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Abstract: - Automated visual inspection, a crucial manufacturing step, has been replacing the more 
time-consuming and less accurate human inspection. This research explores automated visual inspection of 
surface defects in a light-emitting diode (LED) chip. Commonly found on chip surface are water-spot blemishes 
which impair the appearance and functionality of LEDs. Automated inspection of water-spot defects is difficult 
because they have a semi-opaque appearance and a low intensity contrast with the rough exterior of the LED 
chip. Moreover, the defect may fall across two different background textures, which further increases detection 
difficulties. The one-level Haar wavelet transform is first used to decompose a chip image and extract four 
wavelet characteristics. Then, wavelet-based principal component analysis (WPCA) and Hotelling statistic 
(WHS) approaches are respectively applied to integrate the multiple wavelet characteristics. Finally, the 
principal component analysis of WPCA and the Hotelling control limit of WHS individually judge the existence 
of defects. Experimental results show that the proposed WPCA method achieves detection rates of above 93.8% 
and false alarm rates of below 3.6%, and outperforms other methods. A valid computer-aided visual defect 
inspection system is contributed to help meet the quality control needs of LED chip manufacturers.  
 
Key-Words: - Surface defect inspection, Wavelet characteristics, Principal component analysis, Hotelling 
statistic, Machine vision system.  
 
1   Introduction 
Quality control is designed to prevent defective 
products from reaching the customer. Visual 
inspection constitutes an important part of quality 
control in the industry [1-2]. In most cases, quality 
control through visual inspection is still conducted by 
humans. However, difficulties exist in detecting 
defects by human eyes because inspectors are very 
likely to make erroneous judgments due to personal 
subjectivity or eye fatigues. Visual inspection 
determines product properties using visual 
information and is most often automated by 
employing machine vision techniques. Therefore, 
automated visual inspection of surface defects has 
become a critical task for manufacturers who strive to 
improve product quality and production efficiency 
[3-7]. In this study, we use machine vision techniques 
for automated surface inspection of light-emitting 
diode (LED) chips.  
     LED is a semiconductor device that emits visible 
light when an electric current passes through the 

semiconductor chip. Compared with incandescent 
and fluorescent illuminating devices, LEDs have 
lower power requirement, higher efficiency, and 
longer lifetime. Typical applications of LED 
components include indicator lights, LCD panel 
backlighting, fiber optic data transmission, etc. The 
basic structure of an LED consists of the light 
emitting semiconductor chip, a lead frame where the 
chip is actually placed, and the encapsulation epoxy 
which surrounds and protects the chip. Figure 1 
shows the LED product and basic LED structure 
diagram. To meet consumer and industry needs, LED 
products are being made in smaller sizes, which 
increase difficulties of product inspection.  
     With the popularity of LEDs, inspection of 
surface defects has become a critical task for 
manufacturers who strive to enhance LED product 
quality. Surface defects affect not only the 
appearances of LEDs but also their functionality, 
efficiency and stability. As inspecting surface defects 
by human eyes is ineffective and inefficient, this 
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research aims to develop an automated vision system 
for detecting water-spot defects, which commonly 
appear on the surfaces of LED chips owing to the 
steam generated during the production process. 
Automated inspection of a water-spot defect is 
difficult because the blemish has a semi-opaque 
appearance and a low intensity contrast with the 
rough exterior of the LED chip. With a width of 
0.21mm, an LED chip comprises an aluminum-pad 
(bonding pad) in the central area and a metal oxide 
semiconductor (emitting area) in the outer area, as 
shown in Fig. 2 (a). Texture of the central area has a 
random pattern while that of the outer area has a 
uniform appearance. A water-spot blemish may fall 
across the two areas of significantly different textures, 
which complicates the defect detection procedure. 
Figures 2 (b)-(d) display the LED chip images with 
water-spot blemishes of different shapes.  
 

(b) 

Chip

Epoxy encapsulation

Lead frame

(a)  
Fig. 1  (a) LED product (b) LED structure diagram 

 
 

 
Fig. 2  LED chip images (a) normal chip (b)-(d) 

defective chips with water-spot defects of different 
shapes 

 
     Defect detection techniques compute a set of 
textural features in a sliding window and search for 
significant local deviations among the feature values. 
The detection techniques are generally classified into 
the spatial domain and the frequency domain. Siew et 
al. [8] applied the co-occurrence matrix method, a 
traditional spatial domain technique, to assess carpet 
wear by using two-order gray level statistics to build 
up probability density functions of intensity changes. 
For another spatial domain example, Latif-Amet et al. 
[9] presented wavelet theory and co-occurrence 
matrices for detection of defects encountered in 
textile images and classified each sub-window as 
defective or non-defective with a Mahalanobis 
distance.  
     As to techniques in the frequency domain, Chan 
and Pang [10] proposed a simulated fabric model 
based on Fourier transform for inspection of 
structural defects in fabric. Since a three-dimensional 
frequency spectrum is very difficult to analyze and 
defects occur mostly along the horizontal and vertical 
axes, the central spatial frequency spectrum approach 
has been proposed to increase efficiency of the 
analysis process. Seven significant characteristic 
parameters can be extracted from the central 
frequency spectrums for describing the defect types. 
Kumar and Pang [11] presented a new multi-channel 
filtering scheme for unsupervised fabric defect 
detection using a class of self-similar Gabor 
functions. Also, Lin [12] developed a novel approach 
that applies discrete cosine transform decomposition 
and cumulative sum techniques for the detection of 
tiny defects on passive component chips.  
     Regarding defect detection applications in the 
electronic industry, Lin and Chiu [13] used 
multivariate Hotelling T2 statistic to integrate 
different coordinates of color models for 
MURA-type defect detection on Liquid Crystal 
Displays (LCD), and applied ant colony algorithm 
and back-propagation neural network techniques to 
develop an automatic inspection procedure. Lu and 
Tsai [14] proposed a global approach for automatic 
visual inspection of micro defects such as pinholes, 
scratches, particles and fingerprints. The Singular 
Value Decomposition (SVD) adopted by Lu and Tsai 
suits the need for detecting defects on the TFT-LCD 
images of highly periodical textural structures. 
Furthermore, in the recent decade, many vision 
systems have been developed for the inspection of 
surface defects on semiconductor wafers [15-17]. For 
instance, Fadzil and Weng [18] implemented a vision 
inspection system that achieves a 90% probability of 
accurately classifying defects, scratches, 
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contamination, blemishes, off center defects, etc. in 
the encapsulations of diffused LED products.  
     The aforementioned techniques perform well in 
anomaly detection, but most of them do not detect 
defects with the properties of water-spot defects. This 
research has been motivated by the need for an 
efficient and effective technique that detects 
semi-opaque and low-intensity-contrast water-spot 
defects falling across two different background 
textures.  
 
 
2   Proposed Methods 
To detect water-spot defects of LED chips, this 
research adopts the one-level Haar wavelet transform 
to conduct image transformation and extract wavelet 
characteristics. We apply the wavelet-based 
multivariate statistical approaches to integrate 
multiple wavelet characteristics and then develop the 
principal component analysis and Hotelling control 
procedure to individually judge the existence of 
water-spot defects in LED chip images.  
 
 
2.1 Wavelet characteristics 
The Haar wavelet transform is one of the simplest and 
basic transformations. Its base transform in the 
multiple-level scaling space can be implemented as:   
 

1, 2 1, 2 1
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j k

v v
v + + ++

= ; 1,2 1,2 1
, 2

j k j k
j k

v v
w + + +−

= . (1) 

 
In this research, we apply a standard decomposition 
that covers wavelet row and column transfers to do 
the wavelet transform of a two-dimensional image. 
The Haar transform can be computed stepwise by the 
mean value and half of the differences of the 
tristimulus values of two contiguous pixels. We 
perform the 2-D wavelet transform by applying 1-D 
wavelet transform first on rows and then on columns. 
Based on the transfer concept of the one-dimensional 
space, the Haar wavelet transform can process a 
two-dimensional image of (M x N) pixels in the 
following way:   
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     In the above expressions (Eqs. (2)-(3)), ( , )g p q  
represents an original image, ( , )Rg p q  the row 
transfer function of ( , )g p q , and ( , )Cg p q  the 
column transfer function of ( , )Rg p q . As ( , )Cg p q  is 
also the outcome of the wavelet decomposition of 

( , )g p q , the outcomes of a wavelet transform can be 
defined as:   
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     One level of wavelet decomposition generates one 
smooth sub-image and three detail sub-images that 
contain fine structures with horizontal, vertical, and 
diagonal orientations. An image is decomposed by 
wavelet transform into one approximation sub-image 
(A) and three detail sub-images (D1, D2 and D3). 
These four sub-images, each of which has a size of 
(M/2 x N/2) pixels, form the wavelet characteristics. 
Wavelet transform provides a convenient way to 
obtain a multi-resolution representation, from which 
texture features can be easily extracted. The merits of 
using wavelet transform include local image 
processing, simple calculations, high speed 
processing and multiple image information [19-21].  
 
 
2.2 Wavelet-based principal component 

analysis 
Principal component analysis (PCA) is a popular 
technique for data compression and has been 
successfully used as initial step in many computer 
vision tasks [22-23]. The principal components of a 
set of process variables 1x , 2x , …, px  are just a 
particular set of linear combinations of these 
variables. Geometrically, the principal component 
variables 1y , 2y , …, py  are the axes of a new 
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coordinate system obtained by rotating the axes of 
the original system (the p’s). The new axes represent 
the directions of maximum variability.  
     The basic intent of principal components is to find 
the new set of orthogonal directions that define the 
maximum variability in the original data, and this 
will lead to a description of the process requiring 
considerably fewer than the original p variables. The 
information contained in the complete set of all p 
principal components is exactly equivalent to the 
information in the complete set of all original process 
variables, but hopefully we can use far fewer than p 
principal components to obtain a satisfactory 
description [24].  
     The WPCA approach decomposes an image of 
size (M x N) pixels into a set of a x b multivariate 
processing units. Therefore, an original image has g x 
h (i.e. M/a x N/b) multivariate processing units. For 
each multivariate processing unit, the region of size a 
x b pixels can be applied the wavelet transform to 
obtain four wavelet characteristics A, D1, D2 and D3 
through calculations. The PCA integrates the 
multiple wavelet characteristics into a PC score for 
each multivariate processing unit. This PC score can 
be regarded as an distance value of a multivariate 
processing unit. The larger the PC score, the more the 
difference between the region and normal area. 
Therefore, this region can be judged as a defective 
region, otherwise this region has no defect.  
     Let the four random variables 1x , 2x , 3x , 4x  be 
the four wavelet characteristics and be represented by 
a vector [ ]1 2 3, , , TA D D D=X  with covariance matrix 
Σ, and let the eigenvalues of Σ be 1λ , 2λ , 3λ , 4λ . 
Then the constants ije  are simply the elements of the 
ith eigenvector ie  associated with the eigenvalue iλ . 
Basically, if we let E be the matrix whose columns 
are the eigenvectors, then 
 
′ =E EΣ Λ                                                                   (5) 

 
where Λ  is a 4 × 4  diagonal matrix with main 
diagonal elements equal to the eigenvalues 

1 2 4... 0λ λ λ≥ ≥ ≥ ≥ . More specifically, the equation 
can be expressed by the eigenvalues and the 
eigenvectors as follows:  
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The principal component analysis can be performed 
by computing the eignvalues and eignvectors [25].  
     The variance of the ith principal component is the 
ith eigenvalue iλ . Consequently, the proportion of 
variability in the original data explained by the ith 
principal component is given by the ratio 

1 2 4λ (λ λ λ )i + +⋅⋅⋅+ . Therefore, one can easily see 
how much variability (for instance, 80 to 90%) is 
explained by retaining just a few (say, r) of the 4 
principal components simply by computing the sum 
of the eigenvalues for those r components and 
comparing that total to the sum of all 4 eigenvalues.  
     Once the principal components have been 
calculated and a subset of them selected, we can 
obtain new principal component observations yij 
(principal component (PC) scores) simply by 
substituting the original observations xij into the set of 
r retained principal components. After conducting 
many experiments, we find the first one principal 
component accounts for most of the variability in this 
study. If we have retained the first one (i.e. r=1) of 
the original four principal components, then the PC 
score ( , )M x yY  of the multivariate processing unit 

( , )M x y  of a testing image can be defined as:  
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and 11 12 13 14[ , , , ]e e e e=T

1e  is the first eigenvector of the 
Σ of a testing image. Normal texture images are used 
to estimate the parameters of standard texture 
characteristics for bonding pad and emitting area, 
respectively. The sample expected matrix of the 
wavelet characteristics ( X ) describes the properties 
and relations between normal and defect images. The 
threshold value (T) is defined as follows:  
 

YT Y Kσ= +                                                                 (8) 
 
where K  is a constant empirically determined, Y  
and Yσ  are respectively the mean value and the 
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standard deviation of the PC scores of a normal 
image. Therefore, if a multivariate processing unit 
M(x, y) of a testing image f(x, y) has a higher PC score, 
it implies that the region contains defects in the 
testing image. On the contrary, a lower PC score 
signifies that no defect exist in the corresponding 
region of the image.  
 
 
2.3 Wavelet-based Hotelling statistic method 
The wavelet-based Hotelling statistic (WHS) method 
decomposes an image of (M x N) pixels into a set of 
sub-images, each of which has a size of (m x n) pixels 
and is a multivariate processing unit. The original 
image has g x h (i.e. M/m x N/n) multivariate 
processing units, each of which can be further 
decomposed into a x b wavelet processing units. For 
each wavelet processing unit, the wavelet transform 
can be applied to the region of (m/a x n/b) pixels to 
obtain four wavelet characteristics A, D1, D2 and D3 
through calculations. The Hotelling statistic T2 
integrates the multiple wavelet characteristics into a 
T2 value for each multivariate processing unit. This 
T2 value can be regarded as a distance value of a 
multivariate processing unit. The larger the T2 
statistic value, the more distinctive the region is from 
the normal area. Thus, the more easily the region can 
be judged as defective.  
     The proposed WHS approach assumes that the 
size of a multivariate processing unit is 4 x 4 (i.e. m x 
n) pixels and the size of a wavelet processing unit is 2 
x 2 (i.e. a x b) pixels. One multivariate processing 
unit will have 2 x 2 (i.e. m/a x n/b) wavelet 
processing units. That is, four wavelet processing 
units ( , )a bC x y  can be defined as one multivariate 
processing unit ( , )M x y , where a and b are integers 
and (1≦a, b 2)≦ . The corresponding spatial 
coordinates of ( , )a bC x y  are a square with size 2 x 2 
pixels from (4 , 4 )f x k y l× + × +  to 

(4 1, 4 1)f x k y l× + + × + + . Thus, one ( , )M x y  
includes four ( , )a bC x y , which are 1 1( , )C x y , 1 2( , )C x y , 

2 1( , )C x y  and 2 2( , )C x y . One ( , )a bC x y  can be 
decomposed by wavelet transform to obtain one 
approximated characteristic ( , )a bA x y  and three detail 
characteristics 1( , )a bD x y , 2 ( , )a bD x y  and 3 ( , )a bD x y .  
     The calculation formulas of a multivariate control 
procedure [26-27] can be rewritten as Eqs. (9) to (14) 
to represent a multivariate process of images.  
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where ( , ),a bC x y pX  is the p-th image characteristic of a 

wavelet processing unit ( , )a bC x y ; ( , )M x yX  is the 
mean matrix of image characteristics in a 
multivariate processing unit ( , )M x y ; ( , ),M i j pX  is the 
mean value of the p-th image characteristic of 

( , )M i j ; 2
( , ),M x y pS  is the variance of the p-th image 

characteristic of ( , )M x y ; ( , ), ,M x y p qS  is the covariance 
of the p-th and the q-th image characteristics of 

( , )M x y . The multivariate matrices used in this 
research can be expressed as follows:  
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     Normal texture images are used to estimate the 
parameters of standard texture characteristics. The 
sample mean matrix (a x b) and the sample 
covariance matrix (S) describe the properties and 
relations between normal and defect images. The X  
and S are defined as:  
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where 2

pS  is the sample variance of the p-th wavelet 
characteristic of an image; ,p qS  is the sample 
covariance of the p-th and the q-th wavelet 
characteristics of an image. 
     The T2 statistic value of the multivariate 
processing unit ( , )M x y  of a testing image can be 
defined as: 
 

2 1
( , ) ( , )( , )

T

M x y M x yM x yT a b X X S M X−⎡ ⎤ ⎡ ⎤= × − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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where a x b is the number of wavelet process units in 
a multivariate processing unit. ( , )M x yX  is the mean 
matrix of image characteristics in the multivariate 
processing unit of a testing image. The X  and S are 
respectively the mean matrix and the covariance 
matrix of image characteristics of a normal image. 
The upper control limit is as follows: 
 

, ,( - - 1)
( -1)( -1)

- - 1 p mn m p
p m n

F
mn m p θ ++                                   (20) 

 
,where F is a tabulated value of the F distribution at 
the significance level of θ .  
 
 
3   Experiments and Analyses 
To evaluate the performance of the proposed 
approaches, experiments are conducted on real LED 
chips provided by a company that manufactures high 
quality LED chips in Taiwan. We test 180 LED chip 
images, of which 60 have no defects and 120 have 
various water-spot defects. All of the samples are 
randomly selected from the manufacturing process of 
LED chips. All experiments are implemented on a 
Pentium IV personal computer with 2.6GHz CPU 

and 512 MB RAM; and all programming is done in 
the C language.  
     To increase the number of LED chips on a wafer, 
every chip is located very close to its neighboring 
chips. As the carrier plate moves to have the image of 
the next chip captured, the movement might cause the 
CCD to deviate from its original position and the 
image capturing device to vibrate. Thus, the images 
of all the chips might be captured with slight 
differences. That is, not all the chips are located in the 
exactly same positions in their individual images. As 
a result, two areas are needed for each image to 
specify the locations of two different background 
textures in which water-spot defects may possibly 
exist. The LED emitting area and bonding pad need 
to be separated first and then individually apply the 
proposed methods to detect defects.  
     In the outer area of an LED chip is an emitting 
area which contains uniform texture. Since wavelet 
transform can process images of rectangular shapes, 
a specially made background must be added to 
convert the different shape region into a rectangular 
one. Thus, we change gray levels of the area falling 
outside the outer area to the average gray level of 
normal chip images in Fig. 3(a). With such a 
manipulated background, we not only obtain a 
rectangular region for wavelet transform but also 
minimize the affect non-emitting region. Once the 
mixed image is transformed into the wavelet domain, 
the non-emitting region will not interfere in the 
feature extraction of the emitting region.  
 

 
Fig. 3  The mixed images (a) for the bonding pad (b) 
for the emitting area  
 
     Similarly, this procedure is also applied to defect 
detection on LED bonding pad except additionally 
taking median filtering operation. In the central area 
of an LED chip is a bonding pad which contains 
statistical texture with random particles like pepper 
noises. The more similar the gray levels of the 
particles on bonding pad and the water-spot defect, 
the more difficult it is to distinguish the defect and 
the random particles. The median filter [29] is used to 
smooth the particles on the random texture. The mask 
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of size 11 x 11 pixels is capable of smoothing all the 
random particles in the testing samples, as shown in 
Fig. 3 (b). Then, the filtered images are conducted the 
gray level changes of the area falling outside the 
central area for the same purpose described in Fig. 3 
(a).  
     For the proposed WPCA and WHS approaches, 
we found the most appropriate sizes of multivariate 
processing units to be 2 x 2 and 4 x 4 pixels, 
respectively, after conducting various experiments. 
At these sizes, the two methods achieve the best 
performance considering the sample training time, 
the recognition time of the testing period, the size of 
the defect area and other factors in the multivariate 
processing.  
     To verify the performance of the proposed 
methods, we compare the results of our experiments 
against those provided by professional inspectors. 
Figure 4 shows partial results of detecting water-spot 
defects (Fig. 2 (b)-(d)) by the Otsu method [29], the 
proposed WHS and WPCA approaches, and the 
professional inspector, individually. The WHS and 
WPCA methods detect most of the water-spot 
blemishes while the Otsu method misses some defect 
regions.  
     The performance evaluation indices, (1-α) and 
(1-β), are used to represent correct detection 
judgments; the higher the two indices, the more 

accurate the detection results. Statistical type I error α 
suggests the probability of producing false alarms, i.e. 
detecting normal regions as defects. Statistical type II 
error β implies the probability of producing missing 
alarms, which fail to alarm real defects. We divide 
the area of normal region detected as defects by the 
area of actual normal region to obtain type I error, 
and the area of undetected defects by the area of 
actual defects to obtain type II error. The correct 
classification rate (CR) is defined as:   
 

( ) / 100%cc dd totalCR N N N= + ×                                      (21) 

 
where ccN  is the pixel number of normal textures 
detected as normal areas, ddN  is the pixel number of 
ripple defects detected as defective regions, and totalN  
is the total pixel number of a testing image.  
     The average detection rates (1-β) of all testing 
samples by the three methods are, respectively, 
86.6% (Otsu method), 91.3% (WHS method), and 
93.8% (WPCA method). The average false alarm 
rates (α) of all testing samples are, respectively, 9.3% 
(Otsu method), 5.8% (WHS method), and 3.6% 
(WPCA method). The proposed wavelet based 
multivariate statistical approaches have higher 
detection rates (1-β) and correct classification rates 

Fig. 4  Partial detection results of the Otsu, WHS, WPCA, and the professional inspector 
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(CR) than does the traditional method applied to LED 
chip images. The WPCA method not only excels in 
its ability of correctly discriminating water-spot 
defects from normal regions but also has the lowest 
false alarm rate. The average computation time for 
processing an image of 256 x 256 pixels is as follows: 
1.84 seconds (Otsu method), 2.32 seconds (WHS 
method), and 2.26 seconds (WPCA method). Both of 
the multivariate statistical approaches based on the 
wavelet characteristics have the same processing 
time.  
     As the decision threshold value changes, so do its 
false alarm rate (α) and detection rate (1-β), both of 
which are used to describe the performance of a test 
according to hypothesis testing theory [30]. When 
various decision thresholds (Eqs. (8) and (20)) are 
used, their pairs of false alarm rates and detection 
rates are plotted as points on a Receiver Operating 
Characteristic (ROC) curve. Figures 5 and 6 present 
the two ROC curves of the WHS and WPCA 
approaches, and the one point of the Otsu method for 
the bonding pad and the emitting area respectively. 
The upper-left corners of Figs. 5 and 6 are the 
optimum points, which have a 100% detection rate 
and a 0% false alarm rate. The more the ROC plot 
approaches the upper-left corner, the better the test 
performs. In industrial practices, a more than 90% 
defect detection rate and a less than 10% false alarm 
rate are a good rule of thumb for performance 
evaluation of a vision system. Accordingly, the 
proposed WPCA approach, with its ROC plots closer 
to the upper-left corner, outperforms the WHS 
method and the traditional Otsu method.  
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Fig. 5  ROC plots of the Otsu, WHS, and WPCA 

methods for the bonding pad 
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Fig. 6  ROC plots of the Otsu, WHS, and MPCA 
methods for the emitting area 

 
     The WPCA approach achieves good performance 
in detecting surface defects of LED chips as well as 
semi-opaque and low-intensity-contrast water-drop 
blemishes that fall across two different background 
textures. Since the computation of multivariate 
statistics is based on the mean vector and covariance 
matrix of the training samples, lighting changes may 
lead to an increase of variation in statistics and result 
in a decline of defect detection performance. Thus, it 
is recommended to re-compute the mean vector and 
covariance of the training samples whenever 
illumination is significantly changed. In addition, the 
proposed method is not recommended for detecting 
blemishes embedded in structural textures because it 
is designed to identify defects in random textures.  
 
 
4   Conclusion 
Machine vision technology improves productivity 
and quality management, and provides a competitive 
advantage to industries that employ this technology. 
This research applies wavelet-based multivariate 
statistical approaches combined with machine vision 
techniques to detect water-spot blemishes that fall 
across two different background textures of LED 
chips. The research methods use the principal 
component analysis and Hotelling statistic, 
respectively, based on wavelet characteristics to 
judge the existence of water-spot defects through 
multivariate processes of combining image 
characteristics from wavelet decomposition of local 
image blocks.  
     Experimental results show that the WPCA 
approach achieves detection rates of above 93.8% 
and false alarm rates of below 3.6% in detecting 
water-spot blemishes across two different 
background textures. As indicated in the ROC curve 
analysis, the WPCA approach has better defect 
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detection rates and lower false alarm rates than do the 
WHS and Otsu methods. This research contributes a 
solution to a common surface defect detection 
problem of LED chips and offers a computer-aided 
visual defect inspection system to meet the inspection 
and quality control request.  
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