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PRINCIPAL COMPONENT ANALYSIS WITH EXTERNAL INFORMATION
ON BOTH SUBJECTS AND VARIABLES

YOSHIO TAKANE AND TADASHI SHIBAYAMA

MCGILL UNIVERSITY

A method for structural analysis of multivariate data is proposed that combines features of
regression analysis and principal component analysis. In this method, the original data are first
decomposed into several components according to external information. The components are
then subjected to principal component analysis to explore structures within the components. It
is shown that this requires the generalized singular value decomposition of a matrix with certain
metric matrices. The numerical method based on the QR decomposition is described, which
simplifies the computation considerably. The proposed method includes a number of interesting
special cases, whose relations to existing methods are discussed. Examples are given to dem-
onstrate practical uses of the method.

Key words: orthogonal projection operator, trace-orthogonality, generalized singular
value decomposition (GSVD), QR decomposition, vector preference models, two-way
CANDELINC, dual scaling, redundancy analysis, GMANOVA (growth curve models).

1. Introduction

Principal component analysis (PCA) is often used to explore structures in multi-
variate data. For example, a researcher may be interested in what attributes of stimuli
(e.g., political candidates, commercial products, etc.) are important in determining
preferences toward them. The researcher may collect preference judgments on a set of
stimuli from a group of subjects, analyze how the preferences toward the different
stimuli are related with each other, and find out what attributes of the stimuli are
commonly preferred, or not preferred, by which subjects.

Simple PCA may not be the best method to apply, however, when additional
information about variables and subjects is available. For example, in the preference
judgment study, the stimuli may be presented in pairs to subjects, who are asked to
indicate the degree to which they prefer one stimulus to the other. The fact that each
judgment reflects a comparative process between two stimuli provides important struc-
tural information about the variable. Subjects’ demographic information (e.g., sex, age,
level of education, etc.) may also be available. The investigator may be interested in
how the preference data are related to the subjects’ demographic information. This type
of information is particularly useful in identifying special subgroups of subjects who
exhibit common patterns of individual differences in the preference judgments.

The external information can be used informally to aid subjective interpretations of
analysis results. Alternatively, it can be directly incorporated in the formal analysis.
The joint analysis of main data with auxiliary information can lead to more objective
interpretations by enabling the assessment of how well structures supplied by the

The work reported in this paper was supported by grant A6394 from the Natural Sciences and Engi-
neering Research Council of Canada to the first author. Thanks are due to Jim Ramsay, Haruo Yanai, Henk
Kiers, and Shizuhiko Nishisato for their insightful comments on earlier versions of this paper. Jim Ramsay,
in particular, suggested the use of the QR decomposition, which simplified the presentation of the paper
considerably.

Requests for reprints should be sent to Yoshio Takane, Department of Psychology, McGill University,
1205 Dr. Penfield Avenue, Montreal, Quebec H3A 1B1, CANADA.

0033-3123/91/0300-89122 $00.75/0
© 1991 The Psychometric Society

97



98 PSYCHOMETRIKA

external information can account for the data. This paper describes a method for a joint

analysis of multivariate data with external information. In this method, the original data

are first decomposed into several components (External Analysis), those that can 
explained, and those that cannot be explained, by the external information. PCA is then
applied to each component separately or to some of the components combined (Internal
Analysis).

The proposed method combines regression analysis and PCA in a unified frame-
work. Regression analysis decomposes the data according to known structures. Al-
though regression analysis is effective when meaningful structures are known in ad-
vance, it obviously cannot be applied unless such structures are known. PCA, on the
other hand, is useful when no obvious structures are known. The proposed method

unifies the two methods, capturing advantages of both. It attempts to explain as much
as possible of the data by known structures. At the same time it seeks to find unknown
structures inside and outside the known structures.

The following section gives a detailed account of the proposed method. We first
describe the basic model for the external analysis and the associated decomposition of
the original data matrix (section 2.1). PCA of decomposed submatrices for the internal
analysis is then discussed and some mathematical problems associated with it (section

2.2). In particular, it will be shown that the PCA of the decomposed submatrices
involves the generalized singular value decomposition (GSVD) of a matrix with certain

metric matrices. Some computational considerations are then given (section 2.3) that
will simplify the computations. The proposed method subsumes a number of existing
methods as special cases. In section 3, we discuss relations to several of these methods,
including three vector models of preference (Takane & Shibayama, 1988a), two-way
CANDELINC (Carroll, Pruzansky, & Kruskal, 1980), dual scaling (Nishisato, 1980a),
and redundancy analysis (van den Wollenberg, 1977). In section 4, practical uses of the
proposed method are illustrated using two empirical examples. In the final section, we
consider some common problems in practical applications of PCA, such as stability
assessment, missing data, and possible data transformations.

2. The Method

2.1. External Analysis

We denote an N-subject by n-variable data matrix by Z. The data may consist of
N subjects’ preference ratings on n stimuli, profiles of N objects on n attributes, or any
other multivariate observations. The data may be raw or preprocessed, for example, by
standardizations or other trarisformations. The data may also contain dummy-coded
discrete variables.

Assume there are an N by p (-< N) subject information matrix, G, and an n by 
(-< n) variable information matrix, It. These matrices can take a variety of forms. For
example, G may be an N-component vector of ones, a matrix of dummy variables, or
a matrix of continuous variables characterizing the subjects. Similarly, I-I may be an
n-component vector of ones, a design matrix for pair comparisons, or any other matrix

of explanatory variables that capture relationships among columns of Z. When no
additional information is available on subjects or variables, we may simply set G = I or
I-I = I.

Consider the following model:

Z = GMtt’ + BI-I’ + GC + E, (1)

where M(p x q), B(N × q), and C(p × n) are matrices of coefficients to be estimated,
and E(N x n) a matrix of error components. The four terms in (1) explain portions 
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the original data matrix, Z. The first term pertains to what can be explained by both G
and H, the second term by H, the third term by G, and the fourth term by neither G nor

H. There is redundancy in the model, however. Obviously, what can be explained by
both G and H can also be explained by H alone or by G alone. Thus, the first term is

completely subsumed under both the second term and the third term.
There are two possible strategies we may take to resolve the redundancy problem;

simultaneous estimation and sequential estimation. In the former, identifiability con-
straints, G’B = 0 and CH = 0, are imposed. Least squares estimates of M, B, and C that
minimize SS(E) = tr (E’E), are obtained simultaneously subject to these constraints. 
the sequential estimation, we fit the first term first, as if there were no other terms in the

model. We then fit the second and the third terms separately to the residual from the
first term. What remains unexplained by the first three terms constitutes the fourth term

in (1).
Although the two methods lead to identical results, we will follow the sequential

estimation method more closely, since it is much easier to understand. Let Z = GMH’
+ E1, and consider the problem of estimating M so as to minimize SS(E1) = tr (E~E1).
We obtain

1¢4 = (G’G) G’ZH(H’H) -, (2)

where (G’G)- and (H’H)- arc g-inverses of G’G and H’H, respectively. The residual
from the first term is now equal to

I~ = Z - GI~IH’ = Z - P6ZPH,

where PG = G(G’G)-G’ and PH = H(H’H)-H’ are orthogonal projection operators
(e.g., Yanai & Takeuchi, 1983) onto spaces spanned by the column vectors of G and 
respectively. It is well known that P6 and PH are unique, even if (G’G)- and (H’H)-
are nonunique. We now separately fit the second and the third terms to I~1.

]~1 = BH’ + E2;

l~1 = GC + E3.

We obtain a least squares estimate of B that minimizes SS(E2) 

I~ = QGZH(H’H) (3)

where QG = I - PG. Similarly, we obtain

~ = (G’G) - G’ZQH, (4)

that minimizes SS(E3), where QH = I - PH- It is well known that QG and QH are both
orthogonal projection operators that are orthogonal to PG and PH, respectively. Now,
the estimate of the fourth term is given by

l~ = Z - Glf/IH’ - l~n’ -

= Z -- PGZP n - QGZPH -- PGZQH

= Q~ZQH. (5)

It may be pointed out that we could estimate B and C in a strictly sequential
manner. That is, GC may be fitted to 1~2 = 1~1 - I~H’, where I~ is given in (3). Alter-
natively, BH’ may be fitted to !~3 = I~1 - G~ after GC is fitted to 1~1. These sequential
estimations provide identical results as above. However, the second and the third terms
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cannot be fitted to !~l simultaneously. Minimizing SS(~I - BH’ - GC) with respect to

both B and C will not lead to the same estimates of B and C, unless the same restrictions
that are used in the simultaneous estimation (i.e., G’B = 0 and CH = 0) are explicitly
imposed. Note that in this estimation scheme, both column and row metrics are as-
sumed to be identity matrices. Some generalizations will be given in Appendix section

B.

By substituting the least squares estimates for the corresponding parameters in (1),
we obtain the following decomposition of the data matrix, Z:

z = (l~o + Qo)z(~’n + 

= P~ZP/4 + Q~ZP/~ + PaZQ/~ + QcZQH. (6)

The four terms in (6) are the estimates of the corresponding four terms in (1). 

decomposition is now unique, and a specific meaning can be attached to each term.

Since the effect due to the first term was eliminated before the second term was fitted,
the second term in (6) represents the portion of Z that can be accounted for by H, but
not by G. The third term in (6) can be interpreted in a similar manner. Note that some
of the terms in (6) may be zero. This is indeed the case when G or H is a square matrix
of full rank (e.g., G = I or It = I).

Not all the four terms in (6) are columnwise orthogonal, or rowwise orthogonal.
They are, however, orthogonal in the following sense, which may be termed as trace-
orthogonal. Two matrices of a same size, X and Y, are said to be trace-orthogonal when
tr (X’Y) = tr (XY’) = 0. For example, the first and the third terms in (6) are 

orthogonal, since tr (PHZ’PGPGZQH) = tr (QHPHZ’PGZ) = tr (0) = 0. Every pair 
terms in (6) are either columnwise orthogonal, rowwise orthogonal or both, which 
general implies the trace-orthogonality. The fact that the four terms in (6) are trace-
orthogonal implies

SS(Z) SS(PcZPH) + SS(QcZPH) + SS(P~ZQH) + SS(QcZQH), (7)

where SS(Z) -- tr (Z’Z). That is, the sum of squares of elements in Z is decomposed into
the sum of sums of squares corresponding to the four terms in (6).

The decomposition presented in (6) is a very basic one, and Pc and/or PH may 
subjected to further decompositions. For example, in a balanced two-way ANOVA
design, PG can be uniquely decomposed into the sum of PN (the orthogonal projection

operator pertaining to the grand mean), PA (the main effect of Factor A), Pn (the 

effect of Factor B), and PAB (the interaction between A and B). In an unbalanced
design, PA and P~ are not mutually orthogonal. This reflects the fact that what can be
explained by Factor A and by Factor B are not mutually exclusive. There are two
possible decompositions of Pc in this case: Pc = PN + PA + PB-A + PAB, and Pc =

PN + Pn + PA-B + PAB, where PA-n and PB-A refer to the effect of A eliminating the
effect of B and the effect of B eliminating the effect of A, respectively, while PA and Pn
refer to the effect of A and the effect of B, respectively, ignoring the effect of the other.
(See section 3.3 for related material.)

An interesting situation is when G and/or H are products of two or more matrices.
For example, stimuli in pair comparison judgments may be constructed by factorial
combinations of basic factors. Then H is a product of the design matrix for pair com-
parisons, A, and the design matrix for the stimuli, S; that is, H = AS. In this case, we
may first obtain PA and QA = I - PA, and split PA further into PAS = AS(S’A’AS) -S’A’
and PA -- PAS. The orthogonality among PAS, PA -- PAS, and QA can be easily verified.

With further decompositions of PG and P/_/, (6) may be more generally written 
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where Y’i PGi = I and Ej P/4j = I. This expression is due to Nishisato and Lawrence
(1989).

2.2. Internal Analysis

Once the data matrix is decomposed according to the external information, prin-
cipal component analysis (PCA) may be applied to each component separately. For
example, the first term in (6), P6ZPt4, may be subjected to PCA. In certain cases,
however, some of the decomposed submatrices may be recombined for PCA. For
example, the first and the second terms in (6) may be combined, amounting to PCA 
ZPt/. Since the components analyzed are associated with specific meanings of their
own, PCA of the components may be more readily interpretable than direct PCA of the
original data matrix.

PCA extracts the most important dimensions of the components to be analyzed. It
provides the best fixed-rank approximation of the matrix, in the least squares sense.
Rao (1979, 1980) has shown, however, that its optimality is much more general; PCA
provides the best fixed-rank approximation under any orthogonally invariant norm. (A
matrix norm I1’11 is called an orthogonally invariant norm if Ilxll = IIAXB’II for any or-
thogonal matrices, A and B.)

An interesting relationship exists between singular values of the original data ma-
trix and those of the decomposed submatrices. Let Z0 denote the sum of any subset of
the terms in (6). Then, by a standard separation theorem for singular values (Yanai 
Takeuchi, 1983) reproduced in Appendix section A, sj(Z) >- sj(Zo), where sj(Z) and
sj(Zo) are thej-th largest singular values of matrices Z and Z0, respectively. That is, the
singular values of the submatrices are never larger than the corresponding singular
values of the original data matrix.

Computationally PCA amounts to the singular value decomposition (SVD) of 
rectangular matrix. The ordinary SVD can be used if the PCA is to be applied to the
entire submatrices in decomposition (6). In some cases, however, only a portion of the
decomposed submatrices may be meaningfully analyzed. For example, in PGZPH =
GI~II-I (the first term in (6)), only 1~1 may be subjected to PCA. (For a concrete example,
see section 3.1.) In this case, the ordinary SVD does not apply. Instead, the.generalized
SVD (GSVD) is required.

The problem posed here is that of finding M* which minimizes ~ = SS(G(I~I 
M*)H’). Although the ordinary SVD of 1~1 will find M* that minimizes SS(I~I - M*), the
same M* does not minimize ~ unless both G and It are columnwise orthonormal.
Finding M* which minimizes 0, in general requires the GSVD of l~I with G’G and H’H
as column and row metrics, respectively.

Let us define the GSVD and show how it solves the minimization problem. For
simplicity, we temporarily assume that both G’G and tI’tt are nonsingular. We later
extend our results to singular metric matrices. In the following derivation, we do not
use any special features of 1~1 (i.e., l~I = (G’G)- G’ZIt(H’H)-). The special form 
simplifies the computation, but this will not be discussed until the next section. In the
remaining part of this section, we use the symbol M for 1~1 to indicate the independence
of our argument from the special features of 1~I.

A decomposition of a p by q(-< p) matrix M into a product of three matrices (i.e.,
M = U~tDM¥~), is called the generalized singular value decomposition (GSVD) 
M with respect to the column metric matrix, G’G(p x p) and the row metric matrix,
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H’H(q × q), if (a) M i s p × q and U~/G’GUM = Iq , (b ) V Mis q x q and V~H’HVM
= Iq, and (c) M i s d iagonal ( q xq)andnonnegative defi nite (Gre enacre & Underhill,
1982; Ramsay, ten Berge, & Styan, 1984). Diagonal elements in M are u sually a r-

ranged in a descending order of magnitude. When p < q, this definition applies to M’.
The corresponding representation for M is obtained by transposition.

The GSVD of a matrix always exists. It is unique (up to permutation and reflec-
tion), if the diagonal elements in M are a ll d istinct. L et G ’G =R~R~ and H’H =
RHR~ be square root decompositions of G’G and H’H. Any square root decomposi-
tions may be used, but it is convenient to use the Cholesky decomposition, or trian-
gularization by the Householder transformation. These methods theoretically lead to

the same R~ and R~ that are upper triangular. Let UjDjV) be the ordinary SVD of
R~MRn --- J, which is uniquely determined if all the singular values in Dj are distinct.
We then obtain UM, VM, and DM by UM

, -1 , -1
= (R G) U j, VM = (RH) V j, and Dm = Dj

with the required properties.
How does the GSVD of M with metrics G’G and H’H relate to the minimization of

~b? We may rewrite

~b = SS(G(M - M*)H’)

= SS(R~(M - M*)RH). (9)

Let UyDyV) be the usual SVD of R~MRH = J. We then have M = (R~)-IU~DyV)R/~1

= UMDMV~¢, which is the GSVD of M with metrics G’G and H’H. Let w~*rt*,r*, be the~j~,jvj

best rank-r approximation of J = R~MRH, obtained from UjDyV) by discarding the
last min (p - r, q - r) columns of U~, and Vy, and the same number of rows and columns
of Dy. However, U~D~V~’ has to be equal to R~M*RH, and therefore, M* =

~ -1 * * * --1 * * * ~(R G) UjDjVjRn = UMDMVm . The U~, D~¢, and V~’ are obtained by discarding
appropriate portions of UM, DM, and VM, respectively, which are obtained by the
GSVD of M with metrics G’G and H’H. The M* = w~* r** ,r* , gives the best rank-rtaM*-~MVM
approximation of M in the metrics of G’G and H’H.

The necessity of the GSVD for the minimization of $ may be intuitively understood
as follows. Typically, M is not scale invariant, since the elements of M depend on diag
(G’G) and diag (H’H). Thus, they are not directly comparable unless the columns 
and those of H have comparable scales. The metric matrices have the effect of recov-
ering the comparability. (This situation is analogous to multiple regression in which
regression coefficients, elements of b, are usually not comparable, while the elements

of the prediction vector, y* = Xb, are. In this case, X’X serves as the metric for b.)
When G’G and/or H’H are singular, we may replace the regular inverses of R~ and

Rn by their Moore-Penrose inverses (de Leeuw, 1984). The R~ and R~/are now upper
trapezoidal (incomplete triangular) rather than complete triangular. The Moore-Penrose

inverses of R~ and RH are given by

(R~) ÷ = (R~R~) +R~ = R~(R~R~)-~ , (10)

and

R~ = Rh(RnR~/) + = (R~/RH)-1R~/.

The second equality in (10) follows from

(RaRe) ÷ = R~(I~R~)-2R~. (11)

(The same for (RHR~,) + .) Ramsay (1980, Appendix) describes an elaborate method 

calculate (RGR~) 
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The use of the Moore-Penrose inverses maintains the uniqueness of the GSVD.
However, with singular metric matrices, M may not be fully recovered by the GSVD.

Instead, we have

PR(G)MPR(H)= UMDMV~/= (R~) + UjDjV~IRH’ + ,

= RG(RGRG) RG and PR(H)where PR(G) , -1 , = RH(R~/RH)-IR~/are orthogonal projec-

tion operators onto spaces spanned by column vectors of RG and RH, respectively. (If

G’G and H’H are nonsingular, PR(G) = I and PR(H) = I.) Note PR(G)MPR(H) = M,
if and only if M is in the column spaces of RG and RH. This condition is equivalent to

rank (GMH’) = rank (M). We have PR(G) = G’(GG’)-G = PG’ and PR(H) = 

= PH’. Thus, M is projected onto spaces spanned by row vectors of G and H. For an
arbitrary M, only the projected M can be recovered by the GSVD.

2.3. Some Computational Considerations

The preceding sections presented the basic analytic tools (orthogonal projection
and GSVD) for the proposed method. At least equally important are considerations that
should be taken into account for efficient computations. Both the external and the
internal analyses can be facilitated by the special form of M.

Let G = FGR~ and H = FHR~/such that F~FG = I s and F~Fn = I t, where s =
rank (G) and t = rank (H). In principle, any decompositions of the above form may 
used (e.g., SVD, the Gram-Schmidt orthogonalization, or the QR (or QL) decomposi-
tion); however, the QR decomposition using the Householder transformation (e.g.,
Wilkinson, 1965) seems to be the best choice since it is computationally most efficient

and numerically most stable. The R~ and R~ are upper triangular, if G and H are
nonsingular, although they reduce to upper trapezoidal forms if s < p and t < q. Since
G’G = RGR~ and H’H = RHR~-/, R~ and R~ are the same square root factors of G’G
and H’H introduced in the previous section. Note that

R~(RGR~) - RG = I~(RGR~) + Ro = Is. (12)

This follows from (11). A similar relationship holds for H.
Using the QR decompositions of G and H with (I1) and (12), we can simplify

various quantities defined in the previous sections. First, we obtain

1~1 = (R~I~) - RoFbZFHRh(RHRh) (13)

and

J = I~]~IRH = F~ZFH. (14)

As before, the GSVD ofl~l with metrics G’G = RGR~ and H’H = RHR~ can be derived

from the regular SVD of J. The important point is that using (14), J can be calculated
without explicitly calculating 1~1.

Furthermore, PG can be re-expressed as

Po = FGI~(RGI~) - RGFb

= FGF~,

so that

K = PGZPH = FGF~ZFnF~

= FGJF~,
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and

J = FbKF/-/.

Let K = UrDrV~: be the regular SVD of K and let J = UjDjV) be the GSVD of J with
metrics F~F~ = I and F~FH = I, which is nothing but the regular SVD of J. Then,

Ur = FGUj (or Uj = F~UK), Vr = FHVj (or Vj = F~Vr) and r =Dj. No te al so,
UK = PGUK and Vr = PHVK̄ This relationship provides an efficient way of obtaining
the SVD of K, and indicates the relationship between the SVD of a whole, K = PGZPH
= GI~IH’, and the GSVD of its part, 1~1, with metrics G’G and H’H. That is, Ur =

FGRGUM’ = GUM, VK = FHR~/VM = HVM, and DK = DM, or UM = (RG)’ + FGUK;
VM = (R~/) + F~/VK, and DM = DK.

When G’G and/or H’H are singular, 1~1 is in general not unique. If the Moore-
Penrose inverses of G’G and H’H are used to calculate l~l, l~I will be unique. At the

same time, PR(G)I~IPR(H) = !¢I, and rank (GI~IH’) = rank (l~I) so that l~I can be fully
recovered by the GSVD with metrics G’G and H’H. If, on the other hand, other
y-inverses of G’G and H’H are used to define l~l, l~I is no longer unique. Its GSVD with

metrics G’G and H’H is also nonunique. However, since

(Rb)-Rbl~IRHR~ = (R~Rb)-R~R~(R~R~)-R~JRb(RHRb)-RHRb(RHRb)-

= (R~R~)-R~JRb(RHRb)- = 

l~l is fully recovered by the GSVD, (R~)-U~DjV~R/~, provided that the same tT-in-

verses of G’G = RGR~ and H’H = RHR~ are used in calculating both l~l and

(R~)- = (RGR~)-R~ and R~ = R~/(RHR~)-.

3. Relations to Other Methods

In the previous sections we presented a method of decomposing the data matrix
according to the external information and the internal criterion. This method is quite
general and subsumes a number of existing methods as special cases. In this section we
first briefly review the literature on related work, and then discuss some of the inter-

esting special cases in some detail.
Special cases of decomposition (6) have been worked out by many authors. Cor-

sten and Van Eijnsbergen (1972; see also Corsten, 1976), Gabriel (1978), and Rao (1980)
proposed a decomposition in which either the first and the second terms or the first and
the third terms in (6) were not separated. That is, Z = H + PGZQH + QGZQH,
Z = PGz + QGZPH + QGZQH or Z = ZPH + PGz -- PGZPH + QGZQH. Common
to all these decompositions is the last term, QGZQH, which is minimal under any
orthogonally invariant norm (Rao, 1980), which includes the euclidean norm (SS) as a
special case. Gollob (1968) in his FANOVA model used G = 1N (an N-component
vector of ones) and H = n ( an n -component vector o f o nes). Y anai ( 1970) p roposed
PCA with external criteria with G taken to be a matrix of dummy variables indicating
categories (e.g., male or female) of subjects. In the context of PCA of functional data,
Besse and Ramsay (1986) proposed to "filter out" the effect of H, taken to be a matrix
of regular seasonal variations in average monthly temperatures of various French cities
(also see Winsberg, 1988).

In all the above proposals, PCA is applied to the residual term (the last term in (6)).
Okamoto (1972) also set G = N and H= I n(as in G oll ob) and proposed four tech-
niques of PCA, PCA of Z, QGZ, ZQH, and QGZQH. Recently, Takane and Shibayama
(1988a) showed that three representative vector models for pairwise preference data
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were special cases of (6) with PCA applied to the second term or the first and the second
terms combined (see section 3.1). GMANOVA or the growth curve models (Khatri,
1966; Potthoff & Roy, 1964; Rao, 1965) and two-way CANDELINC (Carroll, et al.,
1980) analyze the first term in (6). (See Appendix Section C for GMANOVA and section
3.2 for two-way CANDELINC.) Nishisato (1980a, 1988; Nishisato & Lawrence, 1981,
1989) also proposed a similar approach to "ANOVA" of multiple-choice data in the
framework of dual scaling (section 3.3). Also, see Escoufier and Holmes (1988), 
Sabatier, Lebreton, and Chessel (1989). B6ckenholt and B6kenholt (1990) proposed
linearly constrained correspondence analysis that eliminates certain effects in the anal-
ysis of contingency tables (also see Takane, Yanai, & Mayekawa, in press; van der
Heijden, de Falguerolles, & de Leeuw, 1989). This method amounts to PCA of the
fourth term in our decomposition, (6), except for the use of special metric matrices
peculiar to correspondence analysis (see Appendix Section C).

3.1. Three Vector Models for Pairwise Preference Data

Vector models are often used to represent individual differences in preference

(Bechtel, 1976; Carroll, 1972; Slater, 1960; Tucker, 1959). In these models, stimuli are
represented as points in a multidimensional space and subjects as vectors emanating
from the origin in various directions. Preferences of the individual subjects are sup-

posedly obtained by projections of the stimulus points onto the subject vectors. The
relative length of a subject vector indicates how well the individual’s preference is

represented in the space. Similar models have been used for pairwise preference judg-
ments described earlier. In this case, the differences in the projections of two stimuli
onto the subject vectors are directly related to the observed judgments.

Suppose that N subjects make all possible pairwise judgments of rn stimuli. Denote
the N by n = m(m - I)/2 data matrix by Z. Bechtel, Tucker, and Chang (1971) proposed

Z = ¥*X’A’ + l~vc’ + E, (BTC model) (15)

where A is an n by rn design matrix for pair comparisons, l~v the N-component vector
of ones, Y* the N by r matrix of subject vectors, X the rn by r matrix of stimulus

coordinates, c the n-com~ponent vector of pairwise unscalability, and E the matrix of
error components. Let M = ZA(A’A) + = ZA/m, where (A’A)+ is the Moore-Penrose
inverse of A’A, and QA = I - A(A’A) + A’. Bechtel, Tucker, and Chang split E into two

parts:

E = (l~l - Y*X’)A’ + (ZQA -- 1NC’), (16)

and obtain Y* and X that minimize the SS of the first term, and c that minimizes the SS
of the second term. Such a Y* and an X is obtained by the SVD of l~I. (The reason for

the ordinary SVD and not the GSVD, in this particular instance, will be explained
later.) The estimate of c’ is obtained by ¢:’ = I~vZQa/N.

Two similar models have since been proposed. One is called the THL model
(Heiser & de Leeuw, 1981; Takane, 1980, 1987), and the other the wandering vector
model (WVM; De Soete & Carroll, 1983). Although both of these models were orig-
inally intended to capture stochastic components in the data, they can be easily trans-
lated into the form analogous to (15):

Z = (INto’ + YX’)A’ + 

and

(THL model) (17)

Z = (l~vv’ + Y)X’A’ + E, (WVM model) (18)
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where m is the m-component mean preference vector, and v the r-component mean

subject vector. Notice that (18) can be obtained from (17) by setting m = Xv. On 
assumption that various terms in (17) and (18) are accounted for in a specific order, least

t ^squares (LS) estimates of parameters are given by: For the THL model: lia’ 1NM/N,

where 1~1 = ZMm as before (m is the number of stimuli), and Y and X are obtained 

the SVD of Q~vl(/I, where QN = I - 1NI’N/N. For the WVM: 0’ = I~I(/IX(X’X)-I/N 
I~vY*/N, and Y = QNY*, where Y* and X are obtained by the SVD of i~1.

The three vector preference models described above can be regarded as special
cases of our general model. First, we set G = I N and H = A. Decomposition (6) then
becomes

where

and

Z = PNZPA + QNZP.4 + PNZQA + QNZQA,

PNZPA = 1N(1/~I~I/N)A’ = 1NIh’A’,

QNZPA = QNI~IA’,

(19)

PNZQA = 1N(1]qZQA/N) = 1N~.’.

In the above derivation, the Moore-Penrose inverse of A’A (i.e., (A’A) ÷), was used for
a y-inverse of A’A. In the BTC model, the first and the second terms of (19) are not
separated, and the SVD of ~ in ZPA = I~IA’ is obtained. In the THL model, the SVD
of QNI~I in the second term is obtained. The third and the fourth terms are not sepa-

rated. In the WVM, the SVD of l~I is obtained as in the BTC model, and then Y*X’ is
decomposed into PNY*X’ = 1N¢’X’ = PNlf/IPx and QNY*X’ = YX’. Again, the third
and the fourth terms are not separated.

Note that in the above cases, the minimization of q~l = SS((I~I M*)A’) or q’2=

SS((QN1QI M*)A’) di d not re quire th e GSVD ofl~I or QNI~I with row metri c A’A, but
only the ordinary SVD. This is because A’A = mQm, l~lQm = 1~1 and M*Qm = M*, and
so we can rewrite qq = mSS(lf/I - M*) and ~2 = mSS(QN1~1 - M*). Thus, no special
treatment (GSVD) was necessary in this case. Note that A’A is singular, and thus, were
it not for the simplification in the minimization criterion, this case would have required
the general treatment for singular metric matrices by de Leeuw (1984). An example will
be given in section 4.1 to illustrate practical uses of the vector preference models.

3.2. Two-way CANDELINC

Carroll, Pruzansky, and Kruskal (1980) considered the minimization of SS(Z 

GM*H’) over a fixed-rank matrix, M*. The model, GM*H’, is called the two-way
CANDELINC (canonical decomposition under linear constraints). For the special case

in which G and H are both orthonormal, Carroll et al. obtained:

SS(Z - GM*H’) = SS(I~I - M*) + SS(Z) - SS(lfa), (20)

where l~I = G’ZH. Since SS(Z) SS(I~I) is a c onstant for a gi ven Z, G , a nd H, t he

minimum of SS(Z - GM*H’) is attained at the minimum of SS(lfa - M*). The M*
minimizing SS(lfa - M*) is obtained by the SVD of l~I. When G and H are nonorthonor-
mal, they are "orthonormalized" and the decomposition (20) is applied. As before, let
G = FGR~ and H = FHR~/be the QR decompositions of G and H. Then,

SS(Z - GM*H’) = SS(J - J*) + SS(Z) - SS(J), (21)
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where J = F~ZFH and J* = R~M*RH. Again, SS(Z) - SS(J) is a constant, 
SS(Z - GM*H’) is minimized by minimizing SS(J - J*) with respect to M*. To obtain
such an M*, the SVD of J, J = UjDjV~, is first obtained. Then, define UM = (R~)-Uj,
Vg = (R~)- Vy, andDM = D~. By discarding appropriate portions of UM, VM, and DM,
the terms U~t, V~, and D~ are obtained. Finally, M* ="~M"M--M’T* r~* ~7" , is formed that

gives the desired M*. However, from sections 2.2 and 2.3 we already know that
UMDMV~ is nothing but the GSVD of l~I = (G’G)-G’ZH(H’H)- = (R~)-JR~, 
metrics G’G = R~R~ and H’H = RHR~/. This indicates a close relationship between
two-way CANDELINC and the GSVD.

Although (21) is derived as a special case of (20), there is a more general e.xpression
for decomposition (21) that more directly shows the close relationship between two-
way CANDELINC and the GSVD. The expression is:

SS(Z - GM*H’) = SS(P~ZPH - GM*H’) + SS(Z - P~ZPH)

= SS(G(I(/I - M*)H’) + SS(Z) - SS(GI~IH’), (22)

where l~I = (G’G)-G’ZH(H’H)-. Decomposition (22) reduces to (20) when G and 
columnwise orthonormal. Notice that the first term on the right hand side of (22) 

nothin~g but the $ minimized in section 2.2. Since SS(Z - PGZPH) = SS(Z) 
SS(GMH’) is a constant, the left hand side of (22) is minimized by minimizing $. As 
have seen in section 2.2, ~b is minimized by the GSVD of l~I with metrics G’G and H’H.

Decomposition (22) points to an interesting observation. Two-way CANDELINC

is a special case of our general model, in which only the first term in (6) is separated
from the rest. The SS(Z - PGZPH) represents the portion of the sum of squares of 
left unexplained by the first term. PCA is applied to the first term and the SS left
unaccounted for by the r principal components corresponds with the first term in (22).

3.3. Dual Scaling with External Criteria

Nishisato (1978, 1980a, 1980b, 1988; Nishisato & Lawrence, 1981, 1989) proposed
dual scaling of pair comparison data, successive categories data, and ANOVA of mul-
tiple-choice categorical data. His approach is similar to two-way CANDELINC, and
consequently, may be recast in the light of our general model (Takane & Shibayama,

1988b).
For pair comparison data, let a specially coded data matrix be denoted by Z. As

before (section 3.1), the design matrix for pair comparisons is denoted by A. Our
approach invokes the GSVD of ZA(A’A) + = ZA/m with row metric A’A = mQm.

However, as noted in section 3.1, this metric has no substantial effect since A(A’A) 
mA. The GSVD problem thus reduces to the ordinary SVD of ZA, which is identical to
Nishisato’s (1978) solution.

For successive categories data, data matrix Z is again specially coded (see Nish-
isato, 1980b, for details). The design matrix (denoted by R) in this case represents
comparisons between stimuli and category boundaries. Let s represent the number of
category boundaries (which is equal to the number of observation categories minus

one). Then R has the form:

rn times.
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Our method again invokes the GSVD of ZR(R’R) + with row metric R’R. However,

unlike the pair comparison case, this does not reduce to the ordinary SVD, since

mls -lsl~1R’R = L_lml~

si m j,

and

(R’R) + = (R’R + ltl[) -1 - ltl[/t2,

wheret = m + s.
Nishisato and Sheu (1984), on the other hand, proposed a different solution. They

augmented the data matrix and the design matrix by including implied relationships
among stimuli and among category boundaries. This has the effect of making R’R =

tQt. Consequently, the problem reduced to the ordinary SVD as in the pair comparison
case. In section 4.2, we will demonstrate how strikingly similar results our procedure
can obtain in relation to those obtained by Nishisato and Sheu’s method without arti-
ficially augmenting the data.

The pair comparison method may be used in conjunction with the successive

categories method (Sj6berg, 1967). In this case, the design matrix will take the multi-
plicative form, H = RA, and so the decomposition suggested toward the end of section
2.1 seems more appropriate. In this decomposition, the row space is split by orthogonal
projection operators, PRA, PR -- PRA, and Qn.

The model underlying Nishisato’s ANOVA of multiple-choice categorical data is
very similar to that of two-way CANDELINC, although in the former emphasis is
placed on finding out how much variability in the data is accounted for by which effects,
while in the latter, emphasis is placed on graphical representations of the data. For the
two-way ANOVA case, for example, Nishisato’s procedure decomposes the data ma-
trix into:

Z - PmZ = QNZ = PAQNZ + PBQNZ + PABQAQBQNZ + QABQAQBQNZ, (25)

where

PN = 1NI~/N,

PA = GA(G~GA)-IG,~,

Pe = Ge(G~GB)-~G~,

Q~v = I - PN;

QA =I--PA;

Qn = I - Pa;

PAB = GAB(GABGAB)-IGAB, QAB = I - PAB,

and GA, GB, and GAB are matrices of dummy variables pertaining to the A main effect,
the B main effect, and the interaction between A and B, respectively. Note that

PAQN = PA -- PN, PnQN = Pn - PN, PAPB = PN (assuming that the design is
balanced), PABQAQBQN = PAB -- PA -- PB + PN, and QABQAQBQN = QAB (Yanai
& Takeuchi, 1983). PCA is applied to subsets of the terms on the right hand side of (25),
either separately or combined. The PCA may involve the SVD of relatively large
matrices. However, the results in section 2.3 suggest that these SVD can be derived
from the SVD of much smaller matrices using the QR decompositions of G and H. This
is particularly advantageous, when the QR decompositions of G and H can easily be
obtained.
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3.4. Redundancy Analysis

Several methods have been developed in multivariate analysis literature to relate

two sets of variables. Canonical correlation analysis and canonical discriminant anal-
ysis are two representative examples. A question that naturally arises is how our
development relates to these methods. For a direct comparison we temporarily assume
that only the subject information, G, is available, which amounts to assuming H = I.

One interesting method in this context is the second type of quantification method
(Q2) developed by Hayashi (1952). This method is similar to Fisher’s (1948) method 
additive scoring, and may be viewed as a special case of canonical discriminant anal-
ysis, where not only the criterion but also the predictor variables are discrete. Canon-
ical discriminant analysis is, in turn, viewed as a special case of canonical correlation
analysis. Canonical correspondence analysis (ter Braak, 1986) is also equivalent to 
(Takane et al., 1989), and consequently, is distinct from our method.

Our approach and consequently Nishisato’s ANOVA of multiple-choice categor-
ical data are distinct from canonical correlation analysis, and consequently, are also
distinct from canonical discriminant analysis and Q2. Canonical discriminant analysis
amounts to obtaining the GSVD of (G’G)- G’Z(Z’Z)- in the column and row metrics 
G’G and Z’Z, respectively. Our approach, on the other hand, obtains the GSVD of
(G’G)-G’Z with metrics G’G and I. It is interesting to note that this is equivalent 
redundancy analysis (Isra~ls, 1984; van den Wollenberg, 1977) of Z-variables given

G-variables. Redundancy analysis is variously called "principal components of instru-
mental variables" (Rao, 1964), "reduced rank regression" (Rao, 1979, 1980), and so 
In the usual redundancy analysis, however, only the subject information matrix, G, can

be incorporated. In our approach, on the other hand, both column and row structures
(G and I-I) can be quite naturally incorporated. On the basis of this observation, Henk
Kiers (personal communication, November 9, 1988) called our method "double redun-
dancy analysis".

When Z = I, PGZPH reduces to PGPH, whose SVD is equivalent to canonical
correlation analysis between G and H. Thus, one way to characterize canonical corre-
lation analysis is: Find U and V that minimize

SS(I - GUDV’H’),

such that U’G’GU = I, V’H’HV = I and D is diagonal and positive definite. The
tr (PGPH) SS(PGPH) is cal led the generalized coef ficient of d ete rmination (GCD) by

Yanai (1974).

4. Examples of Application

In this section we present two examples. The first concerns pairwise preference
rating data, and the second a contrived data set used by Nishisato and Sheu (1984) 
demonstrate the feasibility of their method for successive categories data. Both of our
examples are somewhat specialized in that they need specific subject and/or variable
design matrices (and hence, our approach) for meaningful analyses. Our method is also
useful when this information is not so essential. For example, ordinary multivariate
data may be analyzed by simple PCA, then portions of the data explained by the main
effect of A may be analyzed, etc., and the results may be compared. The series of
analyses emphasize and reveal different aspects of the data. Examples of such analyses

can be found in Escoufier and Holmes (1988), and Sabatier, et al. (1989) for continuous
multivariate data, and in Nishisato (1980a, 1982) and van der Heijden, et al. (1989) 
discrete multivariate data.
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4.1. Pairwise Preference Rating Data

Pairwise preference data were collected on nine stimuli using 25-point rating
scales. The stimulus set was constructed in a manner similar to Rumelhart and Greeno
(1971). It consisted of three distinct groups of people, three politicians, three athletes,
and three popular singers: (a) Brian Mulroney (Prime Minister of Canada), (b) 
Reagan (President of the United States), (c) Margaret Thatcher (Prime Minister 
United Kingdom), (d) Jacqueline Gareau (twice winner of the Boston marathon in 
woman’s division), (e) Wayne Gretzky (NHL hockey player), (10 Steve Podborski
(former champion of the World Cup downhill ski race), (g) Paul Anka (male vocalist),
(h) Tommy Hunter (country song singer), and (i) Ann Murray (female vocalist). 
stimuli were presented in pairs. The subjects were asked to indicate with whom and the
degree to which they would rather spend an hour, if they were given a chance. One
member of a pair is placed on one end and the other on the other end of a rating scale.
The rating scale was marked by integers from -12 to + 12, a large negative value
indicating more preference toward a member placed on the left end and a large positive
value indicating just opposite; zero indicates a midpoint and neutrality.

The data were initially collected from 501 subjects, each responding to all 9 ×
8/2 = 36 possible pairs of stimuli. The data analyzed are a subset of the data pertaining
to 100 subjects for whom some demographic information was available. The subjects
were mostly university students and some high school students living in the Montreal
area. Approximately 3/5 of the 100 subjects were female students. Also, 55 subjects
were anglophones (English speaking), 17 were francophones (French speaking), and 
remaining 28 had other linguistic backgrounds (e.g., Italian, Greek, etc.).

Our method was applied first with G = l~v and H = A (design matrix for pair
comparisons). The four terms in (6) accounted for 11%, 59%, less than 1%, and 29% 
the total sum of squares (SS(Z)). (In this particular context, the first and the third terms
pertain to the mean pairwise preference judgments that, respectively, can and cannot
be explained by differences between mean stimulus preference values. The second and
the fourth terms, on the other hand, pertain to the covariances among the judgments
that can and cannot be explained by stimuluswise covariances.) This implies that the
pairwise unscalability in the BTC model (the third term in (6)) accounted for only 
negligible portion of the total SS. The mean preference vector, m, in the THL model,
on the other hand, accounted for 11% of the total SS. Estimated mean preference
values were, in the order of the most preferred to the least preferred: Gretzky (2.13),
Podborski (1.98), Reagan (1.13), Mulroney (.53), Thatcher (. 17), Murray (-.24), 
(-.56), Gareau (-2.31), and Hunter (-2.83). There seems to be a strong correlation
between the mean preference values and the occupational categories of the stimuli.
Athletes tend to be preferred most, politicians next, and entertainers least. The only
exception was Jacqueline Gareau, who happened to be relatively unknown.

The THL model applies PCA to B in the second term of (6). The first two principal
components accounted for 73% of the SS in the second term. Figure 1 displays the two
dimensional stimulus configuration (the plot of X). The nine stimuli formed three clus-
ters roughly corresponding with the three occupational categories from which the stim-
uli were sampled. Jacqueline Gareau (Number 4) is again an exception, being placed
closer to the singer/entertainer group than to the athlete group. Stimuli that are located
close together are generally more similar to each other, and consequently, are more
comparable. They also tend to have higher covariances (Takane, 1987).

The mean preference vector, m, seems highly correlated with a certain direction in
the space. This direction is indicated by the vector, w, labeled W in the figure. The
correlation between m and Xw was .776. This phenomenon may appear somewhat
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FIGURE 1
Stimulus configuration and 95% Bootstrap confidence regions for the preference data derived from the THL

model.

surprising, since the information pertaining to m is explicitly eliminated from the sec-
ond term of (6). It happens quite frequently, however, when categories of stimuli are
closely related to their preference values, as in the present case.

Ellipses surrounding the estimated stimulus points are 95% confidence regions
(Ramsay, 1978) obtained through the Bootstrap method (Efron, 1979; Weinberg, Car-
roll, & Cohen, 1984). These confidence regions are based on repeated analyses of 100
samples of 100 observations each resampled with replacement from the original data
set. The derived confidence regions indicate that the estimated stimulus points are fairly
variable with just a hundred observations. Still, the current situation is a favorable one
in that each subject responded to all possible pairs of stimuli, so that on average, there
were four judgments per stimulus obtained from each subject.

The BTC model combines the first and the second terms in (6), and applies PCA 
l~vl~l + ft. The first two principal components accounted for 64% of the SS of the
combined term that in turn accounted for 70% of the total SS. The derived two dimen-
sional stimulus configuration is presented in Figure 2 along with ten subjects’ prefer-
ence vectors indicated by pointed arrows. This stimulus configuration is strikingly
similar to the one derived from the THL model (Figure 1). This similarity between the
two configurations corresponds with the fact that the mean preference vector, m, in the
THL model is highly correlated with a particular direction in Figure 1.
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FIGURE 2
Stimuls configuration and 95% Bootstrap confidence regions for the preference data derived from the BTC

model.

The mean subject vector, v, in the WVM model was calculated and superposed in
Figure 2 (the vector labeled V). The correlation between m and Xv is extremely high
(.951). This is quite natural, since the WVM model can be derived by setting m = 

in the THL model.
It is interesting to see where mean vectors of various subgroups of subjects would

be located in Figure 2 in a manner similar to V. For this, we are in effect fitting a
generalized version of the WVM model,

Z = (GW + Y)X’A’ + (26)

where G is a matrix of dummy variables indicating categories of subjects (e.g., male,
female), and W a matrix of weights analogous to the v vector. When the model was
applied, only a slight difference was found between males and females. A substantial
difference was found between the anglophone group and the nonanglophone groups,
but only a small difference between francophones and other nonanglophones. The latter
two groups were combined into one; two mean vectors, one for the anglophones (la-

beled E) and the other for all the nonanglophones combined (labeled N) are depicted 
Figure 2. It appears that the anglophones are more inclined toward the politicians (who
are all English speaking) in comparison with the nonanglophones.
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Analysis of Nishisato and Sheu’s Data

113

a. Data Matrix:
-I -I -i 1 1
-I 1 -I 1 -i 1
-I 1 -I 1 1 1

-1 -I -I 1 1 1
-1 -I 1 1 1 1
-1 -1 -1 -1 1 1
-1 1 -1 1 -1 1

-1 -1 -1 -1 -1 1

-1 1 -1 1 1 1
-1 -1 1 1 1 1

b. Desi.qn Matrix:

1 0 -I 0 0
0 1 -1 0 0

1 0 0 -1 0

0 1 0 -I 0

1 0 0 0 -1
0 I 0 0 -1

c. Coordinates of Stimulus Points and Cateqor7 Boundaries:

tl 0.230 -0.329
t2 -0.273 0.287
ml -0.367 -0.359
m2 -0.004 0.163
m3 0.414 0.238

d. Matrix of Subject Vectors:

sl -2.067 -0.577
s2 -1.511 1.850
s3 -1.878 0.716
s4 -2.067 -0.577
s5 -1.598 -1.560
s6 -1.528 -0.826

s7 -1.511 1.850
s8 -1.160 0.308
s9 -1.878 0.716
sl0 -1.598 -1.560

Again, ellipses indicate 95% Bootstrap confidence regions for the estimated points
and vectors. Note that there is an overlap between the confidence region for vector E
and that for vector N. This roughly indicates that there is no significant difference
between the two vectors at a = .05. (To be more precise, we also have to take into
account covariances among the estimated points.)
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F~GURE 3A
Two dimensional configuration for Nishisato and Sheu’s data derived by our procedure.

4.2. Successive Categories Data

Nishisato and Sheu (1984) analyzed a hypothetical data set to illustrate their pro-
posed solution for successive categories data. In generating the data set, it was sup-
posed that ten subjects rated three stimuli on three-point rating scales. The original data
were coded into a 10 by 6 matrix of + I and - l’s according to Nishisato’s (1980b) coding
scheme (see Table la).

Our method was applied with G = I and H = R (design matrix given in Table lb for
successive categories data). Since G = I, the data matrix was decomposed into two
parts, one that could be explained and the other that could not be explained by R. As
it turned out, nearly 90% of the total SS could be explained by R. PCA was applied to
the portion explained by R. This involved the GSVD of ZR(R’R) + with row metric R’R.
The first two principal components accounted for 81% (54% by the first component and
27% by the second) of the SS explained by R. The derived two dimensional solution is
presented numerically in Table lc (coordinates of stimulus points and category bound-
aries) and Table ld (subject vectors), and is displayed graphically in Figure 3a. When
the figure was drawn, the subject vectors were multiplied by some constant, since only
their relative lengths were meaningful. In this figure stimulus points are indicated by
ml, m2, and m3, and category boundaries by tl and t2. Subject vectors that account for
individual differences in response patterns are indicated by line segments numbered
from I to 10. There are only six subject vectors in the figure, because some had identical
response patterns.

The corresponding unidimensional solution is obtained by projecting points and
vectors onto the horizontal axis indicated by a broken line. The points lie on the
unidimensional continuum in the order of ml, t2, m2, tl, and m3 from left to right.

Figure 3b displays the two dimensional configuration derived from Nishisato and
Sheu’s (1984) procedure, which involves the ordinary SVD of Z*R*/t, where Z* and 
are augmented data and augmented design matrices, respectively, and t is the number
of stimuli plus the number of category boundaries. (In Figure 3b, the stimulus config-
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27

5,10
FIGURE 3B

Two dimensional configuration for Nishisato and Sheu’s data derived by Nishisato and Sheu’s procedure.

uration and subject vectors were independently adjusted in size to make them compa-
rable to Figure 3a.) Notice that Figure 3b is strikingly similar to Figure 3a. The simi-
larity is even more remarkable in the unidimensional case, indicating that our procedure
is capable of obtaining results similar to those obtained by Nishisato and Sheu’s pro-
cedure without artificially augmenting the data.

5. Discussion

We discussed PCA of multivariate data with external information on both subjects
and variables. The idea of incorporating external information in scaling procedures is
by no means new. A host of examples can be found in multidimensional scaling (e.g.,
Bloxom, 1978; Heiser & Meulman, 1983b), in unfolding analysis (DeSarbo & Rao, 1984;
Heiser & Meulman, 1983a), in conjoint analysis (DeSarbo, Carroll, Lehmann, 
O’Shaughnessy, 1982), and so on. In this paper we presented a general methodology for
PCA that encompassed a wide range of special cases.. In this final section, we briefly
discuss three important practical considerations: assessment of stability, the problem of
missing observations, and possible data transformations. For a wider range of problems
in PCA, see, for example, Jolliffe (1986).

Assessing the reliability of derived solutions is an important aspect of any data
analysis. Although our proposed method itself is largely descriptive, the reliability of
the solutions obtained by our procedure can be easily assessed by a Bootstrap method
(Efron, 1979) or similar resampling methods, as demonstrated in section 4.1. The sim-
plicity of computation in our method is an asset in this process, since all the resampling
methods require repeated solutions of many data sets. Sensitivity analysis (Critchley,
1985; Tanaka, 1988) is also feasible, since solutions can be obtained analytically in our
method. The sensitivity analysis identifies influential observations.

Certain types of hypothesis testing are also possible with the Bootstrap method (for
an example, see section 4.1). Eastment and Krzanowski (1982) proposed a cross-vali-
dational procedure for choosing the number of components in PCA. Monte Carlo
techniques may also be used to obtain benchmarks for the number of significant sin-
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gular values. Some attempts have also been made, in a special case of our method, to
mathematically develop a goodness-of-fit test and a test of additional constraints on
model parameters. Appendix Section C gives some examples.

Missing observations raise a serious problem in PCA as well as other related
techniques (e.g., Nishisato, 1980a; Meulman, 1982). The simplest way to deal with the
problem is to fill in some "neutral" values (e.g., zero, means, etc.) that have "mini-
mal" effects on derived solutions. Once this is done, the analysis can proceed as if there
were no missing data. A potential problem with this strategy is that in some cases, it is
difficult to decide a priori which values have the "minimal" effects on the solutions. To
avoid this difficulty, we may iteratively re-estimate "optimal" values for missing ob-
servations (e.g., Gabriel & Zamir, 1979; Girl, 1981). Model values are first estimated
with temporary estimates of missing observations, which are then used as estimates.
This iterative process is repeated until no significant changes occur in the estimates.
This process, however, may be time consuming. Shibayama (1988) proposed a closed
form solution for PCA with missing observations, but unfortunately, his method only
applies to columnwise standardized data.

Data transformation is another important consideration, since it makes the data
more in line with the model, goodness-of-fit will be improved, and as a result, a more
parsimonious representation of the data may be possible. A specific form of the trans-
formation may also be of interest in its own sake; it may reflect some empirically
important process. For example, in rating data the form of the transformation may
indicate subjects’ response styles, and this may be an interesting aspect of individual
differences. Kruskal’s (1964) least squares monotonic transformation and the monotone
spline transformation (Ramsay, 1989; Winsberg & Ramsay, 1983) are excellent candi-
dates for possible data transformations and can easily be incorporated in our method by
alternating the model estimation phase and the optimal data transformation phase until
convergence is reached. We have tried Kruskal’s least squares monotonic transforma-
tion in fitting the BTC model to the pairwise preference data described in section 4. I.
In this particular instance, however, we failed to obtain results substantially more
interesting than in the untransformed case.

Appendix

In this appendix, we present (a) a separation theorem for singular values used 
section 2. I, (b) some results on the use of metric matrices in decomposition (6), and 
some results on GMANOVA (or the growth curve models).

A. Separation Theorem (Yanai & Takeuchi, 1983, p. 128)

Let Z be an N by n matrix. Let PG (N by N) and PH (n by n) be orthogonal
projection matrices of rank p and rank q, respectively. Then

Sj+ t(Z) ---< sj(PGZPH) <-- sj(Z), (27)

where sj(Z) is the flh largest singular value of Z, and t = N + n - (p + 
The PG and PH can be decomposed into PG = TGT~ and PH = THT~ such that

T~Ta = Ip and T~T~ = Iq. The generalized Poincare separation theorem (e.g., Rao,
1980, p. 10), on the other hand, states that sj+t(Z) <- sj(T~ZTn) -< sj(Z). However, from
the results of section 2.3, sj(T~ZTt¢) = sj(T~T~ZTnT~/).
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B. Metric Matrices in External Analysis

Let G (N x p) and H (n x q) be subject and variable information matrices, 
spectively, and let K and L be column and row metric matrices, respectively, in the
least squares problem for estimating parameters in model (1). Define

and

P~/K = G(G’KG) - G’K,

PHIL = H(H’LH) - H’L,

and Q~/K = I - P~/K and QH/L = I -- PH/Z~, where we assume rank (KG) = rank (G)
and rank (LH) = rank (H) (Yanai, 1990). Pa/K, PHIL, QG/r , and QH/Lare o bliq ue
projection operators (i.e., they are idempotent but not symmetric). Note that PG/KQG/K

= QG/KPG/K = 0 and PH/LQH/L = QH/I~PH/L = O. Then, analogous to (6) we obtain

Z = P~/KZPb/L + Q~/KZPb/L + P~/KZQ~I/L + QG/KZQ~t/L. (28)

The notion of trace-orthogonality should also be generalized. Two matrices, X and
Y, are said to be trace-orthogonal in the metrics of K and L when tr (X’KYL) 
tr (KXLY’) -- 0. The four terms on the right hand side of (28) are mutually orthogonal
in this sense.

The separation theorem for singular values given in Appendix section A can also
be generalized:

sj + t (nk ZR~) -< sj (Rk Po/K ZPh/L Rt~) <-- sj (Rk ZRt~), (29)

where RK and RL are such that K = RKR~ and L = RLR~. This directly follows from

(27), since

RkP~/KPb/L RL = P~ (RkZR~.)P~,

where P~ and P~/are orthogonal projection operators defined by G* = RkG and H* =

R~.H, respectively.

C. GMANOVA (The Growth Curve Models)

When we fit only the first term in model (1) to Z with K = I and L = -l , where

S = Z’Q~Z,

l~l = (G’G)-IG’ZS-IH(H’S-IH)-l, (30)

which is equal to the maximum likelihood estimate of M in the GMANOVA model
under the iid multivariate normal distribution (Khatri, 1966; Rao, 1965). A goodness-

of-fit test of the GMANOVA model to Z may be performed by first calculating

E = H*’SH*,

and

F = H*’Z’P~ZH*,

where H* is any n by n - q matrix of rank n - q orthogonal to H (Grizzle & Allen,
1969). Eigenvalues of FE-l are then used in one of Wilks’ lambda criterion, Roy’s max
root criterion, Lawley-Hotelling’s trace criterion, and Bartlett-Nanda-Pillai criterion
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for the hypothesis testing. The test of a hypothesis such as AMB = C is also possible,

where A, B, and C are known matrices. Let

and

E = B’(H’S-1H)-IB,

F = (AI~IB - C)’(ARA’)-I(Alf4B 

where R = (G’G)- 1 + (G’G)-1G’ZS-1QH/s-~Z’G(G’G)-1. E and F are used in the 
way as above for the hypothesis testing. For more detail, see, for example, Siotani,

Hayakawa, and Fujikoshi (1985).
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