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1 Introduction

One of the most popular techniques for analyzing multivariate data is principal component
analysis (PCA). It consists of exploring the structure of a high-dimensional data set by
projecting the observations onto the first principal components. These are obtained by com-
puting the eigenvectors of the sample covariance or correlation matrix. The corresponding
eigenvalues measure then the amount of information explained by the principal components.
However, these estimators are extremely sensitive to outlying observations and conclusions
drawn from contaminated principal components can be misleading. Several robustifications
for PCA have been proposed (Jackson 1991, pages 365-371). Among these the replacement
of the classical covariance or correlation matrix by a robust estimator is perhaps the most
simple and intuitively appealing. Many simulation studies, starting with Devlin et al. (1981),
have been carried out to find out which robust estimator should be used.

In this paper, a more formal comparison is undertaken by computing the influence func-
tions for the estimators of the eigenvalues and eigenvectors. Corresponding asymptotic
variances are also obtained. Results for M-estimators were already obtained by Jaupi and
Saporta (1993), but our formulas are valid for any “regular” estimator, including high break-
down covariance matrix estimators. Several authors (Critchley 1985, Shi 1997) have sug-
gested statistical diagnostics and graphical displays based on the influence function to detect
influential points.

For every choice of the robust covariance matrix estimator, another robust PCA-method
is obtained. An overview of existing estimators of multivariate location and scatter is given
in Maronna and Yohai (1998). The words scatter matrix and covariance matrix will be
abusively used as synonyms throughout this paper.

Three robust estimators (t,,C,) of multivariate location and scatter are considered in
more detail: the M-estimator (Maronna 1976), the S-estimator (Rousseeuw and Leroy 1987,
page 263, and Davies 1987) and the one-step reweighted Minimum Covariance Determinant
(MCD) estimator (Rousseeuw 1985) which will be denoted by RMCD. Let us briefly review
their definitions. Consider a sample of p-dimensional observations xi,... ,z, and denote

d(z;,t,C) = \/(z; — t)!C~1(z; — t) the statistical distance between z; and ¢, measured in

the metric induced by the positive definite matrix C.



M-estimates are implicitly defined by
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where w; and wy are specified weight functions. Assuming monotonicity of wsy, Maronna
(1976) showed that the M-estimation approach is less and less robust as the dimension
increases since its breakdown point is at most 1/(p + 1).

Unlike the M-estimators, the S-estimators belong to the class of high breakdown estima-
tors of multivariate location and scatter. They are defined as the solutions (¢,,C,) to the

problem of minimizing det(C') subject to

=3 ol t,0)) = by (1.1)

among all (¢,C) € IRP x SPD(p), with SPD(p) the set of all p X p symmetric and positive
definite matrices. The constant by is equal to Eg,p(||z||), with Fy = N,(0,I).
Finally, the one-step reweighted MCD estimators are defined as

tn
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with ¢; = (1 — 0) /FX2+2(q5) a consistency factor and ¢s = Xf) s the upper é-percent point
p El

of a Xf, distribution. The weights are computed as

1 if d?(z;,19,C%) < g5

0 otherwise

where (2, C%) are the initial MCD estimates. For defining this MCD estimator, consider all
the subsets of size h (< n) from the sample and keep that subset whose covariance matrix
has the smallest determinant. Then the location and scatter MCD estimates are given by
the average and covariance matrix computed over this optimal subset. Typically, the size of
the subset equals h = [n(1 — «)], with a = 0.5 or a = 0.25. The breakdown points of MCD

and RMCD are equal to a%.



When numerical values or graphical displays are given, they correspond to the following
choice of functions and constants. For the M-estimator, the weight functions are chosen

according to Huber’s proposal:

wH(ya \/@)

Yu(y, 4r)
wi(y) = ————— and wy(y) = ———.
y By
where ¥y (y, k) = max{—k, min{y, k}} is Huber’s psi function, § is a constant making the
scatter estimate Fisher consistent at normal models and ¢, = x3,9. The function p in

the definition of the S-estimator is the Biweight function p(y) = min(% - % + %, %)

To attain a breakdown point of 25%, ¢y is implicitly defined by p(cy) = bT—O with » = 0.25.
The breakdown point of the RMCD estimator will be the same as for the S-estimator, so
a = 0.25, and the trimming parameter o equals 0.025 as suggested by Rousseeuw and Van
Driessen (1997).

The outline of the paper is as follows. Section 2 presents influence functions and asymp-
totic variances of eigenvalues and eigenvectors computed from a robust covariance matrix
while Section 3 presents similar results for the correlation matrix. In Section 4, some simula-
tions are conducted to compare the performance of the robust estimators introduced above
to estimate the PCA eigenvalues and eigenvectors. As a byproduct, a comparison of the esti-

mated correlation coefficients is also reported. In Section 5, the use of the influence function

as a data analytic tool is illustrated. Section 6 contains some conclusions.

2 Robust PCA based on the Covariance Matrix

Let x1,... ,z, be an i.i.d. sample drawn from a p-variate distribution F. Throughout the
paper F' is assumed to be the normal distribution N(u,Y) where p € IR? and ¥ € SPD(p),
the set of all p X p symmetric and positive definite matrices. Results can be easily shown to
hold for any elliptically symmetric distribution F', but only for normal distributions one has
that the principal components will be independent of each other (Hampel et al 1986, page
273). It is further supposed that ¥ has distinct eigenvalues A\; > Ay > ... > A, > 0 with
corresponding eigenvectors vy, v, . .. ,vp. The aim is to estimate these population eigenvalues
and eigenvectors and to compute the corresponding influence functions. A generalization to

multiple eigenvalues could be done as in Tanaka (1988).



An influence function is essentially the first derivative of the functional version of an
estimator. Let F denote the set of all distributions on IR? (or a very large subset of it). A
map C : F — SPD(p) which sends an arbitrary distribution G € F to C(G) is a statistical
functional corresponding to an estimator C,, of ¥ whenever C(F,,) = C,, for every empirical
distribution function F,, associated with observations z1, ... ,x,. For example, the statistical
functional defined as

C(G) = E(X — Eg[X])(X - Eg[X])']
for any distribution G having a second moment corresponds to the sample covariance matrix

since
n

C(F,) = - ;(m, —z)(z; — 7).

The notation C(X) instead of C(G) will be used whenever X ~ G. The functional
representations of the eigenvectors and eigenvalues computed from C,, are denoted by vC
and A ; for j = 1,...,p. Of course, UC,j(G) and )\C,j<G) are just the eigenvectors and
eigenvalues of C(G), for every G € F. At the empirical distribution function, UCJ(Fn) =
v, ; and )‘C,j(F") = Ag, ;- Throughout the paper, C is assumed to be Fisher consistent for

Y at F,ie. C(F) =X, and affine equivariant, meaning that

C(AX +b) = AC(X)A
for any b € IR” and any p X p non singular matrix A. This implies immediately that Fisher
consistency also holds for the eigenvector and eigenvalue functionals,

v, (F) = v; and Aq;(F) = A;.

The functionals vC and >‘C,j are orthogonal equivariant in the sense that

’UCJ.(FX) =Tvg (X)
and

ACJ(FX) = >‘C,j<X)

for y =1,...,p and for any p X p orthogonal matrix I".

To measure the robustness w.r.t. single outliers, it is common to compute their influence

functions. By definition, the influence functions of v i and A\¢y ; are given by

v ((1—e)F +eA,) —ve (F
IF(z, v ;5 F) = lim Gl ) ) 20,5

2.1
ing . (2.1)




Table 1: Functions o for the M, S, RMCD and classical estimator of the covariance matrix.
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and
Ao (1 —e)F +eAy) — Aoy (F
IF(z, Ac: ; F) = lim c,y(1—) )~ 2¢,(F) (2.2)
»J €l0 <
for j =1,...,p. The Dirac measure A, is the distribution putting all its mass on x. For more

details on influence functions and statistical functionals, see Hampel et al (1986). When the
influence function of the scatter estimator is known, the influence functions (2.1) and (2.2)
can be easily derived, as will be shown in Theorem 1 below. Before that, we give a lemma
characterizing the general form of the influence function of a scatter matrix estimator. All

the proofs are kept for the Appendix.

Lemma 1. For any affine equivariant scatter matriz functional C possessing an influence

function, there exist two functions acy, B : [0, 00[— IR such that

IF(z,C; F) = ac(d(z))(z — p)(z — p)' — B (d(z)2 (2.3)
with d*(x) = (z — p)'S7 (z — p) and F = Ny(p, X).

From now on, only robust scatter matrix estimators possessing an influence function will
be considered. Among them, focus is put on the estimators M, S and RMCD as defined
in Section 1. The influence functions of these scatter estimators have been derived by
Huber (1981, page 226) for the M-estimator and by Lopuhad (1989 and 1997) for S and for
reweighted estimators. The influence function of RMCD depends on the influence function

of the initial MCD estimator which can be found in Croux and Haesbroeck (1998). The
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Figure 1. Examples of the function ac for some robust estimators.

corresponding functions o are given in Table 1 and are plotted in Figure 1. The functions
ag and o) are smooth while ap\jcp is a step-function with two discontinuities: one at /g,
which is due to the initial estimator and the other one at ,/gs resulting from the weighting
scheme. Both apyjcp(t) and ag(t) become zero after a certain rejection point while ayy(t)
only redescends to zero at infinity. All these functions are non increasing meaning that
their contribution to the influence function decreases as the distance between x and p in the
metric imposed by X increases. The function o, is constant, implying that outliers are

not given less weight.

Theorem 1. Let F' be a multivariate normal distribution with parameters p and Y. Define
the scores of x as zp = vi(x — p) for k=1,... ,p and let d*(x) = (x — p)'S"(x — p). The

influence functions of the eigenvectors and eigenvalues of C at F' are then given by

IF(z, A F) = oc(d(2)2 — Bo(d@),

and ,
ZE2q
IF(z,vc ;3 F) = ag(d) Y ﬁvk
k=1 "7
k#j

forjg=1,...p.



It follows now from Critchley (1985) that

IF(z, v ;5 F) = ac(d(@)IF (z, vogy ;i F)- (2.4)

The above equation confirms that the function a needs to be interpreted as a downweight-
ing function. A redescending a function implies a bounded influence function for the
eigenvectors.

In Figure 2, the influence function of the estimator A¢y, is plotted at F' = N(0, diag(2, 1)).
Figure 3 represents the norm of the influence function of the first eigenvector vQ - For C,
both the classical covariance matrix and the S-estimator have been considered. The curves
obtained for the S-estimator resemble the curves obtained for the classical estimator at the
center of the distribution. Points further away are downweighted by the robust estimator
while they can still have a large influence on the usual covariance matrix. For the eigenvalues,
the most influential points are along the direction of the corresponding eigenvector. The norm
of the influence function of the eigenvector is the largest along the bisectors.

The influence function can also be helpful for computing asymptotic variances. If a

functional 7" corresponding to an estimator 7;, is “sufficiently regular”, then
Vn (T, — T(F)) % N,(0,ASV(T, F)) (2.5)
with
ASV(T,F) = Ep[IF(z,T; F)IF(z,T; F)'| (2.6)

(cfr. Hampel et al 1986, page 226). Taking (2.6) as definition of the asymptotic variance of

a functional, the next corollary holds.
Corollary 1. With the notations of Theorem 1, one has
ASV(Aq,;, F) = A ASV(Ci, Ry) (2.7)

p
A\
ASV(v;, F) = ASV(Cis, Fy) Z o

t
)\k) ’UkUk, ( 8)

oy
forg=1,...,p.

A formal proof of (2.5) for the robust eigenvectors and eigenvalues is beyond the scope of this

paper. Boente (1987) provided regularity conditions in the case of M-estimators. Asymptotic

7



Figure 2. Influence function of the largest eigenvalue for (a) the classical covariance matrix

and (b) the S-estimator at F' = Ny(0, diag(2,1)).

Figure 3. Norm of the influence function of the eigenvector corresponding to the largest eigen-

value for (a) the classical covariance matriz and (b) the S-estimator at F = No(0, diag(2,1)).



Table 2: Asymptotic efficiencies at the normal distribution for the eigenvalue and eigenvector

estimators based on the RMCD, S and M scatter matrix estimators.

p=2 p=3 p=5 p=10 p=30
Eff()\c,j, Fy) M 0.881 0.895 0.947 0974 0.991

S 0.899 0.941 0.968 0990 0.997
RMCD | 0.599 0.680 0.753 0.836  0.901
EH(UCJ, Fy) M 0.920 0.947 0.969 098  0.996

S 0.850 0.924 0.967 0988  0.997
RMCD | 0.635 0.742 0.820 0.873  0.933

theory for eigenvectors and eigenvalues of the sample covariance matrix is given by Anderson
(1963). Asymptotic efficiencies at normal distributions can be defined as

ASV(}‘COV,j’ F) B )
ASV(Aq,, F)  ASV(Cy, Fy)

Eff(Ac,, F) =

and

1
det(ASV (v LE))\ P
Eff(vg ;. F) = ( de(t(AS\<f<Sg:,] F))) )> B ASV(élg,Fo)’
since the maximum likelihood estimators of ()\;,v;) at the normal model are given by the
classical estimators (Joliffe 1986, page 41).

It is interesting to note that the efficiency of the eigenvalue estimators only depends on
the efficiency of the diagonal elements of the scatter matrix estimator while the efficiency
of the eigenvector estimators is computed from the efficiency of the off-diagonal elements.
In Table 2, these efficiencies are reported for several values of p and for the estimators of
interest. The reweighted MCD estimator results in the lowest efficiency values, even if they
are not too bad. The S and M-estimators are comparable w.r.t. their efficiency and should be
preferred to the classical covariance matrix since the small loss of efficiency is compensated
by a better robustness.

The asymptotic variances (2.7) and (2.8) are often used to construct large sample con-

fidence intervals. For example, a large sample 100(1 — ) % confidence interval for A; is



provided by
| Coy Coy |

14 204/ AV CE) o, JASV Gt

where 22 is the upper 100(3)th percentile of a standard normal distribution. For the covari-

ance matrix, ASV(Covyy, Fy) = 2 and the usual formula is obtained again (cfr. Joliffe 1986,
page 42).

3 Robust PCA based on the Correlation Matrix

It is well known that the principal components are not independent of the scales in which the
original variables are measured. It is therefore often recommended to derive the principal
components from the correlation matrix. This Section deals with the influence functions of
the eigenvalues and eigenvectors computed from that matrix.

For any matrix B € IRP*P_ let diag(B) denote the p x p diagonal matrix whose elements
are the diagonal elements of B. The population version of the correlation matrix is defined
as P = ZZ)%Z 25% where Yp = diag(X). A natural estimator for P is given by R,, =
(Cn)];% Cn (Cn)];% with (C,,)p = diag(C,,). The corresponding functional is defined as R(G) =
Cp(G)~:C(G) C;)%, with Cp(G) = diag(C(G)), for any distribution G € F. In this Section,
Al > Ay > ... > A, > 0 denote the eigenvalues computed from P with corresponding
eigenvectors vy, Vs, ... ,v,. The notations )‘R,j and UR,; are obvious.

The following lemma proves that the influence function of the functional R can be easily
worked out when the function oy appearing in the influence function of C is known. This

lemma is then exploited to derive the influence function of the PCA functionals.

1
Lemma 2. For any x € IRP, denote & = ¥, (x — p) its standardized version and Dz =

diag(2z"). The influence function of the functional R can be written as
IF(z,R; F) = ag(d(@) {72 — (P20
where d*(x) = (z — p)'S H(x — p), F = Np(p, X) and ag is the real-valued function of (2.3).
The influence function of the correlation functional can be rewritten in the closer form

IF(z,R; F) = ac(d(z))IF (z, Corr; F) (3.1)

10



where IF(z, Corr; F') is the influence function of the ordinary correlation matrix as derived in
Devlin et al (1975). Only the function o which already determined the form of IF(z, C; F)
appears in IF(z, R; F'). It may be easier to interpret the influence function when it is given
element-wise. For the correlation functional, only the off-diagonal elements are of interest
since IF(z, Ry; F') = 0, as it should be. The element (7, j) with ¢ # j is given by

IF(z, Rij; F) = ac(d(z)){z:a; — Pz"(ii ;jj )}

with #; = (2; — w;)/v/2u (i = 1,...,p). Only the components i and j of x influence
IF(z, Corr;j; F), but the other components may influence d(z). When a robust estimator
C is used, an extreme outlier in component k, which is however not outlying in two other
components ¢ and j, may have zero influence on R;;. The influence functions of the correla-
tion coefficients are of interest in their own right but are used here to derive the following

Theorem.

Theorem 2. The influence function of the eigenvalues and eigenvectors of R at the model

distribution F' = N(u, X)) are given by

IF(z, )R ;; F) = ac(d(@){Z] — \ju;Dsvs} (3.2)
p
. VD ¥ v
IF(z,vg ; F) = ac(d(z)) Z (zkzj _ 2k . JUEDgEUk) ?k)\k (3.3)
k=1 J
k#j

h

where T = E;)%(a: — ), 2(z) = (z — p)'SY(z — p) and z; is the j" coordinate of the

standardized x in the basis of the eigenvectors, i.e. Z; = vﬁ-i.

Once again, the function a( is responsible for the truncation of the influence functions

derived for the usual correlation matrix since
IF(z, AR ;3 F) = ag(d(@)IF (2, Acorr ;3 F)
and
IF(z,vR ;; F) = aq(d(@)IF (2, voop ;5 F)-
Two minor remarks complete this Section. Firstly, it follows from trace(R) = p that

P IF(z, AR .; F) = 0. Secondly, the influence functions of the eigenvectors vanish for
Jj=1 R,

dimension p = 2.

11



4 Finite-sample Experiment

This Section uses simulations to compare the finite-sample performances of some robust
estimators for estimating a correlation matrix and its principal components. The simulation
set-up described in Devlin et al (1981) will be followed. The simulation consists of m = 1000
replications of 6-dimensional samples of n = 50 observations generated from four different
distributions. The robust estimators involved in this study are the 25% breakdown point
one-step reweighted MCD estimator, the 25% breakdown Biweight S-estimator as well as the
Huber M-estimator defined in Section 1. Note that the M-estimator was already included in

Devlin et al’s paper.
1

The population correlation matrix will be P = B0 ,withP,=1 095 1
o 0.30 0.10 1
1
and P, = | —0.499 1

—0.499 —-0.499 1
The values of interest are the elements of the correlation matrix P and its eigenvalues
(A1 = 2.029, A9 = A3 = 1.499, A\, = 0.943, A5 = 0.028, \¢ = 0.002) and eigenvectors. The

sampling distributions are taken as

1. The Normal distribution (NOR): N(0, P)

2. A Symmetric Contaminated Normal (SCN) distribution: the mixture 0.9 N(0, P) +
0.1 N(0, 9P).

3. The multivariate Cauchy (CAU) which is defined as the distribution of X = (v/S)~'Y,
where Y ~ N(0, P) is independent of S ~ x3.

4. An Asymmetric Contaminated Normal (ACN) distribution: the mixture 0.9 N(0, P) +
0.1 N(u, P), with (1) p = 0.537 x vg or (2) pu = 50 X vg where vg is the eigenvector
of P corresponding to Ag. The case ACN(1) corresponds to intermediate outliers while
ACN(2) generates extreme outliers. It will appear that the ACN(1) contamination is
not heavy enough to let the classical estimator break down. This is the reason why

the ACN(2) configuration, not considered in the study of Devlin et al, was introduced.

12



For computing the MCD estimator, the FAST-MCD algorithm of Rousseeuw and Van
Driessen (1997) was applied, while the S-estimator was based on the SURREAL algorithm
of Ruppert (1992). The iterative procedure given in Devlin et al (1981) for computing the

M-estimator was used. All algorithms were implemented in GAUSS.

To assess the performance of the estimators of the elements of P, the finite-sample bias
was computed as well as the Mean Squared Error. As in Devlin et al’s study, the reported

MSE’s are defined as

1 m A
MSE(pi;) = — > (35 — piy)?
k=1

1+P;,
1—P7;j

where p;; = 3 In ( ) is the Fisher’s 2z transform of the correlation coefficient F;; and ﬁg-c)
its estimate computed from the kth generated sample.

The biases of the different estimators are not reported since they were comparable across
all sampling distributions (except for the M-estimator at the ACN-distributions, where the
biases for the smaller correlations were higher). At the uncontaminated normal the classical
correlation estimator is of course the most efficient, but the loss for the M and S-estimators
is almost negligible. It can be seen that the Huber M-estimator outperforms the classical
correlation at most other schemes. This explains why Devlin et al recommended the Huber
M-estimator. At the ACN(2) configuration, one sees however that the M-estimator breaks
down, confirming its lower breakdown point. This is not the case for the S-estimator, which
appears to be the most robust at the asymmetric contamination distributions. Moreover, also
for the other sampling schemes the S-estimator yields MSEs comparable to the M-estimator.
The only exception is the Cauchy distribution, where the M-estimator behaves extremely
well. The other competitor, RMCD, is clearly less efficient than the S-estimator, even at the
contaminated distributions. As a first conclusion, one may say that the S-estimator seems
to be the best estimator for the correlation coefficients.

The precision of the estimators for the eigenvalues of P was measured by

m

1 .
MSE(In\;) = — Y (InAY —In);)?,
m
k=1

where S\Ek) is the estimate for the ith eigenvalue computed from the kth generated sample.
Not very surprisingly, the same observations as for the correlation coefficients can be made

from Table 3. The S-estimator turns out to be preferable, thanks to its relatively high

13



Table 3: 1,000xMSE of the z—transforms of the estimators of the elements of the correlation
matrix and 100xMSE of the estimators of the logs of the eigenvalues under five different
sampling schemes. The classical estimator is indicated by Corr, the Huber M-estimator by
M, and the results based on the reweighted MCD and the S-estimator are in the two other
columns.

dist | 1,000 x R;; 1,000 x MSE(p;;) Ai 100 x MSE(In A;)
Corr M S RMCD Corr M S RMCD

950 21 21 23 39 2.029 1 1 1 3
N 300 21 22 24 39 1.499 1 1 1 2
O 100 20 22 24 38 1.499 3 3 3 5
R -499 22 23 21 40 0.943 3 3 4 12
-499 24 25 23 43 0.028 8 9 10 20
-499 21 22 22 39 0.002 8 8 8 22
950 54 24 28 38 2.029 4 1 2 2
S 300 54 24 28 38 1.499 2 1 1 1
C 100 55 24 28 37 1.499 8 3 4 5
N -499 56 26 27 37 0.943 | 13 4 5 10
-499 55 27 29 36 0.028 | 23 10 13 17
-499 57 25 27 35 0.002 | 22 9 11 19
950 1128 34 63 71 2.029 | 43 2 5 5
C 300 1428 38 71 72 1.499 | 130 1 2 2
A 100 1400 38 71 70 1.499 | 481 5 9 10
U -499 1400 35 65 69 0.943 | 877 8 19 22
-499 1314 35 61 68 0.028 | 764 14 30 33
-499 1361 35 62 67 0.002 | 1042 15 31 37
950 21 22 25 36 2.029 1 1 1 2
A 300 21 22 22 38 1.499 1 1 1 1
C 100 20 22 23 38 1.499 3 3 3 5
N -499 23 23 22 36 0.943 3 4 4 10
(1) -499 23 24 23 33 0.028 5 6 7 17
-499 21 22 22 36 0.002 | 567 458 381 18
950 21 23 25 35 2.029 | 18 15 1 2
A 300 21 23 25 41 1.499 7 8 1 1
C 100 20 22 25 41 1.499 | 28 27 3 5
N -499 8366 6170 24 36 0.943 | 1188 863 4 10
(2) -499 8331 6139 23 34 0.028 | 17 13 11 17
-499 8345 6150 24 31 0.002 | 368 585 9 19

14



efficiency combined with good robustness properties. There is one case where the S-estimator
breaks down while RMCD does not: Ag for ACN(2). Apparently, the discontinuous character
of RMCD (cfr. Figure 1) may lead to more robust solutions in some cases, at the price of a
loss of efficiency.

It is also of interest to compare the estimators w.r.t. their performance to estimate
the eigenvectors of the correlation matrix P. The estimations should be close to the true
vector, i.e. the vectors v; and vQ, should be collinear. To measure their closeness, the
cosine of the angle éj they form is used. (For j =2 and 3, éj should be taken as the angle
between vQ, and its projection onto the space spanned by vy and vs since Ay = A3.) Figure
4 gives the empirical cumulative distribution functions of the realizations of |cos éjl over the
m = 1000 replications under the distributions NOR and ACN for the M and S-estimators.
Similar figures were given in Devlin et al (1981), but only at the NOR distribution. The
distributions of |cos 05|, |cos 05| and |cos 05| are omitted since the first one behaves like |cos |,
and the two others like |cos f].

Comparing the two columns of Figure 4, one sees that the S-estimator is more robust than
the M-estimator. Indeed, since the values of |cos éj\ should be close to one, the cumulative
distribution function should be peaked towards one. This is no longer true for the M-
estimator at the ACN(2) distribution, while the S-estimator still finds good estimates for
the eigenvectors in that case. The same exercise has been done for the RMCD estimator,
yielding results which are even slightly better than for the S-estimator. Therefore, the RMCD
estimator can still play its role in an exploratory analysis, when efficiency and inference issues

are less important.

5 The Empirical Influence Function

Several authors (Critchley 1985, Shi 1997) have proposed local influence measures to detect
influential points in a principal component analysis. Their measures were based, however,
on the non-robust sample covariance matrix. Jaupi and Saporta (1993) introduced empirical
influence measures based on M-estimators. In this Section the same approach is followed,
now using a high breakdown estimator of multivariate scatter. If ¢,, and C,, are estimates

obtained from the sample z1,... ,x,, then the empirical influence functions (EIF) for the
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eigenvalues and eigenvectors are defined as
EIF(z, A\ ;) = IF(z, A\ ;; F),

and

A

EIF(z,vq ;) = IF(z, v ;5 F)

for j=1,...,pand F = N(t,, C,). Similar formulas apply for the correlation case.

Diagnostics which measure the influence of the observation x; on the final estimates are
then given by EIF(a:Z-,)\C,j) and EIF(:I:i,vCJ.). They may be visualized by plotting their
values, or the norm of their values against the index of the observations. This is illustrated
using the soil composition data set (20 observations on 4 variables) introduced by Kendall
(1975), and used by all the papers mentioned before in this Section. In Figure 5, the value
of EIF(x;, )\R,j) is plotted for each observation with respect to its index, and this for every
eigenvalue of the correlation matrix. The EIF(z;, /\R,j) are computed once for the sample
correlation matrix (left column), and once for the correlation estimator based on the RMCD
(right column). The latter estimator was chosen because emphasis is more on exploring the
data, then on inference. Moreover, the EIFs computed from S and M-estimators did not
result in such a clear cut difference between the classical and robust approach.

Informal visual inspection of these plots show that observation 14 has a large influence on
the second and third eigenvalues, while also observation 13 is quite influential on the first and
fourth eigenvalues computed from the sample correlation matrix. This confirms the results
obtained by the influence measures of Shi (1997). On the other hand, one notices that no
observation has an influence which is much bigger than all the others on the eigenvalues of the
RMCD correlation estimator. This is consistent with the philosophy of robustness, saying
that a single observation may not influence too heavily the final estimate. Observations
13 and 14 have been downweighted by the RMCD-estimators, reason why their influence is
greatly reduced.

To investigate the robustness of the index plots, contamination was introduced in the
data set by changing the first and last component of the third observation (as was done
in Jaupi and Saporta 1993). The “contaminated” index plots are represented on the same
figures (dashed lines). First of all, notice that the EIF hardly changes for the robust RMCD

estimator. The results for the classical estimator change quite a lot: one sees for example

17



Corr

0 2 4 6 8 10 12 14 16

2
T
L

EIF(x; ,.,)
EIF(x; ,),)

0
T

EIF(x; ,).;)

1.0

0.6
0.6

EIF(x;,2,)
EIF(x;,2,)

-0.2
T
0.2

"D 2 4 B8 8 10 12 14 16 18 20 16 18 20
Index Index
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that observation 14 is not an influential point anymore. It is also interesting to notice
that the contaminated observation 3 does not appear to be extremely influential on the
classical estimates. Of course, 3 is neither influential on the robust estimates since it has
been downweighted to zero. A conclusion is that, although EIFs can be useful to determine
which points are more influential that others, they are not suitable for outlier detection.
To detect outliers, it seems to be better to use the Robust Distances, which are robustified

versions of the Mahalanobis distances

RD; = d(l'z, L, Cn) = \/(xl - tn)tc7_11<xi o tn)’ (51)

with (t,,C,,) robust estimates of location and scatter. Observations with RD; bigger than
the critical value /X7 975 = 3.34 can be considered as potential outliers (cfr. Rousseeuw
and van Zomeren, 1990). Mahalanobis distances (obtained by using the sample mean and
covariance in (5.1)) and Robust Distances based on the RMCD estimator are reported for

the most interesting observations in the table below:

Soil Data Contaminated Soil Data
Index 3 4 12 13 14 3 4 12 13 14
Mahalanobis Distance | 1.21 3.13 1.96 2.43 3.04 |4.19 2.80 1.88 2.35 2.86
Robust Distance 1.19 452 2.75 236 4.25(299 4.45 267 231 4.12

Observation 4 has the largest distance for the clean data set, but is not detected as
extremely influential for the eigenvalues. It was however detected by Shi (1997) as influential
for the eigenvectors and it also comes up in the plot for Ay on the contaminated data. Notice
that the classical Mahalanobis distance is not well suited for detecting outliers, since it is
based on non robust estimators. Another tool to detect outliers is to make side by side

boxplots of the scores on the robustly estimated principal components, as was suggested in

(Croux and Ruiz, 1996).

6 Conclusion

Outlier resistant principal component estimators can be obtained by computing eigenvalues
and eigenvectors of a robust estimate of the covariance or correlation matrix. Applications

using M-estimators of scatter can be found in (Campbell 1980, Rivest and Plante 1988,
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Daigle and Rivest 1992). Since the breakdown point of an M-estimator decreases towards
zero with the dimension, high breakdown methods seem to be preferable. The most available
high breakdown scatter matrix estimators are the Minimum Volume Ellipsoid (MVE) and
the Minimum Covariance Determinant estimator (Rousseeuw 1985). Simulations have been
conducted to study the behavior of principal components based on the latter estimators
by Naga and Antille (1990), and Todorov, Neykov and Neytchev (1992). Although they
can be very useful in a first stage of a data analysis, they lack statistical efficiency. (The
MVE-estimator even has a non-normal convergence, reason why it was not included in
the present study.) The theoretical results and simulations in this paper favor the use
of S-estimators, since they combine high efficiency with appealing robustness properties,
including a smooth influence function. In an exploratory data analysis, the RMCD-approach
is a valuable alternative.

General expressions for influence functions have been given, which can be used for any
scatter matrix estimator possessing an influence function. From them, asymptotic variances
can be computed. It was also shown how influence functions can be used as an empirical
diagnostic tool.

In case that the number of variables is bigger than n(1—«), the S and RMCD method with
breakpoint o % are no longer applicable. (It can be seen that in this case, definition (1.1)
and the definition of MCD yield an infinity of possible solutions). This is a serious drawback,
since in many applications they are more variables than observations (e.g. Locantore et al
(1999)). Projection based methods (Li and Chen 1985, Croux and Ruiz-Gazen 1996) may
yield an outcome here.

Covariance and correlation matrices play a crucial role in many multivariate statistical
techniques. Robustification of these techniques can be obtained using robust estimators for

Y and P. As such, Pison et al (1999) propose a robust way to factor analysis.

7 Appendix

Proof of Lemma 1: For X ~ F, denote Fj the distribution of E*%(X — ). Since C is an

affine equivariant functional,

[N

C(X) =DIC(TF(X — )T
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implying
IF(z,C; F) = S2IF(S7% (z — p), C; Fy)S2. (7.1)

Since Fj is spherically symmetric, Lemma 1, page 276 in Hampel et al (1986) guarantees

that two real-valued functions oy and G exist such that

IF (u, C; Fo) = aq(l|ull)un’ — Be([lul)T, (7.2)

where I, is the p X p identity matrix and ||.|| indicates the Euclidean norm. Substituting

(7.2) in (7.1) yields

IF(z,C; F) = =H a5 (@ = w)=7H @ - p)(@ - w)'=7F = Be(I= 74 - w DL, | =5,

Equation (2.3) follows now immediately by noting that ||[S~2(z — p)|| = {(z — p)'S Y (z —
W = d(z). 0

The proof of Theorem 1 relies on the following lemma, which mimics Lemma 2.1 of Sibson

(1979) and is included for reasons of completeness:

Lemma 3. Let S: F — SPD(p) be a statistical functional and F a p-dimensional distribu-
tion. Suppose that IF(x,S; F') exists and let S(F') = Z. Denote vy, ... ,v, and Ay, ... , A, the
eigenvectors and eigenvalues of =. Then the influence functions OfUSj and )‘Sj (j=1,...,p)

are given by

IF(z,\g ;; F) = v IF(z, S; F)v; (7.3)
and
1
IF(z,vg; F) = Z SV (vpIF(z, S; F)v;) vg. (7.4)
k=1 ""
k#j

Proof of Lemma 3: Since S(F.)vg ;(F:) = Ag;(Fe)vg ;(Fe) for Fo = (1 — e)F + A,

simple derivation yields

OS(F.) ,:8'08,]'(178) . 8)‘S,j<Fs) .8US,]'(FE)

e A =

Rearranging the terms gives
(E = NL)IF(z,vg ;s F) = (IF(z, Ag ;; )L, — IF (2, S; F))v;
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which can, using =Y "1_, Ayopvp, and I, = > 7 vpv}, be written as

p p
D [k = M)kIF (z,vg s F)og = = > [0hIF (2, S; F)o;] v (7.5)
k2 k2

+ [IF(m, Ag i F) — viIF (z,S; F)v]} v

Since vy, ... , v, form an orthogonal basis, (7.5) implies (7.3) and

viIF (z, vg ;i F) = VilF (2, S; F)vi /(A — Ag).

Noting that the side-condition v§vj = 0 implies that IF(x, vg ;3 F') has no component in the

direction of v;, (7.4) follows. O

Proof of Theorem 1: From Lemma 1, there exist two real-valued functions o and B¢y

such that
ulF (2, C; F)u; = aq(d(2)) (vi(z — 1) (2 — p)'v) — B (d(@))vp ;. (7.6)
Lemma 3 combined with (7.6) and the equality vi>v; = \;d;; results in

IF(z, A\¢ ;3 F) = ViIF (2, C; F)v; = ac(d(@)) (0l (z — p)* — Bo(d(z))X;

and
IF F) = p ! d L L t
(z, 00 F) =) v Akac( (@) (vp(x = p)) (v;(x — p)) v
=y
Replacing v;“- (x — p) by the z-score z; yields the stated expressions. O

Proof of Corollary 1: Using (2.6) and Theorem 1, the asymptotic variance of AC,; can

be computed as:
ASV(Aq;, F) = BpllF(z, A\ ;; )] = Erl(ac(d(2))22 — B (d@)A;)°),

where z; = vj(r — p).

With w; = 2;/+/);, one has that u = (uy,...,u,)" ~ Fy. Moreover, d*(z) = >.b_, u?

J=1"j

and Lemma 1 imply

ASV(A, F) = Egl(ag(lul)Au? — Ba(lul)A) ]
= N ERglIF(u, Cj;; Fy)?] = Xj ASV(Cuy, Fy)
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as ASV(C,;, Fy) = ASV(Ci1; Fpy) by symmetry. For the eigenvector estimator, the asymptotic

variance is given by
ASV(vg ;, F) = EF[IF(QU,UCJ.;F)IF(m,vCJ.;F)t]

.hY 1 1 2 21, .t
- ZZ A — M Aj — )\lEF[aC(d(fE)) 212125 Uk - (7.7)

k=1 l=1
k#j 1#j

Using again the transformation z;/4/\; = u; to compute the expectation in (7.7) leads to

Erlac(d(z)*z222] = VNV NN Erlac(|[u]) *uwu?] = My By o ([|ul]) *uiu?)d.

(7.8)
Substituting (7.8) in (7.7) and using Lemma 1 yields
S
ASV(ve,, F) = ) ﬁEF [TF (u, Cjx; Fo)?Jvgvp
= (=)
k#j
P
AjAg
= ASV(C Q,Fo) ]—vkvt
' el G R
-y
since ASV(CJ/.C, Fo) = ASV(ClQ, Fo) by Symmetry. |

Proof of Lemma 2: Since R(F.) = CB%(FE)C(FE)CB%(FE) with F, = (1 — e)F + €A,
C(F) =X and Cp(F) = Xp, derivation yields

IF(z,R; F) = —%{IF(m, Cp; F)SHR + RSMF(2, Cp; F)} + SIF (e, C; F)S5E. (7.9)
¢From Lemma 1, there exist two functions a and S such that
IF(2, Cpi F) = ag(d(@) D, — Bod(@))Zp (7.10)
with D, = diag((x — p)(z — p)?). Inserting (2.3) and (7.10) in (7.9) yields

1 1
1 2

IF(z,R: F) = s (d(x))(D, S5 R + B5'D,) + ag(d(@)(Sp - m)(Sp! (e - ).
Putting z = EB% (z — p) and D, %' = B,' D, = D; completes the proof. O

Proof of Theorem 2: From Lemma 2, it follows that

’U;DiRU].C + (Rvj)tDivk> }
5 .

WIF (2, R; F)o, = aq(d(z)) {@;rz)(v,iaé)t - (
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With Rv, = \vr and Rvj; = A\jv;, Lemma 3 gives
IF(z, AR ;s F) = ViIF (2, R; F)v; = ac(d(2)) (25 — A\jviDzv;)

and
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