

[^0]: 2010 Mathematics Subject Classification: Primary 58A20; Secondary 53C10, 55R10. Keywords: principal bundle, frame bundle, structure group, prolongation, associated bundle.
 The first and third authors acknowledge support of the National Science Foundation of China (Grant No. 10932002) and of the Czech Science Foundation (Grant 201/09/0981). This research was also supported by the Slovak Research and Development Agency (Grant MVTS SK-CZ-0006-09) and by the Ministry of Education, Youth and Sports (Grant KONTAKT MEB0810005). The first two authors are also grateful to the Ministry of Education of the Slovak Republic (Grant VEGA 1/0577/10). The first author was also supported by the University of Prešov, Slovakia, and its Faculty of Humanities and Natural Sciences.

