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Abstract. Inter-subject variability is a major hurdle for neuroimaging
group-level inference, as it creates complex image patterns that are not
captured by standard analysis models and jeopardizes the sensitivity
of statistical procedures. A solution to this problem is to model ran-
dom subjects effects by using the redundant information conveyed by
multiple imaging contrasts. In this paper, we introduce a novel analysis
framework, where we estimate the amount of variance that is fit by a
random effects subspace learned on other images; we show that a princi-
pal component regression estimator outperforms other regression models
and that it fits a significant proportion (10% to 25%) of the between-
subject variability. This proves for the first time that the accumulation
of contrasts in each individual can provide the basis for more sensitive
neuroimaging group analyzes.
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1 Introduction

Functional brain imaging is a tool of choice to understand the functional spe-
cialization of brain areas and decipher the mechanisms or the impact of vari-
ous brain diseases. It outputs contrast maps that quantify metabolic responses
of the brain gray matter in various experimental situations; more precisely, a
contrast is a certain combination of the activation evoked by various experimen-
tal conditions that reveals brain responses specific to a cognitive process; the
accumulation of such contrasts can then be used to derive subject-specific or
population-level functional cartography [1]. The underlying inference is based
on a mass-univariate framework that detects which brain voxels show in average
a positive response. Between-subjects variability enters the model as a random
effect: larger variability entails lower evidence that an effect is present, hence
less sensitivity [2].

While classical analyzes ignore the structure underlying these random effects,
there is a growing evidence that some of it can be characterized or even predicted
by several factors, such as i) the presence of an average effect in the population
(high variability coincides spatially with larger mean effect) [3] ii) anatomical
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differences, such as the cortical ends of anatomical connections, which has been
illustrated by a prediction of faces versus scenes contrast in the fusiform gyrus
[4] and iii) individual functional connectivity between brain regions, which has
been shown to provide a relevant prior for group analyzes in [5]. Modeling such
random effects is important in order to facilitate future correlative studies that
compare brain features to genetics and behavior.

In this work, we consider the prediction of functional contrasts by other con-
trasts observed independently in the same subjects, assuming that the between-
subject variability can be captured through a latent subspace structure. This
approach is reminiscent of the popular modality propagation analysis paradigm
(among others, see [6]), in which a target image is reconstructed from a reference
one by machine learning tools; the main difference is that functional neuroimag-
ing data have a much lower signal-to-noise ratio. However, a large number of
contrast images can potentially be used to capture the structure of the random
effects space. Altogether, this implies that the same procedures are not optimal
for random effects characterization and modality prediction.

The contribution of this paper is two-fold: i) we propose a formalization of
the random effects subspace framework and derive effective methods to estimate
such models on real data; in particular, principal component regression (PCR
[7]) comes naturally as a tool of choice in this problem; ii) we benchmark several
estimators to test the effectiveness of PCR in that setting as well as three spatial
frameworks in the inference process: a local framework based on each spatial unit
of the domain, a regional model that uses information from neighboring regions,
and a global framework that estimates the random effects subspace on an initial
decomposition of the images into principal components.

2 The Random Effects Subspace Model

Let (Xs), s ∈ {1, .., nsubjects} be (ncontrasts, nvoxels) matrices that represent a
set of imaging contrasts observed in a given group of subjects. Xs is typically
analyzed as the sum of a fixed effect X̄ across individuals, random effects that
represent the between subject variability and observation noise. The simplest
approach to extract the latent structure of these random effects is a factorization
that represents Xs − X̄ as a combination of subject-specific latent factors ζs =
(ζk)

s, k = 1..K of shape (nvoxels), weighted by voxel-specific coefficients α =
(αk), k = 1..K that are common to to the population:

Xs = X̄+
K∑

k=1

ζs
kαk + ε, ∀s ∈ {1, .., nsubjects} (1)

where ε is the observation noise, K is the number of latent components, and the
product ζs

kαk is taken element-wise. Note that both α and ζs can vary spatially.
The identification of model (1) yields a series of questions: i) what fraction of the
variance is fit by the latent components versus observation noise? ii) to which
extent is the amount of explained variance correlated to the fixed effects? iii) Are
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the latent components shared across brain regions or specific to a given location?
These questions can be handled by predictive models that quantify the amount
of residual variance var(Xt|Xref ), where Xt, Xref correspond respectively to a
test and a set of reference contrasts acquired independently in the same subjects.
The corresponding model is the following one:

Xt
s = X̄t +

K∑

k=1

(ζref )
s
kαtk + ε, ∀s ∈ {1, .., nsubjects} (2)

and it goodness of fit is canbemeasuredby

∥∥∥∥
nsubjects∑

s=1

Xt
s−
(
X̄t+

K∑
k=1

(ζref )
s
kαtk

)∥∥∥∥
2

.

In this work, we explore several solutions to estimate the latent factors ζref :

– Principal component regression (PCR), that defines ζref by a PCA of Xref

and estimates the loadings (αt) by simple linear regression.
– Ridge regression considers ζs

ref = Xref
s−X̄ref , but applies a uniform shrink-

age on the loadings (αt).
– Lasso regression, that performs a non-linear, sparsity-inducing shrinkage on

the loadings (αt), given ζs
ref = Xref

s − X̄ref .
– Extremely Randomized Trees (Extra Trees) [8], that also take ζs

ref = Xref
s−

X̄ref , yet learn (αt) by tree-based regression as in random forests.

Next, to address the question whether the latent components are local to some
image region, shared locally with neighboring regions, or defined at a larger scale,
we perform the analysis at three different spatial scales:

– The local scale, in which the model (2) is estimated independently at each
brain location considered.

– The regional scale, in which ζref and (αt) are estimated in the neighborhood
of a given image location.

– The global scale, in which the model is estimated on a global model of
the data. In this work, we use a PCA of the whole dataset, written as a
(nvoxels, nsubjects × ncontrasts) matrix; we used 400 components.

Comparing the predictive scores of these approaches captures a bias/variance
trade-off –local estimators being less biased but more variable– but also indi-
cates how redundant the information is, as redundancy is used only by global
or regional methods. The learners used in this paper are the scikit-learn imple-
mentation [9] v0.14, used with default parameters. The code can be found at
https://github.com/bthirion/fMRI_PCR.

3 Experiments

As our aim is model comparison, we directly turn to an actual MRI dataset to
assess how well test contrasts are predicted by the above estimators.
Data. A dataset consisting of four functional MRI sessions acquired under dif-
ferent experimental protocols and an anatomical image, obtained in 79 subjects,

https://github.com/bthirion/fMRI_PCR
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was used. Standard preprocessing were carried out with SPM8 software and its
default parameters; functional images were warped in the MNI152 coordinate
space and resampled at 3mm resolution. A population mask of the gray mat-
ter voxels was obtained by averaging individual gray matter probability maps
obtained from SPM8, resampling this average at the fMRI data resolution and
thresholding it, which yields about 57,000 voxels. Contrasts were obtained using
a standard linear model, based on the specified task timing information, canoni-
cal hemodynamic response function, high-pass filtering and auto-regressive noise
model. The estimation of the model parameters was carried out using the Nipy
software.
Contrasts. The four functional protocols were the following: i) a generic localizer
protocol, that assesses basic functions, such as finger tapping, listening and read-
ing, attentional tasks; ii) a social protocol in which the subjects were exposed to
false beliefs, to objects moving with or without a putative intention, speech and
non-speech iii) a so-called parietal mapping protocol, during which the subjects
had to perform visual saccades, grasping, judge the orientation of an object; iv)
an emotional protocol, during which the subjects had to judge the confidence
inspired by or the gender of a face or of an expression, together with a control
tasks on the same stimuli. Five to six main contrasts were retained from each
experiment to form a set of functional contrasts of interest. The reference set
consisted of the contrasts i), ii) and iii) or i), ii) and iv), while the test set was
the set of contrasts of the left-out acquisition.
Evaluation metric. Based on the approach described in section 2, we use the

following criterion: ρ = 1 − ‖Xt−(X̂t|Xref )‖2

‖Xt−X̄t‖2 , where the norm is taken over the

whole image, computed over a cross-validation loop on subjects. ρ can readily be
interpreted as the explained variance ratio of the model (the higher the better).
In all experiments presented here, the test contrast has been observed in another
session than the reference contrasts, in order to enforce independence of the
samples. In our experiments, we used a 20-fold shuffle-split procedure, where
90% of the subjects are used for training and 10% are used for testing.
Parameter setting. All the free parameters of the methods (amount of penalty for
the ridge and lasso models, number of principal components for PCR) were set by
nested cross-validation, using 3-fold cross-validation on the training set. Finally,
the data presented here are based upon an initial parcellation of the dataset into
Q = 10, 000 super-voxels based on Ward clustering instead of the 57, 000 voxels
of the reference cortical mask. Voxel-specific contrasts were averaged to parcel-
specific values. Note that this procedure is simply meant to be a compression of
the data and has no influence on the model nor its interpretation. We checked
that using finer or coarser parcellations does not alter the experimental results.

4 Results

Method comparison. A boxplot of the ρ score computed over 11 contrast is pre-
sented in Fig. 1. Regarding estimator comparison, this shows that, for all spa-
tial scales under consideration (local, regional, global), the following hierarchy
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Fig. 1. Comparison of the methods for prediction of test contrasts. The boxplot rep-
resents the average rate of explained variance through different methods for eleven
different functional contrasts.

holds: PCR outperforms Lasso, that outperforms Extra-Trees regression and the
ridge estimator. These differences significant using pairwise Wilcoxon tests (PCR
>lasso, lasso > ridge, lasso > extra trees, p < .005, in all spatial configurations;
Paired Student tests yield much lower p-values). Note that we considered other
variants of ensemble estimators, such as Gradient Boosted Trees and Random
Forests, but these were systematically outperformed by the Extra Trees esti-
mator. Second, local estimators significantly (p < 0.005) outperform regional
and global estimators: this means that there is not enough information shared
across regions to improve the predictive accuracy of the model, while the addi-
tion of new regressors degrades its predictive accuracy, through a classical curse
of dimensionality phenomenon.
Well-predicted brain regions are those that show large fixed effects. To better
understand the mechanisms of across-contrasts random effect prediction, an im-
portant question is whether the prediction accuracy is uniform across brain re-
gions, or whether it coincides with regions that show a strong mean effect. In
Fig. 3, we show for a contrast displaying the activation evoked by deciphering
the intention from face expression, the map of the (across subjects) mean sta-
tistical response together with a map of the prediction accuracy obtained with
local PCR. This shows that high values are obtained in the same occipital, pari-
etal and pre-frontal cortical regions. This effect holds for all other contrasts: the
bottom part of Fig. 3 shows the joint density of ρ versus the average (across con-
trasts and subjects) contrast absolute value (to discount sign effects); this shows
that the regions with high predictability are also those with larger mean acti-
vation strength. The 10% of the regions showing the largest average responses
and those showing highest predictability (across contrasts and subjects) are dis-
played in the same figure (right side): these are the occipital, motor cortex and
supplementary motor area in both cases; note however that the orbito-frontal
cortex shows high activation in average and relatively lower predictability, while
the posterior superior temporal gyrus is highly predictable although the mean
activation is weaker there.
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Fig. 2. Predictability reveals other features than average statistical sensitivity. Two
close regions of interest have been selected, in the right supra-marginal gyrus (x=65mm,
y=-27 or -37mm, z=23mm ). While both regions approximately display similar activa-
tion strength across 11 test conditions (left), the individual responses in the anterior
one is much more predictable than the responses from the posterior region (right).

ROI-based analysis. To better illustrate potential differences between predictabil-
ity and average activation, we display the average functional signal for two nearby
ROIs of the supra-marginal gyrus (x, y, z = 65,−27, 23 and 65,−37, 23 mm re-
spectively): both show the same amount of activation across eleven contrasts,
but the most anterior one is much more predictable than those of the poste-
rior one. A straightforward explanation is that the anterior region is much more
consistently defined in the MNI space as the border of the post-central gyrus,
while the posterior one is a region that does not get a consistent definition, and
is more variable anatomically and functionally [10,11].

5 Discussion

This paper presents the first successful attempt to predict individual functional
responses based on previously observed data from the same subjects, evaluated
across all brain regions. Here the prediction is based on the observation of the
same contrasts in other subjects and mimics the realistic incomplete dataset sit-
uations where some general contrasts have been observed in some subjects while
others are missing. The accuracy of the prediction is relatively high: 10% to 25
% of the variance can be fit using the local PCR model. This confirms a pos-
teriori the existence of a latent subspace that spans the variability of individual
responses. Moreover, the best performing technique, PCR, is precisely the one
that builds on the low-dimensional latent space model of the variability.

The potential superiority of PCR against ridge has already been described [7]
and in the present case, it confirms that dimension reduction through PCA of a
set of reference contrasts is better at separating random effects from noise than
the uniform shrinkage of ridge estimators. Ridge estimators completely fail in
the situation where more regressors are used, e.g. in the so-called regional model.
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ρ mean absolute response

Fig. 3. Coincidence of regions that show high activation values and those that are
actually predictable across individuals. (Top) Cross-subject average activation level
for a contrast related to deciphering expression intention. (Middle) Rate of prediction
across the same regions for the same contrast. (Bottom) left: joint histogram of the
mean statistical significance and ratio of explained variance per voxel, across experi-
mental conditions; middle: 3D view of the most predictable regions across conditions;
right: 3D view of the regions that display the strongest average responses across con-
ditions.

Interestingly, lasso estimators have an intermediate behavior, showing that the
�1 shrinkage provides a relevant proxy for subspace estimation, although it per-
forms less well than mere dimension reduction. Unlike other settings, tree-based
methods do not perform well here, probably because the sample/dimensionality
ratio is not high enough. Local models outperform regional or more global mod-
els; however, we conjecture that randomized or multiscale models that average
the predictions across spatial models could perform better.

The regions that show high predictability are mostly those that show high
average activation across subjects and they tend to coincide with the visual-
sensorimotor-auditory network described in [12], with the addition of the at-
tentional network. Most importantly, the fact that predictability is correlated
with average activation means that traditional mass-univariate random effects
models used in neuroimaging studies are suboptimal, as they handle the ran-
dom effects as an error term, while they actually represent more complex struc-
tures (mismatch in the coregistration, physiological variability) and may be
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indicative of relevant anatomical and functional differences. A closer analysis re-
veals some dissociations: some regions show more variability for a given amount
of average activation. This is likely because individual anatomical variability has
been captured by the model, an hypothesis suggested in [11] that had not been
confirmed on a functional basis so far. Individual response prediction can thus
complement the traditional view of brain mapping and will pave the way toward
more sensitive functional neuroimaging group analyzes.
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