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An Overview
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This article considers critically how one of the oldest and most widely applied statistical methods, principal
components analysis (PCA), is employed with spatial data. We first provide a brief guide to how PCA works:
This includes robust and compositional PCA variants, links to factor analysis, latent variable modeling, and
multilevel PCA. We then present two different approaches to using PCA with spatial data. First we look at
the nonspatial approach, which avoids challenges posed by spatial data by using a standard PCA on attribute
space only. Within this approach we identify four main methodologies, which we define as (1) PCA applied
to spatial objects, (2) PCA applied to raster data, (3) atmospheric science PCA, and (4) PCA on flows. In
the second approach, we look at PCA adapted for effects in geographical space by looking at PCA methods
adapted for first-order nonstationary effects (spatial heterogeneity) and second-order stationary effects (spatial
autocorrelation). We also describe how PCA can be used to investigate multiple scales of spatial autocorrelation.
Furthermore, we attempt to disambiguate a terminology confusion by clarifying which methods are specifically
termed “spatial PCA” in the literature and how this term has different meanings in different areas. Finally, we
look at a further three variations of PCA that have not been used in a spatial context but show considerable
potential in this respect: simple PCA, sparse PCA, and multilinear PCA. Key Words: dimensionality reduction,
multivariate statistics, principal components analysis, spatial analysis and mathematical modeling, spatial data.

Este artı́culo considera crı́ticamente la manera de utilizar con datos espaciales uno de los métodos estadı́sticos más
viejos y de aplicación generalizada, el análisis de componentes principales (ACP). Antes de todo, suministramos
una breve guı́a sobre cómo trabaja el ACP: Esto incluye variantes del ACP robustas y composicionales, vı́nculos
con el análisis factorial, modelización de variable latente, y ACP de nivel múltiple. Luego presentamos dos
enfoques diferentes para utilizar el ACP con datos espaciales. Primero, dirigimos nuestra atención al enfoque no
espacial, que evita los problemas que surgen cuando los datos espaciales se utilizan con un ACP estándar de solo el
espacio como atributo. Dentro de este enfoque identificamos cuatro metodologı́as principales, las cuales definimos
como (1) el ACP aplicado a objetos espaciales, (2) el ACP aplicado a datos raster, (3) el ACP para ciencia
atmosférica, y (4) el ACP para flujos. En el segundo enfoque, tratamos al ACP adaptado para efectos en el espacio
geográfico, examinando métodos de ACP adaptados para efectos no estacionarios de primer orden (heterogeneidad
espacial) y efectos estacionarios de segundo orden (autocorrelación espacial). También describimos la manera
de utilizar el ACP para investigar múltiples escalas de autocorrelación espacial. Adicionalmente, intentamos
desambiguar una confusión de terminologı́a aclarando qué métodos son especı́ficamente denominados “ACP
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Principal Component Analysis on Spatial Data: An Overview 107

espacial” en la literatura y cómo esta expresión tiene significados diferentes en áreas distintas. Por último,
dirigimos nuestra atención a tres variaciones adicionales del ACP que no han sido usadas en un contexto espacial
pero que muestran considerable potencial en este respecto: ACP simple, ACP ralo y ACP multilineal. Palabras
clave: reducción de dimensionalidad, estadı́sticas multivariadas, análisis de componentes principales, análisis espacial y
modelización matemática, datos espaciales.

Following its introduction at the beginning of
the twentieth century by Pearson (1901) and
Hotelling (1933), principal components analy-

sis (PCA) has been used in many different disciplines,
including agriculture, biology, chemistry, climatology,
demography, ecology, economics, genetics, geography,
geology, meteorology, oceanography, and psychology.
The purpose of this article is not to give a full historic
overview of its use (see Jolliffe [2002] for an extensive
review) but to highlight the need for special types of
PCA for use with spatial data and to investigate how
different versions of PCA have been and should be used
on spatial data.

This overview is intended for geographers who might
want to use PCA in some way for their particular prob-
lems and data. The hope is that this overview might help
them select an appropriate version of the method or
suggest an improvement to their existing methodology.
Therefore, we attempt to present the material in a very
general form without going into details, to try to make
it accessible to the widest possible audience. For a more
expert reader, the underlying theory can be found in the
method-specific references cited and in the comprehen-
sive book by Jolliffe (2002). Key historical literature on
the use of PCA from a geographer’s perspective includes
the work of Berry (1964, 1966, 1968a, 1971), Gould
(1967), Hägerstrand (1967), Tinkler (1972), Mather
and Openshaw (1974), Goddard and Kirby (1976),
Daultrey (1976), and Johnston (1978). In many of these
articles, there is much interchange between the use of
PCA and factor analysis (FA), where for applications
in urban geography their use came under a general um-
brella term of factorial ecology.

Spatial data contain geographic as well as attribute
information. Thus, whereas typical data sets only con-
tain measurements of variables or attributes, spatial data
sets are characterized by having a location associated
with each measurement; that is, the geographic loca-
tion within the basic three-dimensional framework of
our physical world, where the measurement was taken.
In contrast with nonspatial data, the data space can
therefore be separated into two distinct components: ge-
ographic space and attribute space. Occasionally, if tem-
poral information is also present, then time forms a third
component, the temporal space. As such, the data space

can consist of n-dimensional attribute space, three-
dimensional geographic space, and one-dimensional
temporal space, where the space–time components pro-
vide the framework for attribute space.

Two properties that can make spatial data special
and different from nonspatial data are spatial hetero-
geneity and spatial autocorrelation. Spatial heterogene-
ity refers to the nonstationarity of geographic processes,
meaning that processes can vary locally and are not nec-
essarily the same at each spatial location. Commonly,
this nonstationarity is modeled as a first-order (mean
response) or second-order (variance) effect. With re-
spect to spatial heterogeneity, in this article we limit
ourselves to nonstationary first-order effects only, where
such effects change across space. Spatial autocorrelation
is the tendency of attributes at some location in space
to be related. Spatial autocorrelation is a second-order
effect and we limit ourselves to stationary second-order
effects only (noting that nonstationary second-order
effects are possible). The presence of spatial hetero-
geneity and spatial autocorrelation invalidates two ba-
sic assumptions of many standard statistical analyses:
that data are independently generated and identically
distributed. As a consequence, using a standard statisti-
cal methodology, including PCA, on spatial data poses
particular challenges. Analogous effects are possible in
temporal space (and spatiotemporal space combined),
but we do not discuss them here.

In this article, we distinguish between two differ-
ent approaches to using PCA on spatial data: (1) those
that avoid spatial challenges altogether by using a stan-
dard nonspatial PCA and (2) those that adapt PCA for
spatial effects with respect to spatial heterogeneity or
autocorrelation. Although most spatial applications of
PCA stem from the geosciences (physical geography,
geology, geochemistry, atmospheric sciences, environ-
mental sciences, etc.) and, to a lesser extent, the social
sciences (human, social, economic geography), we focus
on the manner in which PCA is applied to spatial data,
rather than on the discipline-specific topics themselves.

Principal Components Analysis

Data dimension is the number of variables measured
at each observation. Many spatial data sets are highly
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108 Demšar et al.

dimensional and as such can be difficult to visualize and
interpret. However, there often exists a smaller intrinsic
dimensionality in the data set, where not all of the vari-
ables are needed to convey the information relevant to
an understanding of the underlying process. Therefore,
it is often of interest to reduce the dimensionality of the
data. Methods for dimensionality reduction attempt to
capture the maximum information present in the origi-
nal data, at the same time minimizing the error between
the original data and the new lower dimensional repre-
sentation (Donoho 2000; Fodor 2002; Afifi, Clark, and
May 2004).

PCA is one of the most popular dimensionality re-
duction methods. It is a linear method, meaning that the
transformation between the original data and the new
lower dimensional representation is a linear projection.
Its main purpose is dimensionality reduction, but it can
also be used to explore relationships between variables.
Often it is used as a preprocessing method either for data
orthogonalization and eliminating redundancy caused
by variable correlation or for dimensionality reduction,
before employing another statistical method, such as
regression or clustering (Fodor 2002; Jolliffe 2002). As
principal components (PCs) are orthogonal, regression
and clustering methods can proceed with data indepen-
dence assured.

PCA maps the original n dimensions (variables) of
the data matrix X onto a new orthogonal space, such
that the new axes are oriented in directions of largest
variance in the data. The new dimensions are called the
PCs and are mathematically defined as follows.

PCA is a factorization or decomposition of an m × n
matrix X, with m measurements and n variables, such
that

X = TPT, (1)

where P is an orthonormal projection matrix (i.e.,
PTP = I) and T is the projection of n-dimensional X
onto the new r-dimensional space defined by P; that is,

T = XP. (2)

Matrix P ∈ �n×r is referred to as the loading matrix and
T ∈ �m×r is referred to as the score matrix. The dimen-
sion r is the number of independent columns in X (i.e.,
the rank of X) and is bounded by the minimum of m
and n. P is computed so that its columns are the direc-
tions of maximum variance in the data, with the first
column (or PC1) representing the direction of maxi-
mum variance, the second column (PC2) the direction

of the next largest variance, and so on. These direc-
tions correspond to the eigenvectors of either the data
covariance or correlation matrix, �, where

� =
�

X
T �

X
m − 1

. (3)

Here,
�

X denotes X with the mean removed from each
column in the case of covariance and X with each col-
umn standardized to have zero mean and unit variance
in the case of correlation. By definition � is a posi-
tive semidefinite matrix and therefore its eigenvalues
are greater than or equal to zero. Hence, ordering the
eigendecomposition of � so that the eigenvalues are in
descending amplitude order gives

P�PT = � (4)

where P is the score matrix and � is the diagonal matrix
of eigenvalues; that is,

� = d i ag (λ1, λ2, . . . , λr , 0, . . . 0), with

λ1 ≥ λ2 · · · ≥ λr ≥ 0 (5)

In many situations X can be approximated by a small
number of PCs, k, where k << r ≤ n, while still ex-
plaining most of the variance in the data; that is, where
� only has a small number of large eigenvalues and
many small ones. Denoting Pk as the matrix containing
the first k columns of P (i.e., the most significant PCs)
then the corresponding scores matrix is given by

Tk = XPk (6)

and the proportion of the total variance explained by
Tk is given by vk

vr
× 100, where

vk =
k∑

i =1

λi and vr =
r∑

i =1

λi = tr ace(�) = tr ace(�).

(7)
From this description it follows that each PC cor-

responds to the direction of one eigenvector and is a
linear combination of the original variables. Because
PCs are ordered according to the size of their respective
eigenvalues, starting with the largest, this means that
the new space of the PCs is oriented so that the first
few PCs are aligned with the directions of the largest
variance in the data; that is, the first PC represents the
direction in which the variance of data is the largest,
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Principal Component Analysis on Spatial Data: An Overview 109

the second PC the direction of the next greatest vari-
ance, and so on. If the first few dimensions (k) explain
most of the variance in the data, the rest can usually be
disregarded with minimal loss of information. Dimen-
sionality reduction is performed by taking the first k PCs,
where k << n such that the new k-dimensional space
contains the majority of the information according to
some criterion. A key decision is the size of k; that is,
how many PCs should be retained? The answer is study
dependent and has to be determined by examination of
the data. A number of heuristic methods exist for this
purpose. The k selected PCs are sometimes referred to
as unobserved latent variables.

PCs will differ by the choice of the matrix � used
for their calculation. The covariance matrix is scale de-
pendent and should only be used when all variables
have the same measurement units. If the measurement
units of variables differ in size and type, then the scale-
independent correlation matrix should be used instead
to standardize the original variables. This avoids a dom-
ination of variables with the largest measurement units
in the first few PCs (Maćkiewicz and Ratajczak 1993;
Jolliffe 2002).

With respect to data set structure, PCA can be run
in two ways: either in the so-called R-mode or Q-mode.
In R-mode, the goal is to identify combinations of vari-
ables that explain the pattern of variation among the
objects—this is the standard way of running PCA. Q-
mode PCA, which is sometimes referred to as inverted
PCA, focuses on combinations of samples that explain
variation among variables. That is, the PCA is run on
a data set where the matrix of samples and attributes
is transposed so that the roles of the variables and
measurements are reversed (Tanaka and Zhang 1999;
Choulakian 2001; Schuenemeyer and Drew 2011). If
time is added as one of the measurements, resulting in
space–time series data, then there are in total six dif-
ferent modes—O, P, Q, R, S, and T—each of which
addresses a different combination of time, objects, and
attributes (Richman 1986). We explain these modes
more fully later, as we specifically deal with space–time
series data.

Statistical inference for PCA deals with estimating
characteristics of the PCs defined by the entire popu-
lation given the PCs derived from a data sample. The
key limitation is that inference should only ever be
attempted when the data are (at least approximately)
multivariate normal (Jolliffe 2002). If this requirement
were to be imposed every time, it would limit the use
of PCA to only a very small number of cases, because
in reality, true multivariate normality is rarely the case.

In our context, PCA should be seen as a descriptive
methodology rather than an inferential one, as it can
produce valuable information regardless if the attributes
are normally distributed or not. That is, it provides a
view on the structure of data as they are within the sam-
ple, rather than attempting to infer characteristics of
the entire population. This is the perspective that the
majority of applications in this overview would take.
Details on the inferential side of PCA can be found in
Jolliffe (2002).

Robust PCA and Outlier Detection

When there are outliers in the sample data, basic
statistical methods often produce unreliable results,
as the presence of outliers violates basic assumptions
of the methods. This is usually prevented by using a
robust version of the same method. By construction,
robust methods also detect outliers and a robust version
of PCA can be used for multivariate outlier detection
via dimensionality reduction, so that in the resultant
transformed (PC) space, outliers are more readily
observable. PCA in a basic form is not very robust to
outlying observations (i.e., its covariance estimates are
nonrobust) and, as such, is not ideally suited to their
detection. In this respect, numerous robust PCA-based
techniques (together with their associated outlier
detection tools) have been proposed (see Jackson and
Chen 2004; Rousseeuw et al. 2006; Daszykowski et al.
2007; Stanimirova, Daszykowski, and Walczak 2007).
Here PCA can be made robust to outliers by using (1)
some robust covariance estimator (such as a reweighted
minimum covariance determinant [MCD]; Croux
and Haesbroeck 2000), (2) a projection pursuit (PP)
technique where projections of the data are searched
for outliers (Hubert, Rousseeuw, and Verboven 2002),
and (3) a mixture of both MCD and a PP technique
(Hubert, Rousseeuw, and Vanden Branden 2005).
Many robust PCA techniques are computationally
intensive and, as such, computationally fast algorithms
are required for analyzing large high-dimensional data
sets (e.g., see Filzmoser, Maronna, and Werner 2008).

Compositional PCA

In some cases, data have the property that all at-
tributes sum to a constant; that is, they are descriptions
of a part of some whole and give only relative informa-
tion. An example of this is proportional values that sum
to one—this routinely occurs in geochemistry when
water or soil samples are taken and the proportions
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110 Demšar et al.

in each sample of a number of chemical elements are
measured (e.g., Filzmoser, Hron, and Reiman 2009).
This constraint means that the attribute values of such
data occur in a space limited by a simplex and are
therefore closed in space, which affects the structure of
the correlations. A standard multivariate method such
as PCA is therefore not applicable to such data. Instead,
a common way to model this type of data is to use a
technique from compositional data analysis (Aitchison
1982; Aitchison and Egozcue 2005), which replaces
variables with logarithmic ratios of variables (or some
related transformation). This removes the constraint of
the simplex and transforms the variables into an uncon-
strained multivariate space and consequently allows a
standard statistical method to be applied. Specifically,
compositional PCA (Aitchison 1983) calculates PCs
of log ratio transformations of the raw data. Many
compositional data sets are inherently curved; that is,
the largest variance is distributed along a curved line
and not a new straight line dimension. Compositional
PCA is able to correctly pick up this curvature, whereas
a standard PCA, which only produces linear combina-
tions of variables, is powerless (Jolliffe 2002). However,
the log ratio transformation in compositional PCA
further complicates the already difficult interpretation
of PCs (Aitchison and Egozcue 2005).

PCA and Links with Factor Analysis

As suggested, a known disadvantage of PCA is
that the PCs do not always correspond to meaningful
physical variables. Indeed, there is no reason why a
purely mathematically calculated linear combination
of variables should have a physical meaning (Jolliffe
2002). PCs are therefore not always easy to interpret.
One attempt to solve this problem is to rotate the PCs
post-analysis into new dimensions that might have
an easier-to-interpret connection with the original
variables. This is commonly done using varimax,
covarimax, or similar rotations that originate in factor
analysis (FA) and were designed to maximize the
variance of the factors (Kaiser 1958). Although this is a
relatively common approach (e.g., Widmann and Schär
1997; Frank and Esper 2005; Esteban, Martin-Vide,
and Mases 2006), the usefulness of postrotation of PCs
is debatable, as PCs already maximize the variance, and
any further rotation of the axes in the PC space, while
preserving the amount of the variance, might change
the ordering according to variance size (Daultrey 1976;
Richman 1986; Jolliffe 2002).

PCA is sometimes considered to be a special form
of FA. This, however, is not quite correct, because al-
though both methods have a similar goal of dimen-
sionality reduction to a number of latent variables,
their postulations are very different. As described ear-
lier, PCA can be defined as a technique that identi-
fies a set of linear combinations of original variables
with no preassumed models: PCs are defined simply
as directions of largest variance. FA, on the other
hand, attempts to achieve dimensionality reduction by
assuming the existence of k latent variables or factors
(where k << n and n is the number of variables), such
that each original variable is a linear combination of fac-
tors. Factors are separated into common factors, which
contribute to all variables, and specific factors, each of
which contributes to only one particular variable and
describes the variable-specific model error (which can
be either an observational or measurement error). Thus,
FA is defined in the familiar format of a “determinis-
tic term + random error term,” used, for example, in
regression models. The factors define a model and de-
pend on known parameters such as k defined in the text
immediately preceding and unknown parameters to be
estimated, such as the component loadings. There is no
explicit model in the classic derivation of PCA whose
results are dependent on data only (although it is pos-
sible to consider model-based PCA, as one solution of
the maximum likelihood calibration of FA where k fac-
tors coincide with the first k PCs; see next subsection
on latent variable modeling and Jolliffe [2002]). Stan-
dard PCA finds a data-defined linear transformation
from an n-dimensional space to another n-dimensional
space and no additional parameters have to be spec-
ified. To summarize, FA provides us with a model of
the lower dimensional space, whereas PCA produces
a unique data-driven projection. This is the most fun-
damental difference between the two methods. An in-
terested reader can find details on FA in any textbook
on multivariate statistics (e.g., Afifi, Clark, and May
2004). Detailed differences between PCA and FA are
discussed in Jolliffe (2002).

Latent Variable Modeling and Multilevel PCA

Some recent developments in PCA are latent vari-
able modeling and multilevel PCA. From a theoretical
perspective, these can be best understood by adopting
a model-based interpretation of PCA—see, for exam-
ple, Anderson (1984) or Whittle (1953). Although of-
ten presented as an exploratory algorithm, PCA can be
viewed as the solution to a maximum-likelihood model
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Principal Component Analysis on Spatial Data: An Overview 111

calibration problem, where the data matrix is repre-
sented as a matrix of lower rank than its number of
columns. In standard PCA, the data are assumed to be
such a matrix plus an independent Gaussian error term
for each element—but the model can be modified to
represent a number of alternative situations. One such
example is that of a spatial PCA, where the statistical
distribution of the error terms reflects the spatial struc-
ture of the observations. This approach, in which the
data might be thought of as a linear combination of a
number of unobserved variables (PCs) plus a random
error, is sometimes referred to as latent models or latent
variable models (see subsection on regionalized PCA).

Another modification can be used to reflect a
hierarchical structure in the data. This means that the
data set consists of individual data records for which
factors are calculated at different levels of aggregation.
An example would be data collected on the level of
individual students and the two higher aggregation
levels were schools and the aeral units to which each
school belongs (Goldstein and Browne 2005). In such
cases, the variability in the data can be represented by
random terms at different levels in the hierarchy. In
turn, this implies that the models can be thought of as
having components at different levels of the hierarchy.
Goldstein and Browne (2005) applied this approach to
investigate Organisation for Economic Co-operation
and Development (OECD) data recorded for thirty-
two industrialized countries (OECD 1999) including
tests of reading, mathematics, and science. Factors
at country, school, and individual student levels
were considered and component loadings related to
responses to individual questions in the tests were
estimated at school and country levels.

In this model-based approach, Bayesian estimation
of the loadings can also be used and through techniques
such as Markov chain Monte Carlo (MCMC) estima-
tion, a very wide portfolio of models and modifications
to existing models can be considered. For example, the
variables in the data matrix might be categorical and the
link between the component scores and the observed
data might take the form of a logistic regression.

Standard Nonspatial PCA on Spatial Data

We have identified four main methodologies for us-
ing standard nonspatial PCA (as described in previous
section) on spatial data, which we refer to as follows:

� Spatial objects PCA
� Raster data PCA

� Atmospheric science PCA
� PCA on flows

In the following, we give a description of each of
these approaches and list some examples from various
academic disciplines. Table 1 provides a summary.

Spatial Objects PCA

One of the most common uses of PCA on spatial data
is in studies where spatial data consist of spatial objects.
These are typically either irregularly spaced points (e.g.,
sampling sites of environmental measurements) or
areas (e.g., watersheds or administrative districts). Vari-
ables are measurements of several different properties
(characteristics) at each point or area location. In these
studies, PCA is run on the entire data set, statistical
software is (commonly) used for processing rather than a
geographical information system (GIS), and geographi-
cal effects do not play any role in the PCA itself. Results
give a global summary of the data and are presented non-
spatially using tables and statistical summaries. Figure 1
shows the schematic flow of this methodology. Observe
that it is possible to map the PC scores (i.e., the trans-
formed data values after applying PCA) for each PC, as
they correspond to each vector of observations at each
spatial location of the data set. Regionalization studies
in the social sciences provide numerous examples of
this practice (see the text immediately following).

Spatial objects PCA is commonly used for dimen-
sionality reduction or as a data preprocessing method,
as with any nonspatial application. Examples can be
found in many of the geosciences: in environmental
sciences for environmental indices (Tran et al. 2002;
Parinet, Lhote, and Legube 2004); for atmospheric,
soil, and water pollution (Hernández, Adarve Alcazar,
and Pastor 1998; Felipe-Sotelo et al. 2006; Zhang
2006); in environmental geochemistry (Zhang and
Selinus 1998; Reid and Spencer 2009); in environ-
mental management (Bastianoni et al. 2008); and in
biogeography for wildlife and vegetation distribution
studies (Antunes et al. 2008). There are also numerous
instances of such simple PCA applications in the social
sciences; for example, as a data preprocessor prior to
statistical modeling—see the regression modeling of
fire and rescue incidents (Corcoran et al. 2007) and the
nonstationary regression modeling of hedonic house
price data (Bitter, Mulligan, and Dall’erba 2007).

A common application in the social sciences is
to develop composite social indices for development,
health, or quality of life from the first few PCs using
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112 Demšar et al.

Table 1. Use of four different standard principal components analysis methodologies on spatial data

Discipline
Spatial objects

PCA
Raster data

PCA
Atmospheric
science PCA PCA on flows

Atmospheric science, climatology, meteorology X
Biogeography: Ecology, vegetation, and wildlife X X
Dendrochronology X
Environment: Atmospheric pollution X X
Environment: Soil and groundwater pollution X X
Environmental geochemistry X
Environmental management X
Remote sensing X
Geology, sedimentology X X
Historical geography: Regionalization X
Human geography: Migration and spatial interaction X
Human geography: Regionalization X
Seismology X
Social indicators research: Composite indices X X
Social sciences: Preprocessing/orthogonalization X
Transportation X
Underwater acoustics X

Note: PCA = principal component analysis.

sociodemographic input variables. Here PCA is used
on administrative units, both for dimensionality re-
duction and to explore relationships between variables
(Boelhouwer and Stoop 1999; Booysen 2002; Fotso
and Kuate-Defo 2005; Anselin, Srihdaran, and Ghol-
ston 2007; Lengen and Blasius 2007; Kelly and Teljeur
2007). Spatial objects PCA has also been used to link
remotely sensed (RS) data with area census data for
quality of life indices (Lo 1997).

In human (social and economic) geography, spatial
objects PCA has been used for regionalization (Gould
1967; Daultrey 1976; Hall 1977). Here PCs are cal-
culated on areal data with the goal being to aggre-
gate similar areal units into regions (internally cohe-
sive larger spatial units) through the first few PCs (via
their respective PC scores). Identified regions can be
environmental, geographical, or social, depending on
the study. Examples of this (more spatially oriented)
use of standard PCA can be found in Skånes and Bunce
(1997) with respect to landscape dynamics, Horner and
Grubesic (2001) with respect to transportation plan-
ning, and Campbell and Power (1989) with respect to
historical geography.

Finally, spatial objects PCA is routinely applied in
geological studies (Davis 1986). Examples include the
study of marine mineral properties (Andrews 2008)
and seabed classification from acoustic data (Preston
2009). Commonly in geological (and geochemical)
studies, sample data are compositional and, as such,

compositional PCA is applied (Thomas and Aitchison
2005; Thió-Henestrosa and Martı́n-Fernández 2005;
Reyment 2006; van den Boogaart and Tolosana-
Delgado 2008). These same disciplines are also at the
forefront in the application of robust forms of PCA and
outlier detection (Filzmoser 1999; Filzmoser, Garrett,
and Reimann 2005; Filzmoser, Hron, and Reiman
2009).

Raster Data PCA

Our second identified methodology for applying
PCA occurs in the analysis of raster data. Here PCs are
calculated for a data set where data elements are cells
of raster surfaces (or locations in the center of raster
cells) with measurements of several variables at each
location. This type of PCA focuses on the creation of
PCA maps—new rasters, where each pixel is assigned
a value or score in each new PC dimension (Eastman
2003). As with the analogous methods in the previous
section, geographical effects are not accounted for in
the calculation of the PCs, as the analysis is run strictly
on attribute space only. It should be noted that, math-
ematically, this methodology is a variation of spatial
objects PCA from the previous section; the only differ-
ence is that in this case “spatial objects” correspond to
regular grid cells or locations of their centers. Based on
the studies that we found, however, we decided that it
warrants a separate description because, in contrast with
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Principal Component Analysis on Spatial Data: An Overview 113

Figure 1. Spatial objects principal
component analysis (PCA).

the previous methodology, there is a focus on the spatial
distribution of results. The new PCs are almost always
displayed in map form and often used in subsequent
spatial analysis based on map algebra. The schematic
flow of this methodology is shown in Figure 2.

This methodology is commonly used when satellite
or other RS data need to be combined with other types
of raster data; for example, with interpolated surfaces
of some meteorological or soil variables, with inter-
polated animal counts in zoology, and with rasters of
socioeconomic and census data in the social sciences.
Analysis is usually performed using the PCA function-
ality provided in a GIS, typically Idrisi Kilimanjaro or
ArcGIS Spatial Analyst. Statistical software is rarely
used.

Raster PC maps are often used to produce composite
indices that describe a certain subset of data with par-
ticular properties. Again, indices are derived using the
first few PCs and describe inter-variable relationships.
Examples include ecological susceptibility (Hoersch,
Braun, and Schmidt 2002), wildlife distribution
patterns (Khaemba and Stein 2000; Brito et al. 2008;
Ngene et al. 2009), water pollution (Satapathy, Salve,
and Katpatal 2009), the ecogeographical analysis of

underwater acoustic bathymetry data (Verfaillie et al.
2009), and other topics in the environmental sciences
(e.g., Arbia, Griffith, and Haining 2003; Li et al. 2006;
Maina et al. 2008; Shi et al. 2009).

Again with RS data, raster data PCA can be used
for change detection, feature detection of natural
and man-made features, and classification of spectral
classes. This has been done for a variety of RS source
data; for example, Landsat TM bands (Collins and
Woodcock 1996; Floras and Sgouras 1999; Aminzadeh
and Samani 2006), multispectral and hyperspectral
imagery (Goovaerts, Jacquez, and Marcus 2005; Panda,
Hoogenboomb, and Pazb 2009), and near-infrared
astronomical imagery (Klassen 2009). An example
in the social sciences can be found in Lo and Faber
(1997), where RS data are linked with census data to
develop composite social indices.

In some studies, input rasters are weighted by multi-
plying them with another raster that describes a partic-
ular spatial relationship or distribution, resulting in the
so-called spatially weighted PCA method (W. Wang
and Cheng 2008; this is not to be confused with the
geographically weighted PCA method described in the
next section, which is an entirely different method with
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114 Demšar et al.

Figure 2. Raster data principal com-
ponent analysis (PCA) and its spatial
visualization—raster principal compo-
nent (PC) maps. Location is only rele-
vant for visualization, not computation,
as PCA is run on attribute space only.

different objectives; see the final subsection of the next
section for disambiguation).

Atmospheric Science PCA

Our third methodology comes from the atmospheric
sciences, where standard PCA is applied to spatio-
temporal data; that is, a time series of measurements
collected at specific spatial locations. It is considered a

standard analytical tool in climatology and meteorology
and has been in use since the 1950s.

Data for atmospheric science PCA consist of time
series of measurements of one particular meteorologi-
cal field variable (this can be air temperature, sea-level
pressure, or similar), measured at equidistant time in-
tervals at each sampling location. Observe that only
one variable is measured in this approach, as opposed
to the previous two methodologies, in which several
variables are measured. Sampling locations are either
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Principal Component Analysis on Spatial Data: An Overview 115

Figure 3. Atmospheric science
principal component analysis (PCA)
and its spatial visualization—empirical
orthogonal functions (EOFs)/spatial
principal components. Location is im-
plicitly involved in the process through
inversion of the spatio-temporal data
set, where sampling locations are
considered attributes and sampling
times data elements of the data set on
which the PCA is run.

locations of meteorological stations or centers of grid
cells of meteorological raster data. In the previous two
approaches, sampling locations represent data elements
and field measurements variables. Atmospheric science
PCA inverts this concept and considers sampling loca-
tions as variables and sampling times as data elements.
Thus, PCs are calculated from the transposed data set,
where the covariance/correlation matrix is n × m (as
opposed to m × n in the nontransposed case). Again
the number of PCs is bounded by min(n, m). Note

that, because of the conceptual inversion of the data
set, covariance/correlation is calculated between each
pair of sampling locations and not between two mea-
sured variables as before. Therefore, location does play
a role in calculation of the PCs, albeit implicitly. Figure
3 schematically shows this process.

As mentioned in the previous section, when deal-
ing with space–time series data there are six differ-
ent operational modes of use of PCA: O, P, Q, R, S,
and T. These modes are defined by having the data
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116 Demšar et al.

matrix for PCA defined by two out of the three sub-
spaces of the space–time data set. The three subspaces
of the space–time data set are geographic space, tempo-
ral space, and attribute space. The six modes are then
defined as follows (Richman 1986):

� O-mode data matrix is between attributes and time
(i.e., attributes are considered data elements and
sampling times variables for PCA).

� P-mode: time vs. attributes (i.e., sampling times are
data elements and attributes variables).

� Q-mode: attributes vs. locations.
� R-mode: locations vs. attributes (spatial objects PCA

and raster PCA).
� S-mode: time vs. locations (atmospheric science

PCA).
� T-mode: locations vs. time.

Different modes provide different insights into
data—details of which can be found in Richman
(1986). The S-mode is the most common one in at-
mospheric science, however, and is the one described
in the preceding text.

The resulting PCs are sometimes referred to as
empirical orthogonal functions (EOFs, termed empirical
because they originate from observed values of the mete-
orological field; North, Bell, and Cahalan 1982; Jolliffe
2002). Because each PC/EOF is a linear combination
(i.e., a weighted sum) of all locations, a map can be
produced for each PC/EOF. Here the calculated weights
of the respective PC/EOF at each sampling location are
spatially interpolated to form a contour map, which is
then inspected for spatial patterns. Often patterns from
several of the first few PC/EOF maps correspond to
typical situations in the atmosphere at particular times
of the temporal period studied (Jolliffe 2002). Further-
more, the PCs/EOFs are often rotated postanalysis (as
in FA) to facilitate the interpretation of the resulting
component maps. In atmospheric science, there are
several types of rotations, some of which are orthogonal
(e.g., varimax, quartimax, and equimax rotations,
which preserve the orthogonality of the PCs) and
others oblique (these produce correlated rotated PCs).
The aim of all of these rotations is to discover a trans-
formation of the PCs that results in a so-called simple
structure—a description of the data set with the smallest
necessary number of rotated PCs, which are oblique yet
still constitute a set of linearly independent vectors in
original PC space (Richman 1986). This structure was
defined by Thurstone (1947) for FA (cited in Richman
1986), but simple structure rotation is often applied in

atmospheric PCA, in spite of the controversy over post-
PCA rotation being necessary or not (see subsection on
PCA and factor analysis). In meteorology it has been
observed that such rotated PC/EOF maps are more sim-
ilar to particular observed weather situations (Yarnal
et al. 2001; Jolliffe 2002; Zwiers and Von Storch 2004).

It is important to note the difference in the
information represented by this approach compared
to raster data PCA and the difference in their spatial
visualizations. Raster PC maps show values (scores) of
PCs (latent variables) at each location (represented
as a grid cell), as each location is considered as a data
element in the spatial data set. This is in contrast to
atmospheric science PC/EOF maps, which show PC
loadings at each location (because each location is
considered to be a variable and not a data element). To
emphasize the difference between the two, the PC/EOF
maps present a spatial distribution of the importance
of one single meteorological variable at each particular
location, whereas raster PC maps show the distribution
of values of each latent variable (PC) at each loca-
tion, where each PC is a linear combination of the
original variables, thus reflecting several variables, not
just one.

Detailed historical reviews of atmospheric science
PCA can be found in Jolliffe (2002) and Esteban,
Martin-Vide, and Mases (2006). Some noteworthy
uses include investigating sea-level pressure (Esteban,
Martin-Vide, and Mases 2006; Lopez-Bustins et al.
2007), precipitation (Widmann and Schär 1997;
Krepper and Garcı́a 2004), and synoptic climatology
(Yarnal et al. 2001). Again, this use of PCA often
precedes the use of some clustering or classification al-
gorithm; for example, circulation pattern classification,
classification of weather types, climate regionalization,
atmospheric circulation reconstructions, circulation
anomalies associated with natural climatic variabil-
ity, and climate series reconstruction (see Esteban,
Martin-Vide, and Mases [2006], for a review). There is
also a linkage between atmospheric science PCA and
the modeling of nonstationary spatial autocorrelation
structures in spatiotemporal data sets (Obled and
Creutin 1986; Sampson, Damian, and Guttorp 2001).
This topic directly relates to the methods of the next
section, but its description is beyond the scope of
this study.

Finally, the use of atmospheric science (i.e., S-
mode) PCA can also be found in other disciplines that
similarly collect long-term time series data at spatial
locations—one example is the dendrochronological
study of Frank and Esper (2005), where time series
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Principal Component Analysis on Spatial Data: An Overview 117

of tree ring width and wood density were converted
into PC/EOF maps, which were then compared with
climate maps to identify similarities between properties
of tree growth and climatic conditions. Other examples
can be found in environmental pollution analysis
(Ibarra-Berastegi et al. 2009) and in seismology
for earthquake series data (Savage 1988; Holliday
et al. 2006).

PCA on Flows

Our fourth methodology is very different than the
previous three and concerns the use of PCA in the
identification of structure in flow matrices (Berry 1966,
1968a, 1968b). Flow matrices are spatial in that they
can be, for example, a data matrix of the flow of mi-
grants between countries (Magee 1971; Hay and Rai-
han Sharif 1986). In this particular example (both ref-
erences analyzed the same data), after conducting a
standard PCA on the raw data flow matrix, one can
relate each PC to a subsystem of flows emanating from
a country (or countries) and terminating in another,
where the first PC has the strongest subsystem of flows.
Again, in this example, flows originating from Spain
and Portugal and terminating in France were found to
be the strongest, reflecting their position as neighbor-
ing countries and their political and economic status
at the time of the study. Other examples of this use
of PCA can be found in Goddard (1970) with taxi
data, Black (1973) with transportation of commodi-
ties, and both Goddard (1973) and Clark (1973) with
phone call data. These studies belong to geography’s
historical literature and are often labeled as factorial
ecology (see introduction). A more recent application
of the same underlying methodology can be found in
Reades, Calabrese, and Ratti (2009), where the spatio-
temporal structure of a rasterized representation of a
mobile phone network in Rome, Italy, is characterized
using PCA.

PCA Adapted for Spatial Effects

In this section, we describe three truly spatial PCA
techniques that are specifically designed for, or account
for, spatial effects in spatial data. First, we look at two
closely related PCA techniques that are adapted locally
in attribute and in geographical space, respectively.
These techniques adopt a nonparametric, kernel-based
approach and are termed locally weighted PCA
(LWPCA) and geographically weighted PCA
(GWPCA). These can be considered nonstation-
ary forms of PCA, where only the second technique

is spatial. Second, we describe a PCA technique that
directly accounts for spatial autocorrelation in the
data via Moran’s I statistic and, in doing so, has links
to related models concerning eigenfunction spatial
filtering. Third, we look at the use of PCA for exploring
different structures of the variogram, a measure of
spatial autocorrelation commonly used in geostatistics,
and, in turn, link these established techniques to more
contemporary and sophisticated spatial FA models.
Finally, as a caveat to this section, we discuss the
ambiguities that are often found in the literature when
labeling a PCA technique as spatial.

LWPCA and GWPCA: Moving from Global PCA
to Local PCA in Attribute or Geographic Space

LWPCA (Tipping and Bishop 1999; Skočaj,
Leonardis, and Bischof 2007; Hoffmann, Schaal, and
Vijayakumar 2009; Charlton et al. 2010) is applied to
the situation when the data are not described well by a
universal set of PCs but where there are localized regions
in attribute data space where a suitably localized set of
PCs provide a better description. That is, in different
parts of the data space, a different set of PCs is needed.
This technique uses a moving window weighting ap-
proach in the data space where PCs are found in the
locality of some point x in the data space. For each indi-
vidual LWPCA around x, neighboring data points are
first weighted according to some distance-decay kernel
function (e.g., bi-square, Gaussian, etc.) where Maha-
lanobis (attribute space) distances of the neighboring
points to x are used. Each observation is then multiplied
by its respective weight and a standard PCA algorithm
is (locally) applied to this weighted data. As a different
PCA is computed for every point x, the results vary
continuously through the data space. The size of the
window over which a local PCA might apply is con-
trolled by the bandwidth. Small bandwidth values lead
to more rapid variation in the results, whereas very large
bandwidths give subspaces increasingly close to the uni-
versal (global) PCA solution.

GWPCA models (Fotheringham, Brunsdon, and
Charlton 2002; Charlton et al. 2010; Lloyd 2010; Ku-
mar, Lal, and Lloyd in press) are similar to LWPCA
models, but in this case it is assumed that there are
regions of geographical space in which distinct PCA
models apply (i.e., the study data set or process is spa-
tially heterogeneous and should be modeled as such).
The technique is identical to LWPCA except that now
the distance-decay weights are based on geographical
(usually Euclidean) distances between some point z and
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118 Demšar et al.

Figure 4. Geographically weighted
principal component analysis (GW-
PCA). A local model is calculated at
each location based on a geographi-
cally weighted subset of neighboring
data points. λ1 to λN are eigenval-
ues, ordered from largest to smallest.
PC1 to PCN are principal components,
defined as respective eigenvectors. In
a global principal component analy-
sis model, eigenvalues and eigenvec-
tors are constant, whereas in GWPCA,
they become dependent on geographic
location (Loc1, . . . LocP).

its neighboring data points. As for LWPCA, a different
PCA is computed for every z, but now the results vary
continuously over geographic space and, as such, they
can be mapped (Figure 4).

Spatial patterns in the behavior of local eigenvalues
from GWPCA inform on the complexity and local
intrinsic dimensionality of the data and could be used
for local dimensionality reduction. Local PCs describe
local relationships between original variables at each
location and could be used to derive local composite
indices that depend on local environmental circum-
stances. GWPCA could also serve as a locally defined
orthogonalization prior to the application of some
other local statistical method, such as geographically
weighted regression (GWR; Fotheringham, Brunsdon,
and Charlton 2002), as an alternative to a global PCA
orthogonalization in combination with GWR (Bitter,
Mulligan, and Dall’erba 2007). Currently, and unlike
GWR, GWPCA is rather limited in that there are no
associated diagnostics to indicate whether it provides
an advantage over its global counterpart. Preliminary
research in addressing this drawback is reported in
Charlton et al. (2010).

PCA with Spatial Autocorrelation

Spatial effects can also be taken into account when
PCA is combined with a measure of spatial autocor-

relation. Jombart et al. (2008) presented such a spatial
modification of PCA (termed sPCA) to investigate the
spatial pattern of genetic variability with respect to the
(multivariate) genetic characteristics (termed alleles)
of a set of individuals or populations under study.
Spatial autocorrelation is measured using Moran’s I
(Moran 1950) and incorporated within the sPCA
algorithm. The sPCA technique provides PC scores
that summarize both the aspatial genetic variability in
attribute space and the spatial autocorrelation structure
in geographical space among the individuals or popu-
lations. Here statistical (Monte Carlo) tests are used to
partition the spatial structure into random, local, and
global variance patterns, where local patterns are taken
to relate to highly negative spatial autocorrelation and
global patterns are taken to relate to highly positive
spatial autocorrelation. Observe that it is unlikely that
this should be viewed as clear-cut separation of spatial
structures, as vectors with relatively small positive
eigenvalues produce local patterns of positive spatial
autocorrelation. The technique can be implemented
and its output visualized using functions provided in
the R (Ihaka and Gentlemen 1996) adeganet package
(Jombart 2008), where its application in related re-
search areas, such as those found in ecology, should be
straightforward. Applications of sPCA should only be
viewed as explorative, especially as its output depends
strongly on the particular (often arbitrary) connection
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Principal Component Analysis on Spatial Data: An Overview 119

network that needs to be specified when computing
Moran’s I.

The sPCA technique can be viewed as a direct al-
ternative to GWPCA for incorporating spatial effects
into a PCA, but whereas GWPCA accounts for first-
order (nonstationary) spatial effects, sPCA accounts for
second-order (stationary) spatial effects. Such method-
ological differences are analogous to the use of a GWR
or a regression with a spatially autocorrelated error term
when choosing a regression model to study spatially ref-
erenced data. A natural extension would be to adapt
sPCA locally to provide a GWsPCA hybrid.

Linkages and Related Techniques. The sPCA
technique has strong conceptual links to the multivari-
ate spatial correlation technique of Wartenberg (1985a,
1985b) where both techniques require the computation
of a spatial weighting matrix W to account for spatial
autocorrelation between spatial units. Furthermore,
Dray (2011) provided useful linkages concerning how
the spectral decomposition of W has been used in differ-
ent contexts. For example, in quantitative geography,
the eigenvectors of W are used in spatial filtering where
spatial autocorrelation is removed from the residuals of
a statistical model and, in turn, can be used for spatial
prediction (e.g., see Griffith 1996, 2000; Griffith and
Amrhein 1997; Getis and Griffith 2002). The same
eigenvectors are also used in ecology for multivariate
spatial exploration and prediction (Dray, Legendre,
and Peres-Neto 2006; Griffith and Peres-Neto 2006;
Jombart, Dray, and Dufour 2009). Useful linkages
can also be made between spatial filtering and GWR
(Griffith 2008), and Chun (2008) adapted a spatial
interaction model using spatial filtering to improve its
parameter estimates when modeling migration flows.

Regionalized PCA: A Geostatistical Methodology

In the classical geostatistics framework, a univariate
spatial prediction algorithm such as ordinary kriging
(OK) and its multivariate extension, ordinary cokrig-
ing (OCoK), can each be adapted to decompose the
data into spatial components. This results in the (uni-
variate) factorial kriging (FK) and multivariate facto-
rial kriging (MFK) algorithms, respectively (Matheron
1982; Goovaerts 1997; Wackernagel 2003). Here the
geostatistical objective is no longer spatial prediction,
but an exploration of the origins of the data, where
spatial variability (and covariability for MFK) is inves-
tigated at different spatial scales. Such scale-dependent
variation is typically revealed by nested structures in the

empirical variogram(s) and cross-variogram(s) for MFK
(i.e., our measures of spatial autocorrelation). FK and
MFK estimate and map the different sources of vari-
ation suggested by the nested variography and in do-
ing so can provide a greater understanding of the pro-
cess under investigation. Similarly, FK and MFK can
be used as a data filter, where one (or more) of the
spatial components are filtered from the data so that
the primary analysis can focus on the behavior of the
residual process, which in this case is considered more
important.

It is only for MFK that applications of PCA
are needed. Here PCA is used to decompose the
variance–covariance (i.e., coregionalization) matrices
that describe the correlation structure of multiple vari-
ables at characteristic spatial scales. Outputs from such
matrix decompositions are commonly visualized using
a circle of correlation plots, one for each spatial scale
of interest. Here any significant change in the relation-
ships between variables at the different spatial scales
should become immediately apparent. Software to im-
plement MFK can be found in Pardo-Igùzquiza and
Dowd (2002); as with any kriging method, MFK can
be embedded with a conditional simulation algorithm
to provide an assessment of spatial uncertainty for vari-
ables with coregionalized components (Larocque et al.
2006).

Numerous applications of FK and MFK can be found
in the geosciences and include Galli, Gerdill-Neuillet,
and Dadou (1984) in geophysics (FK); Bourgault and
Marcotte (1991), Lin et al. (2006), and Imrie et al.
(2008) in geochemistry (all MFK); Goovaerts (1992)
(FK and MFK) and Castrignanò, Buttafouco, and Puddu
(2008; MFK) in soil science; Goovaerts, Sonnet, and
Navarre (1993) in hydrogeology (FK and MFK); and Ma
and Royer (1988) and Rodgers and Oliver (2007) in im-
age analysis and remote sensing (both FK). Applications
outside of the geosciences are rarer, and more recent and
examples include (FK only) Goovaerts, Jacquez, and
Greiling (2005) and Goovaerts (2010) for health data;
Kerry et al. (2010) for crime data; and Nagle (2010) for
employment data.

The key drawback to any application of FK and MFK
is that the output depends wholly on the form of the
nested variogram model(s), which tend to be arbitrar-
ily fitted to the empirical variography. In this respect,
any nested behavior observed in the empirical variog-
raphy should always be expertly related to any physical
knowledge of the given process. Appropriate techniques
to minimize the effects of outlying data on the FK and
MFK analysis are also recommended. Furthermore, each
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spatial component that is identified is assumed station-
ary (or constant) across space. For processes where such
an assumption is unrealistic, a wavelet approach (which
identifies local changes in variation across a range of
spatial scales) can provide a useful alternative (e.g., see
Oliver, Bosch, and Slocum 2002).

Linkages and Related Techniques. Conceptual
relationships between MFK and similar multivariate
techniques (commonly termed spatial FA) proposed
outside of the geostatistical paradigm are given in Bailey
and Krzanowski (2000). Moving on from these predom-
inantly exploratory techniques to spatial FA models (or
spatial latent variable models, see also subsection on
latent variable modeling), where estimation, inference,
and spatial prediction procedures are formally devel-
oped, can be found in Christensen and Amemiya (2001,
2002, 2003). Here the models are demonstrated using
simulated soil geochemical data. F. Wang and Wall
(2001, 2003) used a related spatial FA model to ana-
lyze health data, where their second article extends to
a Bayesian methodology. Another Bayesian spatial FA
model was described in Hogan and Tchernis (2004) and
was used to model social and health (material) depriva-
tion indices. A spatiotemporal FA model, also within
a Bayesian framework, can be found in Lopes, Gamer-
man, and Salazar (2011) and was demonstrated using
meteorological data (and links to the use of EOFs de-
scribed earlier). Folmer and Oud (2008) presented a
structural equation model with spatial latent variables
and in doing so provided an alternative to spatial re-
gressions that require the spatial weighting matrix W
from previous subsection (linkages).

Disambiguation of the Term Spatial PCA and Its
Variations

We identified a number of studies that claim to use a
method termed “spatial PCA”. In a geographical con-
text, the term seems to have originated in the first half
of the last decade (we were not able to find any ex-
plicit reference to “spatial PCA” pre-2002 in geogra-
phy, although there are earlier studies using “spatial,”
“temporal,” and “spatiotemporal PCA” in, for example,
neuroscience; see Spencer, Dien, and Donchin [1999,
2001], but we found that its meaning differs). The term
can refer either to one of the first three methodologies
for standard PCA on spatial data (identified in the pre-
vious section) or else (and more appropriately) to the
spatial adaptation of PCA or sPCA (from two subsec-
tions ago). To address this confusion in terminology,

we list studies in our literature search, aside from sPCA,
that explicitly use this term.

In most cases “spatial PCA” refers to raster data
PCA. Examples are mainly found in the environmental
sciences: to define indices of environmental vulnera-
bility or quality (Li et al. 2006; Ruimin and Zhenyao
2007; Shi et al. 2009), to analyze susceptibility to
coral bleaching (Maina et al. 2008), in environmental
geology (Satapathy, Salve, and Katpatal 2009), and
also in biogeography (Brito et al. 2008).

The second explicit use of the term refers to spa-
tial objects PCA. Two examples that we found were
PCA on areas—watersheds to calculate environmen-
tal indicators (Tran et al. 2002) and PCA on point
measurements at sampling locations in lakes (Parinet,
Lhote, and Legube 2004).

The third explicit use of the term refers to atmo-
spheric science PCA, where EOFs are called spatial
PCs (Krepper and Garcı́a 2004).

We would also like to clarify the difference between
spatially weighted PCA (SWPCA) and geographically
weighted PCA (GWPCA). SWPCA applies to raster
PCA, where each of the input rasters (e.g., bands of
RS images) is weighted by another weight raster. This
weight raster is a surface that represents some type of
spatial relationship that is important in the context of
the respective input raster. For example, it can be a dis-
tance surface from each pixel to a certain object (e.g.,
ore deposits) or to areas with extremely high or low
values in the input raster (W. Wang and Cheng 2008).
This is not to be confused with GWPCA (see relevant
subsection three subsections ago), where geographically
local PCA models are calculated at the location of each
spatial object in the data set. The two methods, SW-
PCA and GWPCA, are therefore completely different
from one another and are meant for different types of
data and for different purposes and should not be con-
fused.

Further Topics

In this section we look at three recent variants of
PCA from the statistics, machine learning, and pat-
tern recognition communities and discuss their poten-
tial usefulness in a spatial context, either in a basic form
or some spatially adapted form. In particular, we look at
simple PCA, sparse PCA, and multilinear PCA.

Simple PCA

Spatial data sets are often highly dimensional (some-
times containing several hundreds of dimensions) and

D
ow

nl
oa

de
d 

by
 [

M
ay

no
ot

h 
U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

11
 1

7 
Fe

br
ua

ry
 2

01
5 



Principal Component Analysis on Spatial Data: An Overview 121

very large; for example, acoustic marine data sets con-
tain hundreds of millions of data points and hundreds
of attributes represented by statistical features calcu-
lated from the sonar backscatter (Preston 2009). Basic
PCA methods, which are often used on such data sets
as discussed in the previous sections, are matrix based,
which means that they require an explicit calculation
and diagonalization of the variance–covariance matrix.
This is computationally a very demanding process that
in practice is often not viable for such large or highly
dimensional data sets. There exist several recent de-
velopments, however, that calculate approximations of
mathematical PCs in a way that is computationally fast,
but they have not been used widely in a spatial con-
text. One such development is simple PCA, which is
an approximation of the traditional PCA algorithm,
such that the PCs are calculated by an iterative cal-
culation of one approximated component at a time. It
therefore does not require the explicit calculation of the
variance–covariance matrix.

Simple PCA works by using a training procedure,
similar to those in neural networks, to calculate the first
PC from the data. This is done by iteratively computing
a series of linear transformations to a set of orthogonal
axes (approximations of PCs), one axis at a time. In
each step a linear transformation is found such that the
variance of the data with respect to only one axis is
maximized—this is the PC that is being sought in this
particular iteration. This component is then removed
to ensure that it is not found again in the next step.
The process of removing the effect of one component
from the data is called deflation and in the next step the
search for the next component is rerun on the deflated
data. This iterative process is repeated until the de-
sired number of components is reached. There are two
main algorithms for simple PCA, those by Partridge and
Calvo (1998) and Vines (2000).

Simple PCA is a data-oriented method (as opposed
to matrix-based methods such as traditional PCA). It
has been shown to be more efficient for highly dimen-
sional data sets than basic matrix-based PCA methods
(Partridge and Calvo 1998). There also exists an even
more efficient variation of simple PCA (Oyama et al.
2008) that deals with data incrementally; that is, by
adding one data point at a time in a process called incre-
mental learning. This procedure enables the calculations
to be performed on extremely large data sets that are
fed to the algorithm sequentially instead of all at once.
Therefore, simple PCA offers a promising practical al-
ternative for large and highly dimensional spatial data
sets.

Sparse PCA

Although PCA is a very powerful tool for di-
mensionality reduction, it is often difficult to relate
patterns in the resulting latent variables back to
physical quantities or determine which variables are
significant contributors to the patterns. This is because
the loadings obtained by PCA are linear combinations
of all variables in the data set. Furthermore, if a group
of highly correlated (or collinear) variables contributes
to a latent variable, their contribution is distributed
evenly across all variables in the group. This so-called
grouping effect is a property of linear least squares
regression and by extension PCA (Zou and Hastie
2005). Although this is a desirable property in terms
of averaging out noise, it masks the significance of
variables, making the identification of key variables
difficult. This issue has motivated the development of
extensions to PCA that result in PCs that are sparse
(i.e., with many zero coefficients). The methods are
based on the assumption that many real-life data sets
exhibit a low-dimensional structure in a sparse form.

As discussed previously, an early method developed
to improve the interpretability of PCA is varimax ro-
tation (Kaiser 1958), which involves rotating the sub-
space defined by selected PCs so that a small number
of the coefficients in the loading vectors have much
greater values than the remaining coefficients. To ob-
tain sparse components, the smaller coefficients are
then simply set to zero. Jeffers (1967) proposed setting
small coefficients of the original PCs to zero as a means
of obtaining sparse components, although this can lead
to a selection deficiency when the variables have high
mutual correlations (Cadima and Jolliffe 1995). It also
invalidates the orthogonality of the resulting compo-
nents.

The first true algorithmic method for achieving
sparse loadings was proposed by Jolliffe, Trendafilov
and Uddin (2003) and is known as Simplified Component
Technique for Least Absolute Shrinkage and Selection
(SCOTLASS). This employs a penalty term referred
to as the Least Absolute Shrinkage and Selection Operator
(LASSO; Tibshirani 1996) to force loadings to be
sparse. Unlike a ridge penalty, which encourages param-
eters to be small, the LASSO penalty has the attractive
property that it forces parameters to be exactly zero.
SCOTLASS has a relatively high computational cost
with the result that several researchers have developed
alternative implementations that are substantially
more efficient (Zou, Hastie, and Tibshirani 2006;
D’Aspremont et al. 2007; Shen and Huang 2008).
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In the context of spatial data analysis, sparse PCA
has not often been used but seems promising for prob-
lems where there are a large number of attributes (vari-
ables) and there is a need to determine the key factors
contributing to the underlying spatial patterns being
investigated.

Multilinear PCA of Tensor Objects

With the unprecedented advances in data collection,
many disciplines collect spatial data that fill a certain
spatially constrained area and where the phenomenon
under observation is continuously distributed in this
area. These are the so-called tensor data objects. Ex-
amples include 2D tensors, such as gray-level images in
computer vision and pattern recognition, or 3D ten-
sors, such as MRI scans in medical imaging. In terms
that are familiar to geographers, these tensors could be
seen as 2D rasters and 3D volumes, examples of which
include hyperspectral satellite imagery for the former
and geological volumetric data for the latter.

Tensors can be understood as n-dimensional
bounded areas, separated into regular meshes, where
each mesh element (pixel in 2D or voxel in 3D)
represents a measurement of an attribute. Tensor data
are therefore highly dimensional: a 100 × 100 × 100
volume has a million voxels and each of these voxels is
a separate attribute. However, these attributes are not
independent. The spatial proximity of their position
in the volume and continuity of the phenomenon
observed or measured entails that there is a high level
of spatial correlation present (Lu, Plataniotis, and
Venetsanopoulos 2011).

Feature extraction and pattern recognition in tensor
data (e.g., patterns in MRI scans) are usually performed
through dimensionality reduction, where the goal is to
map the tensor space onto a lower dimensional subspace
that captures most of the signal variation present in
the original tensorial representation. This is often done
with PCA in several different ways (Lu, Plataniotis, and
Venetsanopoulos 2011).

The standard way is to employ basic linear PCA,
where the tensors are represented as highly dimensional
vectors of attributes. Imagine a 3D volume being “un-
wound” into a long row vector by taking rows of voxels
one by one off the 3D volume. Each tensor object is
then represented as one such vector. This results in a
vector with as many dimensions as there are voxels but
breaks the natural structure in the data in that it com-
pletely ignores any spatial correlation and proximity of
voxels (Lu, Plataniotis, and Venetsanopoulos 2011).

To counter this problem, tensor data analysis sug-
gests that PCA is run in either 2D mode (Yang et al.
2004; Ye, Janardan, and Li 2004) or 3D mode (Lu,
Plataniotis, and Venetsanopoulos 2008). In both these
approaches, input data are represented in their natural
multidimensional form as tensors, bound by a 2D or
3D spatial area. This keeps the basic tensor elements
together with spatial correlation and proximity taken
into consideration.

Such approaches are increasingly common in areas
such as face recognition, gait recognition, medical
imaging, and shape analysis (Aguirre et al. 2007; Lu,
Plataniotis, and Venetsanopoulos 2011). Typical tasks
include 3D object recognition tasks, content-based
retrieval of patterns, gait or gesture recognition,
and activity recognition in data of various very
complex types, such as medical images, spatial video
sequences, and space–time series (Lu, Plataniotis, and
Venetsanopoulos 2008; Leibovici 2010).

Given the similarity of data type, these approaches
could also be of interest to geographers. In particular,
2D mode PCA could replace raster PCA, whereas 3D
mode PCA would be welcome, for example, in geology
and seismology, which often deal with pattern recogni-
tion in 3D volumetric data (Gao 2009; Hsieh, Chen,
and Ma 2010). An example of a tensor mode PCA ap-
plied in spatial context was given in Leibovici (2010),
where it was used to solve a spatiotemporal ecoclimatic
delineation problem.

Conclusions

In this article we surveyed the use of PCA on
spatial data in an attempt to identify methodological
characteristics of its use and also to investigate uses that
take into account particular characteristics of spatial
data (spatial heterogeneity and spatial autocorrela-
tion). Studies reviewed were primarily from geography
and the geosciences, where we found that standard
nonspatial PCA is commonly applied in one of four
methodological ways: on spatial objects, on raster data,
on meteorological space–time series data, and on flow
matrices. Although such applications of PCA have
merit, they overlook spatial effects that could furnish a
greater understanding of a given process. In this respect,
we reported on adapted PCA methods that account for
spatial heterogeneity (with respect to nonstationary
mean response effects) and spatial autocorrelation (with
respect to stationary variance effects). For the former
we described a geographically weighted PCA method,
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whereas for the latter we used a PCA method that could
account for spatial autocorrelation via the calculation
of Moran’s I. Furthermore, we described how PCA
can be used to investigate multiple scales of spatial
autocorrelation (from the geostatistical literature) and
also attempted to provide links to more sophisticated
techniques and models from the statistical literature.

Perhaps rather surprisingly, in surveyed literature
we found proportionally few studies that use spatially
adapted versions of PCA to analyze their data. There
seems to be a need to promote such spatially aware
techniques and this is something that we hope that this
article will achieve—that the reader will consider the
fact that geographic space can often matter and there-
fore look into alternatives that account for this.

We also attempted to bridge the gap between recent
developments in the statistics, machine learning, and
pattern recognition communities with geography and
the geosciences by suggesting alternative algorithms for
direct application on spatial data or eventual spatial
adaptation. Here we reviewed methods that are com-
putationally faster (simple PCA), facilitate easier in-
terpretation of PCs (sparse PCA) than standard PCA,
and those that might have use in 2D and 3D raster-type
data sets (multilinear PCA). These all seem promising
for use in a spatial context.

Consequently, this article serves as a useful catalyst
to increased recognition of the issues involved in using
PCA with spatial data and the potential uses for alter-
native PCA methodologies on spatial data that perhaps
could be explored by geographers and that to date re-
main relatively underused.
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and R. Tauler. 2006. Investigation of geographical and
temporal distribution of tropospheric ozone in Catalonia
(North-East Spain) during the period 2000–2004 using
multivariate data analysis methods. Atmospheric Environ-
ment 40:7421–36.

Filzmoser, P. 1999. Robust principal component and factor
analysis in the geostatistical treatment of environmental
data. Environmetrics 10:363–75.

Filzmoser, P., R. G. Garrett, and C. Reimann. 2005. Mul-
tivariate outlier detection in exploration geochemistry.
Computers & Geosciences 31:579–87.

Filzmoser, P., K. Hron, and C. Reiman. 2009. Principal com-
ponent analysis for compositional data with outliers. En-
vironmetrics 20:621–32.

Filzmoser, P., R. Maronna, and M. Werner. 2008. Outlier
identification in high dimensions. Computational Statis-
tics and Data Analysis 52:1694–1711.

Floras, S. A., and I. D. Sgouras. 1999. Use of geoinformation
techniques in identifying and mapping areas of erosion in
a hilly landscape of central Greece. International Journal
of Applied Earth Observation and Geoinformation 1 (1):
68–77.

Fodor, I. K. 2002. A survey of dimension reduc-
tion techniques. LLNL Technical Report, Lawrence
Livermore National Laboratory, Livermore, CA.
http: //www.llnl.gov/CASC/sapphire/pubs/148494.pdf
(last accessed 4 September 2009).

Folmer, H., and J. Oud. 2008. How to get rid of W: A latent
variables approach to modelling spatially lagged vari-
ables. Environment & Planning A 40:2526–38.

D
ow

nl
oa

de
d 

by
 [

M
ay

no
ot

h 
U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
8:

11
 1

7 
Fe

br
ua

ry
 2

01
5 



Principal Component Analysis on Spatial Data: An Overview 125

Fotheringham, A. S., C. Brunsdon, and M. Charlton. 2002.
Geographically weighted regression: The analysis of spatially
varying relationships. Chichester, UK: Wiley.

Fotso, J.-C., and B. Kuate-Defo. 2005. Measuring socioeco-
nomic status in health research in developing countries:
Should we be focusing on households, communities or
both? Social Indicators Research 72:189–237.

Frank, D., and J. Esper. 2005. Characterization and climate
response patterns of a high-elevation multi-species tree-
ring networks in the European Alps. Dendrochronologia
22:107–21.

Galli, A., F. Gerdill-Neuillet, and C. Dadou. 1984. Facto-
rial kriging analysis: A substitute to spectral analysis of
magnetic data. In Geostatistics for natural resources charac-
terization, ed. G. Verly, M. David, A. G. Journel, and A.
Marachal, 543–57. Dordrecht, The Netherlands: Reidel.

Gao, D. 2009. 3D seismic volume visualization and interpre-
tation: An integrated workflow with case studies. Geo-
physics 74 (1): 1–12.

Getis, A., and D. A. Griffith. 2002. Comparative spa-
tial filtering in regression analysis. Geographical Analysis
34:130–40.

Goddard, J. 1970. Functional regions within the city centre:
A study by factor analysis of taxi flows in central Lon-
don. Transactions of the Institute of British Geographers
49:161–82.

———. 1973. Office linkages and location: A study of com-
munications and spatial patterns in Central London.
Progress in Planning 1:109–232.

Goddard, J., and A. Kirby. 1976. An introduction to factor
analysis. Concepts and techniques in modern geography,
GeoAbstracts. Norwich, UK: University of East Anglia.

Goldstein, H., and W. J. Browne. 2005. Multilevel factor
analysis models for continuous and discrete data. In
Contemporary psychometrics: A festschrift for Roderick P.
McDonald, ed. A. Maydeu-Olivares and J. J. McArdle,
453–75. Mahwah, NJ: Erlbaum.

Goovaerts, P. 1992. Factorial kriging analysis: A useful tool
for exploring the structure of multivariate spatial infor-
mation. Journal of Soil Science 43:597–619.

———. 1997. Geostatistics for natural resources evaluation.
New York: Oxford University Press.

———. 2010. Geostatistical analysis of county-level lung
cancer mortality rates in the southeastern United States.
Geographical Analysis 42:32–52.

Goovaerts, P., G. M. Jacquez, and D. Greiling. 2005. Explor-
ing scale-dependent correlations between cancer mortal-
ity rates using factorial kriging and population weighted
semivariograms. Geographical Analysis 37:152–82.

Goovaerts, P., G. M. Jacquez, and A. Marcus. 2005. Geosta-
tistical and local cluster analysis of high resolution hy-
perspectral imagery for detection of anomalies. Remote
Sensing of Environment 95:351–67.

Goovaerts, P., P. Sonnet, and A. Navarre. 1993. Facto-
rial kriging analysis of spring-water contents in the
Dyle River basin, Belgium. Water Resources Research
29:2115–25.

Gould, P. R. 1967. On the geographical interpretation of
eigenvalues. Transactions of the Institute of British Geog-
raphers 42:53–86.

Griffith, D. A. 1996. Spatial autocorrelation and eigenfunc-
tions of the geographical weights matrix accompanying
geo-referenced data. Canadian Geographer 40:351–67.

———. 2000. A linear regression solution to the spatial au-
tocorrelation problem. Journal of Geographical Systems
2:141–56.

———. 2008. Spatial-filtering-based contributions to a cri-
tique of geographically weighted regression (GWR). En-
vironment & Planning A 40:2751–69.

Griffith, D. A., and C. G. Amrhein. 1997. Multivariate sta-
tistical analysis for geographers. Upper Saddle River, NJ:
Prentice-Hall.

Griffith, D. A., and P. Peres-Neto. 2006. Spatial modelling in
ecology: The flexibility of eigenfunction spatial analyses.
Ecology 87:2603–13.
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126 Demšar et al.

Ihaka, R., and R. Gentleman. 1996. R: A language for
data analysis and graphics. Journal of Computational and
Graphical Statistics 5:299–314.

Imrie, C. E., A. Korre, G. Munoz-Melendez, I. Thornton,
and S. Durucan. 2008. Application of factorial kriging
analysis to the FOREGS European topsoil geochemistry
database. Science of the Total Environment 393:96–110.

Jackson, D. A., and Y. Chen. 2004. Robust principal compo-
nent analysis and outlier detection with ecological data.
Environmetrics 15:129–39.

Jeffers, N. R. 1967. Two case studies in the application of
principal component analysis. Applied Statistics 16 (3):
225–36.

Johnston, R. J. 1978. Multivariate statistical analysis in geogra-
phy. London: Longman.

Jolliffe, I. T. 2002. Principal component analysis. 2nd ed. Berlin,
Germany: Springer Verlag.

Jolliffe, I. T., N. T. Trendafilov, and M. Uddin. 2003. A
modified principal component technique based on the
LASSO. Journal of Computational and Graphical Statistics
12 (3): 531–47.

Jombart, T. 2008. Adeganet: A R package for the multivariate
analysis of genetic markers. Bioinformatics 24:1403–05.

Jombart, T., S. Devillard, A.-B. Dufour, and D. Pontier. 2008.
Revealing cryptic patterns in genetic variability by a new
multivariate method. Heredity 101:92–103.

Jombart, T., S. Dray, and A. Dufour. 2009. Finding essential
scales of spatial variation in ecological data: A multivari-
ate approach. Ecography 32:161–68.

Kaiser, F. H. 1958. The varimax criterion for analytic rotation
in factor analysis. Psychometrika 23:187–200.

Kelly, A., and C. Teljeur. 2007. The national deprivation
index for health and health services research. SAHRU
Technical Report, Department of Public Health and Pri-
mary Care, Trinity College, Dublin, Ireland.

Kerry, R., P. Goovaerts, R. P. Haining, and V. Ceccato.
2010. Applying geostatistical analysis to crime data: Car-
related thefts in the Baltic states. Geographical Analysis
42:53–77.

Khaemba, W. M., and A. Stein. 2000. Use of GIS for a spatial
and temporal analysis of Kenyan wildlife with generalised
linear modelling. International Journal of Geographical In-
formation Science 14 (8): 833–53.

Klassen, D. R. 2009. Principal components analysis of Mars
in the near-infrared. Icarus 204 (1): 32–47.

Krepper, C. M., and N. O. Garcı́a. 2004. Spatial and temporal
structures of trends and interannual variability of precip-
itation over the La Plata Basin. Quaternary International
114:11–21.

Kumar, S., R. Lal, and C. D. Lloyd. In press. Assessing spa-
tial variability in soil characteristics with geographically
weighted principal component analysis. Computational
Geosciences.

Larocque, G., P. Dutilleul, B. Pelletier, and J. W. Fyles.
2006. Conditional Gaussian co-simulation of region-
alised components of soil variation. Geoderma 134:1–16.

Leibovici, D. G. 2010. Spatio-temporal multiway decompo-
sitions using principal tensor analysis on k-modes: The
R package PTAk. Journal of Statistical Software 34 (10):
1–34.

Lengen, C., and J. Blasius. 2007. Constructing a Swiss health
space model of self-perceived health. Social Science &
Medicine 65:80–94.

Li, A., A. Wang, S. Liang, and W. Zhou. 2006. Eco-
environmental vulnerability evaluation in mountainous
region using remote sensing and GIS—A case study in
the upper reaches of Minjiang River, China. Ecological
Modelling 192:175–87.

Lin, Y.-B., Y.-P. Lin, C.-W. Lui, and Y.-C. Tan. 2006. Map-
ping of spatial multi-scale sources of arsenic variation in
groundwater on ChiaNan floodplain of Taiwan. Science
of the Total Environment 370:168–81.

Lloyd, C. D. 2010. Analysing population characteristics using
geographically weighted principal components analysis:
A case study of Northern Ireland in 2001. Computers,
Environment and Urban Systems 34:389–99.

Lo, C. P. 1997. Application of Landsat TM data for quality
of life assessment in an urban environment. Computers,
Environment and Urban Systems 21 (3–4): 259–76.

Lo, C. P., and B. J. Faber. 1997. Integration of Landsat TM
and census data for quality of life assessment. Remote
Sensing of Environment 62:142–57.

Lopes, H. F., D. Gamerman, and E. Salazar. 2011. Generalized
spatial dynamic factor models. Computational Statistics
and Data Analysis 55:1319–30.

Lopez-Bustins, J.-A., P. Esteban, K. Labitzke, and U. Lange-
matz. 2007. The role of the stratosphere in Iberian Penin-
sula rainfall, a preliminary approach in February. Jour-
nal of Atmospheric and Solar-Terrestrial Physics 69:1471–
84.

Lu, H., K. N. K. Plataniotis, and A. N. Venetsanopoulos.
2008. MPCA: Multilinear principal component analysis
of tensor objects. IEEE Transactions on Neural Networks
19 (1): 18–39.

———. 2011. A survey of multilinear subspace learning for
tensor data. Pattern Recognition 44:1540–51.

Ma, Y. Z., and J. J. Royer. 1988. Local geostatistical filtering:
Application to remote sensing. Sciences de la Terre, Série
Informatique 27:17–36.
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128 Demšar et al.

Tipping, M., and C. Bishop. 1999. Probabilistic principal
components analysis. Journal of the Royal Statistical Society
(Series B) 61 (3): 611–22.

Tran, L. T., C. G. Knight, R. V. O’Neill, E. R. Smith, K. H.
Ritters, and J. Wickham. 2002. Fuzzy decision analysis
for integrated environmental vulnerability assessment of
the Mid-Atlantic region. Environmental Management 29
(6): 845–59.

van den Boogaart, K. G., and R. Tolosana-Delgado.
2008. “Compositions”: A unified R package to analyze
compositional data. Computers & Geosciences 34:320–
38.

Verfaillie, E., I. Du Four, M. Van Meirvenne, and
V. Van Lancker. 2009. Geostatistical modeling
of sedimentological parameters using multi-scale
terrain variables: Application along the Bel-
gian part of the North Sea. International Journal
of Geographical Information Science 23 (2): 135–
50.

Vines, S. K. 2000. Simple principal components. Applied
Statistics 49 (4): 441–51.

Wackernagel, H. 2003. Multivariate geostatistics. 3rd ed.
Berlin, Germany: Springer-Verlag.

Wang, F., and M. M. Wall. 2001. Modelling multivariate data
with a common spatial factor. Report 2001–008, Univer-
sity of Minnesota, Division of Biostatistics, St. Paul,
MN.

———. 2003. Generalized common spatial factor model. Bio-
statistics 4:569–82.

Wang, W., and Q. Cheng. 2008. Mapping mineral poten-
tial by combining multi-scale and multi-source geo-
information. Paper presented at the IEEE Interna-
tional Geoscience & Remote Sensing Symposium 2008,
Boston.

Wartenberg, D. 1985a. Multivariate spatial correlations: A
method for exploratory geographical analysis. Geograph-
ical Analysis 17:263–83.

———. 1985b. Spatial autocorrelation as a criterion for re-
taining factors in ordinations of geographic data. Math-
ematical Geology 17:665–82.

Whittle, P. 1953. On principal components and least square
methods of factor analysis. Scandinavisk Aktuarietidskrift
36:223–39.

Widmann, M., and C. Schär. 1997. A principal component
and long-term analysis of daily precipitation in Switzer-
land. International Journal of Climatology 17:1333–56.

Yang, J., D. Zhang, A. F. Frangi, and J. Yang. 2004.
Two-dimensional PCA: A new approach to appearance-
based face representation and recognition. IEEE Trans-
actions in Pattern Analysis and Machine Intelligence 26 (1):
131–37.

Yarnal, B., A. C. Comrie, B. Frakes, and D. P. Brown. 2001.
Developments and prospects in synoptic climatology. In-
ternational Journal of Climatology 21:1923–50.

Ye, J., R. Janardan, and Q. Li. 2004. GPCA: An efficient
dimension reduction scheme for image compression and
retrieval. In Proceedings of the 10th ACM SIGKDD In-
ternational Conference in Knowledge Discovery and Data
Mining, 354–63. doi: 10.1145/1014052.1014092

Zhang, C. 2006. Using multivariate analyses and GIS to iden-
tify pollutants and their spatial patterns in urban soils in
Galway, Ireland. Environmental Pollution 142:501–11.

Zhang, C., and O. Selinus. 1998. Statistics and GIS in envi-
ronmental geochemistry—Some problems and solutions.
Journal of Geochemical Exploration 64:339–54.

Zou, H., and T. Hastie. 2005. Regularization and variable
selection via the elastic net. Journal of the Royal Statistical
Society B 67 (2): 301–20.

Zou, H., T. Hastie, and R. Tibshirani. 2006. Sparse prin-
cipal component analysis. Journal of Computational and
Graphical Statistics 15 (2): 265–86.

Zwiers, F. W., and H. Von Storch. 2004. On the role of
statistics in climate research. International Journal of Cli-
matology 24:665–80.

Correspondence: Centre for GeoInformatics, School of Geography and Geosciences, University of St. Andrews, St. Andrews, Fife KY16
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