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ABSTRACT

We analyse the spectral variability of MCG–06-30-15 with 600 k s of XMM–Newton data,

including 300 k s of new data from the joint XMM–Newton and NuSTAR 2013 observational

campaign. We use principal component analysis to find high-resolution, model-independent

spectra of the different variable components of the spectrum. We find that over 99 per cent of the

variability can be described by just three components, which are consistent with variations in

the normalization of the power-law continuum (∼97 per cent), the photon index (∼2 per cent)

and the normalization of a relativistically blurred reflection spectrum (∼0.5 per cent). We

also find a fourth significant component but this is heavily diluted by noise, and we can

attribute all the remaining spectral variability to noise. All three components are found to be

variable on time-scales from 20 down to 1 k s, which corresponds to a distance from the central

black hole of less than 70 gravitational radii. We compare these results with those derived

from spectral fitting, and find them to be in very good agreement with our interpretation of

the principal components. We conclude that the observed relatively weak variability in the

reflected component of the spectrum of MCG–06-30-15 is due to the effects of light-bending

close to the event horizon of the black hole, and demonstrate that principal component analysis

is an effective tool for analysing spectral variability in this regime.

Key words: galaxies: active – galaxies: individual: MCG–6-30-15 – galaxies: Seyfert.

1 IN T RO D U C T I O N

MCG–06-30-15 is a Seyfert 1 galaxy, with a highly variable central

X-ray source. It has been very well studied, and shows a strong,

broad iron line feature (Tanaka et al. 1995), along with an excess

at soft energies, and a Compton hump at high energies (Miniutti

et al. 2007). This is indicative of a relativistic reflection spectrum,

caused by the primary coronal emission hitting the accretion disc

and causing fluorescent line emission. This spectrum is then blurred

by relativistic effects close to the event horizon.

MCG–06-30-15 also shows evidence of complex absorption fea-

tures, requiring multiple absorbing zones to describe them fully

(Otani et al. 1996; Lee et al. 2001; Turner et al. 2003; Young et al.

2005; Chiang & Fabian 2011). Fig. 1 shows the ratio of the XMM–

Newton spectrum from the latest observation of MCG–06-30-15

⋆ E-mail: mlparker@ast.cam.ac.uk

to a power law, fit in the 1.9–2 and 9–10 keV energy bands. This

clearly shows the effect of absorption, as well as the soft excess and

broad and narrow iron lines.

The nature of the variability and spectral features in MCG–06-

30-15 is a contentious issue. The red wing of the iron line, instead of

being symptomatic of relativistic blurring of a reflection spectrum,

was instead interpreted as a sign of partial covering absorbers by

Miller, Turner & Reeves (2008). In this model, a fraction of the

central X-ray source is covered by an additional absorber. In com-

bination with a distant reflector, which is also present in the blurred

reflection model, this explains the broad line feature.

A key feature of the emission from MCG–06-30-15 is the lack

of variability in the non-power-law component (Fabian et al. 2002).

This component of the spectrum appears to stay relatively constant,

while almost all of the variability can be explained by a change in the

normalization of the power law. Initially, this is hard to understand

in the context of either model – if the constant component is due

to reflection, an increase in the continuum flux should lead to an
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722 M. L. Parker et al.

Figure 1. Ratio of the 2013 MCG–06-30-15 XMM spectrum to a power law,

fit in the 1.9–2 and 9–10 keV bands. The response is modified between 2 and

2.5 keV using ‘gain fit’ in XSPEC, to correct for the instrumental gold edge

(purely for visual purposes). A strong narrow iron line is visible between 6

and 7 keV, along with a broad iron line stretching to lower energies, a soft

excess around 0.5 keV, and complex absorption features below 2 keV. Some

binning is applied, for clarity.

increase in the reflected flux and if this component is due to partial

covering of the power law, the unabsorbed part of that power-law

responsible for the red wing and soft excess should track the power-

law flux as well.

In the partial covering model it appears that the covering fraction

must be inversely proportional to the power-law flux (Reynolds

et al. 2009), which requires a change in the size of either the source

or the absorber, fine-tuned so as to keep the flux in the absorbed

component constant. In the reflection scenario a relatively constant

reflection component can be explained by the light-bending model

of Miniutti et al. (2003), where the height of the source above

the disc changes, producing a large change in the continuum flux

with very little change in the reflection component. In this model

the source height determines the continuum flux, as the closer the

source is to the black hole the larger the fraction of source photons

that pass through the event horizon. The reflection component stays

relatively constant because the fraction of source photons that hit the

disc is not strongly dependent on the source height – the photons

that would have hit the disc but are bent into the black hole are

replaced by those that would have escaped to infinity, but are bent

down on to the disc instead.

Time lags have been observed in MCG–06-30-15, by

Emmanoulopoulos, McHardy & Papadakis (2011) and Vaughan,

Fabian & Nandra (2003). Emmanoulopoulos et al. found a soft

lag between the 0.5–1.5 and 2–4 keV bands at frequencies around

10−3 Hz. They found that the lag-frequency spectrum was best de-

scribed by a reverberation model in which the hard lag is due to

variations propagating through the accretion disc and the soft lag is

caused by the light travel time between the corona and the disc, sim-

ilar to that proposed for 1H0707-495 by Zoghbi, Uttley & Fabian

(2011).

To understand the emission of MCG–06-30-15, we need to con-

sider variations from both spectral and timing perspectives, to con-

strain both the variation time-scales and the shape of the differ-

ent components that make up the spectrum. In this paper, we use

principal component analysis (PCA) to simultaneously analyse the

spectral shape and variability of the spectrum of MCG–06-30-15.

2 PR I N C I PA L C O M P O N E N T A NA LY S I S

PCA is a powerful tool for analysing variability in complex sources,

by factorizing the data set into a set of independently variable com-

ponents, expressing the maximum amount of variability in as few

as possible. This gives a model-independent method of finding the

different constituent parts of a spectrum and quantifying their vari-

ability.

PCA has applications in many areas of astronomy, and has been

used for many different types of analysis, including quasar spectral

parameters (Francis & Wills 1999), spectral variability of X-ray

binaries (Malzac et al. 2006; Koljonen et al. 2013), UV spectral

variability in AGN (Mittaz, Penston & Snijders 1990) and stellar

classifications (Whitney 1983). See Kendall (1975) for a discussion

of the wider uses of this type of analysis outside astronomy.

2.1 Theory

PCA is effectively a method of reducing the dimensionality of an

n × m dimensional data set to a set of eigenvectors describing the

majority of the variability in the first few vectors. The method de-

scribed here uses singular value decomposition (SVD), a method

of decomposing a matrix into orthogonal eigenvectors, to find the

principal components (Press, Flannery & Teukolsky 1986; Mittaz

et al. 1990; Miller et al. 2007; Miller et al. 2008), as this has the

advantage of not requiring a unique solution to the matrix factor-

ization. In practice, this means that it is not necessary to have more

spectra than energy bins in the analysis (analogous to having more

unknowns than equations), so the full instrumental resolution can

be preserved, if desired.

We use SVD to reduce the number of values needed to describe a

spectrum from n parameters (one for each energy bin, Ej) to a small

number of principal components, which account for the majority

of the variability of the source. The remaining components are

attributable to noise, and can be distinguished from real components

using the log–eigenvalue (LEV) diagram (see Fig. 2).

We create an n × m matrix M, with n energy bins and m spectra

from different time bins. SVD is then used to factorize this matrix:

M = UAV ∗ (1)

where U is an n × n matrix, V is an m × m matrix and A is

an n × m diagonal matrix. The rows of U and the columns of V

each give a set of orthogonal eigenvectors to the matrices MM∗

and M∗M, and the diagonal elements of A are the corresponding

eigenvalues. When applied to a matrix of spectra, the eigenvectors

give the spectra of each variable component, and the square root

of each eigenvalue quantifies the variability in that component.

The fractional variability of each component can then be found by

dividing each eigenvalue by the sum of all eigenvalues. By plotting

the fractional variability of each eigenvalue on a log scale (see

Fig. 2), the real variable components can be distinguished from

the noise. In general, the variability of the noise components decays

geometrically, leading to a straight line on the LEV. Once identified,

these eigenvectors can then be discarded from further analysis.

2.2 Previous use of PCA with MCG6

PCA of MCG–06-30-15 was first performed by Vaughan & Fabian

(2004), using data from a long XMM–Newton observation in 2001.

They found that 96 per cent of the variability could be attributed to

a single, relatively flat, spectral component. This is consistent with

their interpretation of the spectrum as a constant reflection spectrum

 at C
alifo

rn
ia In

stitu
te o

f T
ech

n
o
lo

g
y
 o

n
 Jan

u
ary

 1
6
, 2

0
1
4

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://mnras.oxfordjournals.org/
http://mnras.oxfordjournals.org/


PCA of MCG–06-30-15 723

Figure 2. Top: LEV diagram, showing the fractional variance of the first

50 eigenvectors from the PCA analysis of 600 k s of XMM data on 10 k s

time-scales. The line shows the best-fitting geometric progression to the

points from 5 to 50, which are attributable to noise. The significance of the

components can be determined by their deviation from this line, which is

>5σ for all of the first four principal components. Note that the number of

eigenvectors is either the number of energy bins, or the number of spectra,

whichever is lower. Some higher order eigenvectors are excluded from this

plot, for illustrative purposes. Bottom: LEV diagram of the first four com-

ponents. Error bars are plotted, but are smaller than the points for the first

three components.

and highly variable power law, and agrees with their results from rms

spectra and flux–flux analysis. However, this analysis was limited to

an energy range of 3–10 keV to exclude the potential effects of the

warm absorber, and had low spectral resolution, leaving the results

ambiguous. The second and third components are shown, and are

found to be consistent with noise.

More recently, Miller et al. (2008) performed a more detailed

analysis using SVD to preserve the full instrumental resolution,

with both XMM–Newton and Suzaku data. We note that it is not

always desirable to use the full instrumental resolution in studies of

variability, as higher order terms may be lost from the analysis, and

the noise in the component spectra is increased. Miller et al. find

that the optimum signal-to-noise ratio is achieved using 20 k s time

bins, which are too large to examine the variability of the spectrum

close to the event horizon. In their analysis from 2–10 keV they

find a single variable component, well fitted with a power law.

Below 2 keV, they find that more components are necessary to fully

Table 1. List of observations used in the PCA.

Note that the on-source exposure times will be

smaller than the on time, so the total exposure

length is closer to 600 k s.

Observation ID Date Duration (s)

0111570101 2000-07-11 46 453

0111570201 2000-07-11 66 197

0029740101 2001-07-31 89 432

0029740701 2001-08-01 129 367

0029740801 2001-08-05 130 487

0693781201 2013-01-31 134 214

0693781301 2013-02-02 134 214

0693781401 2013-02-03 48 918

Total 779 282

describe the data set, and attribute these to the effects of variable

absorption, although they are not shown or modelled within that

work.

3 DATA

We use all the available EPIC-pn (Strüder et al. 2001) data for

MCG6, including both the original 300 k s used by Vaughan &

Fabian and Miller et al., which are publically available, and ∼300 k s

from the recent joint XMM–Newton (Jansen et al. 2001) and NuSTAR

(Harrison et al. 2013) 2013 observational campaign.

We use a 40 arcsec source extraction region, and background

regions of around 50 arcsec, and filtered the data for background

flares. See Marinucci et al. (in preparation) for a more detailed

discussion of the data reduction. The full list of observations used

is shown in Table 1.

3.1 Analysis

We use custom good time interval (GTI) files to extract spectra with

different time bins, splitting the data into m = ttotal/tbin sections,

and disregarding those with an on-source exposure time less than

30 per cent of the bin size. We then use PYFITS 3.1.2 to read the

spectra into PYTHON for analysis.

For the PCA, we calculate a mean spectrum, Fmean(Ej), from

all the background-subtracted individual spectra, and subtract this

mean spectrum from each spectrum, giving a set of residual spectra.

These show the deviations from the mean for each spectrum, and

these are then normalized by dividing by the mean number of counts

in each bin, returning a set of fractional residual spectra:

Fres,i(Ej) =
Fi(Ej) − Fmean(Ej)

Fmean(Ej)
. (2)

An n × m matrix is then created from these, with n energy bins

and m time bins. The energy bins are logarithmically spaced, and

we vary the number of bins to optimize the signal-to-noise ratio

for each component, depending on the fractional variance of the

component currently being investigated and the size of the time-

step used (lower variance means that the component has a smaller

signal in the PCA, and smaller time bins increase the noise). Finally,

we use the LINALG.SVD() function from the NUMPY library for PYTHON

on this matrix to calculate the SVD of the matrix.

We note that the PCA requires all components to be orthogonal.

In practice, this means that the dot-product of any two spectra must
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be zero, i.e.:

n∑

i=1

fa(Ei) × fb(Ei) = 0 (3)

where fa,b are the component spectra. Given that the first component

is greater than zero in all energy bins and approximately constant,

this condition requires all subsequent principal components to have

a mean value of approximately zero. This does not necessarily

compromise the physical interpretation of the principal components,

but means that only the most variable additive component should

be expected to be entirely positive. Any other additive components

will then be expressed as corrections to the first component.

We perform the PCA using several different time-steps: 20 k s,

10 k s, 5 k s, and 1 k s, and vary the number of spectral bins from

120 in the 20 k s analysis to 50 in the 1 k s analysis, over the energy

range 0.4–9 keV. The results obtained are qualitatively the same,

regardless of the size of the intervals used. The noise increases

when shorter intervals or finer energy bins are used, and we find

that 10 k s time intervals offer the best compromise in terms of

signal-to-noise ratio against timing resolution, so all figures and

results presented use these intervals unless otherwise stated.

Increasing the energy range, and hence number of counts, greatly

reduces the contribution of noise to the variance of the spectrum,

but also exposes the analysis to more potential sources of variation,

making the results more complex and harder to interpret. We restrict

the analysis to the 0.4–9 keV band due to increased noise in the

principal components at extreme energy values.

Random noise in the spectra can mostly be removed as higher-

order components, and what remains can be estimated using var-

ious methods, such as perturbing the input spectra and examining

the LEV diagram. Of more concern are systematic errors, which are

harder to quantify. Because the analysis only examines spectral vari-

ability, only variable systematics or those which affect the analysis

itself. This analysis assumes that there are no systematic differ-

ences in the source spectrum between the observations, as we use a

mean spectrum calculated using all the available data. We test this

assumption by analysing each observation independently, which re-

turns the same result as the full analysis, although less detailed and

degraded by the increased noise. A final concern is that PCA itself

should only be applied to data which can be described as a linear

sum of components, and will not return valid results from more

complex systems. In these cases, independent component analysis

(ICA) should be used instead, although this does not appear to be

necessary for this analysis, as coherent results are returned.

4 R ESULTS

Fig. 2 shows the LEV diagram, also known as a scree diagram,

for the PCA of the whole data set, using 10 k s intervals. This is

an effective way of quantifying the number of significant principal

components, as well as the amount of noise, both in the analysis as a

whole and within each component spectrum. The fractional variance

found in components that are due to noise falls off geometrically

(Jolliffe 2002; Koljonen et al. 2013), and so lies along a straight line

on the LEV diagram. We fit a geometric progression to the variance

of the higher-order components (numbers 5 to 50) and use this to

judge the significance of the first few components. We calculate

the errors on the fractional variance using a similar method to that

discussed in Miller et al. (2007), by randomly perturbing the input

spectra and finding the standard deviation of the variances of the

resultant components.

As found by Vaughan & Fabian and Miller et al., between 2keV

and 10keV using only the data from 2001, we find only one signif-

icant variable component, and all others are consistent with noise.

However, including the full energy range or using all of the avail-

able data we find that three components are needed to describe

∼99 per cent of the variability, on time-scales between 1 and 20 k s.

A fourth component is also found to be significant on 10 k s and

greater time-scales when including all the data over the full en-

ergy range; however the variability in this component is small

(<0.5 per cent) and cannot be distinguished from noise at shorter

time-scales. This means that it is impossible to impose a strong con-

straint on the variability time-scales, and hence size of the emission

region, for this component. Some or all of these components are

presumably the same as those found by Miller et al., although we

cannot be certain, as the higher order components are not presented

in that work.

In the 10 k s analysis, all four of these components are found to

deviate from the expected level of noise by >5σ , and are thus highly

significant. More generally, we note that any components that are

dominated by noise should not preferentially correlate between ad-

jacent energy bins, or deviate significantly from the zero-point in

more than a few bins. Thus the probability of a component arising

due to noise with significant deviations from the mean correlated

between adjacent bins is vanishingly small. Finally, the distribution

of normalized count rates within the spectrum of a principal com-

ponent which is due to noise should be approximately Gaussian,

with a mean of zero. We therefore check how well this distribu-

tion can be fitted with a normal distribution, for each of the first

50 components. Using this method, we find good fits to the higher

order components (n > 5) with normal distribution rule out such a

distribution for eigenvectors 1–3 at high confidence levels, and find

a relatively poor fit to eigenvector 4, although not sufficient to rule

out this distribution.

The lower limit on the time-scales involved is the size of the time

intervals used to extract spectra. There is a trade-off between the

number of bins (and hence temporal resolution) and the amount of

noise, which can be quantified using the LEV diagram. As men-

tioned above, decreasing the interval size below 10 k s to 5 or 1 k s

means that the fourth principal component is no longer significant.

The normalized spectra of the three most variable components are

shown in Fig. 3. Errors are calculated using the method discussed in

Miller et al. (2007), where the input spectra are randomly perturbed,

and the principal components recalculated. The errors are then found

from the variance of the resultant components. We note that it is

possible using this method that differences in the normalizations of

the resultant components will contribute to the final estimate of the

errors but will not change the spectral shape, potentially leading to

overestimated errors.

The first component is relatively flat, decreasing at low and high

energies, and with a marked dip around 7 keV. Because the PCA

analyses variation from the mean and the power law make up a

smaller fraction of the observed flux at these energies, where the

reflection spectrum is larger, this is what would be expected in the

case of a varying power-law component, consistent with the results

from both previous work with PCA and other methods (Vaughan &

Fabian 2004; Miller et al. 2008).

The second component is more complex. Values below zero im-

ply an anticorrelation between those energy bins and the positive

bins, and there is a clear anticorrelation between low and high en-

ergies. This is very similar to the second component seen in the

analysis of Cygnus X-1 by Malzac et al. (2006), who found that this

component could be attributed to pivoting of the spectrum.
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PCA of MCG–06-30-15 725

Figure 3. Normalized spectra of the three significant components of the

XMM analysis between 0.4 and 9 keV (9–10 keV is excluded, due to the

increased noise that results in the weaker components). The first component

is shown in black, the second in red and the third in blue. Note that the PCA

does not specify whether components should be positive or negative, since

these represent deviations from the mean, they are just as likely to be either.

Because the spectra have been normalized, they should not be interpreted as

showing the exact spectral shape of each component, rather they show the

strength of the correlations of each component as a function of energy. The

inset shows the 6.4 keV dip in the first component.

The third component shows the characteristic soft excess and

broad iron line of a reflection spectrum. However, there is a dip at

intermediate energies, implying an anticorrelation. This is likely to

be due to the nature of PCA itself, as any variation will be fit initially

by the first principal component. Therefore, if the normalization of

the reflection component were to change, it would be fitted with the

power law first, then a correction would be applied to the power-law

shape to make it look like reflection. At intermediate energies, where

the spectrum is power-law dominated, this leads to an anticorrelation

in the normalized spectrum. However, it is also possible that this is

due to a real change in the shape of this component (see Section 5).

The point between 7 and 8 keV is likely to be anomalous. The

exact shape of the last few bins in this component seems to depend

strongly on the amount of data used, and the number of bins. We

interpret this as the effects of noise leaking into this component,

and note that the bins appear to converge towards zero as more

data are added to the analysis. Fig. 4 compares the spectrum of this

component with those of the absorbed power law and relativistic

reflection from the model (Marinucci et al., in preparation). It is

obvious from this that the third component is much closer to the

blurred reflection spectrum, in terms of spectral shape, and cannot

be explained by changes in the warm absorber. We note that the

peak of iron line in the principal component spectrum is at a lower

energy than that in the model spectrum, and we attribute this to the

effect of dilution by narrow lines from the neutral reflection.

The fourth component also shows an excess around the iron line,

but no soft excess. As the smallest and noisiest component, it is

the hardest to analyse. Using the expected noise level for the fourth

component calculated using the LEV diagram, we estimate that the

signal-to-noise ratio in this component is less than ∼2. It is con-

ceivable that this component represents a change in the properties

of the reflection spectrum, variations on long time-scales from a

distant reflector, or a change in the properties of the absorption. For

Figure 4. Spectra of the third principal component (top), blurred reflection

(upper middle), partial covering ionized absorption of a Ŵ = 2 power law, and

absorbed power law (bottom) from the best-fitting broad-band model (XMM-

NuSTAR; Marinucci et al., in preparation) dominated by the warm absorber,

shown from 0.4 to 9 keV, to coincide with the PCA results. Qualitatively,

it appears that the shape of the third principal component is a closer match

to the spectral shape of the reflected emission. The minimum flux in the

principal component spectrum matches closely with the minimum in the

blurred reflection spectrum, and the strong iron-line like feature is clearest

in the reflection spectrum. We test these models quantitatively in Section 4.1.

the remainder of this work we restrict out analysis to the three main

components, which can be more thoroughly investigated.

4.1 Fitting extremal spectra

Because of anticorrelated bins, it is impossible to fit models di-

rectly to the second and third components. The normalized spectra

must be multiplied by the mean spectrum to convert to physical

units, meaning that the anticorrelated bins give negative count rates

which cannot be fit in XSPEC. However, we can investigate the effects

of the component spectra on the mean source spectrum. We create

a simple model, comprising a linear combination of the three main

principal components. We then fit this model to each of the nor-

malized variation spectra used to calculate the PCA. This returns

a continuous set of normalizations for each component, effectively

the same as a light curve for each component. These normalizations

can then be used to investigate the behaviour of each component,

and the effect it has on the spectrum, in more detail. These light

curves are shown for the first three components in Fig. 5

We use the sets of normalizations to find the minimum and max-

imum normalizations of each component. These can then be used
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Figure 5. Normalizations, Ni, of the first three significant components

plotted against time. These are effectively light curves for each principal

component. Error bars are plotted for all three, but are smaller than the

points for component one and approximately the same size as the points

for component 2. 10 k s intervals are used here, and all three components

show significant variability on this time-scale. Vertical lines separate the

observations from different years.

to find corresponding spectra. The normalized spectra output from

the PCA can be converted to ‘real’ spectra by multiplying by the

mean spectrum, and normalization value of that component:

Fi(Ej) = Ni × Fmean(Ej) × fi(Ej) (4)

where Ej are the energy bins, fi(Ej) is the normalized component

spectrum and Ni are the normalizations for each component. These

spectra show the deviations from the mean, in counts s−1, caused

by variations in the ith component. These spectra will still contain

negative values for the second and third components, so still cannot

be modelled trivially. However, by adding the minimum and maxi-

mum spectra for each component to the mean spectrum of the whole

data set we can generate extremal spectra for each component:

F±,i(Ej) = N±,i × Fmean(Ej) × fi(Ej) + Fmean(Ej) (5)

where F±, i and N±, i are the maximum and minimum spectra and

normalizations, respectively, for each component. These spectra

correspond to the source spectrum when the ith component is at

an extreme value. Because these extremal spectra are all non-zero,

they can safely be imported into XSPEC for modelling.

To test our interpretation of the three main components, we fit

the minimum and maximum spectra simultaneously, with the model

described in Marinucci et al. (in preparation). This model includes

a power law, both relativistic and distant reflection (both modelled

with XILLVER; see Garcı́a et al. 2013), and two absorbing zones.

For component 1, we allow the power-law normalization to vary

between the two spectra, keeping all other parameters the same.

Using this method, we obtain a χ2 value of 130/148, with power-

law normalizations of (3.5 ± 0.1) × 10−2 and (6.40 ± 0.25) × 10−3.

The model for this is shown in Fig. 6, and the data and residuals

in Fig. 7. We note that there are some residuals not accounted

for perfectly by varying the power law alone, particularly around

Figure 6. Model used to fit the minimum and maximum spectra generated

with PCA component 1. Blurred reflection (blue) and distant reflection

(green) are kept constant, and the power law (red, dashed) is allowed to vary

between the two spectra. Full models are shown by black solid lines.

Figure 7. Folded data and residuals from fitting the broad-band model

(XMM-NuSTAR; Marinucci et al., in preparation) to the minimum (red)

and maximum (black) spectra for the first principal component. Only the

power-law normalization is allowed to vary between the two spectra.

6–7 keV, and suggest that this might be due to some extra component

being weakly correlated with the power law, and ‘leaking’ in to the

first PCA component. This could be caused by intrinsic variations

in the flux from the corona, which would be correlated with the

reflected emission.

For component 2, allowing the power-law normalization and in-

dex to vary between the minimum and maximum spectra (shown

in Fig. 8) gives a χ2 value of 126/129. The normalization changes

between (1.39 ± 0.03) × 10−2 and (1.64 ± 0.03) × 10−2, and the

index varies between 1.82 ± 0.01 and 2.08 ± 0.01. Note that the

increase in power-law normalization should not be confused with

an increase in flux, as the power law gets steeper at the same time,

causing a net reduction in the count rate. It is also possible that a

change in the absorption could be responsible for some or all of the

variability in this component. We test this by adding a partial cov-

ering absorber to the model, using ZXIPCF (Reeves et al. 2008), and

allowing the covering fraction and column density to vary between

the two spectra. We find that the differences below 2keV can be

explained adequately using this model, but that above 2 keV the fit

is poor, giving a χ2 of 547/128. By freeing up the power-law nor-

malization, the fit can be improved to give a χ2 of 145/127, which
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Figure 8. Folded data and residuals from fitting the broad-band model

(XMM-NuSTAR, Marinucci et al., in preparation) to the minimum (red) and

maximum (black) spectra for the second principal component, allowing the

photon index and power-law normalization to vary between the two spectra.

is a large improvement, although still significantly worse than the

pivoting model.

We initially fit the third component by allowing only the blurred

reflection normalization to vary between the minimum and maxi-

mum spectra. This gives an unacceptable reduced χ2 of 190.2/128,

with the normalization varying between 4.0 × 10−5 and 7.4 × 10−5.

This is unsurprising, given the anticorrelated bins at intermediate

energies, which cannot be fitted with a single additive component.

We test two different explanations for these bins: first, if the vari-

ability in the blurred reflection component is being fit initially by

the first PCA component, as seems likely because of the nature

of the analysis, the third component should appear as a correction

factor to the first, rather than as the exact spectrum of the reflection

component. Thus, an excess appears where the reflection compo-

nent is larger, and a deficit where is it smaller. To test this, we allow

the power-law normalization to vary as well, which gives a much

lower χ2 of 127/127 with the power-law normalization changing by

a factor of ∼10 per cent, and the reflection normalization increasing

from 4.7 × 10−5 to 1.1 × 10−4. The fit to this model is shown in

Fig. 9. Secondly, if the change in the spectral shape is intrinsic to

the source, it is possible that the anticorrelation could be caused by

Figure 9. Folded data and residuals for the minimum and maximum spec-

tra of the third principal component, fit by allowing both power law and

reflection normalizations to change.

a change in the ionization parameter, ξ . Allowing ξ to vary between

the two spectra gives a χ2 of 138/127, and allowing both ξ and the

power-law normalization to very gives 118/126. We also attempt to

fit these spectra by adding a partial covering absorber to the model,

using ZXIPCF. Allowing only the covering fraction and column den-

sity to vary between the two spectra gives a much worse fit than

varying the reflection normalization alone (χ2
ν = 480/128), nor can

we achieve a good fit (χ2
ν = 440/129) when we allow the power-

law normalization to change as well (which does not necessarily

imply correlation, as discussed above). Although a partial covering

absorber is qualitatively similar in terms of spectral shape, it cannot

quantitatively explain the variability in this component, as the flux

is not sufficiently altered at low energies to explain this variability.

It is likely that, given the large number of time intervals used

and the relatively large errors on the normalizations of the weaker

spectral components, the extreme normalizations of the principal

components are exaggerated. The best-fitting values should not

therefore be taken as typical for the source behaviour, which is

likely to be more conservative.

4.2 Modelling

We now use spectral fitting as a complementary and independent

(but not model independent) way of tracking the variable compo-

nents of the spectrum of MCG–06-30-15. We fit the broad-band

model of Marinucci et al. to each of the input spectra.

We use PYXSPEC 1.0.1 to fit the model to the full set of input spec-

tra used in the PCA, from all XMM observations, leaving only the

power-law and reflection normalizations and photon index free. We

then compare the values of each parameter from these fits with the

normalizations of the principal components, and find strong corre-

lations between component one and the power-law normalization,

component two and the power-law index, and component 3 and

the reflection normalization. The correlation coefficients are 0.996,

0.75 and 0.83, respectively, and the probabilities of these correla-

tions arising by chance are all less than 10−12. These correlations

are shown in Fig. 10.

From this we conclude that the PCA components correspond to

the model power-law normalization, index and reflection normal-

ization, and that the PCA can then be used as a tool to investigate

the properties of these parameters, although we note that it is en-

tirely possible for the PCA components to be related to more than

one physical component, for example if the reflection and power-law

normalizations were correlated, this would show up as a single prin-

cipal component. We investigate the time-scales of the variations in

each component by restricting the PCA to look only at variations

between adjacent bins, and then perform the same analysis with

1 k s bins. All three components are found to have significant vari-

ability down to 1 k s time-scales using PCA, and we confirm this

using spectral fitting. Time-scales smaller than this are harder to

probe, due to the increase in noise.

We find no correlation between any pair of components from

the PCA, or between the model parameters from fitting the spectra.

While the PCA does, by definition, look at independently varying

components, this does not require the components to be uncorre-

lated (see e.g. Koljonen et al. 2013), so long as they have enough

independent variation to distinguish them as separate.

5 D I SCUSSI ON

It is highly significant that all three PCA components are found to

vary on time-scales less than 1 k s as this can be used to constrain
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Figure 10. Correlations of the normalizations, Ni, of the components extracted by the PCA with the parameter values from fitting a reflection plus power-law

model to the same set of spectra. Component one (black) is plotted against the power-law normalization, component two (red) against the photon index and

component three (blue) against the blurred reflection normalization. The same set of spectra is used for both the PCA and spectral fitting, with 10 k s time bins,

and all normalizations are plotted linearly. The model is that described in Marinucci et al. (in preparation), shown in Fig. 6, with all parameters frozen except

for the normalizations and photon index. The power-law and reflection normalizations are multiplied by factors of 100 and 10000, respectively, for clarity.

the size of the responsible emitting region. The mass of MCG–06-

30-15 is not very well constrained, largely because it is too far away

for the sphere of influence around the black hole to be resolved.

A recent study by Raimundo et al. (2013) found an upper limit on

the mass of 6 × 107 M⊙ using stellar dynamics; Vasudevan et al.

(2009) use the method of Mushotzky et al. (2008), based on the

relation between the K-band luminosity and black hole mass to find

a value of MBH = 1.8 × 107 M⊙ and McHardy et al. (2005) and

Bennert et al. (2006) use multiple methods to find masses in the

range 3 to 6× 106 M⊙ and 8 × 106 to 2.7 × 107 M⊙, respectively.

The light travel time over one gravitational radius, RG = GM/c2,

is given by RG/c, so the size of the emitting region in RG must be

less than

R = tvar ×
c

RG

= tvar ×
c3

GM
(6)

where tvar is the variability time-scale. If we consider masses in the

range from 3 × 106 to 3 × 107 M⊙ and tvar = 1000 s, this constrains

the emitting region to be R � 7–70RG. This is consistent with our

interpretation of the first two components as continuum emission

from a compact corona, close to the event horizon, and the third

as variations in a relativistically blurred reflection component. The

size and location of the corona in rapidly accreting black holes have

previously been constrained by studies of time lags (see e.g. Zoghbi

et al. 2010; Kara et al. 2013; Wilkins & Fabian 2013), microlensing

(e.g. Dai et al. 2010) and emissivity (Walton et al. 2013), which

consistently find that the X-ray emission region must be small and

close to the event horizon (see Reis & Miller 2013, for a summary).

We note that although MCG–06-30-15 does show evidence of

discrete absorption events, we do not find a component that is well

fitted by absorption alone. In the latest observation, there are sev-

eral time intervals with an unusually high hardness ratio and low

flux, which are interpreted as a cloud passing over the line of sight

(Marinucci et al., in preparation). It is likely that unusual events

such as this are fit by the PCA using some combination of the prin-

cipal components, and thus a separate component is not found. By

investigating the component normalizations during these intervals,

we find that the majority of the variation in these bins is fitted with

an extremely low power-law normalization (component one), rather

than any major changes in the higher order components.

In previous work (e.g. Fabian et al. 2002; Vaughan et al. 2003),

the reflection component was found to be relatively constant, when

compared to the power-law component; however, in the spectral

fitting analysis, shown in Fig. 10, we find that the blurred reflection

and power-law normalizations vary by factors of ∼3 and ∼7, respec-

tively. We do not believe this to be in conflict with previous results,

for several reasons: first, because the magnitude of the power-law

component (Fig. 6) is much larger than that of the blurred reflection

component it dominates the variability of the spectrum; secondly,

the variations in the blurred reflection spectrum will be diluted

by the presence of distant, neutral reflection, lowering the variable

fraction in the reflection-dominated bands; and finally because there

is a large scatter in the results from spectral fitting, caused partly

by noise, and partly by fitting data from over a decade, including

absorption events, with only three parameters. We confirm this by

looking more closely at spectra found to have the most extreme

reflection normalizations, and find that, when modelled more care-

fully, more conservative parameters are favoured.

If the blurred reflection component is dominated by emission

close to the inner edge of the disc, as seems likely from the vari-

ability time-scales, it is plausible that a non-uniform disc surface

could cause relatively rapid variations in the ionization parame-

ter, which is one possible explanation of the anticorrelated bins

in the third PCA component. The degeneracy between ionization

and power-law normalization changes could be broken by examin-

ing the PCA component spectra from other sources with different

reflection spectra, and exhibiting different variable behaviour, or

by using broad-band time resolved spectroscopy to examine the

spectral shape of the components more precisely.

There is scope for using PCA on a set of light curves rather

than spectra in future work. By using light curves from relatively

broad energy bins, it should be possible to investigate very rapid

variability using PCA, rather than being restricted to �1 k s time-

scales. We note that with higher count rate spectra it is possible to

probe smaller time-scales, such as the analysis of Cygnus X-3 by

Koljonen et al. (2013) who investigate time-scales as low as 1 min.

Within this work we consider intervals on the scale of hours and

days, and on the scale of years (although there appear to be no

significant differences in the spectral of MCG–06-30-15 between

the observations in different years). Any potential variations on
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month-long time-scales cannot be investigated with the available

XMM–Newton data, and may be hiding variations in other spectral

components, particularly the warm absorption.

It is interesting to consider that PCA, once the input spectra

have been properly normalized, should be largely independent of

the instrument used to find the spectra. This raises the possibility

of combining data from different instruments, with careful binning

and selection of time intervals, into a single analysis. However, this

is quite definitely beyond the scope of this paper.

There is a possibility that the components from the PCA con-

tain ‘hidden’, weak correlations between the spectral components,

which could be revealed by more extensive modelling. For example,

if the reflection component is weakly correlated with the power law,

it could be that the first component would be well described by a

power law plus a small amount of reflection, with a separate reflec-

tion component as well to describe the independent variability. This

could be distinguished by fitting models to the extremal spectra,

although we find adequate fits by only having one parameter free.

6 C O N C L U S I O N S

Using PCA, we find that over 99 per cent of the variability of MCG–

06-30-15 can be described by just three components. We calculate

extremal spectra for these components, and find that they are well

fitted by: (i) a change in the normalization of the power law; (ii) a

change in the photon index of the power law; and (iii) variations in

the normalization of a blurred reflection component.

We confirm these results by comparing the normalizations of

the PCA components with the parameters obtained from spectral

fitting, and find very strong correlations between the relevant fit

parameters and the magnitudes of the components. By comparing

the PCA results using different time bins, we find that all three major

components are variable down to time-scales as low as 1000 s, which

corresponds to a size of less than 7–70 RG, depending on the mass

of the black hole. This is consistent with our interpretation of the

components as being due to changes in the position and intrinsic

flux of a hot corona, close to the event horizon, and the reflected

emission due to coronal photons hitting the accretion disc.
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