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Abstract. Nearest Neighbor (NN) search is a basic algorithm for data mining 
and machine learning applications. However, its acceleration in high dimen-
sional space is a difficult problem. For solving this problem, approximate NN 
search algorithms have been investigated. Especially, LSH is getting high-
lighted recently, because it has a clear relationship between relative error ratio 
and the computational complexity. However, the p-stable LSH computes hash 
values independent of the data distributions, and hence, sometimes the search 
fails or consumes considerably long time. For solving this problem, we propose 
Principal Component Hashing (PCH), which exploits the distribution of the 
stored data. Through experiments, we confirmed that PCH is faster than ANN 
and LSH at the same accuracy. 

Keywords: Approximate Nearest Neighbor Search, High dimensional space, p-
stable Locality Sensitive Hashing. 

1   Introduction 

Nearest neighbor (NN) search algorithm finds the nearest data to a query from stored 
data. This algorithm plays important roles in wide varieties of applications, e.g., NN 
classification [1], stitching geometric objects [2], and so on. For avoiding time con-
suming exhaustive search, many accelerated algorithms have been proposed, which 
works well on low dimensional distributions. However, most of them lose effect on 
high dimensional data distributions, i.e., the computational efficiency decreases al-
most comparably as the exhaustive search. 

For solving this problem, approximated NN search algorithms have been proposed. 
Approximate Nearest Neighbor (ANN [4, 5]) and Locality Sensitive Hashing (LSH 
[6, 7]) are the typical examples. 

ANN is the k-d tree [3] based search algorithm which first finds an NN candidate 
by binary tree search and checks other possibilities in the following procedure. This 
procedure is called priority search. The binary tree corresponds to a box decomposi-
tion of the search space, where each box involves a single vector. In the priority 
search, the algorithm checks the boxes intersecting the hyper sphere whose center is 
at the query vector and the NN candidate is on its surface. The approximation is re-
ducing the radius of this sphere. Let feasible error and radius ε  and r , respectively. 
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Then the approximation is reducing the radius r  to / (1 )r ε+ . This reduction de-

creases the number of boxes checked in the priority search, but increases the chance 
of inaccurate NN search. Of course, 0ε =  corresponds to exact NN search with no 
errors. 

On the other hand, LSH is the hash based approximation of NN search, which has 
a clear relationship between error ratio and the computational complexity, where 

distance between query and its approximate NN

distance between query and its true NN
ErrorRatio =

. 

The basic LSH decomposes the search space into buckets (hash bins), each of 
which has the same hash value. This algorithm first computes the hash value of the 
query and finds the NN candidates in the bucket having the same hash value. Finally, 
it finds approximate NN vector from the candidates. Therefore, a few candidates are 
preferable for fast search but are not preferable for accurate search. 

In the basic LSH [6] and p-stable LSH [7], the hash function is determined without 
referring the distribution of stored vectors. This causes the following problems: 

 

P1. When the query is given at low density area, the search may fail, because no 
bucket may have the same hash value with the query. 

P2. When the query is given at high density area, the search time may increase, 
because those buckets usually include more data than low density area. 

For solving this problem, we propose Principal Component Hashing (PCH), which 
exploits the distribution of stored vectors for computing hash function. This NN 
search algorithm has the following advantages. 

 PCH decomposes whole search space into finite buckets involving the same 
expected number of vectors. This guarantees constant search time independent 
of query vectors. Also, PCH can find NN candidates for any query vector.  

 PCH finds the NN vector from the NN candidates by efficient distance compu-
tation on the principal components. 

PCH assumes that data distribution obeys Gaussian distribution. However, most 
practical data distribution does not. Hence, we further extend it to NN search algo-
rithm for general distributions while guaranteeing the above advantages. We call it 
Adaptive PCH (A-PCH).  

2   Approximate Nearest Neighbor Search 

Many researches on accelerating NN search have been done before. Through those 
researches, most algorithms use the following two techniques. 

[Reducing the number of distance computation]. The NN candidates for distance 
computation are narrowed based on the triangular inequality [8, 9, 10] or the space 
decomposition [4, 11, 12]. 

[Pruning of distance computation]. The pruning stops distance computation when 
halfway distance exceeds given tentative distance [4]. 
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This research field has been regarded matured, because many researchers spent 
long time and some accelerated search algorithms have been produced. However, 
their computational efficiency decreases almost comparably as the exhaustive search.  

For solving this problem, approximated NN search algorithms, e.g., ANN and 
LSH, have been proposed. Especially, LSH is getting highlighted recently, because it 
has a clear relationship between relative error ratio and the computational complexity.  

2.1    ( , )R c − Nearest Neighbor Problem 

Suppose X  is a metric space and 1 2, X∈x x . Let 1 2( , )D x x  be the distance be-

tween 1x  and 2x , S ( )X⊂  be the stored vector set, q  be a query, and ( ) S∈NN q  be 

the nearest vector to q  within S . Then, ),( cR -NN problem is to find an approximate 

nearest neighbor vector ( )′NN q  satisfying 

( , ( )) ( , ( ))D cD′ ≤q NN q q NN q , (1) 

where ( 1)c ≥  is called error ratio. 

For solving this problem, we define the following hash function: 

Definition 1. Let U  be a set of hash values, ( ) :h x X U→  be the hash function, local-

ity-sensitive hash function satisfies the conditions below: 

• if 
1( , )D r≤v q  then 

1Pr[ ( ) ( )]h h p= ≥q v , 

• if 
2( , )D r>v q  then 

2Pr[ ( ) ( )]h h p= <q v , 

where 
12 pp ≤  and 

12 crr = . 

By using those hash functions satisfying this definition, we can realize ),( cR -NN 

search based on the following theorem: 

Theorem 1. Let L,, 21 hh  be hash functions, n  be the number of vectors in the data-

set, and
21 ln/ln)( ppc =ρ . Then, it is possible to find ( )′NN q  satisfying Equation (1) 

by )(cnL ρ=  times bucket search with constant probability. 

LSH is an approximate NN search algorithm based on this theorem, whose efficiency 
is characterized by )(cρ . For realizing better search algorithm, which finds approxi-

mate NN vector with high accuracy ( | 1|c −  is small) within short time ( ( )cρ is small), 

( )cρ should decrease quickly. Various researches are being conducted about what 

kind of hash function brings good )(cρ . 

2.2   P-Stable LSH 

P-stable LSH is an example of practical LSH, which finds approximate NN vector in 
Euclidean distance. Suppose q  is a query, a  is a vector, b  and ω  are constants. 

Then the p-stable hash function is defined by the following formula. 



Principal Component Hashing: An Accelerated Approximate Nearest Neighbor Search 377 

⎥⎦
⎥

⎢⎣
⎢ +⋅=

ω
b

h b

qa
qa )(,

, 
(2) 

where ⎣ ⎦⋅  is floor function. 

This hash function projects vectors onto the vector a  and quantize the axis with 
the intervalω , which is decided based on the distribution width of the inner prod-
uct ⋅a q . In this sense, the parameter b  can be regarded as adjusting the bias, which is 

chosen uniformly from the range ],0[ ω . a  is sampled from a p-stable distribution, for 

example, isotropic Gaussian. Depending on the property of p-stable distribution, it 
can be proven that the hash function achieves ( ) 1/c cρ ≤  [6].  

Recently, [8] claims that 2( ) 1/c cρ =  can be achieved by using Voronoi decompo-

sition of search space. However, this is impractical in high dimensional space, be-
cause the computational complexity of the Voronoi decomposition over n  samples in 

d  dimensional space is /2( )dO n⎢ ⎥⎣ ⎦ . 

3   Principal Component Hashing 

Here we describe the algorithm of PCH. This algorithm performs 1) hash value com-
putation, 2) NN candidate generation, 3) refinement of NN candidate to find ap-
proximate NN. We will explain these three processes and some tips for improving the 
performance. 

3.1   Hash Functions 

In the p-stable LSH, parameters of the hash function are determined independent of 
the data distribution. However, the accuracy and the efficiency can vary depending on 
the data distribution. For example, we can easily generate the data distribution and 
query that causes problems P.1 and P.2 described in section 1. This means )(cρ  does 

not guarantee the actual performance but just illustrates the trend of accuracy versus 
speed independent of the data distribution.  

Our basic idea is to use the data distribution for designing the hash function. In 
practice, we use the principal components of the distribution instead of a . This is 
because the standard deviation of the projected vectors is maximized when vectors are 
projected to the principal component. This implies projected vectors are widely dis-
tributed on the principal component. 

Once vectors are projected, we have to segment the projection axis into buckets. Of 
course, optimally segmented buckets should involve the same number of vectors. If 
we know the probabilistic data distribution ( )p x  on the projection axis, we can com-

pute cumulative probability distribution ( )P x  as  

∫ ∞−
=

x
dpxP ξξ )()(

.
 (3) 
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1( ( ))Tp −x xϕϕϕϕ
1( ( ) )TP −x xϕϕϕϕ

2( ( ))Tp −x xϕϕϕϕ 2( ( ) )TP −x xϕϕϕϕ

 

Fig. 1. The hash function and bucket division in PCH 

( )P x  is monotonically increasing. Also, its domain and the range are ( , )−∞ +∞  and 

[0,1] , respectively. This implies that there is an inverse mapping 1 :[0,1] ( , )P− −∞ +∞a .  

Hence, by dividing the range of ( )P x  into 1+n  uniform intervals [0, ],Δ  

( ,2 ],Δ Δ ,( ,1]nΔL , the whole projection axis can be decomposed into 1+n  disjoint 

buckets: 1( , ( )],P−−∞ Δ  1 1( ( ), (2 )],P P− −Δ Δ  ,L  1( ( ), )P n− Δ +∞  as shown in Fig. 1. This 

disjoint decomposition guarantees  
 

 Every query must fall into a bucket.  
 Every bucket involves the same expected number of vectors. 

 

These facts are most suitable for approximate NN search. In p-stable LSH, queries 
provided at low density area can easily fail, but PCH never fails without adding ex-
ception handling code. Also, expected number of vectors contained by a bucket di-
rectly influences the efficiency of the search. Then, equal expected number implies 
constant search time. 

For the realization of this idea, we introduce an assumption: 

Assumption 1. The distribution of the stored vector is Gaussian. 

Assuming this, we can say that the projected vectors to a principal component also 
obey Gaussian distribution. Then we can fit Gaussian ( )p x  to the projected vectors.  

In practice, Equation (3) should not be computed when performing search, because 
it consumes considerably long time. In this research, since ( )p x  is a Gaussian distri-

bution, Equation (3) is approximated by the sigmoid function shown below.  

/( ) ( ) 1 / (1 )x
sP x P x e σ−≅ = + .  (4) 

This approximation is for designing a fast hash function. When the i -th principal 
component 

iφ  is used, the hash function is expressed as 

( ) ( ( )) /T
i s ih P⎢ ⎥= − Δ⎣ ⎦x φ x x  , (5) 

where Δ  is the interval.  
The series of independent hash functions can easily be created by using orthonor-

mal bases 
iφ ( 1, , )i M= L  obtained by performing PCA on the given dataset. These 

hash functions corresponds to a lattice decomposition of the whole search space. 
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By using above hash functions, each bucket on an axis i  has a single hash value 
H . Hereafter, we denote this bucket 

iHB . That is, 

{ | , ( ) }iH iB S h H= ∈ =x x x , (6) 

where S  represents the search space. 

3.2   Generation of NN Candidates 

According to the discussion above, when the hash values of a query q  are ( )ih q  

( 1, , )i m= L , we should find the candidates in 
( )1 i

m

ihi
B

= qI . This strategy drastically re-

duces the number of NN candidates, however, it may produce empty set of candidates 
and may produce erroneous search results when the query is located near the bound-
ary between buckets.  

Hence, the candidates should be in those buckets which have at least one hash 
value ( )ih q . This means initial estimate of candidate set 

0 ( )C q  
for query q  should be 

the union of 
( )iihB q

: 

0 ( )1
( )

i

m

ihi
C B

=
= qq U .

 (7) 

The problem remaining here is the candidates in 
0 ( )C q  are still too many for dis-

tance computation. For reducing the number of candidates, PCH performs “refine-
ment of candidates”. 

3.3   Refinement of NN Candidates 

When performing the hashing, we can count the frequency of hits for each stored 
vector x , i.e., how many times hash values match. We represent this frequency 

( )w x . According to this value, we can select a tentative NN vector 0 ( )NN q : 

0

0

( )
( ) arg max ( )

C

w
∈

=
x q

NN q x . (8) 

Then the tentative distance z  can be expressed as 

0( , ( ))z D= q NN q . (9) 

This tentative distance is used for pruning the distance computation, i.e., while 
computing the distance between q  and a stored vector x , whenever the halfway 

distance grows bigger than z , the distance computation can be terminated. 
This type of pruning is also employed in ANN [4], however, the pruning in PCH is 

much more efficient. This is because the distance computation can be done on the 
principal axes.   

In the PCH, we first apply PCA to stored vectors and all vectors are projected onto 
the principal axes 

iφ  ( 1, , )i M= L , i.e., orthonormal bases. In this case, 
pL  distance 

1 2( , )D x x

 

between 
1x  and 

2x  can be expressed as 
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This is based on the Parseval's identity. 
If 

iφ  
is sorted in descent order of eigen values, projection to 

1φ  has the biggest de-

viation. This implies that many candidates can be pruned only by comparing 

1 1
T T−φ q φ x

 
with z , i.e., if 

1 1
T T−φ q φ x

 
is bigger than z  then x  can not be a candi-

date of ' ( )NN q . This pruning can be generalized using multiple bases as below. 

Suppose Mm ≤  and )(0 qx C∈ , if the following inequality is satisfied, x  cannot be 

a candidate of ' ( )NN q . 

1

( , )
m pp T T p

i i
i

D z
=

= − >∑q x φ q φ x .  (11) 

In practice, this pruning does not require special computation. For computing hash 
function ( )ih q , T

iφ x  is also obtained. Just by using this value, we can prune the dis-

tance computation and refine the candidate based on the inequality (11). This is be-
cause T

iφ x  is already computed when vectors are stored. We show an algorithm of 

“refinement the NN candidates” below.  

This algorithm computes 
pA

i

T
i

T
i∑ =

−
1

xq ϕϕ  and check the inequality (11) within 

a range )(1 mAi <<≤≤ . If the inequality (11) is not satisfied with Ai = , compute 

actual distance ( , )D x q  and compare ( , )D x q  with z . If ( , )D z<x q  then z  is up-

dated, otherwise x  is excluded from the candidates. We perform this processing for 

all NN candidates in )(0 qC .
 

This algorithm directly finds NN vector from 
0 ( )C q  

without generating series of 

candidates and decreases the chances of actual distance computations by updating of 
z accelerates the pruning of distance computation. Since the performance depends on 
the parameter A , we have to find the best parameter for each problem.  

3.4   Tips for Improving the Performance 

In this section, we describe two tips for improving the performance of PCH to achieve 
higher accuracy and faster speed for practical use. 

3.4.1   Bucket Overlapping 
It is important for accurate search to select buckets including true NN ( )NN q . How-

ever, when the query is given near the boundary between buckets, ( )NN q  may not 

be in the bucket. The essential problem is not the size but the disjoint arrangement of 
the buckets. Then, we introduce the overlapped arrangement of buckets as follows. 

{ , ( ) }iH iB S H h Hδ δ δ= ∈ − ≤ ≤ +x | x x .  (12) 
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By employing this arrangement, Pr[ ( ) ] Pr[ ( ) ]iH iHB Bδ∈ ≥ ∈NN q NN q  holds. δ  

is called a margin. Bigger δ  produces more accurate search results.  

3.4.2   Cutoff the NN Candidates 
When we employ the bucket overlapping, the number of candidates will increase. In 
spite of the efficient pruning of the distance computation, too many candidates slow 
down the search speed. In such cases, we can reduce the number of candidates while 
keeping the accuracy according to the hit frequency )(xw , because the data having 

bigger )(xw  can have bigger chance to become ( )NN q . In practice, candidates 

0 ( )C q  
are sorted in the descent order of )(xw , and top b % of sorted candidates are 

extracted as reduced NN candidates 
0( )C′ q . This b  is named cutoff ratio. 

3.5   Extension of PCH to General Distribution 

For constructing the basic PCH algorithm, we introduced ASSUMPTION 1 that 
stored data obeys Gaussian distribution. From this distribution model, cumulative 
distribution model is approximated by the sigmoid function, and by segmenting the 
cumulative probability (vertical axis) uniformly, we get non-uniform buckets on the 
projection axis. However, once we get this non-uniform bucket decomposition, it can 
be stored in a tree structure, which can be utilized in the search process. This implies 
we don’t have to rely on the ASSUMPTION 1. 

In this section, we extend the PCH to Adaptive PCH (A-PCH), which can be ap-
plied to general distributions. 

3.5.1   A-PCH: Extension to General Distributions 
In the data storing stage, all vectors are projected on a principal axis. Then, we can 
generate cumulative histogram ( )H x . By scanning this histogram, the domain can be 

decomposed into non-uniform buckets involving the same number of projected vec-
tors. Suppose that the intervals 1( , ( )]H−−∞ Δ , 1 1( ( ), (2 )]H H− −Δ Δ ,L , 

1( ( ), )H n− Δ +∞  repre-

sent the bucket decomposition, then the tree structure can be constructed as below. 
The root node of the tree has a threshold 1( ( 1) / 2 ) ( ( 1) / 2 )I n H n−+ = Δ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . The left 

descendant node has ( ( 1) / 4 )I n+⎢ ⎥⎣ ⎦  and right node has ( 3( 1)/ 4 )I n+⎢ ⎥⎣ ⎦ . By recursively 

applying this rule, we can generate a balanced binary search tree.  
In the search stage, A-PCH performs binary search using this tree structure for 

finding the bucket where the query falls in. The rest of the process is the same as 
PCH.  

4   Experiments 

For evaluating PCH and A-PCH, we conducted the following experiments: 
 

4.1 Performance comparison among A-PCH, ANN and p-stable LSH.  
4.2 Performance comparison between PCH and A-PCH. 
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The specification of the platform PC is: CPU (Intel Xeon 3.72GHz x 2), Memory 
(32 GB), OS (x86_64 Linux Kernel Version 2.6.20), Compiler (gcc 4.1.2-13 built for 
x86_64). 

For the fair evaluation, we have to take account of the balance between the accu-
racy and the speed. Then, we employ “time versus error ratio curve”. Curves passing 
closer to left-bottom corner have better performance. 

4.1   Comparison among A-PCH, ANN, and LSH  

The purpose of this experiment is to compare the properties of A-PCH, LSH, and 
ANN under special and realistic conditions. 

As for the special condition, we use the following dataset and queries: 

Dataset: 5000 vectors sampled from 3000-dimensional isotropic Gaussian dis-
tribution. Queries: 1000 uniformly distributed queries within a hyper cube 

3000( 3 ,3 )σ σ− . 

This is the most difficult dataset for A-PCH, because the distribution essentially 
has no principal component, and hence, PCA does not play important role. One may 
think that a priori knowledge on the distribution is useless in this case.  

For the realistic condition, we use the following dataset and queries: 

Dataset: 10000 vectors sampled from 4096-dimensional (64x64) monochrome 
images (CASPEAL). Queries: 1000 images independent of stored images. 

This is a suitable dataset for A-PCH, because the distribution may be biased, and 
hence, the knowledge on the distribution can be utilized for generating hash functions 
and pruning the candidates. 

For both datasets, all parameters in each NN search algorithm are changed as pos-
sible as we can: 

• ANN: Feasible error ε  is changed within the range [ ]100,1 . 

• LSH: Number of projections per hash value k  is changed within the range [ ]40,2 . 

Number of hash tables L  within the range [ ]171,3 . 

• A-PCH: Number of a principal axis A  within the range [ ]100,5 , Number of buck-

ets on an axis Δ1  within the range [ ]100,5 , Bucket overlapping δ  within the 

range [ ]2,0 , Cutoff ratio b  within the range [ ]20,80 . 

Fig. 2 and 3 show the “time versus error ratio curves” using simulated data and 
CASPEAL image dataset, respectively. In these graphs, horizontal axis represents 
time [s] and vertical axis is error ratio. P-stable LSH can generate “search failures”, 
which means no NN vector is found. In this case, the graph is plotted using successful 
search results. ANN and A-PCH do not generate any search failure. This means the 
plot of p-stable LSH overestimates its performance. 

For the simulated data, the performance seems almost the same, but p-stable LSH 
generates a lot of search failures (from 0 to 997 failures per 1000 queries). The maxi-
mum number of failures are observed at K=40 and L=3, which is plotted at 
(0.000379[s], 1.0298 error ratio). This implies the leftmost area of p-stable LSH  
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Fig. 2. Isotropic Gaussian Fig. 3. CAS-PEAL image database 
 

plotting is not reliable. ANN performs better than p-stable LSH, because p-stable 
LSH does not make initial guess but ANN makes initial guess by k-d tree search and 
approximated priority search accelerates the search keeping the accuracy. In spite that 
this is the most difficult case for A-PCH, it performs better than others. This is be-
cause the initial guess using the hit frequency and the pruning work better than ANN.  

For the real data, LSH produces less search failures (from 0 to 42 failures per 1000 
queries) than the simulated data and seems better than ANN. Comparing with them, 
A-PCH outperforms. This is because the performance of A-PCH mainly depends on 
the dimensionality of the data distribution, however, others depends on the dimen-
sionalities of search space as well as distribution. 

4.2   Comparison between PCH and A-PCH 

The purpose of this experiment is to compare A-PCH with PCH, for clarifying the 
effect of the extension described in section 3.5. 

PCH cannot guarantee “each bucket includes the same expected number of vec-
tors” when data distribution does not obey Gaussian. But, A-PCH can guarantee that 
in every case. This may make some differences. 

Also, we will not use empty buckets for avoiding search failure in PCH and A-
PCH. Then, the maximum number of buckets along each projection axis in PCH is 
less than that of A-PCH. This also makes some differences. 

We conducted comparative experiments with PCH and A-PCH. In the experiment, 
we applied them to the data used in section 4.1 and the following additional data: 

 

Dataset: 10000 data sampled from mixture of two isotropic 3000-dimensional 
Gaussians 2σ  apart each other, where σ  represents the standard deviation of 
each Gaussian. Query: Sampled data from this distribution but independent of 
the stored vectors. 

This data is for simulating non-Gaussian distribution. 
 The parameter ranges of PCH and A-PCH are same as that of A-PCH in section 

4.1 except the number of buckets is limited not to produce empty buckets. 
Fig. 4, 5, and 6 shows the comparison experiment result of A-PCH and PCH using 

the isotropic distribution, CASPEAL image dataset, and the data sampled from a 
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Fig. 4. Isotropic Gaussian: A-
PCH vs. PCH. 

Fig. 5. CASPEAL Image 
database: A-PCH vs. PCH. 

Fig. 6. Mixture of Gaussians: 
A-PCH vs. PCH. 
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Fig. 7. Isotropic Gaussian. 
Result of A-PCH. 

Fig. 8. CASPEAL Image 
database. Result of A-PCH. 

Fig. 9. Mixture of Gaussians. 
Result of A-PCH. 

 
mixture of Gaussians, respectively. The experiment result of A-PCH is hidden behind 
that of PCH. So it is shown in Fig. 7, 8, and 9 independently. 

In Fig. 4, the performances seem almost the same between PCH and A-PCH. This 
is because the data distribution in Fig. 4 is a perfect Gaussian. In Fig. 5, the perform-
ances seem slight difference but the best performances between PCH and A-PCH are 
almost the same.  

In Fig. 6, the best performance of A-PCH is slightly better than PCH. This trend 
can be observed from 0.01[s] to 0.035[s] in search time. This is because the non-
uniform numbers of vectors involved in buckets.  

Also, in this figure, in the very short time area less than 0.008[s] no PCH plot can 
be found.  This is because the maximum bucket number of A-PCH is bigger than 
PCH for avoiding the search failures.  

5    Conclusions 

This paper presents Principal Component Hashing (PCH) and its extension Adaptive 
PCH (A-PCH). Both of them exploit the properties of distributions of stored data. 
PCH projects data to principal axes, where each axis is decomposed into disjoint 
buckets involving the same number of stored data. This disjoint decomposition guar-
antees 1) no search failure and 2) constant search time. In the search stage, a NN 
candidate set is extracted using hash functions and the hit frequency of hash values is 
utilized for making initial guess of the tentative NN candidate. By using this initial 
guess and NN candidates, we can efficiently pick up the approximate NN by pruning 
the distance computations. PCH assumes that the stored data obey a Gaussian  
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distribution. For removing this assumption, we extended PCH to A-PCH, which can 
be applied to dataset obeying wide varieties of distributions. 

Through extensive experiments, we confirmed that PCH and A-PCH perform bet-
ter than ANN and standard p-stable LSH without producing search failures. Also A-
PCH performs better than PCH for non-Gaussian distributions.  
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