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Abstract. To uncover the underlying control structure
of three-ball cascade juggling, we studied its spatiotem-
poral properties in detail. Juggling patterns, performed
at fast and preferred speeds, were recorded in the frontal
plane and subsequently analyzed using principal
component analysis and serial correlation techniques.
As was expected on theoretical grounds, the principal
component analysis revealed that maximally four in-
stead of the original six dimensions (3 balls � 2 planar
coordinates) are su�cient for describing the juggling
dynamics. Juggling speed was shown to a�ect the
number of dimensions (four for the fast condition, two
for the preferred condition) as well as the smoothness of
the time evolution of the eigenvectors of the principal
component analysis, particularly around the catches.
Contrary to the throws and the zeniths, and regardless
of juggling speed, consecutive catches of the same hand
showed a markedly negative lag-one serial correlation,
suggesting that the catches are timed so as to preserve
the temporal integrity of the juggling act.

1 Introduction

Randomness is an inherent feature of biological systems.
The combination of deterministic processes with random
¯uctuations results in a stochastic system that may be
measured by its degree of variability. Variability in this
sense is a hallmark property of human motor perfor-
mance. Depending on one's theoretical perspective, it
has been perceived as a curse or as a blessing. On the one
hand, additional stochasticity can limit the ``prediction
horizon'' of an operational measure, i.e., randomness
can reduce the controllability of a system. On the other
hand, random ¯uctuations can also play a bene®cial
role. For instance, viewing motor control as an optimi-

zation problem, they may be useful to avoid spurious
states, i.e., locally stable states in which the system might
get trapped. Random ¯uctuations can provide escapes
from such undesired states and, thus, support the search
for the global optimum. Similarly, random ¯uctuations
may be required to induce switches from one state to
another (cf. critical ¯uctuations, e.g., Haken 1983;
Gardiner 1990; Kelso 1995) or may lead to resonance
phenomena (cf. stochastic resonance, e.g., Benzi et al.
1981; Jung and HaÈ nggi 1991; Hu Gang et al. 1996).
Recent studies also considered the case of noise-induced
stabilization of unstable orbits (Wackerbauer 1998).
Even in the absence of such dynamical aspects, stochas-
ticity may generate correlations between observables
that may provide a window into the underlying control
structure. For example, statistically independent noise
sources, de®ned by clock and motor variances, produce
error corrections in terms of negative serial correlations
(Wing and Kristo�erson 1973; Vorberg and Wing 1996;
Thaut et al. 1998). In summary, variability should be
viewed as an intrinsic and essential property of human
movement systems and may be exploited to obtain vital
information about the control structure of these systems
(Shannon and Weaver 1949; Haken 1988). The question
is how.

Usually, the description of a process by means of a
small number of variables is based on a priori assump-
tions regarding the most relevant events in the data
obtained. In studying human movement, such events
might be the start of a limb movement, sign reversals in
the acceleration or velocity pro®les, or the moment at
which the aperture of the thumb and the index ®nger is
maximal in a prehension task. The inherent danger of
this approach is that, in the study of a certain task,
particular events may be falsely assumed to be relevant,
whereas more important features of the dynamics may
be ignored. For instance, Haggard and Wing (1997)
found that the thumb is a more appropriate control
index in prehension than the wrist, which has been used
in many studies as the main variable of interest. To avoid
such unpleasant discoveries, methods for analysis are
needed that address the entire set of time series and
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allow for the detection of the most signi®cant events
without presupposing them.

To the extent that such methods exist, they capitalize
on the intrinsic variability of natural phenomena. Vari-
ous operational measures of variability (spectral ana-
lyses, cross-correlations, dimensionality analyses,
Gestalt methods, etc.) can be applied. Unfortunately,
the most commonly used estimates are standard devia-
tions or other scalar values with a limited analytical
scope. Certainly, the standard deviation is a useful
measure of variability, assuming the underlying distri-
bution is su�ciently symmetric. However, it does not
provide information about possible correlations between
subsequent observations of the same variable or between
di�erent variables. It may be the case that successive
data points are not simple random ¯uctuations about a
mean value. Correlations within the dynamics of an in-
dividual variable can be measured by its corresponding
auto-correlation function. If the dynamics pertain to a
few distinct points in time, it is expedient to consider the
auto-correlation function only at these points leading to
(discrete) serial lag correlations. An estimate of the
number of relevant variables, however, requires a study
of the cross-correlations between di�erent time series.
To account for such correlations in time, one can
consider the system's (cross-)covariance matrix. The
principal component analysis (also known as Karhunen-
LoeÁ ve expansion or singular value decomposition) is a
particularly powerful tool to decompose complex dis-
tributed signals into lower-dimensional structures. Such
lower-dimensional structures may be more amenable to
an analysis of the underlying dynamics than the original
pattern itself. In spite of its wide application in physics,
engineering and biology (e.g., Fuchs et al. 1992; Oja
1992), this tool has seldom been applied to human
movement. A notable exception is the analysis of pedalo
riding movements (Haas 1995; Haken 1996), which
revealed that the original 22-dimensional whole-body
movement vector could be reduced to ®ve or fewer
dimensions. This reduction allowed for the study of
changes in dimensionality in the course of learning to
ride the pedalo, which turned out to occur predomi-
nantly in the arm movements.

In the present paper, we apply the aforementioned
methods to gain insight into the control structure of
three-ball cascade juggling. Juggling has proven to be a
very useful experimental task for studying the dynamical
properties of human perceptual-motor organizations
(Beek 1989; Beek and Turvey 1992; Beek and Van
Santvoord 1992; Beek and Lewbel 1995). The signi®-
cance of juggling for the present context resides in the
fact that a juggler, i.e., a highly dimensional control
system, has to accommodate rather severe task con-
straints in order to juggle successfully. In view of this
requirement, it is to be expected that a small number of
relevant principal components are su�cient to describe
the entire spatiotemporal pattern of (cascade) juggling.

Juggling is a cyclic activity in which the hands move
along more or less elliptical trajectories while throwing
and catching balls in a regular fashion (Beek 1989; Van
Santvoord 1995). In cascade juggling, one hand moves

clockwise and the other anti-clockwise (Fig. 1) with an
average phase di�erence of circa 180�. The balls are, in
this particular pattern, released at the inside of the
ellipses and caught at the outside. Between throws and
catches, they travel through the air to the other hand
along a parabolic trajectory. Figure 1 depicts the paths
of the moving hands and balls in the frontal plane. It is
worth noting that there is one point where the ball tra-
jectories intersect, and where they can collide when
badly timed.

Van Santvoord and Beek (1996) examined the vari-
ability of both spatial and temporal juggling variables.
With respect to the spatial variables, it was found that
the dispersion of the points of release was smaller than
that of the zeniths, which, in turn, was smaller than that
of the catches. With respect to the temporal variables, it
was found that the variability of ball ¯ight intervals was
smaller than that of loaded hand intervals, which, in
turn, was smaller than that of empty hand intervals.
Furthermore, the temporal variability of full ball cycle
intervals (i.e., from catch to catch) was smaller than that
of full hand cycle intervals. These ®ndings were inter-
preted by viewing juggling as a ``spatial clock'': By
throwing the balls consistently to a speci®c height, jug-
glers set up a stable time base for the hand movements.
However, Van Santvoord and Beek (1996) only studied
variability at discrete points of the movement. The an-
alyses o�ered here build on their ®ndings by focusing on
the entire time-dependent trajectories. To gain insight
into the patterns of variability, linear analysis techniques
such as cross-spectral and relative-phase analysis will be
applied. Without presupposing distinct sources of vari-
ability identi®ed as discrete events during the task
(throw, catch, etc.), they can emerge depending on the
speci®c task constraints. Provided that this occurs, fur-
ther correlation analyses will be used to explore speci®c
control features (e.g., error correction).

Movement frequency has been demonstrated to be a
control parameter in many motor tasks, a�ecting the
stability of performance. In doing so, it can induce
qualitative changes in behavior. These changes may be
readily observable in the form of a qualitative change in
the performed pattern, but they may also be more subtle.
In juggling, task constraints are so severe that a bifur-
cation to a pattern with di�erent phasing characteristics
is not to be expected. However, increase in frequency

Fig. 1. Paths of the three balls and the two hands during cascade
juggling. Between throw (al;r) and catch points (cl;r� the balls describe
a parabolic path which peaks at bl, while the hands (subscripts l; r)
follow a more or less elliptic path
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induces an increase in variability of throwing location
and the corresponding throw velocity vector and results
consequently in a more variable parabolic ¯ight path.
This may have implications for the way in which task
control is brought about. Thus, two juggling frequency
levels were used to investigate the in¯uence of frequency
on task performance.

2 Experiment

2.1 Methods

2.1.1 Subjects
Four jugglers of intermediate skill who could not juggle
more than three balls in a cascade pattern participated in
the experiment. All subjects were right-handed and had
normal or corrected-to-normal vision. They were paid a
small fee for their participation.

2.1.2 Experimental setup
A 16-mm high-speed motion picture camera (DBM 55,
Teledyne Camera Systems, Arcadia, Calif.) was used for
data collection. The focus of the zoom lens was adjusted
so that the juggler and the entire juggling pattern were in
view of the camera. A ¯ashing light with a ®xed
frequency was placed in view of the camera to check
the actual frame rate against the nominal frame rate
(125 Hz). The gravitational vertical was de®ned by a
plumb line suspended from the ceiling. Proper lighting
conditions for ®lming were created with the help of four
2000-W stage lamps. The equipment of the subject
consisted of three so-called stage balls (diameter 7.3 cm,
mass 130 g).

2.1.3 Procedure
Subjects were placed in front of the camera at a distance
of about 5 m, which was su�cient to avoid signi®cant
distortions of the image on the projection plane of the
®lm. They were asked to juggle the balls in cascade
fashion, either at a preferred or at a fast frequency (i.e.,
markedly faster than preferred). Before the start of each
trial, the subject was allowed to juggle a few cycles to
accommodate to the task instructions in question. When
the subject reported that a satisfactory juggle was
achieved, the movie camera was started. During each
trial, roughly 22 complete juggling cycles were recorded.

2.2 Pre-processing

After development, the ®lms (Kodak 7251, Ektachrome
high-speed daylight ®lm, 400 ASA) were projected onto
the opaque screen of a ®lm-motion analyzer (NAC type
MC OF) by means of a 16-mm projector (NAC type RH
160F), connected to a computer. The position of the
projector was adjusted so as to align the plumb line
visible on the ®lm with the vertical axis of the
projection screen. Frame by frame, the horizontal and
vertical coordinates of the centers of the balls were
digitized. Thus, each ball trajectory was represented by a

two-dimensional time series �xj�t�; yj�t�� with j � 1; 2; 3.
For each trial, these time series were rescaled to the
interval �ÿ1; 1� by subtracting their mean and dividing
by their maximal value.

3 Data analysis

During cascade juggling, a 90� rotated ®gure-8 move-
ment pattern is generated (Fig. 2, left panel). In the
course of a full revolution of a ball to its original
position (e.g., a left-hand catch), the ball travels once
from left to right and vice versa while it travels twice
along a parabolic ¯ight path. This can be viewed as 1:2
frequency locking between the horizontal and vertical
components of each ball trajectory (Fig. 2, right panel).
Furthermore, the balls are juggled equidistantly
in time, which can be viewed as phase locking between
the balls.

From the moment a ball leaves a hand, it follows a
simple ballistic path until it is caught by the other hand
[y � �xÿ x0�2 � �t ÿ t0;i�2; see Fig. 3]. To determine the
individual ¯ight intervals, we therefore ®tted the ¯ight
trajectories of the balls to a parabola.

Throws (ar and al) and catches (cr and cl) were
identi®ed at the points at which the trajectories deviated
more than 5% (relative to the maximal displacement of
the ball) from the estimated parabola. The parabolas in
question were determined with the help of the zeniths (bl
and br) of the ball ¯ight (see Figs. 1, 3). In addition, the
corresponding temporal variables were determined, that
is, the moments at which these spatial locations were
reached (ta, tb, and tc).

Fig. 2. Example of the recorded ball trajectories. The cascade juggling
pattern (left panel ) consists of individual ball trajectories composed of
a horizontal evolution xk�t� and a vertical evolution yk�t� (right panel ).
xk�t� (solid line) oscillates with half the frequency as yk�t� (dash-dotted
line)

Fig. 3. y-Component of the trajectory of one ball (dashed); piecewise
parabolic ®t (dash-dotted )
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3.1 Spatiotemporal analysis

In three-ball cascade juggling, the individual trajectories
of the balls can be considered as (largely) identical but
phase-shifted by 2p=3. Such symmetries re¯ect the
existence of some redundancy in the acquired signals
that can be eliminated by transforming the system onto
its principal axes. For this sake, we merged the
trajectories of the three balls and described each data
set by a six-dimensional signal q�t� :� �x1�t�; y1�t�;
x2�t�; y2�t�; x3�t�; y3�t��T . For a lower-dimensional appro-
ximation of the data, we chose an optimal set of vectors
fvkg to obtain

q�t� �
XM<6

k�1
nk�t�vk : �1�

The choice of the basis vectors vk was realized by
minimizing the least square error

EM :� q�t� ÿ
XM
k�1

nk�t�vk

" #2* +
�! min : �2�

In Eq. (2), h�i denotes the time average given by
h�i � 1=T

R T
0 ���dt, where T is the length of the time series

and t denotes time. In this approach, the vectors vk are
assumed to be pairwise orthogonal so that the minimi-
zation of EM becomes equivalent to an iterative
construction of vectors along the direction of maximal
variance of the data. This is followed by a subtraction of
the remaining subspace via projection (Karhunen 1946).
The iteration is truncated after M steps and realized by
diagonalizing the covariance matrix R of the data set
q�t� � �q1�t�; . . . ; q6�t��T . The components of the so
obtained matrix are explicitly de®ned as

Rmn / hQm�t�Qn�t�i with Qi�t� :� qi�t� ÿ hqi�t�i ; �3�
and further rescaled by means of tr�R� � 1. The
eigenvectors of the covariance matrix de®ne the desired
vectors vk. The corresponding eigenvalues kk re¯ect the
amount of signal (variance) that is covered by the mode
vk. Because the vk are orthogonal the time-dependent
coe�cients nk�t� [cf. Eq. (1)] can be easily obtained by
projection.

Besides the equivalence of the balls, the symmetry of
three-ball cascade juggling patterns is manifested in the
phase relation between the balls. The positions of two
balls fully determine the position of the remaining one.
The ``extra information'' about this third ball in the
form of its trajectory is therefore redundant. The origi-
nally six dimensions e�ectively reduce to four. Thus, in
the principal component analysis, one expects the
eigenvalues kk to drop drastically at k0 � 4, that is,
kk>k0 � kk0 (see also Appendix A). In other words,
one expects that it would be su�cient to describe the
data set as a maximally four-dimensional system
�n1�t�; . . . ; n4�t��T . To illustrate this e�ect of symmetry
we discuss a T -periodic set of piecewise parabolic tra-
jectories de®ned recursively as

~x�t� :�
t ÿ �T=2ÿ sh�=2 for 0 � t < T=2ÿ sh

�T=2ÿ sh�=2 for T=2ÿ sh � t < T =2

ÿ~x�t ÿ T =2� for t � T=2

8><>:
and ~y�t� :� ÿ� ~x�t�� �2 : �4�

T speci®es the horizontal periodicity and sh < T=2
denotes the time between two consecutive parabolas
(� time that a hand is loaded with a ball). For this
piecewise parabolic juggling model,1 the entire signal
reads q2j�1 :� ~x�t � jT =3� and q2�j�1� :� ~y�t � jT=3� for
j � 0; 1; 2.

As expected, the corresponding principal components
vanish for k � 5 (see Fig. 4). The projections nk�t� are
pairwise equivalent by means of the amount of variance
kk. They are associated with the horizontal and vertical
time series. The phase shift between n1 and n2 (and
subsequently between n3 and n4) is p=2 representing the
orthogonality of the corresponding eigenvectors (cf.
Appendix A).

In analogy with the analysis of the model described
above, we investigated the principal components of the
recorded juggling patterns. The calculated and normal-
ized eigenvalues for each trial are depicted in Fig. 5
(upper panel). In accordance with the preceding analy-
sis, the last two eigenvalues almost vanished, that is,
each pattern essentially reduced to four dimensions.
Interestingly, the eigenvalue spectra di�ered qualita-
tively between the two experimental conditions. During
juggling with a preferred tempo, the largest amount of
signal was represented by just two modes (k3;4 ! 0),
whereas for fast juggling the gap between k1;2 and k3;4
was markedly smaller (Fig. 5, lower panel).

Thus, besides an increase of the overall variance re-
¯ecting the fact that performance was worse in the fast
condition, the cross-covariance between the vertical and
horizontal evolution of the balls increased. The question
arose as to the location of this increase in variability in
space and time. Since the eigenvalue spectra are based
on (cross-)covariances over time ± remember that, in
Eq. (2), h�i denotes the time average ± each kk represents
a di�erent temporal variability. The corresponding
eigenvectors or modes can re¯ect the spatial properties
of the system.

Since the results of the following analyses were
essentially the same in all trials and subjects, we discuss
only two trials in detail. Trial p1

2 represents juggling in
the preferred condition, whereas trial f 1

1 represents jug-
gling in the fast condition. Figure 6 shows the ®rst four
eigenvectors v1...4 for the two conditions. As is apparent
from this ®gure, the largest amount of variability (the
®rst two modes v1;2) was associated with the y-direction.
Evidently, the angle between the ®rst two eigenvectors
was larger in the fast condition, re¯ecting an increase in
spatial variability. The large angle between eigenvectors
v3 and v4 in the preferred condition was of minor im-
portance since the corresponding eigenvalues were

1 This ``model'' is in fact a convenient formalization of the ball
trajectories based on the physical laws for the free-¯ight portions
and ignoring the non-¯ight portions
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rather small (cf. Fig. 5). However, their contribution
was no longer negligible in the fast condition.

To study the temporal evolution of the balls, we
projected the signal onto the individual eigenvectors by
means of nk�t� :� �vT

k � q�t��. The projections of the
eigenvectors on the experimental time series are shown
in Fig. 7 (upper panels). These projections were used to
construct the n2�n1� and n4�n3� planes depicted in Fig. 7

(lower panels). Both representations show steady graphs
re¯ecting the strong correlation between the di�erent
projections. In good qualitative agreement with the
model (Eq. 4; Fig. 8), the projections of the eigenvectors
on the data are ``jagged'', and the corresponding
nk�1�nk� portraits triagonal or hexagonal.

Similar projections of the eigenvectors on the
preferred time series are shown in Fig. 9 (upper panel).
Remarkably, the plane representation of the ®rst two
projections has a rather circular shape compared to the
triangular structure in Fig. 7 (lower left panel). Since n1;2
were associated with the vertical direction, the trajecto-
ries yk�t� were smoother in the preferred condition. This
phenomenon was not present for the x-direction (cf.
Figs. 7, 9, lower right panels) where the hexagonal
structure of n4�n3� is preserved. It should again be noted
that the contribution of the x-direction was of minor

Fig. 6. Eigenvectors vj; j � 1; . . . ; 4 displayed on the subspace of
each ball k � 1; 2; 3. The vertical lines correspond to the ®rst two
eigenvectors (solid v1, dash-dotted v2) and the horizontal ones re¯ect
the subsequent two eigenvectors (dashed v3, dash-dotted v4). Left
panel preferred condition, right panel fast condition

Fig. 7. Data in the fast condition. Left panels depict n1;2, right panels
depict n3;4. Upper panels projection of the eigenvectors on the data;
lower panels nk�1�nk� plane of projections in the upper panels

Fig. 8. Model in the fast condition (for legend see Fig. 7). Model
Eq. (4) with T � 1:5 s, sh � 0:09 s

Fig. 9. Data in the preferred condition (for legend see Fig. 7)

Fig. 5. Principal component analysis of all individuals trials. The six
eigenvalues kk for all subjects and all conditions are shown; on the
ordinate the trials � f �ij and �p�ij are depicted in the upper panel ( f fast,
p preferred, i subject, j trial number). The averaged values
Kk :� hkkitrials are displayed in the lower panel

Fig. 4. Principal component analysis of model Eq. (4) with � � 2;
time resolution Dt � 8� 10ÿ3 s. The dominant modes account for
about 80% of the data �P2

k�1 kk � 0:8� and oscillate with the same
frequency f0 as the yj components. n3;4�t� re¯ect the xj�t� terms, i.e.,
they oscillate with f0=2
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importance, given the fact that the corresponding ei-
genvalues were small. This experimental observation
cannot be accounted for by the model as formulated in
Eq. (4). Since the change in shape of the nk�1�nk� planes
can be interpreted in terms of smoothing of the under-
lying trajectories, the vertical components have to be
low-pass ®ltered (so that catch and throw points become
di�erentiable). The projections thus obtained are in
agreement with those of the data (cf. Fig. 9, lower left
panel).

To quantify these changes in the shape and smooth-
ness of the time evolution of the eigenvector projections,
we analyzed the spectral properties of the dynamics.
Therefore, we computed the cross-spectral density Wk;l
between the pairs of adjacent nk�t�
Wk;l�x� :� F nk�t�� �F� nl�t�� �j j2 ; �5�
where F n�t�� � denotes the Fourier transform of n�t�. In
addition, we computed the Hilbert phase H�t� between
these pairs in order to assess the time-dependent relative
phase between nk and nl (Rosenblum and Kurths 1998).

Hk�t� :� 1

p

Z 1
ÿ1

nk�s�
t ÿ s

ds �)

/�h�k;l �t� :� arctan
Hk�t�nl�t� ÿ nk�t�Hl�t�
nk�t�nl�t� �Hk�t�Hl�t�
� �

; �6�

note that /�h� is identical to the relative Fourier phase
/�f � in the case where the signal reads
nk / expfixt � i/kg � c:c:. Given that the two signals
deviate periodically from such a sinusoidal form, the
spectral power of /�h� shows a distinct peak at the basic
frequency. Cross-spectral density results for data and the
model in the fast condition are displayed in Figs. 11, 12
(upper panels). The Wk;ls of the ®rst pair of projections
(Figs. 11, 12, upper left panel) showed a strong peak
which was identical to the juggling frequency in the y-
direction, whereas the Wk;ls of the second pair of
projections (Figs. 11, 12, upper right panel) showed a
similarly strong peak which was the same as the
frequency in the x-direction. These large peaks re¯ect
the strong frequency locking between n1�t� and n2�t�, as
well as between n3�t� and n4�t�.

The time evolutions of the relative Hilbert phases for
data and model in the fast condition are shown in

Figs. 11, 12 (middle panels). As was already mentioned,

/�h�1;2 equalled on average p=2 but displayed pronounced
oscillations. The spectral power of the relative Hilbert
phase (cf. Figs. 11, 12, lower panels) showed the same
dominant frequency as the main cross-spectral frequency
(cf. Fig. 12, upper and lower left panels). These oscilla-
tions of /�h� result from stable periodic deviations from
simple sinusoids, suggesting that these deviations occur
at ®xed points in the n2�n1� representation (Figs. 7, 8, left
lower panels). Hence, the representations in question
remained steady (cf. Fig. 7). The power spectrum of the
Hilbert phase revealed a subharmonic of the dominant
movement frequency in the vertical direction (cf. Fig. 11,
lower left panel). This frequency, however, was equiva-
lent to the frequency of the horizontal components.
Therefore, this subharmonics accounts for the increasing
variability along the x-direction that now ``creeps into''
the ®rst two principal axes.

In contrast with these e�ects for juggling in the fast
condition, Figs. 13, 14 show the spectral analyses for
data and model in the preferred condition. All peaks of
the spectral densities were markedly shifted to the left
compared to the fast condition, indicating a decrease in
frequency. Again, the relative Hilbert phase /�h�1;2 oscil-
lated around p=2 but the amplitude of this oscillation
was markedly reduced in comparison with the fast
condition (cf. Figs. 11, 13, middle panels). This low
amplitude indicates the presence of rather synchronous
sinusoidal trajectories n1�t� and n2�t� (see Fig. 10).

Fig. 10. Model in the preferred condition (for legend see Fig. 7).
Model Eq. (4) with T � 2:5 s, sh � 0:15 s. The vertical components
yk�t� were low-pass ®ltered (second-order Butterworth at fc � 1Hz)

Fig. 11. Data in the fast condition. Left panels refer to n1;2, right
panels to n3;4. Upper panels logarithmic cross-spectral density plot of
the projections in Fig. 7; middle panels relative Hilbert phase of these
projections; lower panels logarithmic power spectral density plot of
relative Hilbert phase

Fig. 12. Model in the fast condition (for legend see Fig. 11). Model
Eq. (4) with T � 1:5 s, sh � 0:09 s (cf. Fig. 8)
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In both conditions, the horizontal components were
qualitatively equivalent. Analogous to the vertical parts,
the relative Hilbert phase showed small oscillations
representing the hexagonal structure of the corre-
sponding n4�n3� planes. Especially for the preferred
condition, a broad-banded spectrum was observed at the
lower frequencies which, however, could be neglected
given that the corresponding eigenvalues were very
small.

3.2. Temporal correlations

Despite the marked di�erences in smoothness of the
movement trajectories in both conditions, the timing
properties were quite similar. That is, frequency and
phase locking were equally present in fast and preferred
juggling. In the former case, however, the performance
was worse so that one would expect at least an increase
of the timing variability. Increasing variability implies
increasing timing errors that, given the task constraints,
can be expressed in terms of deviations of the 2p=3 phase
di�erence between the balls. The deviations predomi-
nantly occurred at distinct locations as shown in Figs. 7
and 8. These points de®ne the di�erent geometrical
properties of the nk�1�nk� representations. For example,
n4�n3� showed a hexagonal structure indicating six
important events, i.e., two events per ball per cycle,
whereas n2�n1� hinted at the presence of a single distinct

event per ball per cycle (triangular structure). All these
events showed pronounced discontinuities in the deriv-
atives of nk�t� with respect to time. Thus, they did not
occur along the parabolic part of the trajectories. Since
these events are more or less ®xed in phase and position,
it is most likely that they are associated with the throws
and the catches. A closer comparison between the
temporal evolutions nk�t� and the corresponding xj�t�
and yj�t� con®rmed this expectation. Explicitly, the most
important events for the dynamics of n1 and n2 were the
catch points. The higher modes n3;4 were additionally
a�ected by the throw points. Forthcoming studies of
temporal correlations can therefore focus exclusively on
these events. Notice that these discrete events emerged
from the preceding analyses that involved no a priori
knowledge of the juggling pattern.

Besides the locations of the throws and the catches, a
complete determination of the parabolic part of the
trajectories requires either the initial force (velocity) of
the throw or the location of the parabola's zenith.
Therefore, we computed time intervals between consec-
utive zeniths, consecutive catches and consecutive
throws by, or referring to, the same hand (i.e., left,
right). As shown in Fig. 15, the normalized variances of
the time intervals between consecutive catches by the
same hand were consistently larger in the fast condition
than in the preferred condition. Throw and zenith in-
tervals did not show such a signi®cant di�erence
between the two conditions. This result can be readily
explained: Every distinct point ta . . . tc contributes to the
temporal variability of the overall cycle. Consequently,
the variance of the very last point, i.e., the catch, in-
cludes the variability of all previous ones (throw, zenith),
at least to some extent. All previous errors are combined
in the point of catch that, with its additional own vari-
ability, shows the largest total variance.

The variance s20�n� :� E�n2� ÿ E�n�2 with E��� as ex-
pectation value of n re¯ects the amount of errors but it
disregards any mechanism of error correction. To gain
insight into such mechanisms, we considered the
®rst three lag covariances s2s�n� :� E��nt ÿ E�n��
�nt�s ÿ E�n���. The lags s � 0; . . . ; 3 refer to the consec-
utive balls (e.g., lag-zero: ball1, lag-one: ball2, lag-two:
ball3, lag-three: ball1, etc.). Again, the most dominant
lag-covariances were found at the catch point because
the point of maximal variance requires larger error
corrections. The increase of variance was accompanied

Fig. 13. Data in the preferred condition. Left panels refer to n1;2, right
panels to n3;4. Upper panels logarithmic cross-spectral density plot of
the projections in Fig. 9; middle panels relative Hilbert phase of these
projections; lower panels logarithmic power spectral density plot of
relative Hilbert phase

Fig. 14. Model in the preferred condition (for legend see Fig. 13).
Model Eq. (4) with T � 2:5 s, sh � 0:15 s (cf. Fig. 12)

Fig. 15. Normalized variances r2
0 :� s20�Dt�b��=Dt�b� of the intervals

between the catches for all individuals trials. Left panel catches with
left hand: right panel catches with right hand
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by an increase of the absolute covariance. For an
immediate comparison between the di�erent points of
interest, we therefore used an appropriate normaliza-
tion. Explicitly, we compared lag correlations of the
form cs :� r2

s=r
2
0 � s2s=s20 denoting relative serial error

corrections. Analogous to the ®ndings of Wing and
Kristo�erson (1973) regarding self-paced isochronous
rhythmic movements, we found markedly negative lag-
one correlations in the range ÿ0:5 � c1 � 0 as shown in
Fig. 16. As this e�ect was symmetric for both hands, it
suggests that errors in the phase relation between
consecutive balls are immediately corrected by the
catches. The higher lags were centered around zero and
can thus be neglected as possible correction mechanisms.
Interestingly, the lag-one correlations were only signi®-
cantly negative for the catches. For the throws and the
zeniths, all serial lag correlations were negligible. That is,
deviations in the timing of the throw do not a�ect timing
of the subsequent throw whereas the catch is used to
correct for the proper phase relation between the balls.
This correction of relative errors is independent of the
cycle frequency.

In a manner analogous with the temporal properties
of the system, we ®nally studied variances and correla-
tions of the spatial locations of throw, zenith and catch.
At the throw points, we further computed the balls'
initial velocities. For all computed variables, the vari-
ances for the preferred and the fast condition were not
signi®cantly di�erent. In detail, no structure was
observed in the variance of x- or y-directions of the
position of throws, zeniths, or catches, nor in the x- or
y-direction of the velocity at the throws. Similarly, the
lag correlations did not hint at any spatial error cor-
rection mechanism between consecutive balls, i.e. no
particular auto-correlation patterns could be discerned
in these positions and velocities. However, the ®ndings
of Beek and Van Santvoord (cf. spatial clock; Van
Santvoord and Beek 1996) indicate the presence of some
mechanism that pronounces distinct points in space in
addition to the discontinuities of throwing and catching.
Since the ball ¯ight trajectories and, in particular, their
zeniths, are determined by the location of the throw and
its force, one can expect signi®cant cross-correlations

between the corresponding variables, and possibly cor-
relations at di�erent lags. This analysis, however, is
beyond the scope of the present study.

4 Discussion

In the present article, we showed analytically that the
inherent symmetries of three-ball cascade juggling
patterns imply a reduction of the dimensionality of
these patterns. This theoretical result was corroborated
experimentally. Principal component analysis revealed
that the six-dimensional ball pattern can always be
treated as a maximally four-dimensional system. In the
fast condition, all these four dimensions were needed to
reconstruct the signal. In the preferred condition,
however, vertical and horizontal components were
almost perfectly correlated, i.e., x�t� determined y�t�
and vice versa. As a consequence, the system's dimen-
sionality reduced further to two in this case. In control
theoretical terms this indicates that, in the preferred
condition, the system has to accommodate fewer
dimensions, implying a strong reduction of the control
problem. It is important to note that the experimental
manipulation of movement frequency from fast to
preferred is completely unspeci®c to this reduction, i.e.,
it does not entail it. Thus, a change in detail (frequency)
causes a qualitative change in the movement as a whole
(dimensionality of the control space), in a manner
already intuited by Bernstein (1984 p. 84). For both
conditions, the ®rst two eigenvalues k1;2, that is, the two
most important modes, were always associated with the
y-direction. This implies that the main direction of
control is along the (gravitational) vertical, which is
consistent with the previous ®ndings of Van Santvoord
and Beek (1996). The corresponding cross-spectral
densities and Hilbert phases revealed that the timing
properties, i.e., the 1:2 frequency locking and the 2p=3
phase locking were not a�ected by a change in tempo.
For the fast condition, however, the power spectra of the
relative Hilbert phase between n1 and n2 showed an
increased importance of the horizontal components
which coincided with increasing eigenvalues k3;4, that
is, a higher dimensionality of the system (two ! four).
This ®nding might be associated with the decrease in
angle of release in the fast condition.

Besides these global and time-dependent aspects, a
further important change in the movement pattern was
located in space and time. Depending on the condition,
the smoothness of the ball trajectories changed markedly
at the catch points. This re¯ects the increasing di�culty
at higher circulation speeds to precisely match the hand
velocity vector to that of the ball. Thus, the degree of
smoothing of the projections n1;2�t� can be taken as an
index of the quality of task performance. An equivalent
change of smoothness in the horizontal direction was
not observed. The projections n4�n3� always showed
hexagonal shapes with the angles related to the catch
points (left and right hand). Concerning the timing
correction, juggling frequency had also a large e�ect on
the variance of catch-catch cycles. Combined with the

Fig. 16. Serial correlations cs :� r2
s=r

2
0 � s2s=s20 at the point of catch

t�c�. On average, the lag-one correlation is negative ��c1 � ÿ0:2�
whereas the higher lags are not signi®cantly di�erent from zero, i.e.,
�c2;3 � 0
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relatively large spatial variance, this fact underscores
that the signi®cance of the catches is in correcting errors
in the timing of the act (i.e., the stabilization of the 2p=3
phase di�erence between the balls). The increase of
temporal variability is corrected by means of the ob-
served negative lag-one serial auto-correlation. That is,
errors in the phase relation between consecutive balls are
immediately compensated by the catches. Higher lags,
i.e., forthcoming catches, are not relevant for this con-
trol mechanism. It can be expected that the spatial
variability of the catch is exploited to reduce the afore-
mentioned temporal variability in the catch-catch cycles.
The exact form of this control mechanism, however,
remains an issue for further study.

Negative lag-one correlations have been frequently
observed in the context of the unimanual, unpaced per-
formance of rhythmic movements. To account for such
correlations, Wing andKristo�erson (1973) formulated a
model that presupposes two hierarchical levels involving
an internal timekeeper (clock) and some motor delay.
This model addresses statistical aspects (variability and
correlations) of temporal structures. The juggling pat-
tern, however, also depends on spatial constraints. Fur-
ther modeling should therefore account for the explicit
spatiotemporal forms of xj�t� and yj�t�. Equation (4) does
not elucidate all spatiotemporal phenomena, but de-
scribes important features of three-ball cascade juggling
such as its inherent symmetry and the physical nature of
ballistic throws. In a recent study by one of us, it has been
shown how to incorporate certain timing aspects into
oscillatory dynamical systems (Da�ertshofer 1998). In
particular, negative serial correlations can be generated
in a system of coupled oscillators by introducing addi-
tional stochastic forces. Thus, an extension towards sto-
chastic dynamical models allows one to account for both
the stability properties and the variability in the timing.
Various aspects of variability can now be addressed
coherently from the perspective of coordination dynam-
ics. The results presented in this paper merit the conclu-
sion that valuable insights intomotor performance can be
gained by studying its spatiotemporal variability in
detail. This, however, requires appropriate methods of
analysis that do not involve any a priori assumptions with
regard to the system under investigation. The methods
applied in the present paper are examples of such unbi-
ased tools since they take the entire spatiotemporal
evolution of the movement pattern into account.

Appendix

A. Symmetries

In this appendix, we consider the consequences of the inherent
symmetries of juggling for the number of relevant principal com-
ponents. Since juggling is an essentially rhythmic activity, we study
a T -periodic function f �t� � f �t � T �. For the sake of generality we
do not further specify the explicit form of f � f �t�. Without any
restrictions, we assume T � 1 and subtract the mean of f �t�, i.e., we
consider the case h f �t�i � 0. Regarding the periodic nature of f �t�,
we compute its corresponding Fourier transform. Explicitly, the
Fourier series reads

f �t� �
X1
n�1

an sin 2pnt� � � bn cos 2pnt� �f g : �7�

The symmetries in juggling can be expressed in terms of phase
locking between the balls. With identical balls, we thus treat the
case of di�erent sets of functions f �t� that are pairwise shifted in
phase by 2p=3.

At ®rst, the signal is composed of three components, i.e., we
have

q�t� �
X2
k�0

f t � k
3

� �
ek ; �8�

where ek are the unity vectors in R3. Given the symmetry of the
signal the corresponding covariance matrix becomes

R � 1

3r2

r2 12 12

12 r2 12

12 12 r2

0B@
1CA

�) k1;2 � r2 ÿ 12

3r2
and k3 � r2 � 212

3r2
: �9�

The two di�erent covariances can be calculated as

r2 �
Z 1

0

f �t�2dt � 1

2

X1
n�1

a2n � b2n
� 	

12 �
Z 1

0

f �t�f �t � 1=3� dt � ÿ r2

2
: �10�

Thus, the covariance matrix has only two non-vanishing but de-
generated eigenvalues k1;2 � 0:5. Orthogonalization of the corre-
sponding eigenvectors yields

v1 �
ÿ2
1
1

0@ 1A; v2 � 0
1
ÿ1

0@ 1A; and v3 � 1
1
1

0@ 1A : �11�

This orthogonality v1?v2 leads to periodic projections n1;2�t� that
are phase-shifted by p=2, i.e.,

nk�t� � nk�t � 1� ^ n2�t� � n1 t � 1

4

� �
: �12�

Next, we extend the number of dimensions of the signal to six by
introducing a T=2-periodic function g�t� � g�t � T=2�. This prop-
erty is actually present in the studied data set. Again, we use the
symmetry of the system and the aforementioned results in three
dimensions and obtain

R / R�h� R�gh�

R�gh� R�g�

� �
: �13�

Each sub-matrix R�a� has equivalent symmetries as (9), that is, the
diagonal elements are r2

�a� and all o�-diagonal components read

ÿr2
�a�=2. Thus, this combined covariance matrix R has two van-

ishing eigenvalues k5;6 � 0 and two degenerated sets

k
���
1;2

; �ÿ�
3;4 � 1

4
1�

���������������������������������������������
r2
�h� ÿ r2

�g�
� �2

� 4r2
�gh�

r2
�h� � r2

�g�
� �2

vuuuut
266664

377775 : �14�

As a result, the originally six-dimensional system is reduced to four
dimensions. In the case of phase-locking between f �t� and g�t�, the
cross-covariance r2

�gh� tends to zero based on the orthogonality of
the trigonometric functions. Thus, if the individual variances
r2
�h� and r2

�g� are identical, both eigenvalues will become
k���;�ÿ�!1=4. On the other hand, if one variance vanishes, e.g.,

r2
�h� ! 0, the corresponding eigenvaluewill vanish aswell (k�ÿ� ! 0).

In this case, the system essentially becomes two-dimensional.
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