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Abstract-A new neural network-based approach is introduced
for recursive computation of the principal components of a
stationary vector stochastic process. The neurons of a single
layer network are sequentially trained using a recursive least
squares squares (RLS) type algorithm to extract the principal
components of the input process. The optimality criterion is based
on retaining the maximum information contained in the input
sequence so as to be able to reconstruct the network inputs from
the corresponding outputs with minimum mean squared error.
The proof of the convergence of the weight vectors to the principal
eigenvectors is also established. A simulation example is given to
show the accuracy and speed advantages of this algorithm in
comparison with the existing methods. Finally, the application
of this learning algorithm to image data reduction and filtering
of images degraded by additive and/or multiplicative noise is
considered.

I. INTRODUCTION

THE problem of optimal data reduction has been the focus

of extensive research in the fields of digital signal/image

processing. It is encountered in a wide range of applications

including image data compression, feature extraction for pat

tern classification, as well as input dimensionality reduction

for neural network training. All of these applications require

an efficient representation of the input data.

Different techniques for data reduction, which exploit redun

dancies within the original images, have been developed. The

salient features of the data set are extracted through a mapping

from a higher dimensional input space to a lower dimensional

representation space. Such a mapping can be achieved through

a transform operation such as Fourier transform, discrete

cosine transform (DCT), and Karhunen-Loeve (KL) transform

[1]. The efficiency of the approaches is judged based on

the degree of data compaction subject to the constraint that

the original data can be linearly reconstructed with minimal

distortion. Based on this criterion the KL transform is optimal

for stochastic processes since it packs most of the signal

energy in the first few samples and, at the same time, achieves

complete decorrelation of the data. The latter property not

only leads to efficient data compression and reconstruction but

also facilitates detection and classification tasks using neural

networks.

The conventional approach for evaluating the KL transform

requires the computation of the input data covariance matrix

Manuscript received September II, 1992; revised February 15, 1993 and
September 23, 1993.

The authors are with Department of Electrical Engineering, Colorado State
University, Fort Collins, CO 80523 USA.

IEEE Log Number 9213989.

and then the application of a numerical procedure to ex

tract the eigenvalues and the corresponding eigenvectors. The

eigenvectors associated with the most significant eigenvalues

are subsequently used to extract the principal components

of the data. However, for large data sets, the dimensions

of the covariance matrix grow significantly large making

its computation and manipulation practically inefficient and

inaccurate. In addition, all the eigenvalues and eigenvectors

have to be evaluated even though only the eigenvectors

which correspond to the most significant eigenvalues are used

in the transformation process. These deficiencies make the

conventional schemes inefficient for real time applications. As

a result, to perform principal component extraction efficiently,

a method which evaluates the most significant eigenvectors

of the data covariance matrix without the need to form this

matrix is required.

Several neural network-based approaches were introduced

for extracting the principal components of a stationary vector

stochastic process directly from the input data set. Oja [2]

introduced a simple linear neuron model with constrained

Hebbian type updating and proved the convergence of the

weight vector to the principal component of the stationary

input vector sequence. Sanger [3] extended the procedure

to the multi-neuron case to compute the first m principal

components of a stationary process simultaneously. Foldiak

[4] developed a similar procedure which uses anti-Hebbian

weights between the network output to orthogonalize the

weight vectors. Recently, Kung [5] proposed a procedure for

recursive computation of the principal components based on

a sequential training scheme which uses anti-Hebbian weights

from the already trained neurons to the neuron that is currently

being trained. Using this scheme, one can adaptively increase

the number of neurons needed for principal component ex

traction.

In this paper a new neural network based approach for

principal component extraction is proposed using the recursive

least squares (RLS) learning algorithm. Owing to the inherent

characteristics of the RLS learning [6], the proposed scheme

offers faster convergence without sacrificing the accuracy

i.e. it does not have the accuracy-convergence speed trade

off problems [6], [7] of all the least mean squares (LMS)

based schemes. The improved performance of this RLS based

scheme is due to the use of an adaptable step size or gain

factor in the updating equation as opposed to a fixed step size

in the LMS-based algorithms [6], [7]. Moreover, the estimate

of the variance associated with each component, which is a

deterministic factor in deciding the number of components
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Fig. 1. A two-layer network for auto-association. Fig. 2. Auto-association structure for extracting the first principal compo

nent.

and

needed for an accurate representation, is directly available

through the adaptation equations.

The organization of this paper is as follows: Section II gives

an overview on data reduction using auto-associative networks

and presents the development of the RLS principal component

extraction algorithm. The convergence analysis is provided

in Section III. The accuracy and speed advantages of this

new learning rule are demonstrated in a numerical example

in Section IV. Simulation results on image data reduction and

image restoration are also presented. Finally, Section V gives

the conclusions and discussions.

(3)

which implies invertible mapping, would yield a unitary

scaling matrix T i.e. T- 1 = T t
. This would result in an

orthonormal weight set which spans the space defined by the

p principal eigenvectors of the input covariance matrix. The

problem, however, remains on how to couple this network

structure with an appropriate fast and accurate training scheme

in order to extract the principal eigenvectors. In the following

section, we show that the auto-associative structure when

used in conjunction with an RLS type learning algorithm can

sequentially compute the principal components of the input

pattern at the output of the hidden layer neurons.

Closer examination of (1) and (2) reveals that imposing the

constraint that

A. RLS Learning

In this section, a new procedure for principal component

extraction using the RLS learning rule will be introduced. An

algorithm which extracts the most significant eigenvector of

the input covariance matrix is first developed [9], [10]. This

would form the basis for a sequential training scheme that uses

an orthogonalization method, similar to that described for the

Generalized Hebbian Algorithm (GHA) [3], to extract lower

order components.

1) Extracting the First Principal Component: The neural

network structure shown in Fig. 2 consists of a linear auto

associative structure with just a single neuron in the hidden

layer. The input is assumed to be a zero-mean stationary vector

process with N positive eigenvalues, >'1 2': A2 2': ... 2': AN,

for its covariance matrix. The aim is to develop an RLS

based training rule that would drive the first layer weight

vector towards the normalized eigenvector associated with

the largest eigenvalue i.e. AI, and to provide optimal data

reconstruction at the outputs of the second layer.

Let the input vector at time n be

(1)

(2)

II. AUTO-ASSOCIATION AND OPTIMAL DATA REDUCTION

Auto-association, also referred to as auto-encoding or iden

tity mapping, is a network structure such as that shown in

Fig. I, in which the desired pattern at the output layer is set

to the network input. In this mode, the network is trained to

duplicate the input pattern at the output layer, which might not

seem too interesting at first. However, if the inputs are mapped

through a narrower layer of hidden neurons, then the network

is expected to seek an efficient way to compress different input

patterns at the hidden layer and to reconstruct them back at

the output layer. For a linear' auto-associative network with

N inputs, N outputs, and p hidden layer neurons, p < N,

it was shown [8] that the solution of the least squares (LS)

normal equations for the optimal weights leads to the linear

combinations of p principal eigenvectors of the covariance

matrix of the input data. That is, if we denote the optimal

weight matrices of the input and output layers by WI and W2

respectively, then

where Up is a matrix with rows consisting of the p principal

eigenvectors of the input covariance matrix, and T is a

nonsingular p x p matrix. From these two equations, it can

be seen that the global map of the network would consist of

the orthogonal projection of the input onto the space spanned

by the p principal eigenvectors of its covariance matrix.

I For this network the nonlinearity at the hidden layer is omitted.

(4)

and the weight vector of the first layer which performs

principal component extraction be

w1(n - 1) = [wll(n -1)w12(n -1)··· w1N(n - lW (5)

Note that as previously explained the weight vector of the

second layer which performs the reconstruction is wi (n - 1).



BANNOUR AND AZIMI-SADJADI: PRINCIPAL COMPONENT EXTRACTION USING LEAST SQUARES 459

This also ensures that the optimal weight vectors will have

unit norm. Then, the output of the linear hidden neuron at

time n can be written as

the normal (10) can alternatively be written as

hi(n) (X(n) - h1(n)wi(n)) = O. (15)

h1(n) = wi(n - l)x(n) (6)
This can be solved for wi (n) to give the least-square solution

for the optimal weight set of the second layer at time n as

and the corresponding network output is given by (16)

y(n) =wl(n - 1) h1(n)

= WI (n - 1)wi (n - 1)x( n). (7)
or

(17)

(22)

where according to the standard RLS definitions [6], PI (n) is

the inverse of the covariance of the output of the first neuron

in the first layer, i.e.,

and K 1 (n) is the data dependent Kalman gain [6] or the

updating step size. The process starts with a set of initial values

for PI (0) and WI(0). A common initialization procedure is

to use PI (0) = 8- 1 with 8 being smaller than fractions of

the variance of input process and choose WI (0) = 0 [6]. In

this paper, we have used random initialization for the weights

and PI (0) = 0.5. The reason for random initialization for

the weights will be explained later in Section III. It must

be pointed out that for long sequences the choices of initial

conditions do not impact the performance of the learning.

The driving error Cl (n) = x(n) - hI (n) WI(n - 1) tends to

move the weight vector in the weight space so that the LS solu

tion is reached and optimal auto-association is accomplished.

It will be shown, in the next section, that upon completion

of the training process, the optimal weight vector WI (n) will

converge to the most significant eigenvector of the network

input covariance matrix.

The updating (20) is similar in form to the Constrained

Hebbian Algorithm (CHA) equation, introduced by Oja [2],

with the exception that the updating step size K 1 (n) is now

data dependent. Note that the CHA can alternatively be derived

by employing the same auto-associative structure and using the

LMS learning algorithm for weight updating instead. As will

be shown in the next sections, the data dependent step size in

the RLS algorithm offers significant advantages over the LMS

based methods in which the step size is kept fixed at a rather

arbitrarily chosen value for a particular application. This gain

adaptation makes the updating process self-regulatory leading

to improved convergence characteristics in both speed and

accuracy.

for the first layer.

This normal equation can be solved recursively at each new

training sample using the standard RLS method [6]. The RLS

equations for updating the weight vector WI (n) are

h1(n) =wi(n -l)x(n) (18)

K (n) _ P1(n - 1)h1(n)

1 - [1+ hi(n) P
1(n

_ 1)] (19)

wl(n) =wl(n -1) + K 1(n) [x(n) - h1(n)wl(n -1)] (20)

P1(n) = [1 - K 1(n) h1(n)] P1(n - 1) (21)

(9)

(11)

L h1(k)cl(k) = 0

k=1

or equivalently

L h1(k) (x(k) - wl(n) h1(k)) = 0 (10)

k=1

where" A" represents the estimate of the relevant quantity and

" 0 " denotes the null vector. This normal equation can be

written in a vector form as

where E 1 (n) is a n x N error matrix consisting of all error

vectors accumulated up to time n

and hI (n) is a vector of accumulated hidden neuron outputs

given by

D(n) = X(n) = [x(1)x(2)·· ·x(n)]t (14)

J1(n) = L ci(k)cl(k)
k=1

= L (x(k) - y(k))t (x(k) - y(k))

k=1

Defining the desired output matrix

= L (x(k) - wl(k - 1) h1(k))t

k=1

. (x(k) - wl(k - 1) h1(k)). (8)

Note that this function assumes infinite memory due to the

stationarity of the input process. Minimizing this index of

performance W.r.t the weight vector wl(n) would ensure

optimal auto-association in the sum squared sense.

Assuming that the current weight estimate WI (n) is used in

place of old weight WI (k), k E [0, n - 1], the performance

index can be minimized for WI (n) by taking the partial

derivative of J1 (n) w.r.t WI(n) and setting it equal to zero

[6]. This gives the following normal equation

Owing to the recursive nature of the RLS learning rule, the

updating should take place at every training sample. Let us

consider the performance index J1 at time n given by
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Fig. 3. Linear perceptron for sequential principal component extraction.

= L [x(k) - L hi(k)Wi - hm(k)wm(nW

k=l i < m

. [x(k) - L hi(k)Wi - hm(k)wm(n)] (29)

i c rn

where it is assumed that ui.; (n) is used in place of all

W m (k), \f k E [1,n - 1], If we define the deflated desired

output matrix as

where,

(35)

(36)

- hm(n) wm(n - 1)]

Pm(n) = [1 - Km(n) hm(n)] Pm(n - 1)

i<m

Km(n) = [1+ h;'(n) Pm(n _ 1)] (34)

wm(n) =wm(n - 1) + Km(n) [dm(n)

- hm(n)wm(n - 1)]

=wm(n - 1) + Km(n) [x(n)

- L hi(n)wi

Now, the RLS algorithm can be applied to compute the optimal

weight vector wm (n) at each training sample. This gives the

"extended RLS learning rule" for the mth neuron, i.e.,

hm(n) = w ~ ( n - l)x(n) (33)

Pm(n - 1) hm(n)

then, the optimal weight vector wm (n) that minimizes the

error function Jm(n) can be obtained, in a manner similar to

(17), as

wm(n) = (h~ (n) hm(n))-l D ~ n ( n ) hm(n) (31)

(23)

and the weight vector corresponding to the mth neuron be

wm(n) = [wm1(n)wm2(n)··· wmN(nW

m=I,···,p. (24)

Then, the output of this neuron hm (n) can be written as

The following subsection deals with the extention of this

procedure to the multi-neuron case to extract multiple compo

nents. The RLS learning algorithm will be used in conjunction

with Gram-Schmidt orthogonalization [11] procedure in order

to extract lower order components.

2) Extracting Lower Order Components: The aim of this

section is to develop an extended RLS learning rule so that

individual weight vectors sequentially converge to the first

p < N orthonormal eigenvectors corresponding to the p most

significant eigenvalues of the input covariance matrix arranged

in descending order.

Consider the linear network configuration of Fig. 3. Again,

the input is assumed to be a stationary vector process with

zero-mean and N positive eigenvalues )'1 2:: A2 2:: ... 2:: AN

for its covariance matrix. The neurons are trained sequentially

i.e. the training of the mth neuron is started only after the

weight vector of the (m - 1)th neuron has converged.

Let the input vector at time n be

Jm(n) = L (dm(k) - hm(k) wm(n))t

k=l

dm(n) := x(n) - L hi(n)wi. (27)

i<m

In other words, the neuron must model an auto-association that

seeks to generate the original input x( n) less all the previously

computed m - 1 components. This process is equivalent to the

"deflation" [11] of the desired output instead of the original

input. The following performance criterion is then used for

minimization.

(37)Pm(n) := [t h;'(l)]-l

1=1

and K m (n) is the gain for the updating equation of this neuron.

Thus, the extended RLS learning rule combines the ba

sic RLS algorithm with the Gram-Schmidt orthogonalization

procedure in a manner similar to that of the GHA [3].

This orthogonalization is achieved by subtracting the already

determined m - 1 higher order components from the original

input and using the resultant process as a mapping target for

the mth neuron. This deflation procedure [11] would implicitly

make the effective input to the mth neuron equal to the sum

of the lower order components associated with eigenvalues

Am ... AN. By applying the RLS rule to this effective input, the

neuron is then able to extract the most significant component

associated with eigenvalue Am. This component would be

orthogonal to the m - 1 previous higher order components.

As with some other algorithms [4], [5], one can adaptively

increase the number of neurons needed for principal compo

nent extraction in a fashion that is practically similar to order

updating process in lattice filters. According to the standard

where, again, Pm(n) is the inverse of the covariance of the

output of the mth neuron in the first layer, i.e.,

(28)

(25)hm(n) = w~ (n - 1)x( n).

Assume that all the m - 1 previous neurons have already been

trained and that their weights have converged to the optimal

weight vectors Wi, i E [1, m - 1]. Then, the corresponding

extracted principal components are given by

hi (n) = w~ x( n) i = 1, ... , m - 1. (26)

To extract the mth principal component in the output of the

mth neuron, the updating model for this neuron should be

constructed so that the desired output at iteration n is
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Proof: See Appendix A.

Theorem 3.2: Assume that convergence is achieved for

the weight vectors of the first m - 1 neurons and that the

converged weights WlO ... W(m-l)O are the principal eigen

vectors el ... em-I, respectively. If we define the following

deflated desired output for neuron m

1 1 (t+l)M

M[Pm((t+1)M)-1 - Pm(tM)-l]= M L h;'.(k)=)..m.

k=tM
(38)

Then, as the training progresses, hm (n) would approach the

mth principal component and the estimate )..m would tend

to Am, i.e. the true variance of the corresponding principal

component. This permits evaluation of a sufficient number of

principal components needed during the training process.

definition of Pm(n) in (37), the variance of the transform co

efficient can be estimated directly from this learning parameter

and using (36) without requiring to compute this variance from

the neuron outputs. This is done by considering the difference

in Pm(n)-l,s over consecutive epochs of the training data.

Now if t denotes the epoch number i.e. the number of times

the set of M available training samples has been presented

to the mth neuron, then using (37) we can show that this

difference would provide an estimate of the variance, i.e.,

III. CONVERGENCE ANALYSIS

In this section, the convergence properties of the proposed

learning algorithm are analyzed. It will be shown that by using

the RLS learning rule for principal component extraction,

individual weight vectors will sequentially converge to the

most significant eigenvectors of the input covariance matrix.

Assume that the network input is an N-dimensional

zero-mean stationary random vector process x( n) and let

el, e2,"', eNdenote the orthonormal eigenvectors of its

covariance matrix ex = E[x(n)xt(n)] corresponding to

the eigenvalues Al 2: A2 2: ... 2: AN, respectively. Then the

following results hold.

Theorem 3.1: The following results hold for the weight

vector WI of the first neuron

1) The necessary condition for the estimate WI to be a

saddle point of Jl(n) is that wi WI = 1, i.e., unit norm

property.

2) The necessary and sufficient condition for WI to be

a critical point of J l (n) is that WI = ei for some

i E [l,N].
3) The absolute minimum error is obtained when WlO =

el, i.e., the first principal eigenvector of the input

covariance matrix.

4) The RLS learning algorithm guarantees the minimum of

the error surface at each iteration, i.e., WI(n) ---+ el as

n ---+ x.

2This is true provided that the input process is ergodic [12].

3 Note that the null vector is also a critical point of the error function since

it satisfies (8.6).

IV. SIMULATION RESULTS

In this section three different simulation examples are

considered. The first example serves to show the transient

behavior of the learning in the mean-squared error and the

eigenvalues. The results are compared with those obtained

using the GHA method. In the second example, the application

of the proposed algorithm for dimensionality reduction and

feature extraction of images is investigated. The results are

compared with those obtained using both the standard KL

transform and the GHA.It will be shown that the proposed

RLS learning rule matches the performance of the standard KL

transform both in the rate of data reduction and decorrelation

property while the LMS-based schemes such as GHA have

an inferior performance to both schemes. The generalization

capability of the new training rule is also tested on a new image

that was not included in the training set. The application of the

new RLS training algorithm in restoration of images degraded

by additive noise as well as multiplicative speckle noise has

been considered in the third example.

then similar results as in Theorem 3.1 hold for the weight

vector W m of the mth neuron.

Proof: See Appendix B.

Remarks:

1) The shape of the error function for the RLS learning

is initially dependent on the iteration number n and the

algorithm finds the eigenvector of the sample covariance

matrix at each iteration. However, as the training pro

gresses and n approaches infinity, the sample averaged

input covariance matrix approches the true ensemble

averaged/ input covariance matrix. Therefore, the error

vector can eventually be defined as a fixed function of

the weight vector with fixed parameters. These parame

ters are the input covariance matrix and its lower order

eigenvalues Aj, j = m··· N, as seen in (B.5). This

function is convex in the weights and it is shown (see

Appendix B) to have a unique global minimum that is

achieved when the weight vector corresponds to the mth

principal eigenvector of the input covariance matrix. All

other critical points corresponding to the weight vector

being equal to eigenvector ei, i = m + 1··· N, or the

null vector' are saddle points [13].

2) Hebbian type algorithms which use some form of gra

dient descent to get to the bottom of the surface, would

inherently produce misadjustments due to gradient noise.

This can be reduced only at the expense of reduced

convergence speed [6]. This problem is even more com

pounded for lower order components as the inaccuracies

in evaluating the first few components would propagate

through the orthogonalizing term. The RLS learning rule

does not have this problem as it does not rely on the

gradient estimates. These points as well as the transient

behavior of both types of algorithms are studied in the

simulation example of next section.

(39)=x(k) - L ejejx(k)
j<m

dm(k) =x(k) - L Wj w~ x(k)

j<m
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Fig. 4. Comparison of transient behavior of MSE for the first principal
component.

Fig. 5. Comparison of transient behavior of MSE for the third principal
component.

A. Transient Behavior

To get an insight into the accuracy and speed of this new

approach to principal component extraction, both the RLS

learning rule and the GHA were used to extract the first

three principal components of a random process. The data

was generated by a scalar autoregressive process of order one,

AR(l), given by

where ¢ = .9 and e(n) is a white zero-mean random sequence

with unit variance which drives the AR process. The autoco

variance function of the AR( I) process can easily be derived

from (40) [14] as

(T2¢l hl
Cov(x(n + h),x(n)) = 1- ¢2 (41)

where (T2 = E[e2(n)]. Since ¢ is less than one, this auto

covariance function would exponentially decay with distance.

Thus, the AR(1) process belongs to the class of first order

Markov processes with exponentially decaying autocovariance

function.

The data points were arranged in blocks of size six. Twenty

training samples were chosen randomly to train a network

with six inputs and three outputs. We used P(O) = 0.5

and A = 1. The mean-squared error between the original

data and the reconstructed data was evaluated at each epoch

until convergence was achieved. Figs. 4 and 5 show the

transient behavior of the MSE for the first and third principal

components for both the RLS learning rule and the GHA. As

can be seen, the RLS learning rule provides faster convergence

as well as less misadjustment. In addition, for the RLS learning

rule the speed and accuracy characteristics are consistent even

for lower order components as can be seen from the plot for the

third component. This is obviously not the case for the GHA

as the algorithm not only takes longer to converge but also

produces a larger steady-state error when used to extract the

third principal component. This problem is primarily caused

by the propagation of the residual error associated with the

higher order components to the lower order ones.

The variances of the transform coefficients corresponding

to the first and third components (or the first and third

eigenvalues) were evaluated at each training epcoh t using

Fig. 6. Comparison of the estimated eigenvalue with the two eigenvalue for
the first principal component.

B. Image Data Reduction and Feature Extraction

This example serves to show the potential of the proposed

RLS algorithm in image data reduction and feature extraction

areas, and to provide a benchmark with the standard KL

transform and the sequential GHA approach. Although the KL

transform approach does not have any practical application

in image coding areas owing to the high channel capacity

requirements, the extracted features which are decorrelated can

be used for detection/classification applications [15].

The test image (Lena) in Fig. 8 has a resolution of 512 x

512 pixels with 256 grey levels. The image was partitioned

RLS

OHA
sVi>

Epoch
40.0020.00

I'
,

l-:

Ir r

25.20

25.00

0.00

25.40

25.60

26.00

25.80

26.40

26.20

Eigenvalue

(38) and the resulting plots are shown in Figs. 6 and 7.

These figures also show the plots of the same quantities

for the GHA, obtained by computing the average, at each

iteration, of the squared of outputs for the first and third

neurons. The true eigenvalues of the covariance matrix of

the network vector sequence were also determined using

the standard KL transform. These are represented by the

flat curves in these figures. Comparing these values with

the estimated eigenvalues for the case of the RLS principal

component extraction algorithm shows that as the number of

epochs increases, the estimated eigenvalues would converge

to the true eigenvalues determined using the standard KL

transform. In addition, unlike the GHA, which exhibits some

inaccuracies in the estimates, the RLS learning rule achieves

principal component extraction with a high level of accuracy

as determined by the variance of individual components.

(40)x(n) = ¢x(n - 1) + e(n)
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0.30 \ .
__ - - - - L ~ ~ __ ~
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Fig. 7. Comparison of the estimated eigenvalue with the tree eigenvalue for
the third principal component.

Fig. 8. Original Lena image.

into a set of non-overlapping blocks of size 8 x 8 which were

then arranged into series of one-dimensional input vectors

of size 64 using row or column ordering to give a total

of 4096 training samples. Note that the choice of the block

size is a trade-off between the accuracy in estimating the

principal components and the computational and architectural

complexity of the algorithm. However, in most of the real

world images the neighboring pixels are highly correlated and

as the spatial distances between the pixels increase the amount

of correlation decays substantially. As a result, increasing the

block size after a certain stage would not necessarily improve

the mean squared accuracy. The block size of 8 x 8 was found

empirically to provide the best results. Blocks of smaller size

than 8 x 8 would not capture enough spatial correlations to

generate accurate estimates of the principal components. This

can result in processed images which exhibit some visible

blocking effects.

The mean of the training data was subtracted from each

individual data vector to obtain zero mean training input

vectors. The weights of the network with sixty four inputs and

sixteen outputs were initialized randomly. The initial Pm(0)

Fig. 9. Reconstructed Lena image from the first sixteen components obtained
using the RLS algorithm.

was chosen to be 0.5. The first sixteen principal components

of the input image were then determined through sequential

training of individual neurons using the RLS algorithm. For

each component, convergence is achieved after just one epoch

over the training data. The distribution of the eigenvalues of

the input covariance matrix, obtained using the standard KL

transform, indicates that they decay very fast for the lower

order components. The percentage of the energy of the original

image contained in the first k components is measured by

k

2:)i
1 i-I

Energy% = k ~2

where Ai represents the variance of the ith component or the

ith eigenvalue of the input covariance matrix and u 2 is the

variance of the original image. The variance of the original

image was computed to be u 2 = 2209 and the percentage

energy calculated, for the first sixteen components, using (42)

was found to be 99%.

Once the training process is completed, the first sixteen

principal eigenvectors corresponding to the converged weights

of the sixteen neurons were used to reduce each 8 x 8

block to just sixteen components. The reconstructed image,

obtained using the second layer, is shown in Fig. 9. As

shown in this figure, three quarters of the components can

be discarded with no visible degradation in the quality of

the reconstructed image. This result was expected since the

first sixteen components contain almost all of the energy of

the original image. The signal to noise ratio (SNR) for the

reconstructed image was measured to be 21 dB which shows

that still a small amount of mean squared error is incurred due

to the rejection of the lower order components.

The same procedure was repeated using the OHA which

incorporates data deflation. The step size 'Y was held fixed at

a small value of 10-5
. The algorithm required two epochs
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Fig. 10. Reconstructed Lena image from the first sixteen components ob
tained using the GHA.

over the training data for convergence. The sixteen extracted

principal eigenvectors were used to reduce the image data. The

resultant reconstructed image is shown in Fig. 10. Close exam

ination of this image shows some blocking effects especially

around the edges. The SNR for this image was measured to be

17 dB. The blocking phenomenon can mainly be attributed to

inaccuracies of the GHA which in tum lead to intensity dis

crepancies between the original and the reconstructed images.

These inaccuracies, which are caused by the misadjustment

[7] inherently produced by a fixed step size [6], are even

more significant for the low order components. As a result,

the GHA would not yield the maximum variance possible for

the sixteen extracted components since it distributes part of

the signal energy that is normally associated with the first

sixteen components to the lower order components which are

rejected in the reduction process. To reduce this effect, the

step size 'Y could be reduced or a variable step size 1/n
could be used. However, this would considerably reduce the

convergence speed which is already inferior to that of the RLS

algorithm [6]. Note that both RLS based and GHA algorithms

require O(N) operations with slightly more multiplications

for RLS in order to perform scalar operations for computing

Pm(n) and Km(n).

To compare the performances of these two neural network

based approaches with that of the standard KL transform, the

64 x 64 covariance matrix of the zero-meaned blocks of the

Lena image was computed. An SVD algorithm was used to

e~tract all 64 orthonormal eigenvectors and the corresponding

eigenvalues of this covariance matrix. The reduced transforma

tion matrix was formed from the first sixteen eigenvectors and

was used to transform individual 8 x 8 blocks of the image

to sixteen components. The reconstructed image is shown in

Fig. II. The image shows no visual distortion and the SNR

was measured to be 21 dB as well. Comparing the SNR's

and the visual quality of the images in Figs. 9-11 reveal the

fact that both the RLS learning rule and the conventional

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6. NO.2, MARCH 1995

Fig. II. Reconstructed Lena image from the first sixteen components ob
tained using the standard KL transform.

TABLE I
COVARIANCE MATRIX OF THE FIRST SIX COMPONENTS FOR THE RLS ALGORITHM

r 1 2 3 4 5 6

1 129243.00 -12.43 -1.71 0.40 -1.16 -0.07

2 -12.43 7549.40 70.84 0.46 -1.53 -0.71

3 -1.71 70.84 2826.30 -57.69 32.59 -3.41

4 0.40 0.46 -57.69 1714.82 142.15 -6.38

5 -1.16 -1.53 32.59 142.15 1313.59 -1.14

6 -0.07 -0.71 -3.41 -6.38 -1.14 632.16

KL transform give equal but negligible degree of distortion

in the reconstructed image. The results of the GHA, on the

other hand, are less impressive as the algorithm is faced with

accuracy constraints as well as slow convergence compared to

the RLS learning rule.

These points can further be demonstrated by considering

the covariance matrix of the first six components for these

three methods. These covariance matrices, shown in Tables

I-III, are obtained by diagonalizing the input covariance matrix

using the first six eigenvectors." Examination of these results

shows that the variances of the components generated by the

RLS algorithm approach to those obtained using the standard

KL transform. In addition, the RLS algorithm is shown to

achieve a good level of data decorrelation. The variances of

the components produced by the GHA, however, differ from

those of the previous two methods and as it can be seen from

the magnitude of off-diagonal elements that the individual

components are still correlated. This explains the relatively

high distortion in the reconstructed image for this algorithm.

To test the generalization capability of the RLS algorithm,

the network trained with the Lena image as described before,

was used to repeat the same reduction and reconstruction

4In this case, the eigenvectors were obtained after four epochs of the image
data for both the RLS and GHA.
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TABLE II

COVARIANCE MATRIX OF THE FIRST SIX COMPONENTS FOR THE GHA

r 1 2 3 4 5 6

1 129194.0 797.25 2630.18 1880.91 2190.11 287.76

2 797.25 7328.52 1158.81 468.81 313.66 137.30

3 2630.18 1158.81 3155.75 313.71 76.94 52.17

4 1880.91 468.81 313.71 1800.54 226.18 55.35

5 2190.11 313.66 76.94 226.18 1394.20 17.01

6 287.76 137.30 52.17 55.35 17.01 634.39

TABLE III

COVARIANCE MATRIX OF THE FIRST SIX

COMPONENTS FOR THE STANDARD KL TRANSFORM

r 1 2 3 4 5 6

1 12942.00 -0.84 0.75 0.36 0.53 -0.46

2 -0.84 7548.38 0.004 0.03 0.01 0.002

3 0.75 0.004 2827.15 -0.02 -0.008 0.003

4 0.36 0.03 -0.02 1757.00 -0.01 -0.004

5 0.53 0.Ql -0.008 -0.01 1266.00 0.001

6 -0.46 0.002 0.003 -0.004 0.001 647.00 Fig. 12. Original boat image.

Fig. 13. Reconstructed boat image.

where I', is a diagonal matrix consisting of speckle noise

samples 'Y(m, n) within one block of data; v(i) represents

a vector of additive white noise; and y( i) and x( i) are

vectors obtained from row (or column)-ordered arrangements

where in this case 'Y(m, n) is a scalar white sequence with

nonzero mean J.1'Y and variance 0'; which represents the speckle

noise; v(m, n) is a scalar white noise sequence with zero

mean and variance O'~ which represents additive thermal noise;

x(m, n) is the uncorrupted image assumed to have zero mean;

and y(m, n) is the corrupted recorded image. By dividing the

image into a set of non-overlapping blocks of size k x k and

arranging individual blocks in vector form, using either row or

column ordering, the image model (43) in vector form becomes

(44)y(i) = rix(i) + v(i)

C. Image Filtering

In the previous section, we considered the application of

the new RLS principal component extraction algorithm to the

problem of image data reduction and feature extraction. It was

assumed that a good quality image set is available. However,

any image acquired by optical, electro-optical or electronic

means is likely to be degraded by the sensing environment.

The degradation may be in the form of additive sensor noise,

background clutter as in radar or infrared (lR) imaging and

blurring caused by defocusing, relative object-camera motion,

and atmospheric turbulence. In addition to these forms of

degradation, a different multiplicative type noise, known as

speckle noise, occurs in coherent imaging systems such as

synthetic aperture radar (SAR), laser and ultrasonic systems

[16].

The recorded image in presence of both multiplicative

speckle noise and additive thermal noise can be modeled as

[17]

y(m, n) = b(m, n) . x(m, n)] + v(m, n) (43)

procedures on the Boat image of Fig. 12. Fig. 13 shows the

reconstructed Boat image which has a SNR of 18 dB. The fact

that the same weights can be used to compress two different

images is an example of "generalization" of the algorithm.

Although the images are different, their second order statistics

may present enough similarities for their respective principal

components to be similar. Training the network on either

image will compute a set of principal eigenvectors that can

be used to compress the other one. This property can be

extremely useful for applications which involve sets of images

with similar statistics such as in radar and satellite imaging.

The network can be trained based upon an already available

set of images and the converged weights can subsequently be

used for on-line reduction of the blocks of a newly received

image as they become available.
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of blocks of the received and the original images, respectively.

It can be shown that the covariance matrix Cx corresponding

to the original image has exactly the same eigenvectors as

covariance matrix Cy determined from the available corrupted

image. Moreover, it can easily be shown that the eigenvalues

of C y are related to those of C x by

V. CONCLUSION

A new neural network-based approach for principal com

ponent extraction which uses the RLS learning rule was

introduced. The LS solution for the optimal weights of a

general auto-associative network structure was shown to con

sist of linear combinations of the principal eigenvectors of

the input process covariance matrix. This important result

formed the basis for the development of a new sequential

scheme to individually extract these principal eigenvectors

using an RLS-based algorithm. To extract the lower order

components the sequential RLS training scheme was used in

Fig. 15. Processed farm image using the first sixteen components.

conjunction with the deflation procedure. The RLS based rule

inherently provides better convergence speed and accuracy

when compared with the Hebbian type learning rules which

are principally based on the LMS approach.

The convergence proof for this RLS PC extraction algo

rithm was also established. It was shown that training a p

neuron single layer network using the RLS algorithm would

sequentially drive the weight vectors to the p orthonormal

principal eigenvectors of the input covariance matrix. The

error function landscape will have a unique global minimum

together with a number of critical points [13]. The RLS

learning solves this problem by including a data dependent step

size and solving a minimization problem on an error surface

with only one absolute minimum. A simulation example was

given to demonstrate the validity of these properties and the

Fig. 14. Original SAR image of farm.

(45)j = 1.... , /,;2.

Since the eigenvalues of the original image decrease in magni

tude with increasing j index. it can be concluded that although

the portion of the energy of corrupted image corresponding

to the original image :r( m, n) is mainly concentrated along

the principal eigenvectors, the noise part would have evenly

distributed components along all the eigenvectors. It follows

that the noise energy in the corrupted image can be signifi

cantly reduced without losing much useful information by only

retaining the principal components of the image, which mostly

contain the useful signal energy. and rejecting the lower order

components, which incorporate more noise than useful signal.

This procedure, known as eigen-filtering, has previously been

used [18] for the additive noise case.

Now, we consider the application of the RLS PC extrac

tion algorithm in the filtering of a SAR image degraded

by multiplicative speckle noise. Fig. 14 shows a portion of

the original SAR image obtained from the Jet Propulsion

Laboratory (JPL). This farm image has a resolution of 512

x 512 and 256 grey levels. It must be noted that the image is

a one look image and consequently the mean and the variance

of the multiplicative speckle noise are unity [16]. A network

with 64 inputs and 16 outputs was trained using the RLS

algorithm. The training input vectors consisted of the pixel

values of individual 8 x 8 non-overlapping blocks of the

test image of Fig. 14. The network weights converged after

just one epoch over the training data and the resulting sixteen

vectors were then used to transform the image of Fig. 14 to

its first sixteen components. The reconstructed image is shown

in Fig. 15. Visual evaluation of this image clearly shows

the speckle reduction capability of the new RLS algorithm.

Additional speckle reduction can be achieved by reducing the

image to just eight principal components using the first eight

converged weight vectors. However, this would yield an image

with visible smearing artifacts. That is, although discarding

more components would definitely reduce the effects of the

speckle. it would eventually result in loss of some valid image

information and consequently considerable smearing effects.
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which gives

(A9)

(A.7)

(A8)

(AI3)

(AI4)

(All)

which implies that for WI to be critical point of J1 (n) we

must have WI = ci' i.e. the ith eigenvector corresponding to

eigenvalue x..
3) Thus far, we have shown that the critical points of the

error function J 1(n) are defined by the individual eigenvectors

of the input data covariance matrix Cx. The value of the error

function at the ith critical point is given by

J1i (n ) = JlO(n)lwl=t~i
N

= L Aj - Ai i = 1, ... , N.

j=l

N

JlO(n) = L Aj - wi CXW1'
j=l

Since wi WI = 1, we can write

N

JlO(n) = L Aj - wi CXW1+ Ai (1- wi wd (AI2)

j=l

or equivalently

Equation (A.7) gives the necessary condition for WI to be a

critical point of J1 (n). Now, under this condition, the value

of the error function in (A3) is given by

JlO(n) := J 1 ( n ) l w l = W l ' W ~ W l = 1
= tr [Cx] - wi Cx WI (A 10)

for any i E [1, N]. Now, the critical points of JlO(n)

are identical to those of J 1(n) and can be obtained by

differentiating JlO(n) with respect to WI. This gives

where A is an orthogonal matrix containing eigenvectors of

Cx as its columns and A is the diagonal matrix containing the

corresponding non-increasing eigenvalues. Now, we proceed

by showing that if WI = ci for some i E [1, N], then WI

satisfies (A4), i.e.,

Cx ci - Cie'iCxci = AAA
t
ci - cie'i AAA

t
ci

= Ai ci - cie'i Ai ci

= Ai ci - AiCi

=0.

which implies that

This proves the first part of Theorem 3.1. Thus, imposing the

condition defined by (3), the optimal weight vector would have

unit norm.

2) To continue with the rest of the proof, we need to show

that (A.4) is satisfied for some nonzero WI" i.e., a nonzero

WI defines a critical point of J1 (n), if and only if WI = ci

for some i E [1, N], where ci is the ith eigenvector of Cx.

Notice that since Cx is a real symmetric matrix, it can always

be written [1] as

(A.5)

(A6)

(A.4)

(A.1)

L x(k) xt(k) ~ nCx (A.2)

k=l

and in this case J 1 (n) can be written as

J1(n ) = tr[CxJ - 2wicxw1 +wiw1wicxw1. (A.3)

The critical points WI of J 1(n ) can be found by taking its

derivative with respect to WI and setting it equal to zero, i.e.,

aJ1 (n) I = 0

aWl W,=W,

ApPENDIX A:

PROOF OF THEOREM 3.1

1) To prove the first step of the induction, the expression for

the error function associated with the first neuron at iteration

n (8) is rewritten as

1 n

J1(n ) = - Z)x(k) - h1(k)w d (x (k ) - h1(k)W1)
n

k=l

1 n

= - ~)x(k) - w1wix(k))t
n

k=l

. (x(k) - WI wi x(k))

accuracy and speed advantages of this new RLS PC extraction

algorithm. The accuracy of the new algorithm was confirmed

by showing that the variances of the extracted components

approach to the true eigenvalues of the covariance matrix of

the input process.

Finally, the RLS learning rule was applied to dimensionality

reduction/feature extraction and image restoration problems.

It was found that this algorithm matches the performance

of the standard KL transform in both the reduction capa

bility and data decorrelation. The GHA, on the other hand,

gives an inferior performance to both techniques. The ad

vantages of the RLS PC extraction algorithm over standard

KL transform, however, include its recursive nature which

allows on-line computation of the principal eigenvectors as

well as a reduction in computation time through parallel

implementation. Furthermore, this learning rule was shown

to be an efficient and simple tool for filtering of images de

graded by additive and/or multiplicative noise. Combined with

its excellent generalization capability, these properties make

the algorithm suitable for applications where dimensionality

reduction/feature extraction and filtering of large sets of images

with similar statistics, such as in the case of satellite or radar

images, is needed.

where it is assumed that a fixed weight set WI is used for all

w1(k), k E [1, n - 1]. For large n we can write

This equation defines the necessary and sufficient condition

for WI to be a critical point of J 1 (n) for large n. Multiplying

both sides of (45) by wi, gives
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Since the eigenvalues of C x are arranged in decreasing order,

it can be seen that the absolute minimum is obtained when

Ai = Al i.e. the most significant eigenvalue. This yields

N

J 1 min = L x, - Al

j=l

N

= L x;
j=2

(A IS)

by the corresponding time averages. Using (39) the first

summation term in (B.1) can be written as

1 n

- L etm(k)dm(k) = tr [Cx]
n

k=l

- tr [ A ~ _ l Cx Am-I] (B.2)

where Am- 1 has columns consisting of eigenvectors of ei' i E

[1, m - 1]. Consequently, (B.2) simplifies to

This absolute mimmum is obtained for the optimal weight

vector given by

1 n N

- L d~(k) dm(k) = L Aj.

n k=l j=m

(B.3)

(AI6) The second summation term in (B.I) can be reduced to

(B.5)

, i.e., the principal eigenvector of the input covariance matrix,

4) Using the first version of J1(n) in (A,I) for the second

layer, this error function can be rewritten as

J1(n) =tr [Cx] - L1i(n)Wl(n) - wi(n)L11(n)

- wi(n)Ch1(n)Wl(n) (A.17)

where

~ t dm(k)xt(k) = (/ - Am-1 A~_l) oe. (B.4)

n k=l

As a result, for large n, the error function can be rewritten as

N

Jm(n) = L Aj - 2w~ (/ - Am-1 A~_l) CXwm
j=m

+ w~ Wm w~ CXwm.

and

which is a quadratic error function with a unique absolute

minimum. Minimizing J1 (n) W.r.tWI (n) gives the LS solution

Conversely, for wm defining a critical point, we have from

(B.6)

wm = (/ - Am- 1 A~_l) CXwm (w~ CXwm)-l. (B.8)

Multiplying both sides by A~_l and using the orthonormality

property gives

A~_l wm = (A~_l - A~_l)CXWm (w~ CXwm)-l

= O. (B.9)

Having established the necessary and sufficient condition on

the critical points of Jm(n), the aim is to prove that this

condition, defined by (B.6), is satisfied for some nonzero wm

if and only if there exists an integer i E [m, N] such that

wm = ei' We proceed by substituting ei' i E [m, N], for wm
in the left hand side of (B.6). This yields

(/ - Am- 1 A~_l) Cx ei - ei ei Cxei

= (/ - Am-1 A~-l)ei Ai - ei ei Ai ei
= Ai ei - Ai ei
= O. (B.7)

Equation (B.9) states that the critical points of Jm (n) must

be orthogonal to the space spanned by the columns of Am-I'

Another necessary condition on the critical points of Jm(n)

can be derived by multiplying both sides of (B.6) by w~.

This implies that

w~ wm = w~(/ - Am-1 A~_l) CXwm (w~ CXwm)-l
(B.IO)

To determine the critical point, Wm, of Jm(n), we take the

derivative of Jm(n) with respect to Wm and set it equal to

zero. This gives

(/ - Am-lA~_l)CXWm - wm w~ CXwm = O. (B.6)

(A.20)

(AI9)

(AI8)

Note that it is assumed that Wm is used for all wm(k), k E

[1, n - 1].For large n, the input statistics can be approximated

ApPENDIX B:

PROOF OF THEOREM 3.2

The error function at iteration n for the mth neuron is

written as

which corresponds to the global minimum solution of (AS).

Intuitively, the fourth order error function in (A.3) with multi

ple critical points is reduced to a quadratic function (AI7) with

only one minimum which can be reached recursively using the

RLS algorithm. This is achieved by using the property that the

weight vector of the first layer is the transpose of the weight

vector of the second layer. Thus, at each new iteration, a more

accurate estimate of hI (n) is calculated at the first layer and

then provided as input to the second layer. This completes the

proof.
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(8.17)

(8.16)

(8.15)

(8.11)

(8.14)

(B.12)

which gives the minimum mean-squared error as

N

i; min = L

From (8.11), this can be rewritten as

N

JmO(n) = L Aj - w~ CXwm - Adl - w~ Wm) (8.13)

j=m

which by applying (8.9) gives

j=m

From (B.15) it can be seen that the absolute minimum is

obtained for

where i E [m, N]. Now, JmO(n) and Jm(n) have the same

critical points which can be obtained by taking the derivative

of JmO(n) with respect to wm. This yields

for i E [m, N] which implies that the critical points of

Jm(n) are defined by the lower order eigenvectors ci with

i E [m, N]. The value of the error function at each of these

critical points is given by

Jmi(n) = Jmo(n)\w==ei

N

= L Aj - Ai i = m, .. " N.

Again, it can be see~e constraint given by (3) would

guarantee unit norm optimal weight vectors even for the lower

order components. With these necessary conditions on the

Wm, Jm(n) can be evaluated at wm as

JmO(n) := Jm(n)IW==W=,W:"W==l

N

= L x, - w~ CXwm .

j=m+l

To show that the extended RLS rule guarantees this minimum,

a similar approach as for Theorem 3.1 can be used. This

completes the proof.
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