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Principal component analysis

Rasmus Broa and Age K. Smildeab

Principal component analysis is one of the most important and powerful methods in chemometrics as well

as in a wealth of other areas. This paper provides a description of how to understand, use, and interpret

principal component analysis. The paper focuses on the use of principal component analysis in typical

chemometric areas but the results are generally applicable.

Introductory example

To set the stage for this paper, we will start with a small example

where principal component analysis (PCA) can be useful. Red

wines, 44 samples, produced from the same grape (Cabernet

sauvignon) were collected. Six of these were from Argentina,

een from Chile, twelve from Australia and eleven from South

Africa. A Foss WineScan instrument was used to measure 14

characteristic parameters of the wines such as the ethanol

content, pH, etc. (Table 1).

Hence, a dataset is obtained which consists of 44 samples

and 14 variables. The actual measurements can be arranged in a

table or a matrix of size 44 � 14. A portion of this table is shown

in Fig. 1.

With 44 samples and 14 columns, it is quite complicated to

get an overview of what kind of information is available in the

data. A good starting point is to plot individual variables or

samples. Three of the variables are shown in Fig. 2. It can be

seen that total acid as well as methanol tends to be higher in
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samples from Australia and South Africa whereas there are less

pronounced regional differences in the ethanol content.

Even though Fig. 2 may suggest that there is little relevant

regional information in ethanol, it is dangerous to rely too

much on univariate analysis. In univariate analysis, any co-

variation with other variables is explicitly neglected and this

may lead to important features being ignored. For example,

plotting ethanol versus glycerol (see Fig. 3) shows an interesting

correlation between the two. This is difficult to deduce from

plots of the individual variables. If glycerol and ethanol were

completely correlated, it would, in fact, be possible to simply

use e.g. the average or the sum of the two as one new variable

that could replace the two original ones. No information would

be lost as it would always be possible to go from e.g. the average

to the two original variables.

This concept of using suitable linear combinations of the

original variables will turn out to be essential in PCA and is

explained in a bit more detail and a slightly unusual way here.

The new variable, say, the average of the two original ones, can

be dened as a weighted average of all 14 variables; only the

other variables will have weight zero. These 14 weights are

shown in Fig. 4. Rather than having the weights of ethanol and

glycerol to be 0.5 as they would in an ordinary average, they are

chosen as 0.7 to make the whole 14-vector of weights scaled to

be a unit vector. When the original variables ethanol and glyc-

erol are taken to be of length one (unit length) then it is

convenient to also have the linear combination of those to be of

length one. This then denes the unit on the combined vari-

able. To achieve this it is necessary to take 0.7 (
ffiffiffi

2
p

=2 to be exact)

of ethanol and 0.7 of glycerol, as simple Pythagorean geometry

shows in Fig. 5. This also carries over to more than two

variables.

Using a unit weight vector has certain advantages. The most

important one is that the unit vector preserves the size of the

variation. Imagine there are ten variables rather than two that

are being averaged. Assume, for simplicity that all ten have the

value ve.

Regardless of whether the average is calculated from two or

ten variables, the average remains ve. Using the unit vector,

though, will provide a measure of the number of variables

showing variation. In fact, the variance of the original variables

and this newly calculated one will be the same, if the original

variables are all correlated. Thus, using the unit vector preserves

the variation in the data and this is an attractive property. One

Table 1 Chemical parameters determined on the wine samples (data

from http://www.models.life.ku.dk/Wine_GCMS_FTIR [February,

2014]1,2)

Ethanol (vol%)
Total acid (g L�1)
Volatile acid (g L�1)
Malic acid (g L�1)
pH
Lactic acid (g L�1)
Rest sugar (Glu + Fru) (g L�1)
Citric acid (mg L�1)
CO2 (g L�1)
Density (g mL�1)
Total polyphenol index
Glycerol (g L�1)
Methanol (vol%)
Tartaric acid (g L�1)

Fig. 1 A subset of the wine dataset.

This journal is © The Royal Society of Chemistry 2014 Anal. Methods, 2014, 6, 2812–2831 | 2813
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of the reasons is that it allows for going back and forth between

the space of the original variables (say glycerol–ethanol) and the

new variable. With this denition of weights, it is now possible

to calculate the new variable, the ‘average’, for any sample, as

indicated in Fig. 6.

As mentioned above, it is possible to go back and forth

between the original two variables and the new variable.

Multiplying the new variable with the weights provides an

estimation of the original variables (Fig. 7).

This is a powerful property; that it is possible to use weights

to condense several variables into one and vice versa. To

generalize this, notice that the current concept only works

perfectly when the two variables are completely correlated.

Think of an average grade in a school system. Many particular

grades can lead to the same average grade, so it is not in general

possible to go back and forth. To make an intelligent new

variable, it is natural to ask for a new variable that will actually

provide a nice model of the data. That is, a new variable which,

when multiplied with the weights, will describe as much as

Fig. 2 Three variables coloured according to the region.

Fig. 4 Defining the weights for a variable that includes only ethanol and glycerol information.

Fig. 3 A plot of ethanol versus glycerol.

Fig. 5 The concept of a unit vector.

2814 | Anal. Methods, 2014, 6, 2812–2831 This journal is © The Royal Society of Chemistry 2014
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possible the whole matrix (Fig. 8). Such a variable will be an

optimal representative of the whole data in the sense that no

other weighted average simultaneously describes as much of

the information in the matrix.

It turns out that PCA provides a solution to this problem.

Principal component analysis provides the weights needed to

get the new variable that best explains the variation in the whole

dataset in a certain sense. This new variable including the

dening weights, is called the rst principal component.

To nd the rst principal component of the actual wine data,

it is necessary to jump ahead a little bit and preprocess the data

rst. Looking at the data (Fig. 1) it is seen, that some variables

such as CO2 are measured in numbers that are much larger

than e.g.methanol. For example, for sample three, CO2 is 513.74

[g L�1] whereas methanol is 0.18 [vol%]. If this difference in

scale and possibly offset is not handled, then the PCA model

will only focus on variables measured in large numbers. It is

desired to model all variables, and there is a preprocessing tool

called autoscaling which will make each column have the same

‘size’ so that all variables have an equal opportunity of being

modelled. Autoscaling means that from each variable, the mean

value is subtracted and then the variable is divided by its

standard deviation. Autoscaling will be described in more

detail, but for now, it is just important to note that each variable

is transformed to equal size and in the process, each variable

will have negative as well as positive values because the mean of

it has been subtracted. Note that an average sample now

corresponds to all zeroes. Hence, zero is no longer absence of a

‘signal’ but instead indicates an average ‘signal’.

With this pre-processing of the data, PCA can be performed.

The technical details of how to do that will follow, but the rst

principal component is shown in Fig. 9. In the lower plot, the

weights are shown. Instead of the quite sparse weights in Fig. 4,

these weights are non-zero for all variables. This rst compo-

nent does not explain all the variation, but it does explain 25%

of what is happening in the data. As there are 14 variables, it

would be expected that if every variable showed variation

independent of the other, then each original variable would

explain 100%/14 ¼ 7% of the variation. Hence, this rst

component is wrapping up information, which can be said to

correspond to approximately 3–4 variables.

Just like the average of ethanol and glycerol or the average

school grade, the new variable can be interpreted as “just a

variable”. The weights dene how the variable is determined

and how many scores each sample has of this linear combina-

tion. For example, it is seen that most of the South African

samples have positive scores and hence, will have fairly high

values on variables that have positive weights such as for

example methanol. This is conrmed in Fig. 2.

Principal component analysis
Taking linear combinations

It is time to introduce some more formal notation and

nomenclature. The weighted average as mentioned above is

more formally called a linear combination: it is a way of

combining the original variables in a linear way. It is also

Fig. 6 Using defined weights to calculate a new variable that is a scaled average of ethanol and glycerol (arbitrary numbers used here). The

average is calculated as the inner product of the 14measurements of a sample and the weight vector. Some didactical rounding has been used in

the example.

Fig. 7 Using the new variable and the weights to estimate the old

original variables.

Fig. 8 Defining weights (w's) that will give a new variable which leads

to a good model of the data.

This journal is © The Royal Society of Chemistry 2014 Anal. Methods, 2014, 6, 2812–2831 | 2815
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sometimes called a latent variable where, in contrast, the orig-

inal variables are manifest.

The data are collected in a matrix X with I rows (i ¼ 1,., I;

usually samples/objects) and J columns (j ¼ 1, ., J; usually

variables), hence of size I � J. The individual variables

(columns) of X are denoted by xj (j ¼ 1,., J) and are all vectors

in the I-dimensional space. A linear combination of those x

variables can be written as t ¼ w1 � x1 +. + wJ � xJ, where t is

now a new vector in the same space as the x variables (because it

is a linear combination of these). In matrix notation, this

becomes t¼ Xw, withw being the vector with elements wj ( j¼ 1,

., J). Since the matrix X contains variation relevant to the

problem, it seems reasonable to have as much as possible of

that variation also in t. If this amount of variation in t is

appreciable, then it can serve as a good summary of the x

variables. Hence, the fourteen variables of X can then be

replaced by only one variable t retaining most of the relevant

information.

The variation in t can be measured by its variance, var(t),

dened in the usual way in statistics. Then the problem trans-

lates to maximizing this variance choosing optimal weights w1,

., wJ. There is one caveat, however, since multiplying an

optimalwwith an arbitrary large number will make the variance

of t also arbitrary large. Hence, to have a proper problem, the

weights have to be normalized. This is done by requiring that

their norm, i.e. the sum-of-squared values, is one (see Fig. 5).

Throughout we will use the symbol ||.||2 to indicate the squared

Frobenius norm (sum-of-squares). Thus, the formal problem

becomes

argmax
kwk¼1

varðtÞ (1)

which should be read as the problem of nding the w of length

one that maximizes the variance of t (note that ||w|| ¼ 1 is the

same as requiring ||w||2 ¼ 1). The function argmax is the

mathematical notation for returning the argument w of

the maximization function. This can be made more explicit by

using the fact that t ¼ Xw:

argmax
jjwjj¼1

�

tTt
�

¼ argmax
jjwjj¼1

�

wTXTXw
�

(2)

where it is assumed that the matrix X is mean-centered (then all

linear combinations are also mean-centered). The latter problem

is a standard problem in linear algebra and the optimal w is the

(standardized) rst eigenvector (i.e. the eigenvector with the

largest value) of the covariance matrix XTX/(n � 1) or the corre-

sponding cross-product matrix XTX.

Explained variation

The variance of t can now be calculated but a more meaningful

assessment of the summarizing capability of t is obtained by

calculating how representative t is in terms of replacing X. This

can be done by projecting the columns of X on t and calculating

the residuals of that projection. This is performed by regressing

all variables of X on t using the ordinary regression equation

X ¼ tpT + E (3)

where p is the vector of regression coefficients and E is the

matrix of residuals. Interestingly, p equals w and the whole

machinery of regression can be used to judge the quality of the

summarizer t. Traditionally, this is done by calculating

kXk2 � kEk2

kXk2
100% (4)

which is referred to as the percentage of explained variation of t.

In Fig. 10, it is illustrated how the explained variation is

calculated as also explained around eqn (4).

Note, that the measures above are called variations rather

than variances. In order to talk about variances, it is necessary

to correct for the degrees of freedom consumed by the model

and this is not a simple task. Due to the non-linear nature of the

PCAmodel, degrees of freedom are not as simple to dene as for

linear models such as in linear regression or analysis of vari-

ance. Hence, throughout this paper, the magnitude of variation

will simply be expressed in terms of sums of squares. For more

information on this, refer to the literature.3,4

PCA as a model

Eqn (3) highlights an important interpretation of PCA: it can be

seen as a modelling activity. By rewriting eqn (3) as

X ¼ tpT + E ¼ X̂ + E, (5)

Fig. 9 The first principal component of the wine data. The lower plot

shows the weights and the upper plot shows the weighted averages

obtained with those weights.

2816 | Anal. Methods, 2014, 6, 2812–2831 This journal is © The Royal Society of Chemistry 2014
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shows that the (outer-) product tpT serves as a model of X

(indicated with a hat). In this equation, vector t was a xed

regressor and vector p the regression coefficient to be found. It

can be shown that actually both t and p can be established from

such an equation5 by solving

argmin
t;p

kX� tpTk2 (6)

which is also a standard problem in linear algebra and has the

same solution as eqn (2). Note that the solution does not change

if t is premultiplied by as 0 and simultaneously p is divided by

that same value. This property is called the scaling ambiguity6

and it can be solved in different ways. In chemometrics, the

vector p is normalized to length one (||p|| ¼ 1) and in psycho-

metrics, t is normalized to length one. The vector t is usually

referred to as the score vector (or scores in shorthand) and the

vector p is called the loading vector (or loadings in shorthand).

The term ‘principal component’ is not clearly dened and can

mean either the score vector or the loading vector or the

combination. Since the score and loading vectors are closely

tied together it seems logical to reserve the term principal

component for the pair t and p.

Taking more components

If the percentage of explained variation of eqn (4) is too small,

then the t, p combination is not a sufficiently good summarizer

of the data. Eqn (5) suggests an extension by writing

X ¼ TPT þ E ¼ t1p
T
1 þ.þ tRp

T
R ¼ X̂þ E (7)

where T ¼ [t1,., tR] (I � R) and P ¼ [p1,., pR] (J � R) are now

matrices containing, respectively, R score vectors and R loading

vectors. If R is (much) smaller than J, then T and P still amount

to a considerably more parsimonious description of the varia-

tion in X. To identify the solution, P can be taken such that PTP

¼ I and T can be taken such that TTT is a diagonal matrix. This

corresponds to the normalisation of the loadings mentioned

above. Each loading vector, thus has norm one and is orthog-

onal to other loading vectors (an orthogonal basis). The

constraint on T implies that the score vectors are orthogonal to

each other. This is the usual way to perform PCA in chemo-

metrics. Due to the orthogonality in P, the R components have

independent contributions to the overall explained variation

kXk2 ¼ kt1pT1 k
2 þ.ktRpTRk

2 þ kEk2 (8)

and the term ‘explained variation per component’ can be used,

similarly as in eqn (4).

History of PCA

PCA has been (re-)invented several times. The earliest presen-

tation was in terms of eqn (6).7 This interpretation stresses the

modelling properties of PCA and is very much rooted in

regression-thinking: variation explained by the principal

components (Pearson's view). Later, in the thirties, the idea of

taking linear combinations of variables was introduced8 and the

variation of the principal components was stressed (eqn (1);

Hotelling's view). This is a more multivariate statistical

approach. Later, it was realized that the two approaches were

very similar.

Similar, but not the same. There is a fundamental concep-

tual difference between the two approaches, which is important

to understand. In the Hotelling approach, the principal

components are taken seriously in their specic direction. The

rst component explains the most variation, the second

component the second most, etc. This is called the principal

axis property: the principal components dene new axes which

should be taken seriously and have a meaning. PCA nds these

principal axes. In contrast, in the Pearson approach it is the

subspace, which is important, not the axes as such. The axes

merely serve as a basis for this subspace. In the Hotelling

approach, rotating the principal components destroys the

interpretation of these components whereas in the Pearson

conceptual model rotations merely generate a different basis for

the (optimal) subspace.9

Visualization and interpretation

It is now time to discuss how a PCA model can be visualized.

There are four parts of a PCA model: the data, the scores, the

loadings and the residuals. Visualization of the actual data is

oen dependent on the type of data and the traditions of a given

eld. For continuous data such as time-series and spectra, it is

Fig. 10 Exemplifying how explained variation is calculated using the

data and the residuals.

Fig. 11 The structure of a PCA model. Note that residuals (E) have the

same structure as the data and so does the model approximation of

the data (TPT).

This journal is © The Royal Society of Chemistry 2014 Anal. Methods, 2014, 6, 2812–2831 | 2817
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oen feasible to plot the data as curves whereas more discrete

data are oen plotted in other ways such as bar plots.

Visualizing and interpreting residuals. Whatever visualiza-

tion applies to the data would oen also be useful for e.g. the

residuals (Fig. 11). The residuals have the same structure and

for example for spectral data, the residuals would literally

correspond to the residual spectra and therefore provide

important chemical information as to what spectral variation

has not been explained (see also Fig. 23). In short, any visuali-

zation that is useful for the data will also be useful for the

residuals.

Residuals can also be plotted as histograms or e.g. normal

probability plots in order to see if the residuals are normally

distributed. Alternatively, the residuals can be used for

Fig. 12 Score 1 and 2 from a PCA on the autoscaled wine data. Upper left is a line plot of the 44 score values in component 1 and lower left the 44

score values of component 2. In the right plot, the two scores are plotted against each other.

Fig. 13 Score plot of component 1 versus 2 (top) and 1 versus 13 (bottom). To the left, the plots are shown filling out the squares and to the right,

they are shown preserving distances.
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calculating the explained or unexplained variation as explained

earlier.

Visualizing and interpreting scores. It is well known that the

readings of a variable can be plotted. Imagine that pH is

measured on 20 samples. These 20 values can be plotted in a

multitude of ways. Scores are readings in exactly the same way

as any other variable and can hence be plotted and interpreted

in many different ways. In Fig. 12, some visualizations of the

rst two components of the PCA model of the wine data are

shown. If desired, they can be plotted as line plots as shown in

the le in the gure. This plot of, for example, score 1, shows

that the dark blue scores tend to have negative scores. This

means that wines from Chile have relatively less of what this

rst component represents, which will be described by the

loadings (see below).

Instead of plotting the scores in line plots, it is also possible

to plot them in scatter plots. In Fig. 12 (right), such a scatter plot

is shown and from the scatter plot it is more readily seen that

there seem to be certain groupings in the data. For example, the

Australian and Chilean wines seem to be almost distinctly

different in this score plot. This suggests that it is possible to

classify a wine using these measured variables. If a new sample

ends up in the middle of the Chilean samples, it is probably not

an Australian wine and vice versa. This possibility of using PCA

for classication forms the basis for the classication method

called SIMCA (So Independent Modelling of Class

Fig. 15 Hypothetical loading vector from a model that explains 100%

in component 1 (top) and 14% in component 1 (bottom).

Fig. 16 Scatter plot of loading 1 versus loading 2.

Fig. 14 Loading one (top) and loading two (bottom).

Fig. 17 A biplot of the first two components of a PCA model of the

wine data.
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Analogies).10,11 The scatter plot can be interpreted in the same

way that scatter plots are normally interpreted. For example, a

plot of glycerol versus ethanol (Fig. 3) is simple to interpret.

Samples that are close have similar glycerol and ethanol. Like-

wise, for a scatter plot of component 1 and 2. Samples that are

close are similar in terms of what the components represent

which is dened by the loading vectors. Also, if (and only if) the

two components represent all or almost all of the variation in

the data, then e.g. two closely lying samples are similar with

respect to the actual data.

It is possible to assess similarities and differences among

samples in terms of the raw data. If two components explain all

or most of the variation in the data, then a score scatter plot will

reect distances in terms of the data directly if the scores are

shown on the same scale. That is, the plot must be shown as

original scores where the basis is the loading vector. As the

loading vectors are unit vectors, they reect the original data

and if the two axes in the plot use the same scale, then distances

can be read from the plots directly. If on the other hand the

plots are not shown using the same scale on both axis, then

assessing distances is not possible.

Compare the two versions of the two score plots in Fig. 13.

The lower le plot has widely different scales on the two axes

(because one component has much larger values numerically

than the other). Henceforth, it is similar to plotting e.g. kilo-

metres on one axis and meters on another. A map with such

axes does not preserve distance. Consider, for example, the wine

sample marked A. It seems to be closer to sample C than B in

the lower le plot. The plot to the lower right preserves

distances and here it is readily veried that sample A is, in fact,

the closest to B in the space spanned by the two components.

There are several points worthmentioning in relation to this.

Score plots are only indicative of the specic fraction of variance

they explain. For example, scores that explain three percent do

not imply much with respect to the raw data. To assess relative

positions such as distances in a score plot, the plot needs to

Fig. 18 Scatter plot of the preprocessed values of the variables of two wines (left) and two variables (right).

Fig. 19 Scree plots for simulated rank four data with various levels of noise. Top plots show eigenvalues. Middle plots show the same but zoomed

in on the y-axis to the line indicated in the top plot. Lower plots show the logarithm of the eigenvalues.
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preserve distances. This is mostly a problem in practice, when

the magnitude of the two components is widely different. The

score plot that does not preserve distances is still useful. For

example, the lower le score plot in Fig. 13 is much better for

discerning groupings and detecting patterns than the one to the

lower right.

Visualizing and interpreting loadings. Loadings dene what

a principal component represents. Just as the weight in Fig. 4

dened the latent variable to represent a mixture of glycerol and

ethanol, the loading vector of a PCA model does exactly the

same. It denes what linear combination of the variables a

particular component represents.

Fig. 14 shows the loadings of the two rst components. With

these, it is possible to explain what the scores of the model

represent. For example, wines from Chile have low (negative)

scores for component 2 (Fig. 12). This implies that they have a lot

of the opposite of the phenomenon represented in loading 2.

Hence, these samples have variation where ethanol, total, vola-

tile, and lactic acids are low at the same time (relatively) while e.g.

malic acid is high. Also, and this is an important point, certain

variables that have low loadings close to zero, such as e.g. citric

acid, do not follow this trend. Hence, the loading tells about what

the trend is and also which variables are not part of the trend.

The phenomenon reected in the principal component is

also expected to be visually apparent in the raw data, but only

with respect to how much variation of the data this component

describes. The rst component is seen in the label in Fig. 14 to

explain 24.4% of the variation whereas the second one explains

21.3%. Together that means that 45.7% of the variation is

explained by these two components. If the two components had

explained 100%, all information would be contained in these

two components, but for this particular model, half the varia-

tion is still retained in other components, so we should remain

cautious not to claim that observations from the components

are fully indicative of variations in the data.

An example on the importance of this is indicated in Fig. 15.

The model reected in the top plot shows that variables 4 and

6 are perfectly oppositely correlated. The model reected in the

bottom plot does not indicate that. In contrast, the low

percentage explained, indicates that there are many other

phenomena in the data so the correlation between variable 4

and 6 needs not be close to minus one as it will be in the

rst model.

Fig. 20 Scree plot for the autoscaled wine data. The decision lines for

having eigenvalues larger than one and the broken stick is also shown.

Fig. 21 Cumulated percentage variation explained.

Fig. 22 Left: score number four of wine data. Right: score two versus

score four.

Fig. 23 Example of spectral data (grey) and residual spectral infor-

mation after one (left) and six (right) components.

This journal is © The Royal Society of Chemistry 2014 Anal. Methods, 2014, 6, 2812–2831 | 2821

Tutorial Review Analytical Methods

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 2

4
 M

ar
ch

 2
0
1
4
. 
D

o
w

n
lo

ad
ed

 o
n
 2

7
/1

1
/2

0
1
4
 0

8
:1

7
:4

9
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://dx.doi.org/10.1039/c3ay41907j


Instead of looking at the loadings in line plots, it is also

feasible to make scatter plots (Fig. 16). The scatter plot is oen

helpful for nding patterns of variation. For example, it is

apparent in the plot that volatile acid and lactic acid are

generally correlated in approximately 50% of the variation

reected in the two components. Residual sugar seems to be

only moderately described in these two components as it is

close to zero in both components. As the variables have been

auto-scaled, a position close to zero implies that this particular

variable does not co-vary with the variation that component 1

and 2 is reecting.

As for the score scatter plot, distances are only preserved in

the loading scatter plot, if the two loadings are plotted on the

same scale. The basis for the loadings are the scores and these

are generally not unit vectors as they carry the variance of the

components. To correct for that, it is possible to simply

normalize the scores and multiply the corresponding loading

vectors by the inverse normalization factor. In essence,

just moving the variance from the score vector to the loading

vector.

Visualizing and interpreting loadings and scores together –

biplots. It is possible and obvious to link the score and the

loading plot. That way, it is possible to explain why e.g. a certain

grouping is observed in a score plot. As hinted above, it is

difficult to nd a suitable base to plot on when combining

scores and loadings, especially if preserving distances is

desired. The biplot aims to solve this problem, or rather, pres-

ents a suitable set of compromises to choose from. Biplots were

originally developed by K. R. Gabriel, but J. C. Gower has also

contributed. The reader is urged to refer to the original litera-

ture for more in depth information.12�14

The principle behind biplots can be explained by repre-

senting the PCA model using

X ¼ TPT ¼ T(norm)SPT (9)

where T(norm) is the score matrix with each column scaled to

norm one just like the loadings are. The diagonal matrix S

contains the norms of T on the diagonal. Above, no residuals are

assumed for simplicity. Normally the scores are taken as

T(norm)S (¼T) but if a distance preserving plot of the loadings is

desired, it is more reasonable to set the loadings to PST and

thus, have the scores be a normalized and orthogonal basis to

base the plots on. Re-writing, the PCA model as

X ¼ T(norm)SPT ¼ T(norm)SaS(1�a)PT (10)

It is possible to obtain the two solutions by either setting a

equal to one or to zero. In fact, the most common biplot, takes a

equal to 0.5 in order to produce a compromise plot where

distances in both spaces can be approximately assessed. Hence,

a ¼ 0 represents distances for variables (loadings) preserved, a

¼ 1 represents distances for samples (scores) preserved and a¼
0.5 represents distances for both samples and variables are

(only) approximately preserved.

In addition to this scaling of the variance, there is oen also

a more trivial scaling of either the whole score matrix or the

whole loading matrix to ensure that e.g. the score values are not

so small compared to the loadings that they are not visible in a

plot.

There are many interesting aspects of biplots and scatter-

plots but only a few important interpretational issues will be

described here.

Two objects that are close and far from the origin have

similar response (with respect to the variation explained by the

components). For example, the two samples CHI-VDA1 and

CHI-SCH1 are far from the origin and close together. Hence they

are expected to be correlated, but only with respect to the

approximately 50% that these two components describe. The

two samples are plotted against each other in Fig. 18 (le). Note,

that it is the preprocessed data that the PCA model reects and

hence, that interpretations can be made about.

Likewise, two variables that are close and far from the origin

are correlated (with respect to the variation explained by the

components). An example is given in Fig. 18 (right). Note, that

the high correlation is apparently governed by an extreme

sample – a potential outlier which will be discussed later.

The center of the plot represents the average sample – not

zero – in case the data have been centered. Hence, samples with

very negative scores have low values relative to the other

samples and samples with high positive scores are the opposite.

Again, with respect to the variation explained by the

components.

The larger projection a sample has on the vector dened by a

given variable, the more that sample deviates from the average

on that particular variable (see e.g. how sample SOU-HHI1

projects to the axis dened by the variable lactic acid in Fig. 17).

It is oen overlooked, that the above considerations for

biplots apply equally well on loading plots or on score plots. Just

like above, when for example, loadings are plotted without

considering the magnitude of the scores, distances may be

impossible to judge.

Practical aspects
Assumptions

In its most basic form, PCA can be seen as a basis for trans-

formation. Instead of using the basis vectors uj ¼ (0,., 0, 1, 0,

.0)0 (with the one at place j) the basis given by p1,., pJ is used.

For this transformation, no assumptions are needed. Consid-

ering PCA in the form of eqn (5) and (7), where a model is

assumed and least squares tting is chosen to estimate the

parameters T and P, it is not unreasonable to make some

assumptions regarding the residuals as collected in E. The

mildest assumption is that one of these residuals being inde-

pendently and identically distributed (iid), without specifying

more than that this distribution is symmetrical around zero.

Hence, there are no systematic errors and the error is

homoscedastic.

When the errors are heteroscedastic and there is a model for

the error, then eqn (7) can be tted under this error model by

using maximum likelihood or weighted least squares

approaches.15�17 Although this solves the problem of hetero-

scedasticity, certain implementations of maximum likelihood

2822 | Anal. Methods, 2014, 6, 2812–2831 This journal is © The Royal Society of Chemistry 2014
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tting remove various aspects of the simplicity of PCA

(orthogonal scores, nestedness of solutions, etc.).

Inference/validation

Since the PCAmodel parameters are used for interpretation and

exploration, it is reasonable to ask how stable the results are.

This calls for statistical inference tools. There are different

routes to take in this respect. Upon assuming multivariate

normality of the x-variables, statistical inference for the scores

and loadings are available (see e.g. Anderson,18 pp. 468).

Multivariate normality cannot always be assumed, but approx-

imate normality of the scores – they are linear combinations –

envoking the Central Limit Theorem can sometimes be done.

For a distribution-free approach, resampling methods can be

used, e.g., bootstrapping. This is, however, not trivial and

several alternatives exist.19,20

Preprocessing

Oen a PCA performed on the raw data is not very meaningful.

In regression analysis, oen an intercept or offset is included

since it is the deviation from such an offset, which represents

the interesting variation. In terms of the prototypical example,

the absolute levels of the pH is not that interesting but the

variation in pH of the different Cabernets is relevant. For PCA to

focus on this type of variation it is necessary to mean-center the

data. This is simply performed by subtracting from every vari-

able in X the corresponding mean-level.

Sometimes it is also necessary to think about the scales of

the data. In the wine example, there were measurements of

concentrations and of pH. These are not on the same scales (not

even in the same units) and to make the variables more

comparable, the variables are scaled by dividing them by the

corresponding standard deviations. The combined process of

centering and scaling in this way is oen called autoscaling. For

a more detailed account of centering and scaling, see the

literature.21,22

Centering and scaling are the two most common types of

preprocessing and they normally always have to be decided

upon. There are many other types of preprocessing methods

available though. The appropriate preprocessing typically

depends on the nature of the data investigated.23–27

Choosing the number of components

A basic rationale in PCA is that the informative rank of the data

is less than the number of original variables. Hence, it is

possible to replace the original J variables with R (R � J)

components and gain a number of benets. The inuence of

noise is minimized as the original variables are replaced with

weighted averages,28 and the interpretation and visualization is

greatly aided by having a simpler (fewer variables) view to all the

variations. Furthermore, the compression of the variation into

fewer components can yield statistical benets in further

modelling with the data. Hence, there are many good reasons to

use PCA. In order to use PCA, though, it is necessary to be able

to decide on how many components to use. The answer to that

problem depends a little bit on the purpose of the analysis,

which is why the following three sections will provide different

answers to that question.

Exploratory studies. In exploratory studies, there is no

quantitatively well-dened purpose with the analysis. Rather,

the aim is oen to just ‘have a look at the data’. The short

answer to how many components to use then is: “just use the

rst few components”. A slightly more involved answer is that in

exploratory studies, it is quite common not to x the number of

components very accurately. Oen, the interest is in looking at

the main variation and per denition, the rst components

provide information on that. As e.g. component one and three

do not change regardless of whether component six or seven is

included, it is oen not too critical to establish the exact

number of components. Components are looked at and inter-

preted from the rst component and downwards. Each extra

component is less and less interesting as the variation

explained is smaller and smaller, so oen a gradual decline of

interest is attached to components. Note that this approach for

assessing the importance of components is not to be taken too

literally. There may well be reasons why smaller variations are

important for a specic dataset.29

If outliers are to be diagnosed with appropriate statistics

(see next section), then, however, it is more important to

establish the number of components to use. For example, the

residual will change depending on how many components are

used, so in order to be able to assess residuals, a reasonable

number of components must be used. There are several ad hoc

approaches that can be used to determine the number of

components. A selection of methods is offered below, but note

that these methods seldom provide clear-cut and denitive

answers. Instead, they are oen used in a combined way to get

an impression on the effective rank of the data.

Eigenvalues and their relation to PCA. Before the methods

are described, it is necessary to explain the relation between

PCA and eigenvalues. An eigenvector of a (square) matrix A is

dened as the nonzero vector z with the following property:

Az ¼ lz (11)

Where z is called the eigenvector. If matrix A is symmetric (semi-)

positive denite, then the full eigenvalue decomposition of A

becomes:

A ¼ ZLZT (12)

Where Z is an orthogonal matrix and L is a nonzero diagonal

matrix. In chemometrics, it is customary to work with covari-

ance or correlation matrices and these are symmetric (semi-)

positive denite. Hence, eqn (12) describes their eigenvalue

decomposition. Since all eigenvalues of such matrices are

nonnegative, it is customary to order them from high to low;

and refer to the rst eigenvalue as the largest one.

The singular value decomposition of X (I � J) is given by

X ¼ USVT (13)

Where U is an (I � J) orthogonal matrix (UTU ¼ I); S (J � J) is a

diagonal matrix with the nonzero singular values on its

This journal is © The Royal Society of Chemistry 2014 Anal. Methods, 2014, 6, 2812–2831 | 2823
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diagonal and V is an (J � J) orthogonal matrix (VTV ¼ VVT ¼ I).

This is for the case of I > J, but the other cases follow similarly.

Considering XTX and upon using eqn (12) and (13) it follows

XTX ¼ VSTUTUSVT ¼ VS2VT ¼ ZLZT. (14)

This shows the relationship between the singular values and

the eigenvalues. The eigenvalue corresponding to a component

is the same as the squared singular value which again is the

variation of the particular component.

Scree test. The scree test was developed by R. B. Cattell in

1966.30 It is based on the assumption that relevant information

is larger than random noise and that the magnitude of the

variation of random noise seems to level off quite linearly with

the number of components. Traditionally, the eigenvalues of

the cross-product of the preprocessed data, are plotted as a

function of the number of components, and when only noise is

modelled, it is assumed that the eigenvalues are small and

decline gradually. In practice, it may be difficult to see this in

the plot of eigenvalues due to the huge eigenvalues and oen

the logarithm of the eigenvalues is plotted instead. Both are

shown in Fig. 19 for a simulated dataset of rank four and with

various amounts of noise added. It is seen that the eigenvalues

level off aer four components, but the details are difficult to

see in the raw eigenvalues unless zoomed in. It is also seen, that

the distinction between ‘real’ and noise eigenvalues are difficult

to discern at high noise levels.

For real data, the plots may even be more difficult to use as

also exemplied in the original publication of Cattell as well

as inmany others.31�33 Cattell himself admitted that: “Even a test

as simple as this requires the acquisition of some art in adminis-

tering it”. This, in fact, is not particular to the scree test but goes

for all methods for selecting the number of components.

For the wine data, it is not easy to rmly assess the number

of components based on the scree test (Fig. 20). One may argue

that seven or maybe nine components seem feasible, but this

would imply incorporating components that explain very little

variation. A more obvious choice would probably be to assess

three components as suitable based on the scree plot and then

be aware that further components may also contain useful

information.

Eigenvalue below one. If the data is autoscaled, each variable

has a variance of one. If all variables are orthogonal to each

other, then every component in a PCA model would have an

eigenvalue of one since the preprocessed cross-product matrix

(the correlation matrix) is identity. It is then fair to say, that if a

component has an eigenvalue larger than one, it explains vari-

ation of more than one variable. This has led to the rule of

selecting all components with eigenvalues exceeding one

(see the red line in Fig. 20). It is sometimes also referred to as

the Kaisers' rule or Kaiser–Guttmans' rule and many additional

arguments have been provided for this method.34�36 While it

remains a very ad hoc approach, it is nevertheless a useful rule-

of-thumb to get an idea about the complexity of a dataset. For

the wine data (Fig. 20), the rule suggests that around four or ve

components are reasonable. Note, that for very precise data, it is

perfectly possible that even components with eigenvalues far

below one can be real and signicant. Real phenomena can be

small in variation, yet accurate.

Broken stick. A more realistic cut off for the eigenvalues is

obtained with the so called broken stick rule.37 A line is added to

the scree plot that shows the eigenvalues that would be expected

for random data (the green line in Fig. 22). This line is calculated

assuming that random data will follow a so-called broken stick

distribution. The broken stick distribution hypothesizes how

random variation will partition and uses the analogy of how the

lengths of pieces of a stick will be distributed when broken at

random places into J pieces.38 It can be shown that for auto-

scaled data, this theoretical distribution can be calculated as

br ¼
X

J

j¼r

1

j
: (15)

As seen in Fig. 20, the broken stick would seem to indicate

that three to four components are reasonable.

High fraction of variation explained. If the data measured

has e.g. one percent noise, it is expected that PCA will describe

all the variation down to around one percent. Hence, if a two-

component model describes only 50% of the variation and is

otherwise sound, it is probable that more components are

needed. On the other hand, if the data are very noisy coming e.g.

from process monitoring or consumer preference mapping and

has an expected noise fraction of maybe 40%, then an otherwise

sound model tting 90% of the variation would imply over-

tting and fewer components should be used. Having knowl-

edge on the quality of the data can help in assessing the number

of components. In Fig. 21, the variation explained is shown. The

plot is equivalent to the eigenvalue plot except it is cumulative

and on a different scale. For the wine data, the uncertainty is

different for each variable, and varies from approximately 5 and

even up to 50% relative to the variation in the data. This is quite

variable and makes it difficult to estimate how much variation

should be explained, but most certainly less than 50% would

mean that all is not explained and explainingmore than, say 90–

95% of the variation would be meaningless and just modelling

of noise. Therefore, based on variation explained, it is likely that

there is more than two but less than, say, seven components.

Valid interpretation. As indicated by the results, the different

rules above seldom agree. This is not as big a problem as it

might seem. Quite oen, the only thing needed is to know the

neighbourhood of how many components are needed. Using

the above methods ‘informally’ and critically, will oen provide

that answer. Furthermore, one of the most important strategies

for selecting the number of components is to supplement such

methods with interpretations of the model. For the current

data, it may be questioned whether e.g. three or four compo-

nents should be used.

In Fig. 22, it is shown, that there is distinct structure in the

scores of component four. For example, the wines from Argen-

tina all have positive scores. Such a structure or grouping will

not happen accidentally unless unfortunate confounding has

occurred. Hence, as long as Argentinian wines were not

measured separately on a different system or something

2824 | Anal. Methods, 2014, 6, 2812–2831 This journal is © The Royal Society of Chemistry 2014
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similar, the mere fact that component four (either scores or

loadings) shows distinct behaviour is an argument in favour of

including that component. This holds regardless of what other

measures might indicate.

The loadings may also provide similar validation by high-

lighting correlations expected from a priori knowledge. In the case

of continuous data such as time series or spectral data, it is also

instructive to look at the shape of the residuals. An example is

provided in Fig. 23. A dataset consisting of visual and near-

infrared spectra of 40 beer samples is shown in grey. Aer one

component, the residuals are still fairly big and quite structured

from a spectral point of view. Aer six components, there is very

little information le indicating that most of the systematic vari-

ation has been modelled. Note from the title of the plot, that 95%

of the variation explained is quite low for this dataset whereas that

would be critically high for the wine data as discussed above.

Cross-validation. In certain cases, it is necessary to establish

the appropriate number of components more rmly than in the

exploratory or casual use of PCA. For example, a PCA model may

be needed to verify if the data of a new patient indicate that this

patient is similar to diseased persons. Thismay be accomplished

by checking if the sample is an outlier when projected into a PCA

model (see next section on outliers). Because the outlier diag-

nostics depend on the number of components chosen, it is

necessary to establish the number of components before the

model can be used for its purpose. There are several ways do to

this including the above-mentioned methods. Oentimes,

though, they are considered too ad hoc and other approaches are

used. One of the more popular approaches is cross-validation. S.

Wold was the rst to introduce cross-validation of PCA models39

and several slightly different approaches have been developed

subsequently. Only a brief description of cross-validation will be

given here, but details can be found in the literature.40,41

The idea in cross-validation is to leave out part of the data and

then estimate the le-out part. If this is done wisely, the

prediction of the le-out part is independent of the actual le-

out part. Hence, overtting leading to too optimistic models is

not possible. Conceptually, a single element (typically more than

one element) of the datamatrix is le out. A PCAmodel handling

missing data,42�46 can then be tted to the dataset and based on

this PCA model, an estimate of the le out element can be

obtained. Hence, a set of residuals is obtained where there are

no problems with overtting. Taking the sum of squares of these

yields the so-called Predicted REsidual Sums of Squares (PRESS)

PRESSr ¼
X

I

i¼1

X

J

j¼1

�

xij
ðrÞ
�2

(16)

where xij
(r) is the residual of sample i and variable j aer r

components. From the PRESS the Root Mean Squared Error of

Cross-Validation (RMSECV) is obtained as

RMSECVr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PRESSr

IJ

r

(17)

In Fig. 24, the results of cross-validation are shown. As

shown in Fig. 21 the t to data will trivially improve with the

number of components but the RMSECV gets worse aer four

components, indicating that no more than four components

should be used. In fact, the improvement going from three to

four components is so small, that three is likely a more feasible

choice from that perspective.

The cross-validated error, RMSECV, can be compared to the

tted error, the Root Mean Squared Error of Calibration,

RMSEC. In order for the two to be comparable though, the tted

residuals must be corrected for the degrees of freedom

consumed by the model. Calculating these degrees of freedom

is not a trivial subject as mentioned earlier.3,4,47

When using PCA for other purposes. It is quite common to

use PCA as a preprocessing step in order to get a nicely compact

representation of a dataset. Instead of the original many (J)

variables, the dataset can be expressed in terms of the few (R)

principal components. These components can then in turn be

used for many different purposes (Fig. 25).

It is common practice to use, for example, cross-validation

for determining the number of components and then use that

number of components in further modelling. For example, the

scores may be used for building a classication model using

linear discriminant analysis. While this approach to selecting

components is both feasible and reasonable there is a risk that

components that could help improve classication would be

le out. For example, cross-validation may indicate that ve

components are valid, but it turns out that component seven

Fig. 24 A plot of RMSECV for PCA models with different number of

components.

Fig. 25 Using the scores of PCA for further modelling.

This journal is © The Royal Society of Chemistry 2014 Anal. Methods, 2014, 6, 2812–2831 | 2825
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can reliably improve classication. In order to be certain that

useful information is retained in the PCA model, it is generally

advised to validate the number of components in terms of the

actual goal. Instead of validating the number of components

that best describe X in some sense (PCA cross-validation), it will

oen make more sense to use the number of components that

provides the best classication results if PCA is used in

conjunction with discriminant analysis.

Detecting outliers

Outliers are samples that are somehow disturbing or unusual.

Oen, outliers are downright wrong samples. For example, in

determining the height of persons, ve samples are obtained

([1.78, 1.92, 1.83, 167, 1.87]). The values are in meters but

accidentally, the fourth sample has been measured in centi-

meters. If the sample is not either corrected or removed, the

subsequent analysis is going to be detrimentally disturbed by

this outlier. Outlier detection is about identifying and handling

such samples. An alternative or supplement to outlier handling

is the use of robust methods, which will however, not be treated

in detail here. The reader is referred to the literature for more

details on robust methods.48�59

This section is mainly going to focus on identifying outliers,

but understanding the outliers is really the critical aspect. Oen

outliers are mistakenly taken to mean ‘wrong samples’ and

nothing could be more wrong! Outliers can be absolutely right,

but e.g. just badly represented. In such a case, the solution is not

to remove the outlier, but to supplement the data with more of

the same type. The bottom line is that it is imperative to

understand why a sample is an outlier. This section will give the

tools to identify the samples and see in what way they differ. It is

then up to the data analyst to decide how the outliers should be

handled.

Data inspection. An oen forgotten, but important, rst step

in data analysis is to inspect the raw data. Depending on the

type of data, many kinds of plots can be relevant as already

mentioned. For spectral data, line plots may be nice. For

discrete data, histograms, normal probability plots, or scatter

plots could be feasible. In short, any kind of visualization that

will help elucidate aspects of the data can be useful. Several

such plots have already been shown throughout this paper. It is

also important, and frequently forgotten, to look at the pre-

processed data. While the raw data are important, they actually

never enter the modeling. It is the preprocessed data that will be

modeled and there can be big differences in the interpretations

of the raw and the preprocessed data.

Score plots. While raw and preprocessed data should always

be investigated, some types of outliers will be difficult to iden-

tify from there. The PCA model itself can provide further

information. There are two places where outlying behavior will

show up most evidently: in the scores and in the residuals. It is

appropriate to go through all selected scores and look for

samples that have strange behaviour. Oen, it is only compo-

nent one and two that are investigated but it is necessary to look

at all the relevant components.

As for the data, it is a good idea to plot the scores in many

ways, using different combinations of scatter plots, line plots,

histograms, etc. Also, it is oen useful to go through the same

plot but coloured by all the various types of additional infor-

mation available. This could be any kind of information such as

temperature, storage time of sample, operator or any other kind

of either qualitative or quantitative information available. For

the wine data model, it is seen (Fig. 26) that one sample is

behaving differently from the others in score plot one versus two

(upper le corner).

Looking at the loading plot (Fig. 16) indicates that the

sample must be (relatively) high in volatile and lactic acid and

low in malic acid. This should then be veried in the raw data.

Aer removing this sample, the model is rebuilt and reeval-

uated. No more extreme samples are observed in the scores.

Before deciding on what to do with an outlier, it is necessary

to look at how important the component is. Imagine a sample

that is doing an ‘excellent job’ in the rst seven components,

but in the eighth has an outlying behaviour. If that eighth

component is very small in terms of variation explained and not

the most important for the overall use of the model; then it is

probably not urgent to remove such a sample.

Whenever in doubt as to whether to remove an outlier or not,

it is oen instructive to compare the models before and aer

removal. If the interpretation or intended use changes

dramatically, it indicates that the sample has an extreme

Fig. 26 Score plot of a four component PCA model of the wine data.
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behaviour that needs to be handled whereas the opposite

indicates that it is of little importance whether the sample is

removed.

Hotelling's T
2. Looking at scores is helpful, but it is only

possible to look at few components at a time. If the model has

many components, it can be laborious and the risk of acci-

dentally missing something increases. In addition, in some

cases, outlier detection has to be automated in order to function

e.g. in an on-line process monitoring system. There are ways to

do so, and a common way is to use the so-called Hotelling's T2

which was introduced in 1931.60 This diagnostic can be seen as

an extension of the t-test and can also be applied to the scores of

a PCA model.61 It is calculated as

Ti
2 ¼ tTi ðTTTÞ�1

ti

I � 1
(18)

Where T is the matrix of scores (I � R) from all the calibration

samples and ti is an R � 1 vector holding the R scores of the ith

sample. Assuming that the scores are normally distributed,

then condence limits for Ti
2 can be assigned as

Ti
2
ðI ;RÞ ¼

RðI � 1Þ
I � R

FR;I�R;a (19)

In Fig. 27, an example of the 95% condence limits is

shown. This plot illustrates the somewhat deceiving effect such

limits can have. Two samples are outside the condence limit

leading the inexperienced user to suggest leaving out both.

However, rst of all, samples should not be le out without

understanding why they are ‘wrong’ and more importantly,

there is nothing in what we know about the data thus far, that

suggests the scores would follow a multivariate normal distri-

bution. Hence, the limit is rather arbitrary and for this partic-

ular dataset, the plot in Fig. 26 is denitely to be preferred

when assessing if samples behave reasonably. In some cases,

when enough samples are available and those samples really

do come from the same population, the scores are approxi-

mately normally distributed. This goes back to the central limit

theorem.62 Examples are, e.g. in the multivariate process

control area.63 In those cases Hotelling's T2 is a particularly

useful statistic.

The limits provided by Hotelling's T2 can be quite

misleading for grouped data. As an example, Fig. 28 shows the

score plot of a dataset, where the samples fall in four distinct

groups (based on the geological background). The sample in the

middle called “outlier?” is by no means extreme with respect to

Hotelling's T2 even though the sample is relatively far from all

other samples.

Fig. 27 PCA score plot similar to Fig. 26 (left) but now with a 95%

confidence limit shown.

Fig. 28 PCA scores plot (1 vs. 2) for a dataset consisting of ten concentrations of trace elements in obsidian samples from four specific quarries–

data from a study by Kowalski et al.64

This journal is © The Royal Society of Chemistry 2014 Anal. Methods, 2014, 6, 2812–2831 | 2827
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Score contribution plots. When a sample has been detected

as being an outlier, it is oen interesting to try to investigate the

reason. Extreme scores indicate that the sample has high levels

of whatever, the specic component reects in its correspond-

ing loading vector. Sometimes, it is difficult to verify directly

what is going on and the so-called contribution plot can help.

There are several different implementations of contribution

plots65 but one common version was originally developed by

Nomikos.66 The contribution for a given sample indicates what

variables caused that sample to get an extreme set of scores. For

a given set of components (e.g. component one and two in

Fig. 29), this contribution can be calculated as

cDj ¼
X

R

r¼1

tnewr xnew
j pjr

tTr tr=ðI � 1Þ (20)

The vector tr is rth score vector from the calibration model, I

the number of samples in the calibration set and tnewr is the

score of the sample in question. It can come from the calibra-

tion set or be a new sample. xnewj is the data of the sample in

question for variable j and pjr is the corresponding loading

element. In this case, R components are considered, but fewer

components can also be considered by adjusting the summa-

tion in eqn (20).

The contribution plot indicates what variables make the

selected sample have an extreme Hotelling's T2 and in Fig. 29,

the most inuential variables are also the ones that that are

visible in the raw data (not shown). Eqn (20) explains the

simplest case of contribution plots with orthogonal P matrices.

Generalized contributions are available for non-orthogonal

cases.65 Note that if xnewj is a part of the calibration set, it

inuences the model. A more objective measure of whether

xnewj ts the model can be obtained by removing it from the data

and then aerwards projecting it onto the model thereby

obtaining more objective scores and residuals.

Lonely wolfs. Imagine a situation where the samples are

constituted by distinct groups rather than one distribution as

also exemplied in Fig. 28. Hotelling's T2 is not the most

obvious choice for detecting samples that are unusually posi-

tioned but not far from the center. A way to detect such samples,

is to measure the distance of the sample to the nearest

neighbor. This can also be generalized e.g. to the average

distance to the k nearest neighbors and various distance

measures can be used if so desired.

In Fig. 30, it is seen that colouring the scores by the distance

to the nearest neighbour, highlights that there are, in fact,

several samples that are not very close to other samples. When

the samples are no longer coloured by class as shown in Fig. 28,

it is much less obvious that the green ‘K’ class is indeed a well-

dened class.

Fig. 29 Contribution plot for sample 34 in the wine data.

Fig. 30 Score plot of Fig. 28. Samples are coloured according to the

distance of the sample to the nearest neighbour.

2828 | Anal. Methods, 2014, 6, 2812–2831 This journal is © The Royal Society of Chemistry 2014
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Residuals. The use of residuals has already been described in

detail. For outlier detection, it is common to use the sum

squared residuals, oen called the Q-statistics, of each sample

to look for samples that are not well-described by the PCA

model. When Q is plotted against T2, it is oen referred to as an

inuence plot. Note, that both residuals and T2 will change with

the number of components, so if the number of components are

not rmly dened, it may be necessary to go back and forth a bit

between different numbers of components.

In the inuence plot in Fig. 31, it is clear that one sample

stands out with a high Hotelling's T2 in the PCA model and no

samples have extraordinarily large residuals. It will hence, be

reasonable to check the T2 contribution plot of that sample, to

see if an explanation for the extreme behavior can be obtained.

The two blue lines are 95% condence levels. Such lines are

oen given in soware but should not normally be the focus of

attention as also described above for score plots.

Residual contribution plots. Just as contribution plots for

scores can be dened, contribution plots for residual variation

can be determined as well. These are simpler to dene, as the

contributing factor to a high residual is simply the squared

residual vector itself. Hence, if a sample shows an extraordinary

residual variation, the residual contribution plot (the residuals

of the sample) can indicate why the sample has high residual

variation. The squared residuals do not reveal the sign of the

deviation and sometimes, the raw residuals are preferred to the

squared ones to allow the sign to be visible.67

Conclusion

Principal component analysis is a powerful and versatile

method capable of providing an overview of complex multivar-

iate data. PCA can be used e.g. for revealing relations between

variables and relations between samples (e.g. clustering),

detecting outliers, nding and quantifying patterns, generating

new hypotheses as well as many other things. This tutorial has

provided a description of the basic concepts of how to use PCA

critically.
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