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Principal Component Analysis of Wide Area Phasor

Measurements for Islanding Detection — A

Geometric View
X. Liu, Member, IEEE, D. M. Laverty, Member, IEEE, R. J. Best, Member, IEEE,

K. Li, Senior Member, IEEE, D. J. Morrow, Member, IEEE, S. McLoone, Senior Member, IEEE

Abstract—This paper presents a new technique for the de-
tection of islanding conditions in electrical power systems.
This problem is especially prevalent in systems with significant
penetrations of distributed renewable generation. The proposed
technique is based on the application of principal component
analysis (PCA) to data sets of wide-area frequency measurements,
recorded by phasor measurement units. The PCA approach
was able to detect islanding accurately and quickly when com-
pared with conventional RoCoF techniques, as well as with the
frequency difference and change of angle difference methods
recently proposed in the literature. The reliability and accuracy
of the proposed PCA approach is demonstrated using a number
of test cases, which consider both islanding and non-islanding
events. The test cases are based on real data, recorded from
several phasor measurement units located in the UK power
system.

Index Terms—Wide area monitoring, islanding detection, re-
closure, multivariate statistics, synchronized phasor measure-
ments

I. INTRODUCTION

G
ENERATION from renewable energy sources is a key

component in the worldwide strategy to reduce carbon

emissions and to maintain a secure and sustainable energy

supply. In Northern Ireland, for example, a target has been

set to achieve as high as 40% of its electricity consumption

from renewable sources by 2020 [1]. A similar target has also

been set by the Republic of Ireland and several other European

countries, while the U.S. and China both set a target of around

20% [2]. The integration of significant quantities of distributed

renewable generation into the electricity grid, however, has

raised serious concerns about its potential impacts on the safe

operation and stability of the grid. In this context the issue of

islanding detection in the distribution power system presents

great challenges, and it is going through a period of renewed

interest in both industry and academia.

Islanding is a phenomenon where distributed generators

(e.g. photovoltaic, wind turbines) continue operating and en-

ergizing the local loads even though they are isolated from the

rest of the utility source [3], [4]. This islanding condition is

particularly dangerous; if not detected it may endanger main-

tenance personnel. In addition, unsynchronized reconnection

of an island to the main power grid may cause severe damage

to the utility, the distributed generators and other customer
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equipment. Therefore, it is important to be able to detect

islanding conditions accurately and quickly.

To achieve this, various islanding-detection techniques have

been proposed [4], [5], [6]. A detailed review of these tech-

niques has been carried out in [7]. The techniques may be de-

scribed as local or remote (communication-based) approaches.

Local approaches, can be classified into passive and ac-

tive methods. Passive methods based on rate-of-change of

frequency (RoCoF) [3], rate of change of power [8], rate

of change of frequency over power [9], vector shift [3], and

harmonic impedance estimation techniques [10] have attracted

wide spread attention. The most popular RoCoF relay, how-

ever, might become unsuccessful if the power imbalance in the

islanded system is less than 15% [5]. Moreover, in systems

with a high penetration of renewable generation there is an

increased risk of false detection during load or generation

trip events. Active methods perform islanding detection by

injecting a disturbing signal to break the power balance [11].

For example, in the active frequency drift method, a forced

change of frequency approach, the frequency of the voltage is

forced to drift up or down in the island [12]. Such approaches

has become mandatory for islanding prevention with solar PV

in some countries. Active methods tend to have a smaller non-

detection zone compared to passive methods, but have the

disadvantage of often degrading power quality to a certain

degree.

Classification-based passive techniques, based on fuzzy-

rules [5], wavelet-transforms [4], probabilistic neural networks

[13], support vector machines [13], Bayesian methods [6],

and decision trees [14], [15], have been recently proposed

for islanding detection in the literature. Unfortunately, inves-

tigations of these approaches have been limited to studies on

simulated power systems, due to their critical demand for large

volumes of historic event data. Moreover, the response time for

islanding detection based on these approaches is not discussed

in most studies.

Remote techniques, such as power line signalling and trans-

fer trip schemes, usually rely on communication signals for is-

landing detection. Some new remote or communication-based

techniques, especially PMU-based, have attracted great atten-

tion in both industry and academia in recent years. Moreover,

deployment cost of these techniques is gradually redeemed

by their technical good performance [16]. However, remote

techniques utilized to date often focus on the distributed

generator side, and in general cannot provide a real-time wide-
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area view of the islanding situation, or produce alarming for

system operators [17]. This is particularly important in systems

with high penetrations of renewable generation, which can

become vulnerable to nuisance tripping of islanding protection.

To address this problem, reference [17] has recently proposed

a PMU-based method, using a frequency difference and the

change of angle difference approach. Despite the reported

success of this method in several real cases, a number of

outstanding problems still remain:

1) It requires a number of parameters to be determined

and optimized to define the tripping time criteria for

islanding detection. These parameters include thresholds

for the frequency and the angle deviations and three

settings for the timer. These were originally set based

on experience by the authors.

2) Its response time for islanding detection is over 3

seconds, which exceeds the IEEE standard 1547-2003

[18] where the anti-islanding relay must immediately

disconnect the distributed generator within 2 seconds

of the formation of an island. The requirement for a

response time of under 2 seconds is also defined in the

IEC 61727 standard for PV systems [19].

3) Some issues may arise with the proposed islanding

detection approach owing to its critical dependence on

the reference frequency and reference phase angle.

This paper attempts to address these problems using an

intelligent multivariate statistical approach, relying on prin-

cipal component analysis (PCA) of the measurements from

PMUs. This is a challenging proposition because (i) the

observed phasor measurements are influenced by random load

fluctuations that continuously perturb the system equilibrium

slightly and in a non-stationary manner [20]; (ii) other power

system events such as generator trips, line trips, and loss of

load also create perturbations in the voltage, frequency, and

angles similar to those generated by islanding events; (iii)

the signal-to-noise ratio of PMU data is often low, making

detection of islanding difficult.

Because of its simplicity, PCA, a data-driven multivariate

projection-based technique, has gained great attention for

monitoring complex processes, such as those found in the

chemical industry [21]. PCA exploits the correlation within

the typically large number of recorded variables by defining a

reduced set of score variables that construct a Hotelling’s T 2

statistic [21]. The mismatch between the recorded variables

and their reconstruction using these score variables leads to

the definition of the Q statistic [22]. The PCA method enables

analysis of many sets of measurements simultaneously and

facilitates the derivation of information to determine if the

observed system is in an abnormal condition, with a level of

confidence.

Similar to [17], the proposed islanding detection method

is based on wide area phasor measurements, and is able to

present a real-time wide-area view of islanding, and creates

early warnings for system operators and engineers to maintain

system security. This is motivated by the fact that one of

the key findings of the August 2003 blackout in the U.S.

and Canada was the lack of operator awareness during the

time leading up to the blackout [23]. The more recent July

2012 Indian blackouts [24] further indicate the urgent need for

the development of intelligent data analytical tools for wide

area monitoring of synchronized PMU data to enhance real

time situation awareness. In contrast to [17], in this study, an

intelligent statistical approach based on PCA is introduced that

enables the thresholds for event detection to be automatically

determined based on long-term historic data. Moreover, the ap-

proach is simple to implement, computationally fast, provides

a straightforward visualization; and has a simple geometrical

interpretation. In addition, it can be used to detect when an

islanded system is reconnected back to the transmission grid,

and the contribution plots associated with PCA statistics can

be used to identify the frequency variable which is affected

by an islanding condition.

It is noted that similar work has been reported previously in

[25], which attempted to apply PCA on PMU data including

measurements of frequency, phase angle and voltage magni-

tude, but failed to perform islanding detection effectively. The

previous method not only produced too many false alarms, but

also the geometrical interpretation of islanding detection was

lost. This is mainly caused by the underlying assumption of

PCA, where the applied data should be linear and Gaussian

distributed; however, both phase angle and voltage magnitude

variables exhibit significant non-Gaussian characteristics for

long-term historic data. Thus, in this paper, only frequency

variables measured from different locations, which approx-

imately follow a normal distribution, are considered. The

proposed method has been able to correctly identify islanding

events on the UK power system, as would be evident through

visual inspection. To the best of our knowledge, this is the

first research work that presents: (i) the successful application

of the PCA method to real PMU data for islanding detection;

(ii) an approach for geometrically interpreting islanding events

and distinguishing them from other non-islanding events.

The paper is organized as follows. The relevant PCA-based

statistical monitoring theory and related investigations for the

wide area frequency measurements are presented next. Section

III describes the real historic frequency data obtained from

multiple locations on the UK power system for study, and gives

results for the PCA applications. Discussion and conclusions

are presented in Section IV and V, respectively.

II. PRINCIPAL COMPONENT ANALYSIS BASED ISLANDING

DETECTION

A. Principal Component Analysis of Wide Area Frequency

Measurements

Principal component analysis, first proposed in 1901 [26],

is one of the most popular multivariate dimension reduction

techniques. It transforms a set of original correlated variables

into a smaller set of uncorrelated ones [27]. These transformed

variables are known as principal components, which are de-

rived in the order of reducing variability with the first principal

component accounting for the most significant variability in

the original data [22]. The transformation can be viewed as an

orthogonal rotation of the data such that maximum variation is

projected onto the new axes, which are defined by the original
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TABLE I
CALCULATION OF CONFIDENCE LIMITS FOR MONITORING STATISTICS

Statistic Confidence Limit

T 2 = t
TΛ−1

t
r(N2

−1)
N(N−r)

Fr,N−r

Q = e
T
e g · χ2 (h)

variables. The correlations between the new variables will be

removed after the rotation.

PCA identifies the orthogonal directions of maximum vari-

ance in the original data, by performing eigenvector/eigenvalue

analysis of the sample covariance matrix. A more detailed

description of PCA can be found in [22]. Liu et al. have previ-

ously applied PCA in statistical monitoring of a nuclear power

plant waste management process for fault detection [28], and

in wind farm oscillation monitoring [29]. This section gives a

brief description of principal component analysis of frequency

measurements for islanding detection.

Let f ∈ R
m denote a sample vector storing m frequency

variables. Assuming that there are N samples for each vari-

able, a data matrix F ∈ R
N×m is composed with each row

representing a sample. After scaling so that each column has

zero-mean and unit variance, F can be decomposed into a

score matrix T ∈ R
N×r and a loading matrix U ∈ R

m×r

(r ≤ m is the number of retained principal components) [22]:

F = TU
T +E (1)

where E is the residual matrix. A scaled sample vector f can

be projected on the model subspace, which is spanned by U,

and the residual subspace, respectively [22].

The geometric simplicity of the PCA decomposition allows

the construction of two univariate statistics, a Hotelling’s T 2

statistic that represents significant variation of the recorded

data and is associated with the PCA model plane and a

Q statistic that describes the mismatch between the original

variables and their projections onto the model plane, i.e. the

variation of the data within the residual subspace. These two

statistics, are defined as follows:

T 2
= f

T
UΛ

−1
U

T
f = t

T
Λ

−1
t (2)

and

Q = e
T
e = f

T
[

I−UU
T
]

f (3)

where Λ is a diagonal matrix consisting of r eigenvalues of

covariance matrix S of scaled F. t = U
T
f is a score vector,

e ∈ R
m is a residual vector and I represents an identity matrix.

Under the assumption that the recorded variables are linear

and normally distributed, the T 2 follows an F -distribution

[22] and the Q statistic can be approximated by a central χ2-

distribution [21]. As discussed in [22], the confidence limits

can be obtained as presented in Table I, where g = ρ2/2µ,

h = 2µ2/ρ2 and µ and ρ2 are the sample mean and variance

of the Q statistic.

For on-line wide area power system monitoring, a statisti-

cally significant number of violations of these limits, or at least

one of them, is then indicative of abnormal system behavior.

B. A Geometric View of PCA-Based Islanding Detection

The theoretical basis of a geometric view of the PCA model

is well explained in [21], [30]. Defining z = Λ
−1/2

t and

noting that t = U
T
f , the Hotelling statistic, T 2 = z

T
z, can be

viewed as a scaled squared 2-norm (or weighted distance) of

an original frequency sample vector from its mean [21]. More

specifically, the T 2 can be used to monitor system deviations

from a target. When the weighted distance, represented by the

T 2 statistic, is less than a confidence control limit, the system

is considered to be on target.

For an original data set adequately explained by two

principal components, the PCA model can be geometrically

interpreted in 3 dimensions [30]. If the original data follow

a multivariate normal distribution and represent the normal

operating conditions, the data scatter can be enclosed in an

ellipse whose axes are the principal component loadings [30].

The elliptical envelope is provided by the statistical confidence

limit of the T 2 statistic, presented in Table I. If the system

variables are highly correlated, the elliptical envelope becomes

more elongated [21]. In addition, a third dimension is used to

explain the deviation from the model plane, represented by the

Q statistic [30].

When T 2 and Q statistics are utilized along with their

respective confidence limits, it produces a cylindrical in-

control region in 3-Dimensional (3-D) space for 3 variables

explained by two principal components, as illustrated in Fig.

1. In the figure, the ‘×’s represent data collected during in-

control operation, while the ‘◦’s and ‘+’s show data that violate

the T 2 and Q statistic, respectively [21], [30].

Furthermore, the T 2 statistic in Eq. (2) represents the

weighted distance (Mahalanobis distance) of any point from

the target (e.g. 50 Hz for frequency variables in the UK power

system). All points projected on the ellipse in the t1 − t2
plane in Fig. 1 would have the same value of T 2 statistic.

Hence, a T 2 statistic chart would detect as a special event any

point projected outside of the ellipse. In contrast to T 2, the

Q statistic does not directly measure the variations along each

eigenvector but measures the total sum of variations in the

residual space. In another words, the Q statistic, also known

as the squared prediction error, measures the deviation of the

observations that was not captured by the PCA model. Using

these two statistics together has been found to be effective at

distinguishing between different types of faults in chemical

process applications [21]. Here, a similar strategy is used in

the power system context, to geometrically interpret islanding

events (where the frequency variables deviate significantly

from each other) and distinguish them from non-islanding

events (where the frequency variables deviate from the target

but do not deviate significantly from each other).

For the special case of monitored frequency variables

recorded from different sites, a single principal component is

sufficient to capture observed variability due to the high degree

of correlation between variables. A geometric interpretation

for islanding detection using the T 2 and the Q statistics of

the PCA method can then be obtained in 2-Dimensional space

(2-D) as demonstrated in Fig. 2. If the distance from the

origin along the principal component line to the projected
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Fig. 1. A geometric interpretation for event detection using the T 2 and the
Q statistics of PCA in 3-D. t1 and t2 are the first and the second principal
components, respectively [21].

Fig. 2. A geometric interpretation for islanding detection using the T 2 and
the Q statistics of the PCA method in 2-D.

data point is larger than the scaled maximum eigenvalue in

the matrix Λ, it will be detected by the T 2 statistic indicating

that the frequency variables have significantly deviated from

the target (50 Hz), i.e. a load and generation mismatch event

has occurred. If the total sum of variations in the residual

space violates the confidence value, it will be detected by the

Q statistic indicating the frequency variables have deviated

significantly from each other, i.e. an islanding event has

occurred. This holds true due to the simple fact that the

frequency variable is a universal parameter for the entire power

grid. Essentially, as long as the data points are aligned with the

first principal component direction (y ≈ x, and the frequency

variables are almost equal to each other) with a certain

confidence limit, there is no significant deviation between the

frequency variables. Otherwise, if data points are not aligned

with the first principal component direction (y 6= x), then it

indicates significant inter-frequency deviations (an islanding

event occurs). This will be further demonstrated in the case

studies presented later. Thus, in Fig. 2, the data points repre-

sented by ‘◦’ can only be detected by T 2, indicating global

load and generation mismatch events where the frequency

variables do not deviate significantly from each other. The

data points represented by ‘+’ can only be detected by Q and

indicate islanding events where the frequency variables remain

close to the target. Finally, the data points ‘⊕’ not only violate

limits in the model space but also in the residual space (i.e.

they are detected by both T 2 and Q), and hence they indicate

islanding events where the frequency variables have deviated

significantly from each other and from the 50 Hz target.

C. Contribution Plots of Monitored Frequency Variables to

PCA Statistics

Contribution plots identify the contribution of individual

frequency variables to the PCA statistics. If the contribution

of a particular frequency variable towards the Q statistic is

large, an islanding site can be identified. The contribution of

the ith frequency variable to the Q statistic can be obtained

as follows:

QCONT = Φ
T
i f (4)

where Φ
T
i is the ith row of the matrix I − UU

T . The

variable contribution to the T 2 statistic, defined in [31], can be

used to determine if the monitored frequency variable deviates

significantly from its target.

In summary, the implementation of the proposed PCA-

based islanding detection method involves two steps: 1) off-

line PCA modelling using historic data to obtain the principal

components and control limits; and 2) on-line monitoring to

determine if an islanding event occurs. Further details of the

proposed islanding detection strategy are provided in Fig. 3.

III. UK POWER SYSTEM CASE STUDY

A. UK Power System Wide Area Phasor Data

In the UK power grid, a type of single-phase phasor

measurement unit, developed at Queen’s University Belfast

(QUB) as part of the OpenPMU project [32], [33] is installed

at sites of interest for islanding detection, including embed-

ded generation (at 415 V) and main distribution substations

(33 kV). The PMUs report at 10 Hz and measurements of

frequency, voltage magnitude, and voltage phase angle are sent

via the Internet to a server at QUB for analysis. The locations

of the units are highlighted in Fig. 4. The units used in this

study are supported by Scottish and Southern Energy Ltd.

From the UK power system, 7 days of recorded historic

data from 6 sites was used as reference data to determine the

relevant normal operational statistics. The data set consisted

of a total of 5,446,101 synchronous multivariate samples

(with 601,899 samples missing). The histogram plot of the

frequency, phase angle difference and voltage magnitude along

with its corresponding normal distribution curve and kernel

density estimate, is shown in Fig. 5. It is clear that the

frequency variable approximately follows a normal distribu-

tion, while the others demonstrate significant non-Gaussian

characteristics. Due to the limited space, only the frequency

variable is analyzed here. More advanced approaches will be

applied to phase angle difference and voltage data in our future

work, to address the non-Gaussian related issues.
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Fig. 3. Flow chart of the proposed PCA method for islanding detection.

TABLE II
VARIANCE CONTRIBUTION OF PRINCIPAL COMPONENTS (PCS)

#PC(s) Percent Variance Captured by PCA Model
Eigenvalue of Cov(F) Variance Captured %

1 5.969 99.48

2 0.011 0.18

3 0.007 0.12

4 0.006 0.11

5 0.006 0.09

6 0.001 0.02

B. PCA Modelling

The reference data set of the frequency variables from 6

sites (f1 - Southern England, f2 - Manchester, f3, f4, f5, f6 -

Orkney Islands) were used to produce a covariance matrix. The

eigenvalues of the covariance matrix and the contribution of

each principal component to the reconstruction of the original

data are summarized in Table II.

As expected, the first principal component corresponding to

the largest eigenvalue, captures 99.48% of the total variance,

and as such represents the significant system variation and

the interrelationships between the six frequency variables

5

5 Orkney Island

Southern England

1 Manchester

2

Tealing & 

Dundee

Dublin 1

2
Belfast

1

1

Donegal

Fermanagh

2 Shetland Island

Fig. 4. OpenPMU Layout in the UK System, revised from [32]. The numbers
in the circles are the number of PMUs installed at the associated locations.

Fig. 5. Histogram plot of frequency, phase angle difference, and voltage
magnitude, along with its corresponding normal distribution curve, and kernel
density estimate.

collected from different locations in the power grid, whilst the

remaining five components capture the noise variance [21].

This agrees with the scatter plot of the frequency variables

of the reference data set, shown in Fig. 6. Thus only the first

principal component is used to construct the PCA model. In

addition, for the 5,446,101 synchronous multivariate reference

data, the Type I error, or the false alarm rate, from the T 2 and

Q statistics of the PCA model for a confidence of 99.9% are

0.14% and 0.13%, respectively. This implies that the Type I

errors for the T 2 and the Q statistics are close to the expected

0.1%.

In the following, two real case studies including one with

both inter-connector trip and islanding events, and the other

with loss of load, inter-connector trip and islanding events, are

presented to verify the proposed PCA method for islanding

detection.
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Fig. 6. Frequency scatter plot of frequency 1 (f1) and frequency 2 (f2).

C. Case 1: Inter-connector Trip and Islanding Events on

28/09/2012

1) Islanding Detection: On 28 September 2012 a inter-

connector trip event occurred between Great Britain (GB) and

France, which resulted in an instantaneous loss of 1 GW

being imported to the GB power grid. In the 10 seconds

after the loss, the frequency of the main power system fell

from 50.08 Hz to 49.70 Hz. The resulting rate-of-change of

frequency -0.186 Hz/second (calculated over 50 cycles) at the

north of the UK exceeded the current RoCoF setting of -

0.125 Hz/second recommended by the UK Grid Code G59/2

[34], which falsely triggered an islanding operation on the

PMU site, located at a MV substation and lead to the further

loss of embedded generation.

The frequency plot of test data recorded at the 6 sites for

28 September 2012, including a magnified view of the event,

is shown in Fig. 7 (a). As can be observed, the inter-connector

tripped at 02:48:37, and an island occurred immediately after

the generation loss and lasted nearly 5 hours. The frequency

scatter plot for case 1 is depicted in Fig. 7 (b). When the inter-

connector trip events occurs, some data points are dragged

further away from the reference data, in the model space as

well as in the residual space, i.e. along the direction of the T 2

as well as that of the Q.

The PCA-based monitoring result for case 1 is illustrated in

Fig. 8. As can be seen, the islanding event has been success-

fully detected by the Q statistic from 02:48:38 to 07:42:01. In

addition, the T 2 statistic detected that the frequency variable

violated its control limit at 02:48:39 and 08:03:29, both

corresponding to generation dip events. A confidence limit of

99.9% is employed to avoid excessive false alarms.

To check islanding detection accuracy and response time,

Fig. 9 shows the close-up of both the frequency plot and the

PCA monitoring result for the data from 02:48:36 to 02:48:43,

where the inter-connector trip events occurred. It is clear that

the Q statistic detected the islanding event immediately after

it occurred from 02:48:38 without any delay (enclosed by

the red elliptical line). It should be noted that for the first

500 ms the frequency deviation in the Q statistic is caused

by measurement error or transient phenomena due to the

inter-connector trip. In practice, a 500 ms islanding detection

delay is deliberately introduced, to avoid false triggers. It is

clear that the T 2 statistic (upper plot, Fig. 9 (b)) detected

a frequency deviation from its target (50 Hz) at 02:48:39
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Inter-connector trip

Islanding event

Islanding event

Inter-connector trip

(a) Frequency plot

(b) PCA results

Fig. 7. Case 1 on 28/09/2012. (a) Frequency plot (upper plot); Close up of
frequency plot (lower plot) (b) A 2-D illustration of the test data. The blue dot
represents the reference data [f1, f2], the red dot and the cyan dot represent

the test data [f̃1, f̃5] and [f̃1, f̃2], respectively. When the inter-connector trip
occurs, some points drag further away from the reference data, along the
principal component direction t1 as well as the Q direction.

Fig. 8. PCA monitoring results for case 1.

(enclosed by the cyan elliptical line). Further study revealed

that the contribution of islanding event to T 2 was from

02:48:39 and lasted only 3 seconds, while the contribution

of non-islanding events to T 2 was from 02:49:40 and lasted

for about 2 minutes.

2) Return-to-mains Detection: Fig. 10 shows the magnified

frequency plot and PCA monitoring result for data from

07:40:10 to 07:43:07, in which the islanding site returned to

mains. It is clear that the Q statistic detected the re-closure

from 07:42:01 at the 95% confidence limit. It is observed

that from 07:41:04 to 07:42:01 the frequency deviation of the
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Fig. 9. Close up of: (a) frequency plot; (b) PCA monitoring results of case
1 for data from 02:48:36 to 02:48:43, including islanding and generation trip
on 28/09/2012.
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Fig. 10. Close up on frequency plot of re-closure for case 1 on 28/09/2012, for
data from 07:40:10 to 07:43:07 (upper plot); PCA monitoring results (lower
plot).

islanding site (the purple line) from the other sites is less than

0.03 Hz (upper plot in Fig. 10) and the islanding event remains

in the non-detection zone of the 99.9% confidence limit (lower

plot in Fig. 10). To improve the confidence of return-to-mains

detection, the confidence limit was switched to 95%.

3) Contribution Plot for Islanding Location Identification:

Fig. 11 shows the variable contributions to the Q statistic

(lower plot) and the T 2 statistics (upper plot) at 02:48:45.

The variable that significantly contributed to the Q statistic of

the PCA model was identified as the fifth frequency variable,

Fig. 11. Contribution plot to T 2 (upper plot) and Q statistics (lower plot)
for case 1

indicating the islanding site location as the Orkney Islands,

which is in the north of the UK. This simple graphical

representation would help the system operator identify and

pinpoint the islanding location, or locations immediately after

occurrence. Areas that form part of the same synchronous

island could be quickly and accurately determined. In case 1,

based on the fact that f3, f4, f5 and f6 were recorded from 4

PMUs at the Orkney Islands, f3, f4 and f6 were synchronized

with the main grid (f1 and f2), and f5 was recorded from a

PMU site located at a MV substation, the islanding location

can be narrowed down to a 33 kV substation.

In addition, Fig. 11 also shows that the contribution of the

fifth variable to the T 2 statistic is low, indicating that the

frequency of the islanding site hasn’t deviated significantly

from the target frequency (50 Hz) at this time instant.

D. Case 2: Loss of Load, Inter-connector Trip and Islanding

Events on 30/09/2012

The 30 September 2012 saw a high frequency event at 02:28

in the morning, followed by a low frequency event in the

evening at 15:03. The high frequency event was due to loss

of load. The low frequency event was again due to a fault

on the GB-France power import, with a subsequent loss of 1

GW to the GB power system. In the later low frequency event

the frequency fell from 49.97 Hz to 49.6 Hz in 10 seconds

after the inter-connector loss. The rate-of-change of frequency

at the north of UK was -0.155 Hz/second (calculated over

50 cycles) and again exceeded the current RoCoF setting of

-0.125 Hz/second erroneously triggering islanding protection

leading to further loss of embedded generation. These high

and low frequency events (corresponding to loss of load and

generation dip, respectively), are again used to examine the

effectiveness of the proposed method. As shown in Fig. 12,

the Q statistic (middle plot) successfully detected the islanding

event at 15:03:30. Further examination revealed this islanding

event, lasted for about 9 minutes. The T 2 statistic (upper plot)

in Fig. 12, however, detected the generation dip event also at

15:03:30. This agrees with the frequency scatter plot in Fig.

13, where the islanding event is clearly represented by the

red dots which deviate from the reference data along the Q
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Fig. 12. PCA monitoring results (upper plot for the T 2 and middle plot for
the Q statistic) and frequency plot (Lower plot) for case 2 on 30/09/2012.

Fig. 13. 2-D illustration for the islanding detection. The blue/cyan/red/yellow
dot represents the reference data/generation dip/islanding/load shedding event,
respectively.

direction, and the generation dip events is represented by the

cyan dots which violate the reference data along, and only

along, the principle component i.e. the T 2 direction.

It should be noted that another frequency deviation event

was detected by the T 2 statistic at 02:28:03 for 1.5 minutes,

which corresponds to the loss of load event in Fig. 13. This

further demonstrated that the proposed PCA method was able

to detect islanding events accurately, but also able to prevent

false triggering caused by the generation dip and loss of load

events, where the frequencies do not deviate from each other.

IV. DISCUSSION

As illustrated in the flow chart in Fig. 3, the proposed

PCA based islanding detection method, involves off-line PCA

modelling and on-line monitoring. The implementation of the

proposed method requires consideration of a number of issues:

1) Response time. The detection time for the proposed

method will have a time delay, calculated as T =

Tcal+TD+Tcom, where Tcal is the computation time of

the proposed algorithm and in most cases is negligible,

TD is the introduced time delay of 500 ms, to avoid

false triggering by measurement error etc., and Tcom

is the latency of two-way communication, which is

normally between 20 and 200 ms depending on design

[32], [33]. In general, a response time of less than 2

seconds can be achieved meeting the IEEE standard [18].

If the communication link is down or communication

latencies are high, local approaches can be used as back-

up solutions.

2) Detectability. It should be noted that if the frequency

in the islanding system is well matched with those of

other sites, our approach will fail to detect islanding

successfully. More advanced approaches, will be applied

to other variables, such as voltage phase angle, and used

as a complementary method.

3) Scalability. The proposed methodology is targeted at

presenting a real-time wide area view of system island-

ing and creating early warnings for system operators.

However, the methodology can also be used as a local or

regional approach, where multiple sites are used to pro-

vide a much more secure reference signal. This includes

using other nearby distributed generator sites connected

to the same substation and using the same protection

scheme to determine islanding by consensus, perhaps

being able to trip a particular distributed generator that

fails to detect, or avoid a nuisance trip. It should be noted

that islanding can also occur in transmission systems.

The proposed approach is generic and also useful for

this situation.

4) Observability. The accuracy of islanding detection and

location is highly dependent on the topology of the

PMU layout and the prior knowledge of the investigated

network. To ensure full network observability, optimal

PMU placement will be further investigated.

The proposed methodolgy was applied to PMU data from

the UK power network, which had an average distributed

generation (DG) penetration of over 11% in 2012 [35]. The

examined local network situated in the Orkney Islands often

exports power, reflecting 100% distributed renewable energy

penetration in this area [36]. The case studies presented

demonstrate that the proposed methodology is a promising ap-

proach to islanding detection. The scalability of the approach

makes it an attractive proposition for networks with high pene-

tration of DG, where there is an increased risk of uncontrolled

islanding operation. In addition, its dependence on frequency

rather than voltage magnitude makes it insensitive to local

voltage problems that can be an issue [37] with DG. Overall,

the relative simplicity and statistical basis of the approach

make it a powerful tool for real time situation awareness that

could aid system operators in preventing large scale blackouts

should islanding situations occur.

V. CONCLUSION

This paper presents a multivariate statistical methodology

for analysing wide area synchronized frequency measurements

for islanding detection. Using principal component analysis, it

is shown that the Q statistic is able to discriminate islanding

events from other grid disturbances, such as inter-connector

trip, generation dip/trip and loss of load events. The advantages

of the proposed approach when compared with the conven-

tional RoCoF technique and the newly proposed frequency
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difference method [17] are: (1) the threshold for islanding

detection can be automatically determined based on long-term

historic data; (2) it is simple to implement, computationally

fast with straightforward visualization; (3) it can be used to

detect islanding system re-closure; (4) associated contribution

plots can identify the islanded site, sites and regions; (5) in

addition, the T 2 statistic is able to detect frequency deviation

events, such as loss of load and generation trip.

The limitation of this approach is that if the frequency

in the islanding system is well matched with those of other

sites, it will fail to detect islanding successfully. In addition,

incomplete data and outliers are also challenging problems

for its practical use. More advanced approaches, such as

non-Gaussian, probabilistic, and recursive approaches will be

investigated and applied to other variables in our future work

aiming to improve detectability robustness.
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