PRINCIPAL CURVES AND SURFACES

Trevor Mastic

Technical Report No. 11
November 1984

20000803195

Laboratory for
 Computational

Statistics

UIIF rile bury

Department of Statistics Stanford University

 O-traners

principal component line or plane. Each excessive iteration in a smooth or local average of the p dimensional points, where local is based on the projections of the points onto the curve or surface of the previous iteration.

A number of linear techniques, such as factor analysis and errors in variables regrosion, end up using the principal components as their estimates (after a suitable scaling of the co-ordinates). Principal curves and surfaces can be viewed an the estimate n of nou-linear generalisations of these procedures. We prevent some seal date examples that illustrate these applications.

Principal Curve (or surfaces) have a theoretical definition for distributions: thew are the Self Consistent carve. A curve in self consinhant if each point on the curve in conditional mean of the point that project there. The main theorem proves that principal curvet are critical values of the expected squared distance between the points and the curve. Linear primeifai courinponents have this property as well; in fact, we prove that if a principal curve ie straight, then it is a principal component. These reals generalize the neal duality between conditional expectation and distance minimisation. We shoo examine two sources of bias is the procedures, which have the satisfactory property of partially cancelling sack otter.

We compare the principal curve and surface procedures to other geserabisationt of principal component in the Ehersture; the veal generdisatione tranformi the space, whereat we transform the model. There are avo arrest tie with multidimensional sealing.

Principal Curves and Surfaces

Trevor Hastie
Department of Statistics
Stanford University
and
Computation Group
Stanford Linear Accelerator Center

Abstract

Principal curres are ar: soth one dimensional curves that pase through the middle of a p dimensional data set. They minimise the diatance from the points, and provide a non-linear summary of the data. The curves are nom-parametric and their shape is suggested by the data. Similarly, principal surfaces are two dimensional surfaces that pase through the middle of the data. The curves and surfaces are found using as itcrative procedure which atarts with a linear summery such is the usual principal componezt line or plane. Each surcemive iteration is a smooth or local average of the p dimensional points, where locel is besed on the projections of the points onto the curve or surface of the provious iteration.

A number of linear techniques, such an factor analysia and errors in variables regreasion, end up aning the prixcipal compomente as their entimates (after a suitable acaling of the co-ordinates). Principal curves and surfaces can be viewed as the estimates of non-linear generalizations of these procedures. We present some real data examples that illuatrate these applications.

Priacipal Curva (or surface) have a theoretical definition for distributions: they are the Self Consistent curvea. A curve in aelf consintent if each point on the curve is the conditional mean of the points that project there. The main theorem prover that principal curves are critical values of the expected equared diatance between the pointe and the curve. Linear principal components have this property as well; in fact, we prove that if a principal curve in straight, then it is a principal component. Theee resalte gemeralise the naual duality between conaitional expectation and distance minimisation. We also examine two sources of bias in the procedures, which have the sativfactory property of partially caacellias each ocher.

We compare the principal curve and surface procedures to other generalisations of principal componente in the literature; the naual generalisations transform the apace, wherese we transform the model. There are aleo stroag tive. with multidimensional scaling.

[^0]
Contents

1 Introduciion 1
2 Background and Motivation 7
2.1
Linear Principal Components 7A linear model formulation8
Outline of the linear model 8
2.2.2 Eatimation 9
2.2.3
2.3.2.4
3The Principal Curve and Surface models14
3.1 The principal curves of a probability distribution 14
One dimensional curves 14
3.1.1Definition of principal curves15
3.1.23.1.33.1.4
3.23.2 .13.2.2Existence of principal curves17
The dietanse property of principal curves 17
The principal surfaces of a probability distribution 20
Two dimensional surfaces 20
Definition of principal surfacea 21
An algorithm for finding principal curves and surfaces 23
Frincipal curves and surfaces ior data sets 25
Demonstratioise of the procedures 26
The circle in two-opace 27
The half-ephere in three-space 31
Principal surfaces and principal components 32
A Variance decomposition 32
The power method 35
4 Theory for principal cirves and surfaces 37
4.1 The projection index is messureable 3 ?

iv

Estimation of curves and surfaces 62
5.1One dimensional smoothers62
Two dimensional smoothers 64
5.1.25.1.35.25.2.15.2.2
5.16.2The stationarity property of principal curves30
Some results on the subclass of smooth principal curves 48
Some results on bias 50
A simple model for investigating bias 50
From the circle to the helix 57
One more biss demonstration 59
Principal curves of elliptical distributions 60

5 Algorithmic details
Algorithmic details 62
The local planar surface smoother 64
The projection step 65
Projecting by exact enumeration 65
Projections using the k-d tree 65
Rescaling the λ 's to arc-length 65
Span selection 67
Global procedural spans 67
Mean squared error spans 68
6 Examples 71Gold assay pairs71
The helix in three-space 75
Geoloprical data 78
The uniform ball 81
One dimensional color data 83
L poprotein data 84
Discussion and conclusions 88
Alternative techniques 88
Generalized linear principal components 88
Multi-dimensional scaling 90
Proximity models 91
7.1.4 Non-linear factor analysis 927.1.57.2
Axis interchangeable smoothing 92
Conclusions 94
Bibliography 96

Chapter 1

Introduction

Consider a data set consisting of n observations on two variables, x and y. We can represent the n points in a scatterplot, as in figure 1.1. It is natural to try and summarize the joint behaviour exhibited by the points in the scatterplot. The form of summary we chose depends on the goal of our analysis. A trivial summary is the mean vector which simply locates the center of the cloud but conveys no in "rmation about the joint behaviour of the two variables.

Figure 1.1 A bivariate data set represented by a scatterplot.

It is often sensible to treat one of the variables as a response variable, and the other an an explanatory variable. The aim of the analysis is then to seek a rule for predicting the reeponse (or average response) using the value of the explanatory variable. Standard linear regression produces a linear prediction rule. The expectation of y is modeled as a linear
function of x and is estimated by least squares. This procedure is equivalent to finding the line that minimines the sum of vertical squer d errors, as depicted in figure 1.2a.

When looking at such a regressico ! ne, it is natural to think of it as a summary of the data. However, in constructing this summary we concerned ourselves only with errors in the response variable. In many situations we don't have a preferred variable that we wish to label response, but would still like to summarize the joint behaviour of x and y. The dashed line in figure 1.2 a shows what happens if we used x as the response. So simply assigning the role of reaponse to one of the variables could lead to a poor summary. An obvious alternative is to surnmarize the data by a straight line that treats the two variables symmetrically. The first principal component line in figure 1.2 b does just this - it is found by minimizing the orthogonal errors.

Linear regression has been generalized to include nonlinear functions of x. 'This has been achieved using predefined parametric functions, and more recently non-parametric ecatterplot smoothers such as kernel smoothers, (Gasser and Muller 1979), nearest neighbor smoothers, (Cleveland 1979, Friedman and Stuetzle 1981), and spline smoothers (Reirsch i967). In general scatterplot amoothers produce a smooth curve that attempts to minimize the vertical errors as depicted in figure 1.2c. The non-parametric versions listed above allow the data to dictate the form of the non-linear dependency.

In this dissertation we consider similar generalizations for the symmetric situation. Instead of summarizing the data with a straight line, we use a smooth curve; in finding the curve we traat the two variables symmetrically. Such curves will pass through the middle of the data in a smooth way, without restricting smooth to mean linear, or for that matter without implying that the middle of the data is a straight line. This situation is depicted in figure 1.2d. The figure suggests that such curves minimize the orthogonal distances to the points. It turns out that for a suitable definition of middle this is indeed the case. We name them Principel Curves. If, however, the data cloud is ellipooidat in shape then one could well imagine that a stzaight line passes through the middle of the cloud. In this case we axpect our principal curve to be straight as well.

The principal component line plays roles other than that of a date summary:

- In errors in variables regressicn the explanatory variables are observed with error (as well as the response). This can occur in practice when both variables are measurements of some underlying variables, and there is error in the measurements. It also occurs in obsecrational studies where neither variable is fixed 'y design. ff the in of the analysis
is prediction of y or regression and if the x variable is never observed without error, then the best we can do is condition on the observed x 's and perform the standard regression analysis (Madansky 1959, Kendall and Stuart 1961, Lindley 1947). If, however, we do expect to observe x without error then we can model the expectation of y as a linear function of the systematic component of x. After suitably scaling the varizbles, this model is estimated by the principal componeat line.
- Often we want to replace a number of highly correlated variables by a single variable, such as a normalized linear combination of the original set. The first principal component is the normalized linear combination with the largest variance.
- In factor analysis we model the systematic component of the data as linear combinations of a small subset of new unobservable variables called factors. In many cases the models are estimated using the linear principal components summary. Variations of this model have appeared in many different forms in the literature. These include linear functional and structural models, errors in variables and total least squares. (Anderson 1982, Golub and van Loan 1979).

In the same spirit we propose using principal curves as the estimates of the systematic components in non-linear versions of the models mentioned above. This broadens the scope and use of such curves considerably. This dissertation deals with the definition, description and estimation of such principal curves, which are more generally one dimensional curves in p-space. When we have three or more variables we carry the generalizations further. We can think of modeling the data with a 2 or more dirnensional surface in p space. Let us firat consider ouly three variables and a 2 -surface, and deal with each of the four situations in figure 1.2in turn.

- If one of the variables is a response variable, then the usual linear regression model eatimates the conditional expectation of y given $z=\left(x_{1}, x_{2}\right)$ by the least squares plane. This is a plapar reaponse surface which is once again obtsined by minimizing the squered errors in y. These errors se the vertical distances between y and the point on the plane vertically above or below y.
- Often a linear response surface does not adequately model the conditional expectation. We then turn to nonlinear two dimensional response surfaces which are smouth surfaces that minimize the vertical errors. They are estimated by surface smoothers that are direct extensions of the scatterplot smoothers for curve estimation.

4 Chapter 1: Introduction

Figure 1.2a The linear regression line minimises the sam of squared errors in the response variable.

Figure 1.2b The principal component line minimises the sum of squared errors in all the variables.

Figure 1.2c The smooth regreasion curve minimises the sum of squared errors in the response variable, subject to amoothness con strainta.

Figure 1.2d The principal curve minimize: the sum of squared errors in all the variables, subject to smoothaese constraints.

- If all the variables are tc be treated symmetrically the principal component plane passes through the data in such a way that the sum of squared distances from the points to the plane is minimized. This in turn is an estimate for the systematic component in a 2-dimensional linear model for the mean of the three variables.
- Finally, in this symmetric situation, it is often unnatural to assume that the best two dimensional summary is a plane. Principal surfaces are smooth surfaces that pass through the middle of the data cloud; they minimize the sum of squared distances between the points and the surface. They can also be thought of as a an estimate for the two dimensional syptematic component for the means of the three variables.

These surfaces are easily generalized to 2 -dimensional st-faces in p space, although they are hard to visualize for $p>3$.

The dissertation is organized an follows:

- In chapter 2 we discuse in more detail the linear principal components model, as well at the linear relationship model hinted at above. They are identical in many cases, and we attempt to tie them together in the situation? where this is posoible. We then propoee the non-linear generalizations.
- In Chapter 3 we define principal curves and surfaces in detail. We motivate an algnrithm for estimating such models, and demonstrate the aigorithm using simulated data with very definite and difficult atructure.
- Chapter 4 is theoretical in nature, and proves some of the claims in the previous chapters. The main result in this chapter is a theorem which shows that curves that pass through the middle of the fata are in fact critical points of a distance function. The principal curve and uurface procedures are inherently biased. This chapter concludes with a discumion of the various forms and severity of this bias.
- Chapter 5 deals with the algorithma in detail lhere is a brief discussion of scatterplot amoothers, and we show how to deal with the problem of finding the closest point on the curve. The algorithm is explained by means of simple examples, and a method for apan seloction is given.
- Chapter 6 contains six examples of the use and abilities of the procedures using real and simulited data. Some of the examples introciuce special features of the procedures surh as inference using the bootstrap, robust options and outlire detection.

6 Chapter 1: Introduction

- Chapter 7 provides a discusaion of related work in the literature, and gives details of sorse of the more recent ideas. This is followsd by some concluding remarks on the work covered in this dismertation.

Chapter 2

Background and Motivation

Comader a deta matrix X with n rowe and p columne. The matrix coosista of n points or vectoes with p coordinater. In many situations the matrix will have arisen an n observations of a vector random variable.

2.1. Linear Principal Components.

The firat (linear) principel component is the normalized linear combination of the p variables with the largeet sample variance. It is convenient to think of X as a cloud of n pointe in pepece. The xincipel composent in then the leagth of the projection of the n pointe onto - dirsectica vector. The rector in choves so that the varince of the projected points along it in largent. Any lipe parallal to thin wetor will have the same property. To tie it down we ingint that it peeses through the mean vector. This line then hae the appealing property of beiag the lise ia papece that in cloeset to the data. Closeet in in terme of average squared ceclidian diatance. We thiniz of the projection at being the beat linear noe dimensional summary of the data \boldsymbol{X}. Of course thin linear summary might be totally inadequate locally but it attemple to provide a remooable global summary.

The theory and practical inace involved in linear prineipal componente analysis are mell known (Baractt 1981, Gaanaderikan 1977), and the technique is originally due to Spearmas (1904), asd then later developed by Hotalling (1933). We can find the the mosed composent, orthogoall to the first, that hee the next higheut variance. The plane spaned by the two rectore and including the moas rector is the plane closest to the data. In guseral men fied the $m<p$ dimonaioal hyperplane that coataine the mont veriance, and in cloonet to the dace.

The colution to the problem in obtained by computing the singular value decompoajtion or beeic structure of X, (ceatored with reapect to the sample mean vector), or equiveleatly the sigen decomposition of the sample covariance matrix (Golub and Reinsch 1970, Gresencre 1984). Without any lose in gonerality we meume from now on that X is centered. II chis io not the eam, we ean conter X, perform the analyaie, and uncenter the results by
adding back the mean rector.
In particular, the first principal component direction vector a is the largest normalized digenvector of S, the raraple covariance matrix. The principal component itself is $X a$, an n vector with elementa $\lambda_{i}=x_{i}^{\prime}$ e where x_{i}^{\prime} is the i th row of X and λ_{i} is the one dimensional summary variable for the ith obeervation. The coordinates in p-space of the projection of the ith obearvation on a are given by *

$$
\begin{equation*}
a u_{i}=a a^{\prime} x_{i} \tag{2.1}
\end{equation*}
$$

There in no underlying model in the above. We merely regard the first component as a good aummary of the original variables if it accounts for a large fraction of the total variance.

2.2. A linear model formulation.

In this section we deveribe a linear model formulation for the p variables. This formulation includes many familiar modela such a linear regression and factor analysis. We end up showins in 2.2.2 that the eatimation of the systematic component of some of these models is once again the principal component procedure.

2.2.1. Outline of the linear model.

Conider a model for the obenrved data

$$
\begin{equation*}
m_{i}=\varepsilon_{i}+e_{i} \tag{2.2}
\end{equation*}
$$

where w_{i} is an unobeervable systematic component and c_{i} an unobservable random composent (We only get to see their sum). We usually impoes some linear structure on u_{i}, masody

$$
\begin{equation*}
v_{t}=v_{0}+A \lambda_{i} \tag{2.3}
\end{equation*}
$$

whare ω_{0} im conctant location wector; A is a $p \times m$ matrix and λ_{1} is an mivector. For the procedures coosidered mo in ahways eetimated by the scinple mean vector 2; without loes of gemerality we will simply anume that X has been centered and ignore the term m_{0}. We also

[^1]asume that a are mutually independent and identically distriouted random vectors with moen 0 and covariance matrix $\$$ and are independent of the λ_{i}.

If the λ_{i} are coasidered to be random se weli, the model is referred to as the linear atructural model, or more commonly at the factor analysia model. If the λ_{i} are fixed it is referred as the linear functional model. The model (2.3) includea some familiar models as special casea:

- Let A be $\rho \times(p-1)$ with rank $(p-1)$. We can write $\mathrm{A} a$

$$
\binom{e^{\prime}}{I}
$$

where a is a $(p-1)$ rector and I in $(p-1) \times(p-1)$ since we can pont-multiply A by an arbitrary noo-ningular $(p-1) \times(p-1)$ matrix and pro-multiply λ_{i} by ita inverse. Thus we can write the model (2.3) =

$$
\begin{equation*}
\binom{x_{w i}}{x_{x}}=\binom{0}{I} \lambda_{i}+\binom{e_{1 i}}{e_{x i}} \tag{2.4}
\end{equation*}
$$

whers $E\left(\mu_{i}\right)=0$ and acome $\operatorname{Cov}\left(\varepsilon_{i}\right)=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{p}^{2}\right)$. II $\sigma_{2}^{2}=\sigma_{3}^{2}=\ldots=\sigma_{p}^{2}=0$ then whave the unal linear regramion model with reaponse $x_{1 i}$ and regremor variables 2x.

- If the variances are not sero wo have the errocs in variables regremion model. The ides in to find a $(p-1)$ dimenaioal hyperplane in p-apace that approximates the data well. The model takee care of errors in all the variables, wherens the usual linear regremion model considers errore oaly in the remponse variable. This is a form of linear functional analysia.
- When the λ_{1} ave random we have the usual factor analynis model, which includes the random effecte Anove. This is aleo reforred to as the linear structural model.
- If all the rariances are sero and the λ_{i} are raodom and \mathbf{A} in $p \times p$ the model represente the principal componeat change of beni.. In this situation it is clear that the $\lambda_{j i}$ are each functione of the m .

For a full treatment of the above modeleser Anderson (1982).

2.2.2. Estimation

We return for simplicity to the cace where $m=1$. Thus

$$
\begin{equation*}
x_{i}=\boldsymbol{a} \lambda_{i}+e_{i} \tag{2.5}
\end{equation*}
$$

The ayetematic componente a_{i} are points in p-space confined to the line defined by a maltiple λ_{i} of the vector a. We need to estimate λ_{i} for each obeervation, and the direction vector.

We sow state somp reculte which can be found in Anderson (1982).

IF eithar

- the c_{i} are jointly Normal with a scaiar covariance cl, where c is posaibly unknown, and if λ_{i} are random or fixed, and we eatimate by maximum likelihood
or
- © above bat we drop the Normal acoumption and eatimate by least squares,
then the eatimate of λ_{i} is cece again the firat principal component and that of e the principal component direction rector. In both cames the quantity we wish to minimize is

$$
\begin{equation*}
R S S(\lambda, a)=\sum_{i=1}^{\infty}\left\|x_{i}-a \lambda_{i}\right\|^{2} \tag{2.6}
\end{equation*}
$$

It in eney to 20 that for any a the appropriate value for λ_{i} ia obtained by projecting the point z_{i} anto a. Thuo equation (2.6) roduces to

$$
\begin{align*}
\operatorname{RSS}(a) & =\sum_{i=1}^{n}\left\|x_{i}-a c^{\prime} x_{i}\right\|^{2} \tag{2.7}\\
& =\operatorname{tr}^{2} X X^{\prime}-a^{\prime} X^{\prime} X_{a}
\end{align*}
$$

The sormalised solution to (2.7) is the largest eigeavector of $X^{\prime} X$.
If the error covariance * is general but known, we can tranaform the problem to the provious cace. This in the same a using the Mahalanobis distance defined in terms of Ψ. In particular when in diagoial the procedure amounts to finding che line that minimizes the weighted diatance to the pointe and in depicted in figure (2.1) below.

If the efror covariadon in unknown and not ecalar then we require replicate observations in order to ertimate it.

Figure 2.1 If $=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)$ then we minimise the weighted diatance $\sum_{i j}\left(d_{1 i}^{2} / \sigma_{1}^{2}+d_{i}^{2} / \sigma_{2}^{2}\right)$ from the points to the line.

2.2.3. Units of measurement.

It is often a problem in multivariate data analyris that variables have different error variances, even though they are measured in the same unith. A worse situation is that often the variables are measured in completely different and incommensurable units. When we uee leant equares to eatimate a lower dimensional summary, we explicitly combine the errors on each variable using the usual sum of ccmponents los function, as in (2.6). This then givee equal weight to each of the compoxents. The solution is thus not invariant to changes in the seale of any of the variablea. This is ensily demonstrated by considering a spherical point cloud. If we scale up one of the co-ordinates an arbitrary amount, we can create a much linear atructure as like. In this situation we would really like to weigh the errors in the entimation of our model sccording to the variance of the meacurement errors, which is seldom known. The safeat procedure in this situation in to standardize each of the coordinates to have unit variance. Thin could deatroy some of the structure that exists but without further knowledge about the scale of the componente this yields a procedure that is invariant to coordinate scale tranaformations.

K, on the other hand, it in known that the variables are meaured in the same units, wabould not do any acaling at all. An apparent counter-example oceura if we make
meanurements of the same quantities in different situations, with different measurement devices. An example might be taking seismic readings at different sighte at the same inatances with different reco-ding devices. If the error variances of the two devices are different, we would want to acale the components differently.

To sum up so far, the principal component summary, beaidea being a convenient data reduetion technique, providea us with the eatimate of a formal parametric linear modei which covers a wide variety of situations. An original example of the one factor model given here is that of Spearman (1904). The zi are acores on paychological testa and the λ_{i} is some underlying unobeervable general intelligence factor.

The entimation in all the cases amounts to finding a m-dimensional hyperplane in p-apace that is cloceet to the points in some metric.

2.3. A non-linear generalization of the linear model.

The above formulation is often very reatrictive in that it asumes that the systematic component in (2.2) is linear, a in (2.3). It is true in some cases that we can approximate a noalinear surface by its firat order linear component. In other cases we do not have sufficient data to metimate any more than a linear component. Apart from these cases, it is more reamonable to ascume a model of the form

$$
\begin{equation*}
s_{i}=f\left(\lambda_{i}\right)+\varepsilon_{i} \tag{2.8}
\end{equation*}
$$

where d_{4} is a m-vector a before, and f in a p-vector of functions, each with m arguments. The functions are required to be sanooth relative to the errors. This is a natural generalization of the linear model.

This dimertation deals with a generalization of the linear principal componente. Instead of finding linee and planem that come clow to the data, we find curves and aurfacea. Just en the linear principal components are entimates for the variety of linear modela listed above, so will our non-linear vernions be estimatee for modela of the form (2.8). So in addition to having a more general summary of multidimencional date, we provide a means of entimating the aystematic component in a large clase of model suitably generalized to include nourlinearitios. We refer to these summaries at principal curves and surfaces.

So far the diacuasion has concentrated on data, sets. We can juat as well formulate the above models for p dimensional probability distributions. We would then regard the data set
as a sample from this dirtribution and the functions derived for the data set will be regarded as estimates of the corresponding functions defined for the distribution. These models then define one and two dimensional surfaces that summarise the p dimensional distribution. The point $f(\lambda)$ or the surface that correaponds to a general point x from the distribution is a p dimencional random variable that can be summarized by a two dimensional random variable λ.

2.4. Other generalizations.

There have bra a number of generalizations of the principal component model suggested is the literature.

- "Generalized principal componeats" usually refers to the adaptation of the linear model in which the coordinatea are first transformed, and then the standard principal compoweat analysis is carried out on the transformed coordinates.
- Maltidumensional sealing (MDS) finds a low dimensional representation for the high Jimensional point cloud, such that the sum of squared interpoint distances are preerved. This conatreint has boen modified in certain cases to cater only for points that ave :lone in the original apsce.
- Proxiouty analysis providee parametric representations for data without noise.
- Mon-linemf fector caalysis is a generalization similar to ours, except parametric coordinate finnctions are used.

Ws have been deliberately brief in linting these alternctives. Chapter 7 contains a detailed discusaion and comparison of each of the above with the principal curve and surface models.

Chapter 3

The Principal Curve and Surface models

In thia chapter we define the principal curve and surface models, first for a p dimensional probability diatribution, and then for a p dimensional finite data set. In order to achieve seme continuity in the presentation, we motivate and then simply state results and theorems in this chapter, and prove them in chapter 4.

3.1. The principal curves of a probability distribution.

We first give a brief introduction to one dimensional surfaces or curves, and then define the principal eurves of smooth probability distributions in p space.

3.1.1. One dimensional curves.

A one dimensional curve f is a vector of functions of a single variable, which we denote by λ. These functions are called the coordinate functions, and λ provides an ordering along the curve: If the coordinate functions are smooth, then f will be a smooth curve. We can clearly make any monotone transformation to λ, say $m(\lambda)$, and by modifying the coordinate functions appropristely the curve remains unchanged. The parametrization, however, is different. There in a natural parametrization for curves in terms of the arc-length. The arc-length of a curve f from λ_{0} to λ_{1} is given by

$$
t=\int_{\lambda_{0}}^{\lambda_{1}}\left\|f^{\prime}(z)\right\| d z
$$

If $\left\|f^{\prime}(z)\right\| \equiv 1$ then $l=\lambda_{1}-\lambda_{0}$. This is a rather desirable situation, since if. all the coordinate variablee are in the sams unite of mesaurement, then λ is also in those units. The vector $f^{\prime}(\lambda)$ is teagent to the curve at λ and is sometimes called the velocity sector at λ. A curve with $\left\|f^{\prime}\right\| \equiv 1$ is called a unit apeed parametrized curve. We can alwaya reparametrize any smooth curve to make it unit speed. If is a unit vector, then $f(\lambda)=v_{0}+\lambda v$ is a unit upeed straight curve.

The vector $f^{\prime \prime}(\lambda)$ in called the acceleration of the curve at λ, and for a unit speed curve, it is eagy to check that it in orthogonal to the tangent vector. In this case $f^{\prime \prime} /\left\|f^{n}\right\|$

Figure (3.1) The radius of curvature is the radius of the circle tangent to the curve with the same acceleration as the curve.
is called the principal normal of the curve at λ. Since the acceleration measures the rate and direction in which the tangent vector turns, it is not surprising that the curvature of a parametrized curve is defined in terms of it. The easiest way to think of curvature is in terms of a circle. We fit a circle tangent to the curve at a particular point and lying in the plane spanned by the velocity vector and the principal normal. The circle is constructed to have the asme acceleration as the curve, and the radius of curvature of the curve at that point is defined as the radiua of the circle. It is easy to check that for a unit speed curve we get

$$
\begin{aligned}
\boldsymbol{r}_{f}(\lambda) & \text { def. radius of curvature of } f \text { at } \lambda \\
& =: i\left\|f^{\prime \prime}(\lambda) \cdot\right\|
\end{aligned}
$$

The-center of curvature of the curve at λ is denoted by $c_{f}(\lambda)$ and is the center of this circle.

3.1.2. Definition of principal curves.

We now define what we mean by a curve that pasoss through the middle of the data - what we call a principal curve. Figure 8.2 represen's such a curve. At any particular location on the curve, we collect all the points in p space that have that location as their closest point on the curve. Loosely speaking, we collect all the points that project there. Then the location on the curve is the average of these points. Any curve that has this property

Figure (3.2) Each point on a principal curve is the average of the points that project there.
is called a principal curve. One might say that principal curves are their own conditional expectation. We will prove later these curves are critical points of a distance function, as are the principal components.

In the figure we have actually shown the points that project into a neighborhood on the curve. We do this because usually for finite data sets at most one data point projects at any farticular spot on the curve. Notice that the points lie in a segment with center at the center of curvoture of the are in question. We will discuss this phenomenon in more detail in the section on bias in chapter 4.

We can formalize the above definition. Suppose \boldsymbol{X} is a randorn vector in \boldsymbol{f}-apace, with continuous probability density $h(x)$. Let g be the class of differentiable 1-dimensional curves in \mathbb{R}^{P}, parametrized by λ. In addition we do not allow curves that form closed loops, so they may not intersect themselves or be tangent to themselves. Suppcse $\lambda \in A_{f}$ for each f in g. For $f \in \mathcal{G}$ and $z \in \mathbb{R}^{p}$, we define the projection index $\lambda_{f}: \mathbb{R}^{p} \mapsto \Lambda_{f}$ by

$$
\begin{equation*}
\lambda_{f}(x)=\max _{\lambda}\left\{\lambda:\|x-f(\lambda)\|=\inf _{\mu}\|x-f(\mu)\|\right\} \tag{3.1}
\end{equation*}
$$

The projection index $\lambda_{f}(x)$ of x is the value of λ for which $f(\lambda)$ is closest to 2 . There might be a number of such points (suppose f is a circle and x is at the center), so we pick the largeat such value of λ. We will show in chapter 4 that $\lambda_{f}(x)$ is a measureable mapping from R^{p} to \mathbb{R}^{1}, and thus $\lambda_{f}(X)$ is a random variable.

Definition

The Principal Cwrves of h are those members of g which are self consistent. A curve $f \in \mathcal{G}$ is self consistent if

$$
\Gamma\left(\dot{X} \mid \lambda_{f}(X)=\lambda\right)=f(\lambda) \forall \lambda \in \Lambda_{f}
$$

We call the class of principal curves $F(h)$.

3.1.3. Existence of principal curves.

An immediate queation might be whether such curves exist or not, and for what kinds of distributions. It is easy to check that for ellipsoidal distributions, the principal components are in fact principal curvea. For a spherically symmetric distribution, any line through the mean vector is a principal curve.

What about data generated from a model as in equation 2.8, where λ_{i} is 1 dimensional? Is f a principal curve for this distribution? The answer in general is no. Before we even try to answer it, we have to enquire about the distribution of λ_{i} and c_{i}. Suppose that the data is well behaved in that the distribution of c_{i} has tight enough support, so that no points can fall beyond the centers of curvature of f. This guarantees that each point has a unique closest point to the curve. We show in the next chapter that even under these ideal conditions (spherically symmetric errors, slowly changing curvature) the average of points that project at a particular point on the curve from which they are generated lies outside the circle of curvature at that point on the curve. This means that the principal curve will be different from the generating curve. So in this situation an unbiased estimate of the principal curve will be a biased eatimate of the functional model. This bias, he er, is small and decreases to zero as the variance of the errors gets amall relative to the zadius of curvature.

3.1.4. The distance property of principal curves.

The principal components are critical points of the squared distance from the points to their projertions on strsight curves (lines). Is there any analogous property for principal curves?

It turns out that there is. Let $d(x, f)$ denote the usual euclidian distance from a point x to its projection on ibe curve f :

$$
\begin{equation*}
d(x, f) \stackrel{\text { daf }}{=}\left\|x-f\left(\lambda_{f}(x)\right)\right\| \tag{3.2}
\end{equation*}
$$

and define the function $D^{2}: G \rightarrow \mathbb{R}^{1}$ by

$$
D^{2}(f) \stackrel{d a}{=} \mathbf{E} d^{2}(X, f)
$$

We show that if we restrict the curves to be straight lines, then the principal components are the only critical values of $D^{2}(f)$. Critical value here is in the variational sense: if f and g are straight lines and we form $f_{c}=f+\epsilon g$, then we difine f to be a critical value of $D^{\mathbf{2}}$ iff

$$
d D^{2}\left(f_{e}\right) /\left.d \epsilon\right|_{\varepsilon=0}=0
$$

This means that they are minima, maxima or saddle points of this cistance function. If we restrict f and g to be members of the subset of \mathcal{G} of curves defined on a compact A, then principal curves have this property as well. In this case f_{c} describes a class of curves about f that shrink in as ϵ gets small. The corresponding result is: $d D^{2}\left(f_{s}\right) /\left.d \epsilon\right|_{c=0}=0$ iff f is a principal curve of h. This is a key property and is an essential link to all the previous models and motivation in chapter 2. This properiy is similar to that enjoyed by conditional expectations or projections; the residual distance is minimized. Figure (3.3) illustrates the idea, and in fact is almost a proof in oue direction.

Suppose E is not a principal curve. Ther the curve defined by $f(\lambda)=\mathbf{E}\left(X \mid \lambda_{k}(X)=\right.$ λ) certainly gets clocer to the points in any of the neighborhoods than the original curve. This is the property of conditional expectation: Now the points in any neighborhood defined by λ_{k} might end up in different aeighborhoods when projected onto f, but this reduces the distances even further. This shows that k cannot be a critical value of the distance function.

An immediate consequence of these two results is that if a principal curve is a straight line, then i! is A principal component. Another result is that principal components are self

3.1.4.1 A smooth subset of principal curves.

We have defined principal curves in a rather general fashion without any smoothness restrictions. The distance theorem tells us that if we have a principal curve, we will not find any curves nearby with the same expected distance. We have a mental image of what we

Figure 3.3 The conditional expectation curve geta at least an clooe to the pointes as the original carve.
would like the curves to look like. They should pass through the data smoothly enough so that each data point has an unambiguous clocest point on the curve. This smoothness will be dictated by the density h. It turns out that we can neatly summarize this requirement. Consider the subeet $f_{c}(h) \subset f(h)$ of principal curves of h, where $f \in \mathcal{F}_{c}(h)$ iff $f \in \mathcal{F}(h)$ and $\lambda_{f}(x)$ is continuous in z for all points x in the support of h. In words this says that if two points \boldsymbol{z} and y are cloce together, then their points of projection on the curve are close together. This han a number of implications, some of which are obvious, which we will list now and prove later.

- There is only one closest point on the principal curve for each \boldsymbol{x} in the support of \boldsymbol{h}.
- The curve is globally well behaved. This means that the curve cannot bend back and come too clowe to iteelf aince that will lead to ambiguities in projection. (If we want to deal with ciosed curves, such an a circle, a technical modification in the definition of λ is required).
- There are no pointe at or beyond the centers of curvature of the curve. This says that the curve is amooth relative to the variance of the data about the curve. This has intuitive appeal. If the data is very noisy, we cannot hope to recover more than a very amooth curve (nearly a straight line) from it.

Figure 3.4 The combenity coustraint avoide global ambignitiay ia) and local ambigaition (b) is projection.

Figure 3.4 illustratee the way in which the continuity constraint avoids global and bocal ambiguitiea. Notice that $f_{s}(h)$ depends on the dencity h of X. We sey in the support of h, but if the errors have an infinite range, thin definition would only allow straight lines. We can make some technical modifications to overcome this hurdle, such ansinting that h has compact support. This rules out any theoretical consideration of curves with gaussian errors, although in practice we always have compact support. Nevertheleas, the claie $\mathcal{f}_{c}(h)$ will prove to be useful in understanding some of the properties of priseipal curves.

3.2. The principal surfaces of a probability distribution.

3.2.1. Two dimensional surfaces:

The lovel of dificulty incremes dramatically an move from one dimensional surfacee or curves to higher dimensional eurfaces. In this work we will only deal with 2-dimensional surfaces in p apece. In fect we siall deal only with 2 -surfacee that admit a global parametrization. This'allows us to define f to be amooth 2-dimencional globally parametrised surface
if $\boldsymbol{f}: \mathbb{A} \mapsto \mathbb{R}^{\boldsymbol{p}}$ for $\mathbb{\Lambda} \subseteq \mathbf{R}^{\mathbf{2}}$ is a vector of smooth functions:

$$
\begin{align*}
f(\lambda) & =\left(\begin{array}{c}
f_{1}(\lambda) \\
f_{2}(\lambda) \\
\vdots \\
f_{p}(\lambda)
\end{array}\right) \\
& =\left(\begin{array}{c}
f_{1}\left(\lambda_{1}, \lambda_{2}\right) \\
f_{2}\left(\lambda_{1}, \lambda_{2}\right) \\
\vdots \\
f_{7}\left(\lambda_{1}, \lambda_{2}\right)
\end{array}\right) \tag{3.3}
\end{align*}
$$

Anotber way of defining a 2 -aurface in p apace is to have $p,-2$ conatrainte on the p coordisatce. An example is the unit apbere in $\mathbf{R}^{\mathbf{3}}$. It can be defined $\boldsymbol{a}\left\{\mathbf{z}: \mathbf{z} \in \mathbf{R}^{\mathbf{3}},\|x\|=1\right\}$. There is oee coontraint. We will call this the implicit definition.

Not all 2 -marfacse have implicit defnitione (möbius band), and similarly not all surfaces bave gdobel peramotrixaticas. However, bocelly an equivalence can be eatablished (Thorpe 1978).

The coocopt of arc-length generalisee to surface area. However, we cannot always reperamotrise the surface so that unite of area in the parameter space correspond to unite of ares in the surface. Once again, bocal parametrizations do permit this change of units.

Curvature sho tekee on another dimension. The curvature of a surface at any point might be difersent depeading oa which direction we look from. The way thia is resolved in to look from all pomiblo directions, and the first principal curvature is the curvature corremponding to the direction in which the curvature is greatest. The second princiral eurvature corremponds to the largest curvature in a direction orthogonal to the first. For 2-murfacen there are ooly two orthogenal directions, so we are done.

3.2.2. Definition of principal surfaces.

Once again lot X be a random vector in p-apece, with continuous probability density $h(x)$. Let \mathcal{G}^{2} be the clem of differentiable 2-dimensional surfices in \mathbb{R}^{P}, parametrized by $\lambda \in \Lambda_{f}$, - 2-dimoneical paramoter wetor.

For $f \in \mathcal{G}^{\mathbf{2}}$ and $\approx \in \mathbb{R}^{P}$, wo define the projection index $\lambda_{f}(x)$ by

$$
\begin{equation*}
\lambda_{f}(z)=\max _{\lambda_{s}} \max _{\lambda_{1}}\left\{\lambda:\|z-f(\lambda)\|=\inf _{\mu}\|z-f(\mu)\|\right\} . \tag{3.4}
\end{equation*}
$$

The projecticn index defines the closent point on the surface; if there is more than one, it picks the one with the largeat firat component. If this is still not unique, it then maximizes over the socond component. Once again $\lambda_{f}(x)$ is a measureable mapping from \mathbb{R}^{p} into \mathbb{R}^{2}, and $\lambda_{f}(X)$ in a random vector.

Definition

The Principal Surfaces of h are thoee members of \mathcal{G}^{2} which are self consistent:

$$
E\left(x \mid \lambda_{f}(x)=\lambda\right)=f(\lambda)
$$

Figure (3.5) demonetrate the situation.

Figure $\$.5$ Each point on a principal aurface in the average of the pointe that project thers.

The plane apanned by the first and second principal components minimizes the distance from the pointe to their projections onto any plane. Once again let $d(x, f)$ denote the usual ouclidian diatance from a point z to ite projection on the surface f, and $D^{2}(f)=\mathbf{E} d^{2}(X, f)$. If the surfaces are restricted to be planes, then the planes apanned by any pair of principal
componente are the only critical values of $D^{2}(f)$. There is a result analogous to the one to be proven for principal curves. If we restrict f to be the members of $\mathcal{G}^{\mathbf{2}}$ defined on connected compect mets in \mathbf{R}^{2}, then the principal surfaces of h are the only critical values of $D^{2}(f)$.

Let $\dot{F}^{2}(h) \subset G^{2}$ denote the clase of principal 2 -surfaces of h. Once again we consider a smooth subeet of this clase. Form the subeet $J_{c}^{2}(h) \subset f^{2}(h)$, where $f \in f_{c}^{2}(h)$ iff $f \in \mathcal{J}^{2}(h)$ and $\lambda_{f}(x)$ is continuous in x for all points z in the support of h. Surfaces in $f_{c}^{2}(h)$ have the following properties.

- There is ooly one closest point on the principal surface for each \boldsymbol{z} in the support of h.
- The surface is globally well behaved, in that it cannot fold back upon itself causing ambiguities in projection.
- We saw that for principal curves in $\mathcal{F}_{6}(h)$, there are no points at or beyond the centers of curvature of the curre. The analogous statement for principal surfaces in $f_{c}^{2}(h)$ is that there are no pointe at or beyond the centers of normal curvature of any unit apeed curve in the surface.

3.3. An algorithm for finding principal cụrves and surfaces.

Wo are atill in the theoretical situation of finding principal curves or surfaces for a probability distribution. We will refer to curves (1-dimensional surfaces) and 2 -dimensional surfaces jointly ansurfeces in situations where the distinction in not important.

When ecoking principal aurfaces or critical values of $D^{2}(f)$, it is natural to look for a smooth curve that corresponds to a local minimum. Our strategy is to atart with a smooth curve and then to look around it for a local minimum. Recall that

$$
\begin{align*}
D^{2}(f) & =\Sigma\left\|x-f\left(\lambda_{f}(x)\right)\right\|^{2} \tag{3.5}\\
& =E_{\lambda_{f}(x)} E\left[\left\|x-f\left(\lambda_{f}(x)\right)\right\|^{2} \cdot \mid \lambda_{f}(x)\right] \tag{3:6}
\end{align*}
$$

We can write thin an minimisation problem in f and λ : find f and λ such that

$$
\begin{equation*}
D_{2}^{2}(f, \lambda)=E\|X-f(\lambda)\|^{2} \tag{3.7}
\end{equation*}
$$

is a minimum. Clearly, given any candidate solution f and λ, f and λ_{f} in at least as good. Two key idene emerge from this:

- If we knew $f a \operatorname{a}$ function of λ, then we could minimize (3.7) by picking $\lambda=\lambda_{f}(x)$ at each point \bar{z} in the support of h.
- Suppoae, on the ofiter hand, that we had a function $\lambda(a)$. We could rewrite (3.7) as:

$$
\begin{equation*}
D_{1}^{2}(f, \lambda)=E_{\lambda(\lambda)} \sum_{j=1}^{p} E\left[\left(X_{j}-f_{j}(\lambda(X))^{2} \mid \lambda(X)\right]\right. \tag{3.8}
\end{equation*}
$$

We could minimise D_{1}^{2} by choosing each f_{j} separately so as to minimize the corrosponding term in the sum in (3.8). This amounts to choosing

$$
\begin{equation*}
f_{j}(\lambda)=E\left(X_{j} \mid \lambda(X)=\lambda\right) . \tag{3.9}
\end{equation*}
$$

In this lact step we have to check that the new f is differentiable. One can construct many situations where thin is not the case by allowing the starting curve to be globally wild. On the other hand, if the starting curve is well behaved, the sete of projection at a particular point in the curve or surface lie in the normal hyperplanes which vary smoothly. Since the density h is smooth we can expect that the conditional expectation in (3.9) will define a smooth function. Wh give more details in the next chapter. The above preamble motivatee the following iterative algorithm.

Principal surface algorithm

initialisation: Set $f^{(0)}(\lambda)=A \lambda$ where A is either a column vector (principal eurven) and is the direction vector of the first linear principal component of h or A is a $p \times 2$ matrix (principal surfaces) consisting of the first two principal component direction vectors. Set $\lambda^{(0)}=\lambda_{f}(0)$.
repeat: over iteration counter $;$

1) Set $f^{(j)}(\cdot)=E\left(X \mid \lambda^{(j-1)}(X)=\cdot\right)$.
2) Choose $\lambda^{(j)}=\lambda_{f(i)}$.
3) Evaluate $D^{2(j)}=D_{1}^{2}\left(f^{(j)}, \lambda^{(j)}\right)$.
until: $D^{3(j)}$ fails to decreaso.

Although wo start with the linear principal component solution, any reasonable starting values can be used.

It is eany to check that the criterion $D^{2(j)}$ must converge. It is positive and bounded below by 0 . Suppoce we have $f^{(j-1)}$ and $\lambda^{(j-1)}$. Now $D_{1}^{2}\left(f^{(j)}, \lambda^{(j-1)}\right) \leq D_{1}^{2}\left(f^{(j-1)}, \lambda^{(j-1)}\right)$ by the propertios of conditional expectation. Also $D_{1}^{2}\left(f^{(i)}, \lambda^{(j)}\right) \leq D_{1}^{2}\left(f^{(j)}, \lambda^{(j-1)}\right)$ since the $\lambda^{(i)}$ are choeen that way. Thus each step of the iteration is a decrease, and the criterion convergee. This does not meall that the procedure has converged, aince it is conceivable that the algorithm occillatee between two or more curves that are the same expected distance from the pointa. We have not found an example of this phenomenon.

The definition of principal surfaces is suggestive of the above algorithm. We want a smooth surface that is self consistent. So we start with the plane (line). We then check if it is indeed self coasiatent by evaluating the conditional expectation. If not we have a surface m a by-product. We then check if this is self consistent, and so on. Once the self consiatency condition in met, we have a principal surface. By the theorem quoted above, this surface is a critical point of the distance function.

3.4. Principal curves and surfaces for data sets.

So far we have considered the principal curves and surfaces for a continuous rultivariate probability diatribution. In reality, we usually have a finite multivariate data set. How do we define the principal curvee and surfaces for them? Suppose then that X is a $n \times p$ matrix of n obecrvations on p variablea. We regard the data sat an a sample from an underlying probebility distribution, and it to eatimate the principal curves and surfaces of that diatribut inn. We briefly describe the ideas here and leave the details for chapters 5 and 6.

- The first atep in the algorithm uses linear principal components as atarting values. We use the sample principal components and their corresponding direction vectors as initial ectimater of λ_{f} and $f^{(0)}$.
- Given functions $\gamma^{(j-1)}$ we can find for each x_{i} in the sample a value $\hat{\lambda}_{i}^{(j-1)}=\lambda_{j(i-1)}\left(x_{i}\right)$. Thin can be dose in a number of ways, using numerical optimization techniques. In practice wo have $\hat{\gamma}^{(j-1)}$ ovaluated at n values of λ, in fact at $\hat{\lambda}_{1}^{(j-2)}, \hat{\lambda}_{2}^{(j-2)}, \cdots, \hat{\lambda}_{n}^{(j-2)}$. $\gamma^{(1-1)}$ is ovaluatid at other points by interpolation. To illustrate the ides let us consider a curve for which we have $\hat{f}^{(j-1)}$ evaluated at $\dot{\lambda}_{i}^{(j-2)}$, for $i=1, \cdots, n$. For each point i in the sample we can project z_{i} onto the line joining each pair $\left(\hat{f}^{(j-1)}\left(\hat{\lambda}_{k}^{(j-2)}\right)\right.$, $\left.j^{(j-1)}\left(\sum_{k+2}^{(j-2)}\right)\right)$. Suppoee the distance to the projection is $d_{i k}$, and if the point projects beyond either endpoint, then $d_{i n}$ is the distance to the closest endpoint. Corresponding to each d_{k} is a value $\lambda_{i k} \in\left[\hat{\lambda}_{k}^{(j-2)}, \dot{\lambda}_{k+1}^{(j-2)}\right]$. We then let $\hat{\lambda}_{i}^{(j-1)}$ be the $\lambda_{i k}$ that
correaponds to the smallest value of $d_{i k}$. This is an $O\left(n^{2}\right)$ procedure, and as such is rather naive. We use it as an illustration and will deacribe more efficient algorithms later.
- We have to eatimate $f^{(j)}(\lambda)=\boldsymbol{I}\left(\boldsymbol{X} \mid \lambda^{(j-1)}=\lambda\right)$. We restrict ourselves to estimating this quantity at oaly n values of $\lambda^{(j-1)}$, namely $\hat{\lambda}_{1}^{(j-1)}, \ldots, \hat{\lambda}_{n}^{(j-1)}$ which we have already extimated. Wo require $\boldsymbol{L}\left(X \mid \lambda^{(j-1)}=\hat{\lambda}_{i}^{(j-1)}\right)$. This says thet we have to gather all the obearvations that project onto $\hat{f}^{(j-1)}$ at $\hat{\lambda}_{i}^{(j-1)}$, and find their mean. Typically we have only one wuch obeervation. namely x_{i}. It is at this stage that we introduce the acatterplot smoother, the fundamental building block in the principal curve and surface procedure for finite data seta. We eatimate the conditional expectation at $f_{i}^{(j-1)}$ by averaging all the obeorvations z_{k} in the sample for which $\hat{\lambda}_{k}^{(j-1)}$ is close to $\dot{\lambda}^{(j-1)}$. As long as theme obeervations are close enough and the underlying density is amooth, the bias introduced will be small. On the other hand, the variance of the entimate decreases an we include more observations in the neightorhood. Figure (3.6) demonatrates this jocal averaging. Once again we have just given the ideas here, and will go into detaila in later chapters.

Figure $3.6 \quad$ We eatimate the conditional expectation $\Psi\left(\mathcal{I} \mid \lambda^{(j-1)}=\lambda_{j}^{(j-1)}\right)$ by averaging the obeervatione x_{k} for which $\mathcal{X}_{i}^{(j-i)}$ is elowe to $\mathcal{X}_{i}^{(j-1)}$.

- One property of scatterplot smoothers in general is that they produce smooth curves and surfaces as output. The larger the neighborhood used for averaging, the smoother the output. Since we are trying to estimate differentiable curves and surfaces, it is convenient that our algorithm, in seeking a conditional expectation estimate, does produce amooth estimates. We will have to worry about how smooth these estimates should be, or rather how big to make the neighborhoods. This becomes a variance versue biae tradeofi, a familiar issue in non-parametric regression.
- Finally, we eatimate $D^{2(i)}$ in the obvious way, by adding up the distances of each point in the sample from the current curve o: surface.

3.5. Demonstrations of the procedures.

We book at two examples, one for curves and one for surfaces. They both are generated from an underlying true model so that we can easily check tnat the procedures are doing the correct thing.

3.5.1. The circle in two-space.

The series of plota in figure 3.7 show 100 data pointa generated from a circle in 2 dicnensions with independent Gausaian errors in both coordinates. In fact, the generating functions are

$$
\begin{equation*}
\binom{x_{1}}{x_{2}}=\binom{5 \sin (\lambda)}{5 \cos (\lambda)}+\binom{e_{1}}{e_{2}} \tag{3.10}
\end{equation*}
$$

where λ is uniformly distributed on $[0,2 \pi]$ and e_{1} and e_{2} are independent $N(0,1)$.
The solid curve in each picture is the estimated curve for the iteration as labelled, and the dashed curve is the true function. The starting curve is the first principal component, in figure' 3.7b. Figure 3.7a givea the usual scatterplot smooth of \boldsymbol{x}_{2} against x_{1}, which is clearly an inappropriste summary for this constructed data set.

The curve in figure 3.7 k doee subatantially better than the previous iterations. The figure caption givee us a clue why - the apan of the smoother is reduced. This means that the size of the neighborhood used for local averaging is smaller. We will see in the next chapter how the bise in the curves depends on this span.

The square root of the average squared orthogonal diatance is displayed at each iteration. If the true curve was linear the expected orthogonal distance for any point would be $\sqrt{E_{X_{1}^{2}}^{2}}=1$. We will in chapter 4 that for this situation, the true circle does not

Figure 3.7a The denhed curve is the usaal scatterplot amooth. $D(S)=3.35$

Figure 3.7b The dashed carve is the principal componeat line. $D\left(f^{(0)}\right)=3.43$

Figure 3.7d $D\left(f^{(2)}\right)=3.03$

Figure 3.7e $D\left(f^{(3)}\right)=2.64$

Figure $3.7 \mathrm{~g} \quad D\left(f^{(8)}\right)=2.25$

Figure 3.7f $D\left(\hat{f}^{(4)}\right)=2.37$

Figure 3.7h $D\left(\mathcal{f}^{(6)}\right)=1.91$

Figure 3.71 $D\left(\mathcal{F}^{(7)}\right)=1.64$

Figure 3.7k $D\left(f^{(0)}\right)=0.97$. The span is antomatically reduced at thin stage.

Figure 3.73 $D\left(f^{(8)}\right)=1.60$

Figure $3.71 \quad D\left(f^{(20)}\right)-c .96$

minimize the distance, but rather a circle with slightly larger radius. Then the mininizing distance is approximately $\sigma^{2}\left(1-1 / 4 \rho^{2}\right)=.99$. Our final distance is even lower. We still have to adjust for the overfit factor or number of parameters used up in the fitting procedure. This deflation factor is of the order $n /(n-q)$ where q is the number of parameters. In linear principal components we know q. In chapter 6 we suggest scrne rule of thumb approximations for q in this non-parametric setting.

This example presents the principal curve procedure with a particularly tough job. The starting value is wholly inaproppriate and the projection of the points onto this line does not neariy represerit the final ordering of the points projected onto the solution curve. At each iteration the coordinate system for the $\hat{\lambda}^{(j)}$ is transferred from the previous curve to the current curve. Points initially project in a certain order on the starting vector, as depicted in figure 3.8a. The new curve is a function of $\hat{\lambda}^{(0)}$ measured along this vector as in figure 3.8 b obtained by averaging the coordinates of points local in $\hat{\lambda}^{(0)}$. The new $\hat{\lambda}^{(1)}$ values are found by projecting the points onto the new curve. It can be seen that the ordering of the projected points along the new curve can be very different to the ordering along the previcus curve. This enables the successive curves to bend to shapes that could not be parametrized in the original principal component coordinate system.

3.5.2. The half-spbere in three-space.

Figure 3.9 shows 150 points generated from the surface of the half-sphere in 3-D. The simulated model in polar co-ordinates is

$$
\left(\begin{array}{l}
x_{1} \tag{3.11}\\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
5 \sin \left(\lambda_{1}\right) \cos \left(\lambda_{2}\right) \\
5 \cos \left(\lambda_{1}\right) \cos \left(\lambda_{2}\right) \\
5 \sin \left(\lambda_{2}\right)
\end{array}\right)+\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

for $\lambda_{1} \in[0,2 \pi]$ and $\lambda_{2} \in[0, \pi / 2)$. The vector e of errors is simulated from a $\mathcal{N}(0, I)$ distribution, and the values of λ_{1} and λ_{2} are chosen so that the points are distributed uniformly in the surface. Figure 3.9a shows the data and the generating surface. The expected distance of the points from the generating half-sphere is to first order 1 , which is the expected squared lungth of the residual when projecting a spherical standard gaussian 3-vector onto a plane through the origin. Ideally we would display this example on a motion graphics workstation in order to see the 3 dimensions.*

[^2]

Figure 3.8 The curve of the the first iteration is a function of $\hat{\lambda}(0)$ measured along the starting vector (a). The curve of the the second iteration is a function of $\dot{\lambda}^{(1)}$ measured along the curve of the first iteration (b).

3.6. Principal surfaces and principal components.

In this section we draw some comparisons between the principal curve and surface models and their linear counterparts in addition to those already mentioned.

3.6.1. A Variance decomposition.

Usually linear principal components are approached via variance considerations. The first component is that linear combination of the variables with the largest variante. The second component is uncorrelated with the first and has largest variance subject to this constraint. Another way of saying this is that the total variance in the plane spanned by the first two components is larger than that in any other plane. By total variance we mean the sum of the variances of the data projected onto any orthonormal basis of the subspace defined by the plane. The following treatment is for one comporent, but the ideas easily generalize to two.

Figure 3.9a. The generating surface and tine data. $D(S)=1.0$

Figure 3.9b. The principal component plane. $D\left(\mathcal{j}^{(0)}\right)=1.59$

Figuse 3.9c. $D\left(f^{(a)}\right)=1.20$

Figure 3.9d. $D\left(f^{(4)}\right)=0.78$

If $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{\prime}$ in the first principal component of $X, \boldsymbol{n} \times p$ data matrix, and a is the corresponding direction vector, then the following variance decomposition is enslly derived:

$$
\begin{equation*}
\sum_{j=1}^{p} \operatorname{Var}\left(x_{j}\right)=\operatorname{Var}(\lambda)+E\|x-ब \lambda\|^{2} \tag{3.12}
\end{equation*}
$$

where $\operatorname{Var}(\cdot)$ and $E(\cdot)$ refer to sampie variance and expectation. If the principal component wa defined in the parent population then the reault is atill true and $\operatorname{Var}(\cdot)$ and $E(\cdot)$ have their utual meaning. The eecond term on the right of (3.12) in the expected squared distance of a point to ita projection onto the principal direction.*

The total variance in the original p variables is decomponed into two componenta: the variance explained by the linear projection and the readual variance in the dintances from the points to their projoctions. We would like to have a sinalar decomponition for principal curves and surfaces.

Let ω now be any random variable. Standard results on conditional expectation show that:

$$
\begin{equation*}
\sum_{j=1}^{p} \operatorname{Var}\left(x_{j}\right)=\sum_{j=1}^{p} E\left(x_{j}-E\left(x_{j} \mid w\right)\right)^{2}+\sum_{i=1}^{p} \operatorname{Var}\left(E\left(x_{j} \mid v\right)\right) \tag{3.13}
\end{equation*}
$$

If $m=\lambda_{f}(x)$ and f in a principal curre so that $E\left(x_{j} \mid \lambda_{f}(x)\right)=f_{f}\left(\lambda_{f}(x)\right)$, we have

$$
\begin{equation*}
\sum_{j=1}^{p} \operatorname{Var}\left(x_{j}\right)=v\| \|_{z}-!\left(\lambda_{f}(x)\right) \|^{2}+\sum_{j=1}^{p} \operatorname{Var}\left(f_{j}\left(\lambda_{j}(x)\right)\right) \tag{3.14}
\end{equation*}
$$

This given ue an analogous remult to (3.12) in the dintributional cane. That is, the total variance in the p coordinates is decomposed into the variance explained by the true curve and the reaidual variance in the expected equared distance from a point to its true position on the curve. The sample version of (3.14) holds only approximately:

$$
\begin{equation*}
\sum_{j=1}^{n} \operatorname{Var}\left(x_{j}\right) \oplus \sum_{i=1}^{n}\left\|x_{i}-\lambda\left(\dot{\lambda}_{i}\right)\right\|^{2}+\sum_{j=1}^{n} \operatorname{Var}\left(\mathcal{l}_{i}\left(\dot{\lambda}_{i}\right)\right) \tag{3.15}
\end{equation*}
$$

The remon for this in that moet practical acatterplot amoothers ace not projections, whereas conditional expectations are.

We rake the following obeervations:

[^3]- if $f_{j}(\lambda)=a_{j} \lambda$, the linear principal component function, then

$$
\begin{aligned}
\sum_{j=1}^{p} \operatorname{Var}\left(f_{j}\left(\lambda_{f}(x)\right)\right) & =\sum_{j=1}^{p} a_{j}^{2} \operatorname{Var}\left(\lambda_{e}(x)\right) \\
& =\operatorname{Var}(\lambda)
\end{aligned}
$$

aince a has length 1 . Here we have written λ for the function $\lambda_{s}(x)=\alpha^{\prime} x$.

- if the f_{j} are approximately linear -- - wn we the Delta method to obtain

$$
\begin{aligned}
\sum_{j=1}^{p} \operatorname{Var}\left(f_{j}\left(\lambda_{f}(x)\right)\right) & \approx \sum_{j=1}^{p}\left(f_{j}^{\prime}\left(E\left(\lambda_{f}(x)\right)\right)^{2} \operatorname{Var}\left(\lambda_{f}(x)\right)\right. \\
& =\operatorname{Var}\left(\lambda_{f}(x)\right)
\end{aligned}
$$

since we restrict our curvee to be unit apeed and thus we have have $\left\|f^{\prime \prime}\right\|=1$.

3.6.2. The power method.

We already mentioned that when the data is ellipeoidal the principal curve procedure yields linear principal composents. We now show that if our smoother fite straight lines, then ooce again the principal curve procedure yielde linear principal components irrespertive of the starting line.

Theorem 3.1

If the amoother in the principal curve procedure produces least squares straight line fits, and if the initial functions describe a straight line, then the procedure converges to the first principal component.

Proof

Let $a^{(0)}$ be any starting vector which has unit length and is not orthogonal to the largest principal component of X, and anume X in centered. We find $\lambda_{i}^{(0)}$ by projecting x_{i} onto ${ }^{(0)}$ which we denole collectively by

$$
\lambda^{(0)}=X a^{(0)}
$$

where $\lambda^{(0)}$ is a n vector with elemente $\lambda_{i}^{(0)}, i=1, \ldots, n$. We find $a_{j}^{(1)}$ by regressing or projecting the vector $z_{j}=\left(x_{1 j}, \ldots, x_{n j}\right)^{\prime}$ onto $\lambda^{(0)}$:

$$
a_{i}^{(1)}=\frac{\lambda^{(0)} z_{j}}{\lambda(0)^{\prime} \lambda(0)}
$$

36 Section 3:6: Principal surfaces and principal components
or

$$
\begin{aligned}
a^{(1)} & =\frac{\lambda^{(0)} X}{\lambda^{(0)} \lambda \lambda^{(0)}} \\
& =\frac{X^{\prime} X a^{(0)}}{a^{(0)} X^{\prime} X a^{(0)}}
\end{aligned}
$$

and $\Omega^{(1)}$ is renormalized. It can now be seen that iteration of this procedure is equivalent to finding the largest eigenrector of $X^{\prime} X$ by the power method (Wilkinson 1965). I

Chapter 4

Theory for principal curves and surfaces

In this chapter we prove the results referred to in chapter 3. In most cases we deal only with the principal curve model, and suggest the analogues for the principal surface model.

4.1. The projection index is measureable.

Since the first thing we do is condition on $\lambda_{f}(X)$, it might be prudent to check that it is indeed a random variable. To this end we need to show that the function $\lambda_{f}: \mathbb{R}^{p} \mapsto \mathbb{R}^{1}$ is mearureable. *

Lot $f(\lambda)$ be a unit speed parameterized continuous curve in p-space, defined for $\lambda \in$ $\left[\lambda_{0}, \lambda_{1}\right]=A$. Let

$$
D(x)=\inf _{\lambda \in \mathbb{A}}\{d(x, f(\lambda))\} \forall x \in \mathbb{R}^{\prime}
$$

where

$$
d(x, f(\lambda))=\|x-f(\lambda)\|
$$

the usual euclidean distance between two vectors. Now set

$$
M(x)=\{\lambda ; d(x, f(\lambda))=D(x)\}
$$

Since A is compact, $M(x)$ is not empty. Since f, and hence $d(x, f(\lambda))$ is continuous, $M^{c}(x)$ is open, and hence $M(x)$ is cloaed. Finally, for each x in $\mathbb{R}^{\boldsymbol{P}}$ we define the projection index:

$$
\lambda_{f}(z)=\sup M(x)
$$

$\lambda_{f}(z)$ is attained because $M(x)$ in closed, and we have avoided ambiguities.

Theorem 4.1

$\lambda_{f}(s)$ is a mesureable function of s.

[^4]
Proof

In order to prove that $\lambda_{f}(x)$ is measureable we need to show that for any $c \in \Lambda$, the set $\left\{x \mid \lambda_{f}(x) \leq c\right\}$ is a measureable set.

Now $x \in\left\{x \mid \lambda_{f}(x) \leq c\right\} \Leftrightarrow$ for any $\lambda \in\left(c, \lambda_{1}\right]$ there exists a $\lambda^{\prime} \in\left[\lambda_{0}, c\right]$ such that $d(x, f(\lambda))>d\left(x, f\left(\lambda^{\prime}\right)\right)$. (i.e. if there was equality then by our convention we choose $\lambda_{f}(x)=\lambda>e$.) In aymbols we have

$$
\begin{aligned}
& \left\{x \mid \lambda_{f}(x) \leq c\right\}=\bigcap_{\left.\lambda \in\left(0, \lambda_{1}\right]\left|\lambda^{\prime} \in\right| \lambda_{0}, c\right\}}\left\{x \mid d(x, f(\lambda))>d\left(x, f\left(\lambda^{\prime}\right)\right)\right\} \\
& \stackrel{\text { dent }}{=} A_{8}
\end{aligned}
$$

The first step in the proof is to show that

$$
\begin{aligned}
& =A_{\text {e }}
\end{aligned}
$$

where Q in the set of rational numbera. Since for each λ

$$
\bigcup_{\lambda^{\prime} \in\left\{\lambda_{0}, f\right]}\left\{x \mid d(x, f(\lambda))>d\left(x, f\left(\lambda^{\prime}\right)\right)\right\} \supseteq \bigcup_{\lambda_{q} \in\left\{\lambda_{0}, f \mid n \rho\right.}\left\{x \mid d(x, f(\lambda))>d\left(x, f\left(\lambda_{q}^{\prime}\right)\right)\right\}
$$

it followe that $B_{\varepsilon} \subseteq A_{\varepsilon}$. We need to show that $B_{\varepsilon} \supseteq A_{\varepsilon}$. Suppose $x \in A_{c}$ i.e. for any given $\lambda \in\left(c, \lambda_{1}\right] \exists \lambda^{\prime} \in\left[\lambda_{0}, c\right]$ such that

$$
d(z, f(\lambda))>d\left(x, f\left(\lambda^{\prime}\right)\right)
$$

For any given such λ and λ^{\prime} we can find an $\epsilon>0$ such that

$$
d(x, f(\lambda))=d\left(x, f\left(\lambda^{\prime}\right)\right)+e
$$

Now since f is continuous and the rationals are dense in $\mathbf{R}^{\mathbf{1}}$ we can find a $\lambda_{q}^{\prime} \in Q$ such that $\lambda_{p}^{\prime} \leq \lambda^{\prime}$ and $d\left(f\left(\lambda^{\prime}\right), f\left(\lambda_{q}^{\prime}\right)\right)<e$. (If $\lambda^{\prime} \in Q$ we need go no further). This implies that $d(x, f(\lambda))>d\left(x, f\left(\lambda_{p}^{\prime}\right)\right)$ by the pythagorean property of euclidean distance. This in turn impliee that $\boldsymbol{z} \in B_{c}$ and thus $A_{4} \subseteq B_{c}$, and therefore $A_{c}=B_{c}$.

The second step is to show that

$$
\begin{aligned}
D_{e} & \stackrel{\text { def }}{=} \bigcap_{\lambda_{q} \in\left(c, \lambda_{1}\right] \cap Q} \bigcup_{\lambda_{q}^{\prime} \in\left[\lambda_{a}, \in \cap Q\right.}\left\{x \mid d\left(x, f\left(\lambda_{q}\right)\right)>d\left(x, f\left(\lambda_{q}^{\prime}\right)\right)\right\} \\
& =B_{c}
\end{aligned}
$$

Now clearly $B_{c} \subseteq D_{c}$. Suppose then that $z \in D_{e}$, i.e. for every $\lambda_{q} \in\left(c, \lambda_{1}\right] \cap Q$, there is a $\lambda_{\ell}^{\prime} \in\left[\lambda_{0}, c\right] \cap Q$ such that $d\left(x, f\left(\lambda_{\varphi}\right)\right)>d\left(x, f\left(\lambda_{q}^{\prime}\right)\right)$. Once again by continuity of f and because the rationale are dense in \mathbf{R}^{1} we can find another $\lambda_{q}^{*} \in Q, \lambda_{q}^{*}>\lambda_{ष}$ such that

$$
\left.d(x, f(\lambda))>d\left(x, f\left(\lambda_{q}^{\prime}\right)\right)\right\}
$$

for all $\lambda \in\left(\lambda_{\ell}, \lambda_{g}^{\prime \prime}\right.$. This meane that
for every $\lambda_{\rho} \in\left(c, \lambda_{1}\right] \cap Q$. In other words

$$
\begin{aligned}
& z \in \bigcap_{\lambda_{q} \in\left(e, \lambda_{1} \mid \cap Q\right.} E_{\lambda_{q}, \lambda_{i}} \\
& =B_{i}
\end{aligned}
$$

and wo have that $D_{c}=B_{c}$. Finally, each of the sets in D_{e} in a half space, and thus mearureable, D_{e} in a countable union and intersection of measurable sets, and is thus itself meacurable.

4.2. The stationarity property of principal curves.

We first prove a reault for atraight lines. This will lead into the result for curves. The atraght line theorem ays that a principal component line is a critical point of the expected distance from the points to iteelf. The converse is also true.

We first antablish some more notation. Suppose $f(\lambda): A \mapsto \mathcal{G}$ is unit speed continuously cifferentiable parametrised curve in $\mathbb{R}^{\boldsymbol{p}}$, where $\boldsymbol{\Lambda}$ is an interval in $\mathbb{R}^{\mathbf{1}}$. Let $g(\lambda)$ be defined similarly, without the unit speed restriction. An e perturbed version of \boldsymbol{f} is $f_{c} \stackrel{d e f}{=} f(\lambda)+\epsilon g(\lambda)$. Suppoee X has a continuous density in R^{ρ} which we denote by h, and
let $D^{2}\left(h, f_{c}\right)$ be defined as before by

$$
D^{2}\left(h, f_{f}\right)=E_{A}\left\|x-f_{f}\left(\lambda_{f_{c}}(\dot{X})\right)\right\|^{2}
$$

where $\boldsymbol{\lambda}_{\boldsymbol{f}}(\boldsymbol{X})$ parametrizes the point on $\boldsymbol{f}_{\mathrm{c}}$ closest to \boldsymbol{X}.

Definition

The curve f in a critical point of the distance function in the class g iff

$$
\left.\frac{d D^{2}\left(h, f_{i}\right)}{d \varepsilon}\right|_{\epsilon=0}=0 \forall g \in \mathcal{G} .
$$

(We have to ahow that this derivative exists.)

Theorem 4.2

Let $f(\lambda)=\boldsymbol{\Sigma} X+\lambda v_{0}$ with $\left\|v_{0}\right\|=1$, and suppose we restrict $g(\lambda)$ to be lineari as well.
So $g(\lambda)=\lambda v, \quad\|v\|=1$ and $g=\mathcal{C}$, the class of all unit speed straight lines. Then f is a critical point of the dist:nce function in \mathcal{L} iff v_{0} is an eigenvector of $\Sigma=\operatorname{COV}(X)$.

Note:

- WLOG we asame that $E X=0$.
- $\|\boldsymbol{v}\|=1$ is aimply for convenience.

Proof

The clocest point from x to any line λw through the origin is found by projecting z onto - and has parameter value

$$
\lambda_{w}(x)=\frac{x^{\prime} w}{\|w\|}
$$

Th 3

$$
\begin{aligned}
d^{2}(x, \lambda w) & =\left\|x-\frac{w w^{\prime} x}{\|w\|^{2}}\right\|^{2} \\
& =\|x\|^{2}-\frac{\left[w^{\prime} x\right]^{2}}{w^{\prime} w}
\end{aligned}
$$

Upon taking expected values we get

$$
\begin{equation*}
D^{2}(h, \lambda w)=\operatorname{tr} \Sigma-\frac{w^{\prime} \Sigma w}{w^{\prime} w} . \tag{4.1}
\end{equation*}
$$

Wie now apply the above to f_{c} instead of ϖ, but first, make a simplifying assumption. We can nesume w.l.o.g that $\boldsymbol{o}_{0}=e_{1}$ aince the problem is invariant to rotations.

We aplit v into a component $v_{c}=c e_{1}$ along e_{1} and an orthogonal component v°. Thus $v=c v_{c}+v^{*}$ where $d_{1}^{\prime} v^{*}=0$. So $f_{1}=\lambda\left((1+c \varepsilon) e_{1}+\epsilon v^{*}\right)$. We now plug this into (4.1) to get

$$
\begin{align*}
D^{2}\left(h, f_{\epsilon}\right) & =\operatorname{tr} \Sigma-\frac{\left((1+c \epsilon) e_{1}+\epsilon v^{*}\right)^{\prime} \Sigma\left((1+c \epsilon) e_{1}+\epsilon v^{*}\right)}{(1+c \epsilon)^{2}+\epsilon^{2}} \\
& =\operatorname{tr} \Sigma-\frac{(1+c \epsilon)^{2} \epsilon_{1}^{\prime} \Sigma e_{1}+2 \epsilon(1+c \epsilon) e_{1}^{d} \Sigma v^{*}+\epsilon^{2} v^{*} \Sigma v^{*}}{(1+c \epsilon)^{2}+\epsilon^{2}} \tag{4.2}
\end{align*}
$$

Differentiating w.r.t. ϵ and setting $\epsilon=0$ we get

$$
\left.\frac{d D^{2}\left(h, f_{e}\right)}{d \varepsilon}\right|_{c=0}=-2 e_{1}^{\prime} \Sigma v^{*}
$$

If \boldsymbol{e}_{1} is a principal component of $\boldsymbol{\Sigma}$ then this term is sero for all \boldsymbol{v}^{*}, and hence for all v. Alternatively, if this term, and hence the derivative, is zero for all v and hence all $v^{* /} e_{1}=0$, wo have

$$
\begin{aligned}
& v^{*} \Sigma e_{1}=0 \forall v_{1}=0 \\
& \Rightarrow \Sigma e_{1}=c e_{1} \\
& \Rightarrow e_{1} \text { in an eigenyector of } \Sigma
\end{aligned}
$$

Note:

Suppose \boldsymbol{v} is in fact another cigenvector of Σ, with eigenvalue d, then

$$
D^{2}(h, f)-D^{2}(h, f)=\frac{\epsilon^{2}}{1+\epsilon^{2}}\left(\sigma_{1}^{2}-d^{2}\right)
$$

This shows that f might be a maximum, a minimum or a saddle point.

Theorem 4.3

Let g be the clase of unit speed differentiable curves defined on Λ, a closed interval of the form $[a, b]$. The curve f is a principal curve of h iff f is critical point of the distance function in the clase g.

We make some obeervations before we prove theorem 4.3. Figure 4.1illustrates the situation. The curve f_{c} wiggles about f and approaches f ac e approaches 0 . In fact, we can see that the curvature of f_{c} is close to that of f for small e. The curvature of $f, i s$ given by

$$
1 / r_{f_{d}}(\lambda)=\frac{f_{a}^{\prime \prime}(\lambda) \cdot N(\lambda)}{\left\|f_{f}(\lambda)\right\|^{2}}
$$

Figure (4.1) $\quad f_{0}(\lambda)$ depicted as a function of $f(\lambda)$.
where $N(\lambda)$ is the normal vector to the curve at λ. Thus $1 / r_{f_{c}}(\lambda) \leq\left\|f_{c}^{\prime \prime}(\lambda)\right\| /\left\|f_{c}^{\prime}(\lambda)\right\|^{2}$ since the curve is not unit speed and so the acceleration vector is slightly of normal. Therefore we have $r_{f}(\lambda) \geq\left\|f^{\prime}(\lambda)+\epsilon_{g}(\lambda)\right\|^{2} /\left\|f^{\prime \prime}(\lambda)+\epsilon g^{\prime \prime}\right\|$ which converges to $r_{f}(\lambda)$ as $\epsilon \rightarrow 0$.

The theorem in stated only for curves f defined on compact sets. This is not such a reatriction as it might soem at first glance. The notorious space filling curves are excluded, but they are of little interest anyway. If the density h has infinite support, we have to box it in $\mathbb{R}^{\boldsymbol{\prime}}$ in order that f, defined on a compact set, can satisfy either statement of the theorem. (We show this later.) In practice this is not a restriction.

Proof of theorem 4.3.

We use the dominated convergence theorem (Chung, 1974 pp 42) to show that we can interchange the orders of integration and differentiation in the expression

$$
\begin{equation*}
\frac{d}{d e} D^{2}\left(h, f_{k}\right)=\frac{d}{d e} \mathbf{E}_{h}\left\|X-f_{e}\left(\lambda_{f_{k}}(X)\right)\right\|^{2} \tag{4.3}
\end{equation*}
$$

We need to find a random variable Y which is integrable and dominates almost surely the absolute value of

$$
Z_{e}=\frac{\left\|x-f_{f}\left(\lambda_{f}(x)\right)\right\|^{2}-\left\|x-f^{\prime}\left(\lambda_{f}(x)\right)\right\|^{2}}{\epsilon}
$$

for all $\epsilon \geq 0$. Notice that by definition

$$
\lim _{c \rightarrow 0} z_{s}=\left.\frac{d}{d \epsilon}\left\|X-f_{c}\left(\lambda_{f_{c}}(X)\right)\right\|^{2}\right|_{\varepsilon=0}
$$

if this limit exists. Now

$$
Z_{a} \leq \frac{\left\|x-f_{f}\left(\lambda_{f}(x)\right)\right\|^{2}-\left\|x-f\left(\lambda_{f}(x)\right)\right\|^{2}}{\epsilon}
$$

Expanding the first norm we get

$$
\left\|x-f_{f}\left(\lambda_{f}(x)\right)\right\|^{2}=\left\|x-f\left(\lambda_{f}(x)\right)\right\|^{2}+\epsilon^{2}\left\|g\left(\lambda_{f}(x)\right)\right\|^{2}-2 \epsilon\left(x-f\left(\lambda_{f}(x)\right)\right) \cdot g\left(\lambda_{f}(X)\right)
$$

and thus

$$
\begin{aligned}
Z_{s} & \leq-2\left(X-f\left(\lambda_{f}(X)\right)\right) \cdot g\left(\lambda_{f}(X)\right)+\epsilon\left\|g\left(\lambda_{f}(X)\right)\right\|^{2} \\
& \leq Y_{1}
\end{aligned}
$$

where Y_{1} is some bounded random variable.
Similarly we have

$$
z_{\varepsilon} \geq \frac{\left\|x-f_{\varepsilon}\left(\lambda_{f_{c}}(x)\right)\right\|^{2}-\left\|x-f\left(\lambda_{f_{d}}(x)\right)\right\|^{2}}{\epsilon}
$$

We expand the first norm again, and get

$$
\begin{aligned}
Z_{6} & \geq-2\left(X-f\left(\lambda_{f_{a}}(X)\right)\right) \cdot g\left(\lambda_{f_{c}}(X)\right)+\epsilon\left\|g\left(\lambda_{f_{c}}(X)\right)\right\|^{2} \\
& \geq Y_{2}
\end{aligned}
$$

where Y_{2} is once again some bounded random variable. These two bounds satisfy the conditions of the dominated convergence theorem, and so the interchange is justified. However, from the form of the two bounds, and because f and g are continuous functions, we see that the limit $\lim _{c \rightarrow 0} Z_{c}$ exists whenever $\lambda_{f_{c}}(X)$ is continuous in ϵ at $\epsilon=0$. Moreover, this limit is given by

$$
\begin{aligned}
\lim _{c \rightarrow 0} Z_{d} & =\left.\frac{d}{d e}\left\|X-f_{c}\left(\lambda_{f}(X)\right)\right\|^{2}\right|_{c=0} \\
& =-2\left(X-f\left(\lambda_{f}(X)\right)\right) \cdot g\left(\lambda_{f}(X)\right) .
\end{aligned}
$$

We show in lemma 4.3 .1 that this continuity condition is met almost surely.

We denote the distribution function of $\lambda_{f}(X)$ by h_{λ}, and get

$$
\begin{equation*}
\left.\frac{d}{d \varepsilon} D^{2}\left(h, f_{f}\right)\right|_{\epsilon=0}=-2 E_{k_{\lambda}}\left(E\left(X \mid \lambda_{f}(X)=\lambda\right)-f(\lambda)\right) \cdot g(\lambda) . \tag{4.4}
\end{equation*}
$$

If $f(\lambda)$ is a principal curve of h, then $E\left(X \mid \lambda_{f}(X)=\lambda\right)=f(\lambda)$ for all λ in the support of h_{λ}, and thus

$$
\left.\frac{d}{d \epsilon} D^{2}\left(h, f_{c}\right)\right|_{\epsilon=0}=0 \quad \forall \text { differentiable } g .
$$

Alternatively, suppose that

$$
\begin{equation*}
E_{n_{\lambda}}\left(E\left(X-f(\lambda) \mid \lambda_{f}(X)=\lambda\right) \cdot g(\lambda)\right)=0 \tag{4.5}
\end{equation*}
$$

for all differentiable g. In particular we could pick $g(\lambda)=\mathbb{E}\left(X \mid \lambda_{f}(X)=\lambda\right)-f^{\prime}(\lambda)$. Then

$$
\mathbf{E}_{\lambda}\left\|E\left(X \mid \lambda_{f}(X)=\lambda\right)-f(\lambda)\right\|^{2}=0
$$

and consequently f is a principal curve. This choice of g, however, might not be differentiable, so some approximation is needed.

Since (4.5) holds for all differentiaule g we can use different g 's to knock off different pieces of $\mathrm{E}\left(\boldsymbol{X} \mid \lambda_{f}(X)=\lambda\right)-f(\lambda)$. In fact we can do it one co-ordinate at a tirne. For example, suppose $E\left(X_{1} \mid \lambda_{f}(X)=\lambda\right)$ is positive for almost every $\lambda \in\left(\lambda_{0}, \lambda_{1}\right)$. We suggest why such an interval will always exist. We will show that $\lambda_{f}(x)$ is continuous at almost every x. The set $\left\{X \mid \lambda_{f}(X)=\lambda \in\left(\lambda_{0}, \lambda_{1}\right)\right\}$ is the set of X which exist in an open connected set in the normal plane at λ, and these normal planes vary smoothly as we move along the curve. Since the density of X_{1} is smooth, it does not change much as we move from one normal plane to the next, and thus its expectation does not change much either. We then pick a differentiable g_{1} so that it is also positive in that interval, and zero elsewhere, and set $g_{2} \equiv \cdots \equiv g_{p} \equiv 0$. We apply the theorem and get $E\left(X_{1} \mid \lambda_{f}(X)=\lambda\right)=f_{1}(\lambda)$ for $\lambda \in\left(\lambda_{0}, \lambda_{1}\right)$. We can do this for all such intervals, and for each co-ordinate, and thus the result is true.

Corollary

If a principal curve is a straight line, then it is a principal component.

Proof

If f is a principal curve, then theorem 4.3 is true for all g, in particular for $q(\lambda)=\lambda v$. We then invoke theorem 4.2.

In order to complete the proof, we need to prove the following

Lemma 4.3.1

The projection function $\lambda_{f_{c}}(x)$ is continuous at $\epsilon=0$ for almost every x in the support of h.

Proof

Let us consider first where it will not be continuous. Suppose there are two points on \dot{f} equidistant from x, and no other points on f are as close to x. Thus $\exists \lambda_{0}>\lambda_{1}, \lambda_{f}(x)=\lambda_{0}$ and $\left\|x-f\left(\lambda_{0}\right)\right\|=\left\|x-f\left(\lambda_{1}\right)\right\|$. It is easy to pick g in this situation such that $\lambda_{f}(x)$ is not continuous at $\epsilon=0$. We call such points ambiguous. Hovever, we prove in lemma 4.3.2 that the set. of all ambiguity points for a finite length differentiable curve has measure zero. We thus exclude them.

Suppose $\omega>0$ is given, and there is no point on the curve as close to x as $f\left(\lambda_{\rho}(x)\right)=$ $f\left(\lambda_{0}\right)$. Thus $\left\|x-f\left(\lambda_{0}\right)\right\|<\left\|x-f\left(\lambda_{1}\right)\right\| \forall \lambda_{1} \in[a, b] \cap\left(\lambda_{0}-\omega, \lambda_{0}+\omega\right)^{c}$. (Notice that at the boundaries the ω interval can be suitably redefined.) Since this inter:al is compact, and the distance functions are differentiable, we ean find a $\delta>0$ such that $\left\|x-f\left(\lambda_{0}\right)\right\| \leq$ $\left\|x-f\left(\lambda_{1}\right)\right\|-\delta$. Let $M=\sup _{\lambda \in[0,0]}\|g(\lambda)\|$ and $\epsilon_{0}=\delta /(2 M)$. Then $\left\|x-f_{0}\left(\lambda_{0}\right)\right\|<$ $\left\|x-f_{c}\left(\lambda_{1}\right)\right\| \forall \lambda_{1} \in[a, b] \cap\left(\lambda_{0}-\omega, \lambda_{0}+\omega\right)^{d}$ and $\dot{\forall} \in \leq \epsilon_{0}$. This implies that $\lambda_{f_{c}}(x) \in$ ($\lambda_{0}-\dot{\omega}, \lambda_{0}+\omega$), and the continuity is eatablished.

Lemma 4.3.2

The set of ambiguity points has probability measure zero.

Proof

We prove the lemma for a curve in 2 -space, but the proof generalizes to higher dimensions. Referring to figure 4.2, suppose a is an ambiguity point ior the curve f at λ. We draw the circle with center a and tangent to f at λ. This means that f must be tangent to the circle somewhere else, say at $f\left(\lambda^{\prime}\right)$. If b on the normal at $f(\lambda)$ is also an ambiguity point, we can draw a similar circle for it. But this contradicts the fact that $f(\lambda)$ is the closest point to a,

Fig.ure 4.2 There are at most two ambiguity points on the normal to the curve; one on either side of the curve.
sisee the circle for b lies entirely inside the circle for a, and by the ambiguity of b we know the curve must touch this inner circle somewhere other than at $f(\lambda)$.

Let $I(X)$ be an indicator function for the set of ambiguity points. Since ther are at most two at each λ, we have that $E\left(I(X) \mid \lambda_{f}(X)=\lambda\right)=0$. But this also implies that the unconditional expectation is zero.

Corollary

The projection index $\lambda_{f}(x)$ is continuous at almost every x.

Proof

We show that if $\lambda_{f}(x)$ is not continuous at x, then x is in ambiguity point. But this set has measure zero by lemma 4.3.2.

If $\lambda_{f}(x)$ is not continuous at x, there exists a $\epsilon_{0} * 0$ such that for every $\delta>0 \exists z_{\delta}$ such that $\left\|x-z_{6}\right\|<\delta$ but $\left|\lambda_{f}(x)-\lambda_{f}\left(z_{f}\right)\right|>\varepsilon_{0}$. Lettinis δ go to zero, we see that $z_{\text {must }}$

Figure 4.3 The set of pointe to the right of $f(a)$ that project there has mesure sero.
be equidistant to $\lambda_{f}(x)$ and at least one other point on the curve with projection index at leist ϵ_{0} from $\lambda_{f}(x)$.
\square

Theorem 4.3 proves the equivaience of two statements: f is a principal curve and f is a critical value of the distance funciton. We needed to assume that f is defined on a compact set A. This means that the curve has two ends, and any data beyond the ends might well project at the endpoints. This leaves some doubt as to wether the endpoint can be the average of theae points. The next lemme shows that for either statement of the theorem to be true, some truncacion of the support of h might be necessary, if the support is unbounded).

Lemma 4.3.3

If f is a principal curve, then $\left(z-f\left(\lambda_{f}(x)\right)\right) \cdot f^{\prime}\left(\lambda_{f}(x)\right)=0$ as. for x in the support of h. If $\left.\frac{d D^{2}\left(a_{1}, f\right)}{d}\right|_{G=0}=0 \vee$ differentiable , then the same is true. By $f^{\prime}(a)$ wo mean the derivative from the right, and similarly from the left for $f^{\prime}(b)$.

Proof

If $\lambda_{f}(x) \in(a, b)$ the $p=o o f$ is immediate. Suppoee then that $\lambda_{f}(x)=a$. Rotate the co ordinates so that $f^{\prime}(a)=e_{1}$. No pointa to the left of $f(a)$ project there. Suppose f is a
principal curve. This then impliee that the set of points that are to the right of $f(a)$ and project at $f(a)$ has conditional mesoure zero, else the conditional expectation would be to the right. Thus they also have unconditional meacure zero.

Alternatively, suppose that there is aset of x of positive measure co the right of $f(a)$ that projecte there. We can construct g such that $g(a)=f^{\prime}(a)$, and sero everywhere else. For such a choice $\alpha \rho$ it in clear that the derivative cannot be zera. However, this choice of g in not continuous. But we can conatruct i version of g that is differeatiable and does the anme job as o. We have then reached a contradiction to the claim that $\left.\frac{d D^{2}(h, f)}{d a}\right|_{d=0}=0 \forall$ differentisble g .

4.3. Some results on the subclass of smooth principal curves.

We have defined a eubeet $f_{f}(h)$ of principal curven. These are principal curves for which $\lambda_{f}(x)$ is a continuous function at each z in the support of h. In the previous section we showed that if $\lambda_{f}(x)$ is not continuous at x, then x is an ambiguity point. We now prove the converse: no points of coatinuity are ambiguity points. Thim will prove that the coatinuity constraint indoed avoide ambiguitios in projection.

In figure 4.4e the curve is amooth but it wrape around mo that pointe clowe together might project to completeiy different parts of the curve. This reflecte a global property of the curve and prowente an ambiguity that is unsatirfactory in a summary of a distribution.

Thsorem 4.4

If $\lambda_{f}(x)$ is continuous at x, then x is not an ambiguity point.

Proof

We prove by contradiction. Suppose we have an x, and $\lambda_{1} \neq \lambda_{2}$ such that

$$
\begin{aligned}
\left\|z-f\left(\lambda_{1}\right)\right\| & =\left\|x-f\left(\lambda_{2}\right)\right\| \\
& =d(x, f)
\end{aligned}
$$

It is eny to ace that if λ_{1} yielde the clocest point on the curve for x, then λ_{1} is the pooition that yielde the minimum for all $x_{a_{1}}=\alpha_{1} f\left(\lambda_{1}\right)+\left(1-\alpha_{1}\right) \geq$ for $a \in(0,1)$. Similarly for λ_{2}. Now the idea is to lot a_{1} and a_{3} got arbitrarily amall, and thue $\left\|x_{a_{1}}-x_{e_{9}}\right\|$ geta small, but $\lambda_{f}\left(x_{a_{1}}\right)-\lambda_{f}\left(x_{a_{3}}\right)=$ conatent and this violatee the continuity of $\lambda_{f}(\cdot)$

Figure 4.4b ropriesnts the other ambiguous situation, this time caused by a local property of the curve. We consider only pointe ineide the curve. If auch pointe can occur at

PIgure 4.4 The continaity constraist avoids global ambiguities (a) and local anbigition (b) in projoction.
the center of curveture, thes there in no unique point of projection on the curve. By inside we mean that the inner product $\left(s-f\left(\lambda_{f}(x)\right)\right) \cdot\left(c_{f}\left(\lambda_{f}(x)\right)-f\left(\lambda_{f}(x)\right)\right)$ is non-negative, whert $e_{f}(\lambda)$ in the center of curvature off at the point $f(\lambda)$.

Theorem 4.5

If $\lambda_{f}(x)$ in continuon at x, then m in not at the center of curvature of f at λ.

Proof

The ides of the proof in illustrated in figure 4.4b. If a point at $e_{f}(\lambda)$ projecte at λ, then it will project at many ofher pointa ummediately around λ, aince locally $f(\lambda)$ behaven like the arc α a circle with ceater $e_{f}(\lambda)$. This would contradict the continuity of λ_{ρ}. Furthermore, if a point at $\&$ beyosd $e_{f}(\lambda)$ projecte at λ, we would expect that points on either side of z moald project to difierent perte of the curve, and this would also coatradict the continuity of λ_{f}.

We now make these ideas precise. Assume z projects at $\lambda_{f}(z)=\lambda_{0}$, where

$$
z=f\left(\lambda_{0}\right)+\frac{f^{\prime \prime}\left(\lambda_{0}\right)}{\left\|f^{\prime \prime}\left(\lambda_{0}\right)\right\|}\left(\frac{1}{\left\|f^{\prime \prime}\left(\lambda_{0}\right)\right\|}+\delta\right)
$$

and $\delta \geq 0$. Thus z is on or beyond the center of curvature of f at λ_{0}. Let $q(\lambda) \stackrel{d \alpha}{=}\|f(\lambda)-z\|$. By hypotheais $q(\lambda) \geq q\left(\lambda_{0}\right)$ with equality holding iff $\lambda=\lambda_{0}$. (Otherwise there would be at leat two points on the curve the same distance from z and this would violste the continuity $\left.o f \lambda_{f}\right)$. This impliee that
(1) $\Phi^{\prime}\left(\lambda_{0}\right)=0$
(2) $q^{\prime \prime}\left(\lambda_{0}\right)>0$ for a atrict minimum to be achieved.

We evaluate these two conditions:

$$
\begin{aligned}
f^{\prime}\left(\lambda_{0}\right) & =f^{\prime}\left(\lambda_{0}\right) \cdot\left(f\left(\lambda_{0}\right)-z\right) \\
& =f^{\prime}\left(\lambda_{0}\right) \cdot-\frac{f^{\prime \prime}\left(\lambda_{0}\right)}{\left\|f^{\prime \prime}\left(\lambda_{0}\right)\right\|}\left(\frac{1}{\left\|f^{\prime \prime}\left(\lambda_{0}\right)\right\|}+\delta\right) \\
& =0 \\
f^{\prime \prime}\left(\lambda_{0}\right) & =f^{\prime \prime}\left(\lambda_{0}\right) \cdot\left(f\left(\lambda_{0}\right)-x\right)+f^{\prime}\left(\lambda_{0}\right) \cdot f^{\prime}\left(\lambda_{0}\right) \\
& =f^{\prime \prime}\left(\lambda_{0}\right) \cdot-\frac{f^{\prime \prime}\left(\lambda_{0}\right)}{\left\|f^{\prime \prime}\left(\lambda_{0}\right)\right\|}\left(\frac{1}{\left\|f^{\prime \prime}\left(\lambda_{0}\right)\right\|}+\delta\right)+1 \\
& =-\left\|f^{\prime \prime}\left(\lambda_{0}\right)\right\| \delta \\
& \leq 0
\end{aligned}
$$

which contradicts (2) above.

4.4. Some results on bias.

The principal curve procedure in inherently biased. There are two forms of bias that can occur concurrently. We identify them an model bies and estimation biea.

Model bias occurs in the framework of a functional model, where the data is generated from a model of the form $x=f(\lambda)+c$, and we wish to recover $f(\lambda)$. In general, starting st $f(\lambda)$, the principal curve procedure will not have $f(\lambda)=$ its solution curve, but rather a biaed version thereof. This biag goes to zero with the ratio of the noise variance tothe radius of curvature.

Eetimstion bias occurs because we use scatterplot smoothers to estimate conditional expectaxions. The bia is introduced because we average over neighborhoods, and this uqualiy has a flattening effect.

Pigure 4.5 The data is generated from the arc of a circle with radine ρ and with iid $N\left(0, \sigma^{2} n\right)$ errors. The location on the circle is selocted uniformly.

4.4.1. A simple model for investigating bias.

The scemario we shall consider is the are of a circle in 2-apace. This can be parametrized by a unit apeed curve $f(\lambda)$ with constant curvature $1 / \rho$, where ρ is the radius of the circle:

$$
\begin{equation*}
f(\lambda)=\binom{\rho \cos (\lambda / \rho)}{\rho \sin (\lambda / \rho)} \tag{4.6}
\end{equation*}
$$

for $\lambda \in\left[-\lambda_{f}, \lambda_{f}|\subseteq|-\pi \rho, \pi \rho \mid\right.$. For the remainder of this section we will denote intervals of the type $\left[-\lambda_{0}, \lambda_{0}\right]$ by Λ_{0}.

The pointe s are geaerated as follown: First a λ is selected uniformly frum Af $_{f}$. Given this value of λ we pick the point is from some amooth symmetric distrioution with first two mocients $\left(f(\lambda), \sigma^{2} I\right)$ where o hae yet to be apecified. Intuitively it seems that more mass geta put onteide the circle than inaide, and so the circle, or are thereof, that gets closeat to the data has radius larger than ρ. Consider the pointa that project onto a small are of the circle (yee figure 4.5). They lie in a megment which fans out from the origin. As we ahrink this are down to a point; the segment shrinks down to the normal to the curve at that point, but there in always more mase outaide the circle than inside. So when we take conditional expectationa, the mean liee outside the circle.

One mould hope that the principal curve procedure, operating in distribution space
and starting at the true curve; would converge to this minimizing distance circle in this idealized situation. It turns out that this is indeed the case.

Figure 4.5 depicte the situation. We have in mind situations where the ratio σ / ρ is amall enough to guarantee that $\mathbf{P}(|e|>\rho) \approx 0$. This effectively keeps the points local; they will not project to a region on the circle too far from where they were generated.

Theorem 4.6

Let $f(\lambda), \lambda \in \Lambda_{\rho}$ be the arc of a circle as described above. The parameter λ is distributed uniformly in the arc, and given $\lambda, z=f(\lambda)+e$ where the components of e are iid with mean 0 variance σ^{2}. Wh concentrate on a smaller arc Λ_{f} inside Λ_{f}, and assume that the ratio σ / ρ is amall enough to guarantee that all the points that froject into Λ_{8} actually originated from somewhere within Λ_{f}.

Then

$$
E\left(x \mid \lambda_{f}(x) \in \Lambda_{0}\right)=\binom{r_{0}}{0}
$$

where

$$
\begin{equation*}
r_{i}=r^{*} \frac{\sin (\theta / 2)}{\theta / 2}, \tag{4.7}
\end{equation*}
$$

$\lambda_{0} / \rho=\theta / 2$ and

$$
\begin{aligned}
r^{*} & =\lim _{h \rightarrow 0} r_{0} \\
& =\Sigma \sqrt{\left(\rho+e_{1}\right)^{2}+e_{2}^{2}} .
\end{aligned}
$$

Finally $\mathrm{r}^{*} \rightarrow \rho$ as $\sigma / \rho \rightarrow 0$.

Lemma 4.6.1

Suppose $\lambda_{f}=\pi \rho$. (We have a full circle.) The radius of the circle, with the same center se $f(\lambda)$, that minimizes the expected equared distance to the points is*

$$
\begin{aligned}
r & =\mathbf{v} \sqrt{\left(p+e_{1}\right)^{2}+e_{2}^{2}} \\
& >p
\end{aligned}
$$

Aleo $r^{*} \rightarrow \rho$ as $\sigma / \rho \rightarrow 0$.

[^5]
Proof of lemma 4.6.1

The situation is depicted in Figure 4.5. For a given point x the squared distance from a circle with radius r is the radial distance and is given by

$$
d^{2}(x, r)=(\|x\|-r)^{2}
$$

The expected drop in the aquared diatance using a circle with radius r instead of ρ is given by

$$
\begin{align*}
\boldsymbol{E} \Delta D^{2}(x, r, \rho) & =\Psi d^{2}(x, \rho)-F d^{2}(x, r) \\
& =\Psi(\|x\|-\rho)^{2}-\boldsymbol{F}(\|x\|-r)^{2} \tag{4.8}
\end{align*}
$$

We now condition on $\lambda=0$ and expand (4.8) to get

$$
E \Delta D^{2}(\lambda, r, \rho \mid \lambda=0)=\rho^{2}-r^{2}+2(r-\rho) E \sqrt{\left(\rho+e_{1}\right)^{2}+e_{2}^{2}}
$$

Differentiaing w.r.t. Twe see that a maximum is achieved for

$$
\begin{aligned}
& r=r^{*} \\
& =\Gamma \sqrt{\left(\rho+e_{1}\right)^{2}+e_{2}^{2}} \\
& r_{0}=\rho \mathbb{E} \sqrt{\left(1+e_{1} / \rho\right)^{2}+\left(e_{2} / \rho\right)^{2}} \\
& \geq \rho \boldsymbol{\Gamma}\left|1+c_{1} / \cdot \rho\right| \\
& \geq \rho\left|E\left(1+e_{1} / \rho\right)\right| \text { (Jensen) } \\
& =p
\end{aligned}
$$

with atrict inequality iff $\operatorname{Var}(\varepsilon / \rho)=\sigma^{2} / \rho^{2}=0$. Note that

$$
\begin{equation*}
\Delta \Delta D^{2}\left(\varepsilon, r^{*}, \rho\right)=\left(\rho-\mathrm{E} \sqrt{\left(\rho+\epsilon_{1}\right)^{2}+e_{2}^{2}}\right)^{2} \tag{4.9}
\end{equation*}
$$

which is non-negative.
When we condition on some other value of λ, we can rotate the system around so that $\boldsymbol{\lambda}=\mathbf{0}$ since the distance is invariant to such rotations, and thus for each value of λ the same r maximizes $\boldsymbol{r} \Delta D^{2}(x, r, p \mid \lambda)$, and thus maximizes $\mathbb{S} \Delta D^{2}(x, r, p)$.

Note: We can write the expression for r^{*} as

$$
\begin{equation*}
r^{*}=\rho \mathrm{E} \sqrt{\left(1+\epsilon_{1}\right)^{2}+\epsilon_{2}^{2}} \tag{4.10}
\end{equation*}
$$

where $\epsilon_{i}=\epsilon_{i} / \mu, \epsilon_{i} \sim(0, \delta)$, and $\delta=\sigma / \rho$. Expanding the square root expression using the Taylor's expansion we get

$$
\begin{equation*}
r^{*} \approx \rho+\sigma^{2} /(2 \rho) . \tag{4.11}
\end{equation*}
$$

This yields an expected squared distance of

$$
E d^{2}\left(x, r^{0}\right) \approx \sigma^{2}-\sigma^{4} /\left(4 \rho^{2}\right)
$$

which is amaller than the usual σ^{3}. This expression was also obtained by Efron (1984).

Proof of theorem 4.6.

We will show that in a segment of size ϕ the expected distance from the points in the segment to their mean converges to the expected radial distance as $\phi \rightarrow 0$. If we consider all such segments of size ϕ, the conditional expectations will lie on the circumference of a circle. By definition the conditional expectations minimize the squared distances to the pointe in their segments, and hence in the limit the radial distance in each segment. But so did r°, and the results follow.

Sappose that ϕ is chosen so that $2 \pi / \phi$ is a positive integer. We divide the circle up into segmente each with arc angle ϕ. Consider $E\left(x \mid \lambda_{f}(x) \in \Lambda_{\phi}\right)$, where Λ_{ϕ} and λ_{ϕ} are defined above.

Figure 4.6depicts the situation. The points are symmetrical about the x_{1}-axis, so the expectation will be of the form $(r, 0)^{\prime}$. By the rotational invariance of the problem, if we find these conditional expectations for each of the segments in the circle, we end up with a circle of pointe, spaced ϕ degrees apart with radius r.

We first show that as $\phi \rightarrow 0, r \rightarrow r$. In order to do this, let us compare the distance of points from their mean vector $r=(r, 0)^{\prime}$ in the segment, to their radial distance from the circle with radius r . If we let $\mathrm{r}(\mathrm{x})$ denote the radial projection of x onto the circle, we have

$$
\begin{align*}
E \mid\left(x-\Sigma\left(x \mid \lambda_{f}(x) \in \Lambda_{\phi}\right)^{2} \mid \lambda_{f}(x) \in \Lambda_{\phi}\right] & =\Psi\left[(x-r)^{2}\left|\lambda_{f}(x) \in \Lambda_{\phi}\right|\right. \tag{4.12}\\
& \geq \mathbb{E}\left[(x-r(x))^{2}\left|\lambda_{f}(x) \in \Lambda_{\phi}\right|\right.
\end{align*}
$$

Also, we have

$$
\begin{align*}
E\left((x-r)^{2}\left|\lambda_{f}(x) \in \Lambda_{\phi}\right|\right. & \\
& =E\left[(x-r(x))^{2} \mid \lambda_{f}(x) \in \Lambda_{\phi}\right]+E\left|(r(x)-r)^{2}\right| \lambda_{f}(x) \in \Lambda_{\phi} \mid \\
& -2 E\left(|r(x)-r||x-r(x)| \cos (\psi(x)) \mid \lambda_{f}(x) \in \Lambda_{\phi}\right) \tag{4.13}
\end{align*}
$$

Figure 4.6 The conditional expectation of x, given $\lambda_{f}(x) \in \mathbb{A}_{4}$.
where $\phi(x)$ are the anglee a depicted in figure 4.6. The second term on the right of (4.13) is amaller than $(r \phi / 2)^{2}$. We treat separately the case when x is inside the circle, and when x is outside.

- When x in inside the circle, $\psi(x)$ in acute and hence $\cos (\psi(x))>0$. Thus

$$
\begin{align*}
E\left[(r-r)^{2}\left|\lambda_{f}(x) \in \Lambda_{\phi}\right|\right. & \\
& \leq E\left[(x-r(x))^{2} \mid \lambda_{f}(x) \in \Lambda_{\phi}\right]+O(\phi) \tag{4.14}
\end{align*}
$$

- When x is outaide the circle, $\psi(x)$ is obtuse and $\cos (\psi(x))<0$. Since $-\cos (\psi(x))=$ $\sin (\psi(x)-\pi / 2)$ and from the figure $\psi(x)-\pi / 2 \leq \phi / 4$, we have that $-\cos (\psi(x)) \leq$ $\sin (\phi / 4)=O(\phi)$. Now $E\left[(|r(x)-r| \cdot|x-r(x)|)\left|\lambda_{f}(x) \in \Lambda_{\phi}\right|\right.$ is bounded since the erroce are amumed to have finite socond momenta. Thus (4.14) once again holds.
So from (4.12) and (4.14), an $\boldsymbol{\phi} \rightarrow 0$, the expected squared radial distance in the segment and the expected squared distance to the mean vector converge to the same limit. Suppose

$$
\begin{aligned}
\Sigma\left(x \mid \lambda_{f}(x)=0\right) & =r * * \\
& =\binom{r * *}{0}
\end{aligned}
$$

Sirce the conditional expectation $r^{\bullet \bullet}$ minimizes the expected squared distance in the segmont, this tells us that a circle with radius $r^{* *}$ minimizes the radial distance in the segment. Since, by rotational symmetry, this is true for each such segment, we have that $r^{* * *}$ minimizes

$$
\left.E_{\phi} E(\|x\|-r)^{2} \mid \lambda_{f}(x)=\phi\right)=E(\|x\|-r)^{2} .
$$

This then implies that $r^{\circ *}=r^{*}$ by lemma 4.6.1 and thus

$$
\begin{aligned}
\lim _{t \rightarrow 0} \mathbf{E}\left(x \mid \lambda_{f}(x) \in \Lambda_{\phi}\right) & =\mathbf{\Sigma}\left(x \mid \lambda_{f}(x)=0\right) \\
& =r^{*} .
\end{aligned}
$$

This is the conditional expectation of points that project to a an arc of size 0 or simply a point. In order to get the conditional expectation of points that project onto an arc of size D, we simpiy integrate over the arc:

$$
\mathbf{F}\left(x \mid \lambda_{f}(x) \in \Lambda_{0}\right)=\mathbf{E}_{\lambda_{f}}(x) \in \Lambda_{0} \mathbf{E}\left(x \mid \lambda_{f}(x)=\lambda\right)
$$

Suppose λ corrasponds to an angle x, then

$$
F\left(z \mid \dot{\lambda_{f}}(z)=\lambda\right)=\binom{r^{\bullet} \cos (z)}{r^{*} \sin (z)}
$$

Thus

$$
\begin{align*}
& =\binom{r \cdot \frac{\operatorname{in}(6 / 2)}{d / 2}}{0} \tag{4.15}
\end{align*}
$$

Corollary

The above reaulta generalize exactly for the situation where data is generated from a sphere in $\boldsymbol{R}^{\mathbf{3}}$. The sphere that gete cloeest to the data has radius

$$
r^{*}=E \sqrt{\left(\rho+e_{1}\right)^{2}+e_{2}^{2}+e_{3}^{2}}
$$

and this is exactly the conditional expectation of x_{1} for points whose projection is at $(0,0,0)^{\prime}$.

Corollary

If the data is generated from the circumference of a circle as above, the principal curve procedure convergen after one iteration if we start at the model. This is also true for the principal surface procedure if the data is generated from the surface of a sphere.

Proof

After one iteration, we have a circle with radius r^{*}. All the points project at exactly the same position, and so the conditional expectations are the same. This is also true for the principal nurface procedure on the sphere.

4.4.2. From the circle to the helix.

The circle givee un insight into the behaviour of the principal curve procedure, since we can imagine any amooth curve as being made up of many arcs of circles. Equation (4.15) clearly separatee and demonstrates the two forms of bias:

- Model bian since $r^{\bullet} \geq \rho$.
- Eatimation bias since the co-ordinate functions are shrunk by a factor $\sin (\theta / 2) /(\theta / 2)$ when we average within ares or spans of aize θ.

For as sufficiently large apan, the eatimation bias will dominate. Suppose that in the present setup, $\sigma=\rho / 4$. Then from (4.11) we have that $r^{*}=1.031 \rho$. From (4.7) we see that a anoother with span corresponding to 0.27π or 14% of the observations will cancel this effect. This is considered a small apan for moderate sample sizes. Usually the estimation bias.will tend to flatten out curvature. This is not always the case, as the circle example demonstrates. In this special setup; the center of curvature remains fixed and the result of fattening the co-ordinate functions in to reduce the radius of the circle. The central idea is still clear: model bias is in a direction away from the center of curvature, and estimation bine towards the center.

We can consider a circle to be a flattened helix. We show that as we unflatten the helix, the effect of eatimation biai changes from roducing the radius of curvature to increasing it.

To fix idese we consider again the circle in \boldsymbol{R}^{2}. As we have observed the result of eatimation and model bias is to reduce the expected radius from 1 to r (for a non-zero span
smoother such that $r<1$). Thus we have

$$
\hat{f}_{0}=\binom{r \cos (\lambda)}{r \sin (\lambda)}
$$

with $\left\|\hat{f}_{0}^{\prime}(\lambda)\right\| \equiv r$. The repsameterized curve is given by

$$
\hat{f}=\binom{r \cos (\lambda / r)}{r \sin (\lambda / r)},
$$

and by definition the radius of curvature is $r<1$. Here the center of curvature remains the same, but this is not usually the case.

A unit speed helix in $\mathbb{R}^{\mathbf{3}}$ can be represented by

$$
f(\lambda)=\left(\begin{array}{c}
\cos (\lambda / c) \\
\sin (\lambda / c) \\
b \lambda / c
\end{array}\right)
$$

where $c^{2}=1+b^{2}$. It is easy to check that $r_{f}=1+b^{2}$, so even though the helix looks like a circle with radius 1 when we look down the center, it has a radius of curvature larger than 1. This is because the osculating plane, or plane spanned by the normal vector and the velocity vector, makes an angle with the $x_{1}-x_{2}$ plane. In the case of a circle, the effect of the smoothing was to shrink the co-ordinates by a factor r. For a certain span smoother, the helix co-ordinates will become $(r \cos (\lambda / c), r \sin (\lambda / c), b \lambda / c)^{\prime}$.' Notice that straight lines are preserved by the smoother. Thus the new unit speed curve is given by

$$
\hat{f}(\lambda)=\left(\begin{array}{c}
r \cos \left(\lambda / c^{*}\right) \\
r \sin \left(\lambda / c^{*}\right) \\
b \lambda / c^{*}
\end{array}\right),
$$

where $c^{4}=r^{2}+b^{2}$. The radius of curvature is now $\left(r^{2}+b^{2}\right) / r$. If we look at the difference in the radii we get

$$
\begin{aligned}
r_{f}-r_{f} & =\frac{r^{2}+b^{2}}{r}-1+b^{2} \\
& =\frac{(1-r)\left(b^{2}-r\right)}{r} \\
& >0 \text { if } b^{2}>r
\end{aligned}
$$

This satisfies our intuition. For small b the helix is almost like a circle and so we expect circular behaviour. When b gets large, the helix is stretched out and the smoothed version has a larger radius of curvature.

4.4.3. One more bias demonstration.

We conclude this section with one further example. So far we have discussed bias in a rather overaimplified situation of constant curvature.

Figure 4.7. The thick curve is the the principal curve using conditional expectations at the model, and ahows the model biac. The two dashed curves show the compounded effect of model and estimation bias at apans of 30% and 40%.
\hat{A} sine wave in $\mathbf{R}^{\mathbf{2}}$ does not have constant curvature. In parametric form we have

$$
f(\lambda)=\binom{\lambda \pi}{\sin (\lambda x)}
$$

A simple calculation shows that the radius of curvature $r_{f}(\lambda)$ is given by

$$
\frac{1}{r_{f}(\lambda)}=\frac{\sin (\lambda x)}{\left(1+\cos ^{2}(\lambda x)\right)^{\frac{3}{3 / 2}}},
$$

and achieves a minimum radius of 1 unit. The model for the data is $X=f(\lambda)+e$ where $\lambda \sim U[0,2]$ and $e \sim N(0, I / 4)$ independent of λ. Figure 4.7shows the true model (solid curve), and the points are a sample from the model, included to give an idea of the error structure. The thick curve is $\boldsymbol{E}\left(\boldsymbol{X} \mid \lambda_{f}(X)=\lambda\right)$. Here is a situation where the model bias results in a curve with more curvature, nameiy a minimum radius of 0.88 units. This
curve was found by simulation, and is well approximated by $1 / 0.88 \sin (\lambda \pi)$. There are two dashed curves in the figure. They represent $E\left(X \mid \lambda_{f}(X) \in \Lambda_{p}(\lambda)\right.$, where $\Lambda_{f}(\lambda)$ represents a symmetric intervat of length si about λ (Boundary effects were eliminated by cyclically extending the range of λ.) We see that at $s=30 \%$ the estimation bias approximately cancels out the model bias, whereas at $s=40 \%$ there is a residual estimation bias.

4.5. Prirsipal curves of elliptical distributions.

We have seen that for elliptical distributions the principal components are principal curves. Are there any more principal curves? We first of all consider the uniform dise with no holes. For this distribution we propose the following:

Figure (4.8) The only principal curves in $\mathcal{F}_{c}(h)$ of a uniform disk are the principal components.

Proposition

The only principal curves in $\mathcal{F}_{\epsilon}(h)$ art straight lines through the center of the disk.
An informal proof of this claim is $8 s$ follows:

- Any principal curve must enter the disk once and leave it once. This must be true since if it were to remain inside it would have to circle around. But this would violate the continuity constraint imposed by $F_{\epsilon}(h)$ since there would have to exist points at
the centers of curvature of the curve at some places. Furthermore, it cannot end inside the disk for reasons sinuilar to those used in lemma 4.3.3.
- The curve enters and leaves the disk normal to the circumierence. For symmetry reasons this must be true. As it enters the disk there must be equal mass on both sides.
- The curve never bends (see figure. 4.8). At the first point of curvature, the normal to the curve will be longer on one side than the other. The set of points that project at this apot will not be conditionally uniformly distributed along the normal. This is because the set is the limit of a sequence of segments with center at the center of curvature of the curve at the point in question. Also, all points in the segment will project onto the arc that generates the segment; if not the continuity constraint would be violated. So in addition to the normal being longer, it will have more mase on the long side as well. This contradicts the fact that the mean lies on the curve.

Thus the only curves allowed are atraight lines, and they will then have to pass through the center of the disk.

Suppose now that we have a convex combination of two disks of different radii but the same centers. A similar argument can be used to show that once again the ooly principal curves are the lines through the center. This then generalizes to any mixture of uniform disks and hence to any spherically symmetric distribution of this form.

We conjecture that for ellipeoidal distributions the only principal curves are the principal componente.

Chapter 5

Algorithmic details

In this chapter we describe in more detail the various constituente of the principal curve and surface agorithme.

5.1. Estimation of curves and surfaces.

We deacribed a simple monoti or local averaging procedure in chapter 4. There it was convenient to deceribe the masother at a method of averaging in p epace, although it has been pointed out that we can do the moothing co-ordinate wise. Ttat simplifies the treatment bere, since we oaly aeed to discus smoothers in their more unual regression context.

Usually a ecatterplot smootber in regarded as an entimate of the conditional expectation $\mathbf{E}(Y \mid X)$, where Y and X are random variables. For our purposis X may be one or two dimensional. We will diveus one dimensional moothers first, since they are eacier to implement than two dimeneional amoothers.

8.1.1. One dimensional moothers.

The following subeet of amootbers evolved naturally as estimates of conditional expectation, and are listed in order of complexity and computational cont.

5.1.1.1 Moving average smoothert.

The simplent and mont natural extimate of $E(Y \mid X)$ is the moving average smoother. Given a maple $\left(w_{i}, s_{i}\right), i=1, \ldots, n$, with the x_{i} in acepding order, we define

$$
\begin{equation*}
\text { smonth, }\left(y \mid x_{i}\right)=\frac{1}{2 k+1} \sum_{z_{j} \in\left|x_{i}-A, x_{i}+a\right|} y_{j} \tag{5.1}
\end{equation*}
$$

where $k=[(n e-1) / 2]$ and $\in \in(0,1]$ is called the span of the amonther. An eatimate of the conditional expectation at x_{i} is the sverage \mathcal{O} the y_{j} for all thoe obeervations with z value equal to x. Since we ually only have one such obeervation, we average the y_{j} for
all thow obeervations with z value cloce to x_{i}. In the definition above, close is defined in the ordinal scale or in rank. We can aloo use the interval acale or simply distance, but this in computationally more expensive. This moving average smoother suffers from a number of drawbacks. it doee not produce very smooth fits and does not even reproduce straight linet unlem the x_{i} are equiapaced. It also suffers from biae effects on the boundaries.

8.1.1.2 Local linear amoothers.

An improvement on the moving average amoother is the local linear smoother of Friedman and Stuetzle (198i). Here the smoother' estimates the conditional expectation at x_{i} by the fitted value from the least aquarea line fit of y on 2 using only those points for which $x_{j} \in\left(x_{i-k}, x_{i+k}\right)$. Thin suffern lam from boundary bias than the moving average and always reproduces atraight linea exactly. The cont of computation for both of the above amoothers is $O(n)$ oparatione. Of course can think of fitting local polynomiala as well, but in practice the gain in bias in amall relative to the extra computational burdes.

5.1.1.3 Locally weighted Binear moothers.

Cleveland (1979) suggented using the bocal linear smoother, but also suggested weighting the points in the saighborbood according to their distance in x from x_{i}. This produces even moother curven at the expense of an increased computation time of $O(k n)$ operstions. (In the local linear smoother, we can obiain the fitted value at x_{i+1} from that at x_{i} by applying some simple updating alporithm to the latter. If local weighting is performed, we can no loager uep upditing formulae.)

8.1.1.4 Kernel amoothere.

Ths kernel amoother (Ganer and Muller, 1979) applies a weight function to every observation in calculating the fit at x_{1}. A variety of weight functione or kernels exist and a popular choice is the gapmian karnol centered at x_{i}. They produce the smoothest functions and are computationally the moet expensive. The cost is $O\left(n^{2}\right)$ operations, although in practice the kernels have a bounded domain and this brings the cont down to O (an) for some othat depeade on the kernel and the date.

In all but the kernel amoother, the apan controls the smoothness of the estimated function. The larger the apan, the amoother the function. In the case of the kernel amoother, there is a seale parameter that controle the spread of the kernel, and the larger the spread, the smoother the function. We will discuse the choice of spans in section 5.4.

For our particular application, it was found that the locally weighted linear smoother and the kernel amoonher produced the most satisfactory reaults. However, when the sample sise gete large, these amoothers become too expensive, and we have to sacrifice smoothness for computational speed. In this case we would use the faster local linear smoother.

5.1.2. Two dimensional smoothers.

There are subatantial differences between one and two dimensional smoothers. When we find neighbors in two apace, we immediately force some metric on the space in the way we define distance. In our algorithm we simply use the euclidean distance and assume the two variables are in the same scale.

It is aleo computationally harder to find neighbors in two dimensions than in one. The k-d !ree (Friedman, Bently and Finkel, 1976) is an efficient algorithm and data structure for finding neighbors in k dimensione. The name arises from the data structure used to speed up the search time - a binary tree. The technique can be thought of as a multivariable veraion of the binary eaurch routine. Friedman et al show that the computation required to build the troe is $O(k n \log n)$ and the expected search time for the m nearest neighbors of any point is $O(\log n)$.

6.1.3. The local planar surface smoother.

We wish to find Smooth $\left(y \mid z_{0}\right)$ where x_{0} is a 2 vector not necessarily present in the sample. The following algorithm in analogous to the local linear smoother:

- Build the 2-d tree for the n pairs $\left(x_{11}, x_{21}\right), \cdots,\left(x_{1 n}, x_{2 n}\right)$.
- Find the ne neareet neighbors of 20 , and fit the least squares plane through their meociated y values.
- The smooth at z_{0} is defined to be the fitted value at $=0$.

This algorithm dow not allow updating'as in the ono-dimensional loeal linear amoother. The computation tim for one fitted value is $O(\log n+n e)$. For this remen, we can include weighte et so extra order in computation cost. We use gausaian weights with covariance $h^{2} I$ and contored at 20 , and h ia another parameter of the procedure.

A simpler varsion of this, amoother uses the (gausaian weighted) average of the y values for the ne neighborm. In the one dimencional caee, we find that fitting local atraight lines reduces the bias at the bounderies. In surface amoothing, the proportion of pointe on the
boundary increases dramatically at we go from one to two dimensions. This provides a atroag motivation for fitting planea instead of simple averages.

5.2. The projection step.

The other atep in the principal curve and surface procedures is to project each point onto the current aurface or curve. In our notation we require $\hat{\lambda}^{(j)}\left(x_{i}\right)$ for each i. We have already deacribed the exact approech in chapter 3 for principal curves, which we repeat here for completeness.

5.2.1. Projecting by exact enumeration.

We project s_{i} inte the line segment joining every adjacent pair of fitted valuea of the curve, and find the clonent such projection. Into implies that when projecting we do not go beyond the two pointe in quention. This procedure in exact but computationally expensive $(O(n)$ opirations per sameh.) Nosethelen, we have used this method on the smaller data sets (≤ 150 obearvationa.) There in no andogue for the principal surface routine.

8.2.2. Projections using the k-d tree.

At each of the n values of $\boldsymbol{\lambda}$ we have a fitted p vector. This is true for either the principal curve or aurface procedure. We can build a p-d tree, and for each x_{i}, find ite neareat neighbor anougrt then fitted values. We then proceed differently for curves and surfacea.

- For curves we project the point inte the eegments joining thin nearest point and its lat naighbor. We do the mame for the right neighbor and pick the clonent projection.
- For surfaces we find the nearent fitted value a above. Suppon this is at. $\dot{j}^{(j)}\left(\hat{\lambda}_{h}^{(j-1)}\right)$. We then project m oato the plase, correaponding to this fitted value and get a new value λ^{\bullet}. (This plase has already been calculated in the amoothing step and is atored.) We thea ovaluate $\mathcal{f}^{(j)}\left(\lambda^{\bullet}\right)$ and check if it is indoed cloeer. (This procautionary atep in similar to projecting $\&$ inte the line segmente in the cace of currea.) If it is, we
 which in similar to a gredient search. Alternatively one could perform a NewtonRaphsoa search using derivative information contained in the least square planes. Thee approechen are expensive, and in the many examplea tested, made little or no difference to the emimate.

5.2.3. Rescaling the λ 's. to arc-length.

In the principal curve procedure, as a matter of practice, we always rescale the λ 's to arclength. The estimated λ^{\prime} s are then measured in the same units as the observations. Let $\hat{\lambda}_{i}^{r}$ denotes the reacaled $\hat{\lambda}_{i}^{(j)}$ 'a, and suppose $\hat{\lambda}_{i}^{(j)}$ are sorted. We define $\hat{\lambda}_{i}$ recursively as follows:

- $\lambda_{1}=0$.
- $\hat{\lambda}_{i}^{r}=\hat{\lambda}_{i-1}+\left\|\hat{f}^{(j)}\left(\hat{\lambda}_{i}^{(j)}\right)-\hat{f}^{(j)}\left(\hat{\lambda}_{i-1}^{(j)}\right)\right\|$.

Pigtire (5.1) A λ plot for the circle example. Along the vartical aris wo plot the final valees for λ_{i}, after rescaling the λ^{\prime} 's at every iteration is the priscipal carve procedure. Along the horisontal axie we have the final X^{\prime} 's ming the principal curve procedure with no repealing.

In general there is no aoalogue of recealing to are-length for surfices. Surface area is the correaponding quantity. We can adjust the parameters locally so that the area of a small region in parameter apece hae the same area as the region it defines on the surface. But this edjuatmant will be different in other regions of the surface having the same values for one of the parampters. The exceptiona are surfaces with sero gaumian curvature. (These are surfaces that can be obtained by omoothly denting a hyperplane to form something like a corrugated aheot. One can imagine that such a rescaling is then pomible).

Figure (5.2) Each iteraion approximately preserves the metric from the previous one. The atarting curve is unit speed, and so the fial carve is approximately so, up to a constant.

Even though it is not pomible to do such a rescaling for surfaces, it would be comforting to know that our parametrisation remains reasonably consistent over the surface as we go through the iterations.

Figure 5.1 demonstrates what happens if we use the principal curve procedure on the circle example, and do not raseale the parameter estimates at each iteration. The metric geta preserved, up tc a sealar. Figure 5.2shows why this is so. The original metric gets tranaferred from one iteration to the next. As long as the curves do not change dramatically from one iteration to the next, there will not be much distortion.

5.3. Span selection.

We consider there to be two categories of spans corresponding to two distinct stages in the algorithm.

5.3.1. Global procedural spans.

The lirat guear for f is a maght line. In many of the interesting situations, the final curve will not be anction of the are length of this initial curve. The final curve is reached by auccemavely bending the original curve. We have found that if the initial spans of the amoother are too amall, the curve will bend too fast, and may gat lost! The most
succewsiul strategy has been to initially use large spans, and then to decrease them slowly In particular, we start with a span of $0.5 n$, and let the procedure converge. We then drop the apan to $0.4 n$ and coiverge again. Finally the same is done at $0.3 n$ by which time the procedure has found the general shape of the curve. We then switch to mean square error (MSE) span selection mode.

5.3.2. Mean squared error spans.

The procedure has converged to a self consistent curve for the span last used. If we reduce the span, the average distance will decrease. This situation arises in regression as well. In regression, however, there is a remedy. We can use cros-validation (Stone 1977) to select the span. We briefly outline the idea.

5.3.2.1 Crose-validation in regreavion.

Suppose we have a sample of π independent pairs (y_{i}, x_{i}) from the model $Y=f(X)+\epsilon$. A nonparametric estimate of $f\left(x_{0}\right)$ is $\hat{f}_{0}\left(x_{0}\right)=$ Smooth $\left(y \mid x_{0}\right)$. The expected squared prediction error is

$$
\begin{equation*}
E P E=E(Y-\hat{f}(X))^{2} \tag{5.2}
\end{equation*}
$$

where the expectation is taken over everything random (i.e. the sample used to eatimate $f(\cdot)$ and the future pairs ($\mathrm{X}, \mathrm{Y})$). We use the residual sum of squares,

$$
R S S(\varepsilon)=\sum_{i=1}^{n}\left(y_{i}-\hat{f}_{0}\left(x_{i}\right)\right)^{2},
$$

as the natural estimate of EPE. This is however, a biassed eatimate; as can be seen by letting the span \& shrink down to 0 . The smooth then estimates y_{i} by itself, and RSS is zero. We call this biae due to overfitting since the bias is due to the influence $y_{\text {t }}$ has in forming its own prediction. This also showe us that we cannot use RSS to help us pick the apan. We can, however, use the crom-validated residual sum of squares (CVRSS). This is defined as

$$
\begin{equation*}
\operatorname{CVRSS}(0)=\sum_{i=1}^{n}\left(y_{i}-\operatorname{smooth}{ }_{j}^{(i)}\left(y \mid x_{i}\right)\right)^{2} \tag{5.3}
\end{equation*}
$$

where smooth ${ }^{(i)}\left(y \mid x_{i}\right)$ is the smooth calculated from the data with the pair ($\left.y_{i}, x_{i}\right)$ romovea, and then evaluatod at x_{i}. It can be shown that this estimate is approximately unbiamed for the true prediction error. In minimizing the prediction error, we alob mini-
mize the integrated mean square error EMSE given by

$$
\operatorname{EMSE}(d)=E\left(f_{0}(X)-f(X)\right)^{2}
$$

since they differ by a constant. We can decompose this expression into a sum of a variance and bias terms, namely

$$
\begin{aligned}
E M S E(s) & =\mathbf{E}\left[\operatorname{Var}\left(\hat{f}_{s}(X)\right]+\mathbf{E}\left[\left(\mathbf{E}\left(\hat{f}_{0}(X) \mid X\right)-f(X)\right)^{2}\right]\right. \\
& =\operatorname{VAR}(\mathrm{s})+B I A S^{2}(s) .
\end{aligned}
$$

As s geta amaller the variance gets larger (averaging over less points) but the bias gets smaller (width of the neighborhoods gets smaller), and vice versa. Thue if we pick sto minimize CVRSS(s) we are trying to minimize the true prediction erras or equivalently to find the apan which optimally mixes bias and variance.

Getting back to the curves, one thought is to cross-validate the orthogonal distance fup-tion. This, however, will not work because we would sill tend to use span zero. (In general we have more chance of being cloce to the interpolating curve than any other curve). Instead, we crom-validate the co-ordinates separately.

5.3.2.2 Crose-validation for principal curven.

Suppoee f in a principal curve of h, for which we have an estimate \hat{f} based on a sample x_{1}, \ldots, x_{n}.

A natural requirement is to choose a to minimize EMS E(s) given by

$$
\begin{align*}
\operatorname{EMSE}(\mathrm{s}) & =\mathbf{E}_{h}\left\|f\left(\lambda_{f}(X)\right)-\hat{f}_{f}\left(\lambda_{f}(X)\right)\right\|^{2} \\
& =\sum_{j=1}^{p} \mathbf{E}_{\lambda_{\lambda}}\left(\operatorname{Var}\left(\hat{f}_{1}\left(\lambda_{f}(X)\right) \mid \lambda_{f}(x)\right)+\mathbf{E}_{h_{\lambda}}\left\|f\left(\lambda_{f}(X)\right)-\hat{f}_{f}\left(\lambda_{f}(X)\right)\right\|^{2}\right. \tag{5.4}
\end{align*}
$$

which is once again a trinde-off between bias and variance. Notice that were we to look at the clowst distance between these curves, then the interpolating curve would be favored. As in the regresaion case, the quantity $\operatorname{EPE}(\mathrm{s})=\mathbf{E}_{k}\left\|\boldsymbol{X}-\hat{f}_{f}\left(\lambda_{f}(X)\right)\right\|^{2}$ estimates $\operatorname{EMS} E(s)+$ $D(f)$, where $D(f)=\left\|x-f\left(\lambda_{f}(x)\right)\right\|^{2}$. It is ithus equivalent to choose o to minimize $\operatorname{EMS} E(\mathrm{~s})$ or $E P E(\mathrm{~s})$. As in the regression case, the crose-validated entirrate

$$
\begin{equation*}
\operatorname{CVRSS}(\mathrm{s})=\sum_{j=1}^{n}\left[\sum_{i=1}^{n}\left(x_{j i}-\operatorname{smooth}{ }_{j}^{(i)}\left(x_{j} \mid \lambda_{i}\right)\right)^{2}\right], \tag{5.5}
\end{equation*}
$$

where $\lambda_{i}=\lambda_{f}\left(x_{i}\right)$, attempts to do this. Since we do not know λ_{i}, we pick $\lambda_{i}=\lambda_{f^{(k)}}\left(x_{i}\right)$ where $\hat{f}^{(k)}$ is the (non cross-validated) eatimate of f. In practice, we evaluate CV $R S S(s)$ for a few values of a and pick the one that gives the minimum.

From the computing angle, if the smoother is linear one can easily find the crossvalidated fits. In this case $\hat{y}=C y$ for some smoother matrix C, and the cross-validated fit $\hat{y}_{(i)}$ is given by $\hat{y}_{(i)}=\sum_{j \neq i} \frac{c_{i j}{ }_{i}}{1-c_{i i}}$ (Wahba 1975).

There are a number of isaues connected with the algorithms that have not yet been mentioned, such as a robustness and outlier detection, what to display and how to do it, and bootstrap techniques. The next chapter consists of many examples, and we will deal with these issues as they arise.

Chapter 6

Examples

This chapter contains six examples that demonstrate the procedures on real and simulated data. We also introduce some ideas such as bootstrapping, robustness, and outlier detection.

Example 6.1. Gold assay pairs.

This real data example illustrates:

- A principal curve in 2-space,
- non-linear errors in variables regression,
- co-ordinate function plots, and
- bootatrapping principal curves.

A California based company collects computer chip waste in order to sell it for its content of gold and other precious metals. Before bidding for a particular cargo, the company takes a sample in order to estimate the gold content of the the whole lot. The sample is split in two. One sub-sample is assayed by an outside laboratory, the otber by their own inhouse laboratory. (The names of the company and laboratory are withheld by request). The company wishes to eventually use only one of the asaaya. It is in their interest to know which laboratory produces on average lower gold content assays for a given sample.

The data in figure 6.1a consists of 250 pairs of gold assays. Each point is represented by

$$
x_{i}=\binom{x_{1 i}}{x_{2 i}}
$$

where $x_{j i}=\log (1+$ assay yield for ith assay pair for lab $j)$ and where $j=1$ corresponds to the inhouse lab and $\boldsymbol{j}=2$ the outside lab. The log transformation tends to stabilize the variance and produce a more even scatter of pointa than in the untransformed data. (There were many more amall asasya (102 per ton) than larger ones (>1002 per ton)).

Figure 6.1a Plot of the log assays for the inhouse and outside labs. The solid curve is the principal curve, the dashed curve the scatterplot smooth.

Figure 6.1b Estimated coordinate functions. The dashed curve is the outside lab, the solid curve the inhouse lab.

A standard analysis might be a paired t-test for an overall difference in assays. This would not reflect local differences which can be of great importance since the higher the level of gold the more important the difference.

The data was actually analyzed by smoothing the differences in log assays against the average of the two assays. This can be considered a form of symmetric smoothing and was suggested by Cleveland (1983). We discuss the method further in chapter 7.

The model presented here for the above data is

$$
\begin{equation*}
\binom{x_{1 i}}{x_{2 i}}=\binom{f_{1}\left(r_{i}\right)}{f_{2}\left(r_{i}\right)}+\binom{e_{1 i}}{e_{2 i}} \tag{6.1}
\end{equation*}
$$

'where r_{i} is the unknown true.gold content for sample i (or any monotone function thereof), $f_{j}\left(r_{i}\right)$ is the expected assay result for lab j, and $e_{j i}$ is measurernent error. We wish to analyze the relationship between f_{1} and f_{2} for different true gold contents.

This is a generalization of the errors in variables model or the structural model (if we
regard the r_{i} themselves as unobservable random variables), or the functional model (if the T_{i} are considered fixed). This model is traditionally expressed as a linear model:

$$
\begin{equation*}
\binom{x_{1 i}}{x_{2 i}}=\binom{\alpha+\beta z_{i}}{z_{i}}+\binom{e_{1 i}}{e_{3 i}} \tag{6.2}
\end{equation*}
$$

where $f_{2}\left(r_{i}\right)=z_{i}$ and

$$
\begin{aligned}
f_{1}\left(r_{i}\right) & =f_{1} \circ f_{2}^{-1}\left(z_{i}\right) \quad \text { (assuming } f_{2} \text { is monotone) } \\
& =\alpha+\beta z_{i}
\end{aligned}
$$

[^6]

Figure 6.1c 25 bootstrap curves. The data X is sampled 25 times with replacement, each time yielding a bootstrap sample X^{*}. Each curve is the principal curve of such a sample.

Figure 6.1c shows the principal curves obtained for 25 such bootstrap samples. The 45° line is included in the figure, and we see that none of the curves cross the line in the region of interest. This provides strong evidence that the kink is indeed real.

When we compute a particular bootstrap curve, we use the principal curve of the original sample as a starting value. Usually one or two iterations are all that is required for the procedure to converge. Also, since each of the bootstrap points occurs at one of the sample sites, we know where they project onto this initial curve.

It is tempting to extract from the procedure estimates of $\hat{\tau}_{i}$, the true gold level for sample i. However, f_{i} need not be the true gold level at all. It may be any variable that orders the pairs $f\left(\hat{f}_{i}\right)$ along the curve, and is probably some monotone function of the true gold level. It is clear that both labs could consistently produce biased estimates of the true gold level and there is thus no information at all in the data about the true level.

Estimates of r_{i} do provide us with a good summary variable for each of the pairs, if
that is required:

$$
\hat{r}_{i}=h\left(x_{i}\right)
$$

since we obtain $\hat{\boldsymbol{r}}_{i}$ by projecting the point x_{i} onto the curve. Finally we observe that the above analysis could be extended in a straightforward way to include 3 or more laboratories. It is hard to imagine how to tackle the problem using stanjard regression techniques.

Example 6.2. The helix in three-space.

This is a simulated example illustrating:

- A principal curve in 3-apace,
- co-ordinate plots, and
- crom-validation and apan selection.

We looked at the bian of the principal curve procedure in eatimating the helix in chapter 4. We now demonstrate the procedure by generating data from that model. We have

$$
f(\lambda)=\left(\begin{array}{c}
\sin (4 \pi \lambda) \\
\cos (4 \pi \lambda) \\
4 \lambda
\end{array}\right)+e
$$

where $\lambda \sim U[0,1]$ and $e \sim N(0, .2 \eta)$. Thin situation does not present the principal curve procedure with any real problems. The remon is that the starting vector passes down the middle of the helix and the data projects oato it in nearly the correct order. Table 6.1shows the steps in the iterations as the procedure converges at each of the procedural spans shown. At a apan of $s=.2$ we use croce-validation to find the minimum mse apen.

Figure 6.2c shows the CV RSS curve used to select the span, which is 0.1 with a value of CV RSS of 0.1944 . One more step is performed and the procedure is terminated. Figure 6.2d ahows the eatimated co-ordinate functions for this choice of span. We see that the eatimate of the linear co-ordinate is rather wiggly. It is clear that a smali span was required to eatinate the sinusoidal co-ordinates, but a large span would suffice for the linear co-ordinate. This suggeste a different scheme for cross-validatior-choosing the apana reparately for each co-ordinate. The resulta are shown in figures $\mathbf{0 . 2 e}$ and 6.2 f . As predicted, a larger apan in chowen for the linear co-ordinate, and its eatimate is no longer wigsly. This is the final model referred to in tue table and represented in figure 6.2.

Figure 6.2a Data gemerated frown a helix with independent errore on each coordinate. The daeked curve in the original helix, the solid earve in the principal corve entimate.

Figure 6.2b Anothar view of the helix, the data asd the principal curve.

Table 6.1. The thepe in the iterations. laitially the procedure sow through a regimen of procedural spans. Then the final apan in found by crom-validation.

Iteration \#.	Span	D^{2}	d.o.f.	Comments
	procedaral spans		-	
start	1.0	1.110	2.0	principal component line
1	0.4	0.740	4.2	initial apas
2	0.4	0.565	4.6	
3	0.4	0.550	4.7	
4	0.4	0.549	4.7	coaverged
8	0.3	0.376	5.7	reduce span
6	0.3	0.361	5.4	
7	0.3	0.360	5.4	converged
8	0.2	0.222	7.3	reduce span
9	- 0.2	0.217	6.9	
10	0.2	0.217	6.9	coaverged
	men spane			
find	0.07, 0.09, 0.35	$\begin{aligned} & 0.182 \\ & 0.189 \end{aligned}$	9.7	crose-validated

Figure 6.2e The crom-validation eurve showe $\operatorname{CV} R S S(s)$ a fuaction of the span s. One span is used for all 3 co-ordinates.

Pigure 6.2i The cromiralidation curve showe $C V R S S_{f}(a)$ an a function of the apan s. A separate span is found for esch co-ordinate.

Figure 6.2f The estimated co-ordinate functions for the helix, using the spans found in fig. ure 6.2f.

The entry labelled d.o.f. in table 6.1is an abbreviation for degrees of freedom. In linear regremion the number of parameters used in the fit is given by $\operatorname{tr}(H)$ where H is the projection or het matrix. If the response variables y_{j} are iid with variance σ^{2}, then

$$
\begin{aligned}
\sum_{i=1}^{n} \operatorname{Var}\left(\hat{y}_{i}\right) & =\sum_{i=1}^{n} \operatorname{Var}\left(h_{i}^{\prime} v\right) \\
& =\sigma^{2} \mathrm{tr}\left(B^{\prime} H\right) \\
& =\sigma^{2} \mathrm{tr}(H)
\end{aligned}
$$

We can do the same calculation for a linear amoother matrix C, and in fact for the local atraight lines moother we even have $\operatorname{tr}\left(C^{\prime} C\right)=\operatorname{tr}(C)$. As the apan decreases, the diagonal entries of C get larger, and thus the variance of the estimates increasen, as we would expect. One can also approach this from the other side by looking at the residual sum of squares. In the abeence of bias we heve

$$
\begin{align*}
\mathbf{E R S S} & =\mathbf{I}\|(I-C) y\|^{2} \\
& =\operatorname{Eg}^{\prime}(I-C)^{\prime}(I-C) y \tag{6.3}\\
& =\operatorname{tr}\left|(I-C)^{\prime}(I-C) \operatorname{Cov}(y)\right| \\
& =(n-\operatorname{tr}(C)) \sigma^{2}
\end{align*}
$$

if $\operatorname{tr}\left(C^{\prime} C\right)=\operatorname{tr}(C)$. More motivation for regarding $\operatorname{tr}(C)$ as the number of parameters or d.of. ean be found in Cler-land (1979) and Tibshirani (1984). Some calculations similar to thooe in 3.5 .1 show that the expected squared distance of X from the true f is $D^{2} \approx 2 \sigma^{2}$, or more preciecly $D^{2} \approx 2 \sigma^{2}-\sigma^{4} /\left(4 \rho^{2}\right)$ where ρ is the radius of curvature, which in our example is $1+1 / \pi^{2}$. Thus $D^{2} \approx 0.18$. The crome validated residual eatimate $\sum C V R S S_{j}$ was found to be 0.189. The orthogonal distance from the final curve is $D^{2(11)}=0.162$. This is deflated due to overfitting. The average value of d.o.f for the final curve is (one for each co-ordinate) 9.7, or a total of 29.1. Some simple heuristics show that the we should scale this value up by by $2 n /(2 n-$ d.0.f $)=300 /(300-29.1)=1.11$. We then get $2 n /(2 n-$ d.0.f $) D^{2(11)}=0.179$ which is back in the correct ballpark.

It is more convenient to view the 3 dimensional examples on a color graphics system (such as the Chromatics system of the Orion group, Stanford University). This allows one to rotate the points in real time and thus see the 3rd dimension.

[^7]
Example 6.3. Geological data.

This real data example illustraten:

- Data modelling in 3 dimensioas,
- non-linear factor analyaia, and
- outlier detection and robust fitting.

The data in this example consints of measurements of the mineral content of 64 core samples, each taken at different deptha (Chernoff, 1973). Measurements were made of 10 minerals in each eample. We simply label the minerals X_{1}, \cdots, X_{10}, and analyze the firat three.

Mineral X_{1}

Figure 6.3a The principal curve for the mineral data. (Variable X_{3} in into the page). The apikes join the pointa to their projection on the carve. The 4 outliers are joinei to the curve with the broken lines.

Figure $6.3 a$ ahows the data and the solution curve. (A final span of 0.35 was manually selected.) In 3-D the picture looks like a dragon with its tail pointing to the left and the

Figure 6.3b The values $\lambda_{j}\left(x_{i}\right)$ are plotted againat the depth order of the core samplea.
lons (outlier) apikes could be a mane. The linear principal component explains 55% of the variance, whereas this solution explains 82%.

The spikes join the observations to their closest projections on the curve. This is a useful device for spotting outliers. A robust version of the principal curve procedure was ueed in this example. After the first iteration, points receive a weight which is inversly proportional to their distance from the curve. In the smoothing step, a weighted smooth is used, and if the weight is below a certain threshhold, it is set to 0 . Four points were identified as outliers, and are labelled differently in figure $6.3 a$. We would really consider them model outlizrs, since in that region of the curve the model does not appear to fit very well.

Figure 6.36 shows the relationship between the order of the points on the curve, and the depth order of the core samples. The curve appears to recover this variable for the most part. The area where it does not recover the order is where the curve appears to fit the data badly anyway. So here we have uncovered a hidden variable or factor that we are able to validnte with the additional information we have about the ordering. The co-ordinate

Pigure 6.3e The entimated co-ordinate functions or factor loading csroes for the throe minerall.
plots wouid then represent the mean level of the particular mineral at different depths (see fgure 6.3 c). Uaually one would have to use these co-ordinate plots to identify the factors, just as one lises the factor loadings in the linear case.

Example 6.4. The uniform ball.

This example illustrates:

- A principal surface in 3 apace, and
- a connection to multidimensional scaling.

The data is artificially constructed, with no noise, by generating points uniformly from the aurface of a sphere. It is the same data used by Shepard and Carroll (1966) to dernonstrate their parametric mapping algorithm. (see reference and chapter 7). We simply use it here to demonatrate the ability of the principal surface algorithm to produce surfaces that are not a function of the starting plane (in analogy to the circle example in chapter 3).

There are 61 data points, as shown in figure 6.4a. One point is placed at each intersection of 5 equally apaced parallels and 12 equally spaced meridians. The extra point

Figure 6.4a The data pointe are placed in a aniform pattern on the surixce of a aphere. The south pole is misaing.

Figure 6.4b The recond iteration of the principal surface procedure finds 2 surface that is a function of the first iteration.

Figure 6.4c An intermediate stage in the iterationa.

Figure 6.4e Another view of the final principal aurface.

Figure 6.4f The λ map in a two dimensional summary of the data. It resembles a stereographic map of the world.
is placed at the north pole. (If we placed a point at the south pole the principal surface precedure would never move from the starting plane, which is in facit a principal surface.) Figures 6.4b to $6.4 d$ show various stages in the iterative procedure, and tigure 6.4e shovs another view of the final surface. Figure $6.4 f$ is a pkrameter map of the two dimensional $\hat{\boldsymbol{\lambda}}$. It resembles a stereographic map of the earth. (A stereographic map is obtained by placing the earth, or a model thereof, on a piece of paper. Each point on the aurface is mapped onts the paper by extrapolating the line segment joining the north pole to the point until it reaches the paper.) Points in the southern hemisphere are mapped on the inside of a circle, points in the northern hemisphere on the outside, and there is a discontinuity at the north pole. Points close together on this rap are close together in the original space, but the converse is not necessarily true. This map provides a two dimensional summary of the original data. If we are presented with any new observations, we san easily locate them on the map by finding their closest position on the surface.

Example 6.5. One dimensional color data.

This almost real data example illustrates:

First principal axis
Figure 6.5a The 4 dimensional color data projected onta the firat principal component planer. The principal eurve, found in the original fourspace, is also projected onto this plane.

Figura 6.5b The eatimated co-ordinate functions plotted against the arc length of the principal cuive. This $\hat{\lambda}$ will be monotone with the true wavelengtin.

- A principal curves in 4-space, and
- a one dimensional MDS example.

These data were used by Shepard and Carroll (1966) (who cite the original source as Boynton and Gordon (1965)) to illustrate a veraion of their parametric data representation techniques called proximity analysis. We give more details of this technique in chapter 7.

Each of the 23 observations represents a spectral color at a specific wavelength. Each observation has 4 psychological variables associated with it. They are the relative frequencies with which 100 observers named the color blue, green, yellow and red. As can be seen in figure 6.5s, there is very little error in this data, and it is one dimensional by construction. Since the color changes slowly with wavelength, so should these relative frequencies, and they should thus fall on a one dimensional curve, as they do. The data, by construction lies in a 3 dimensional simplex since the four variables add up to 1 . The pictures we show are projections of this simplex onto the 2-D subspace spanned by the first two linear principal components. Figure 6.5 a shows the solution curve and figure 6.5 b shows the recovered parameters and co-ordinate functions. This solution is in qualitative agreement with the data and with the solution produced by Shepard and Carroll.

Chapter 6: Examples

Example 6.6. Lipoprotein data.

This real data example illustrates:

- A principal surface in 3 space with some interpretations,
- a principal curve suggested by the surface, and
- coordinate plots for surfaces.

Williams and Krauss (1982) conducted a study to investigate the inter-relationships between the serum concentrations of lipoproteins at varying densities in sedentry men. We focus on a subset of the data, and consider the serum concentrations of LDL 3-4 (Low Density Lipoprotein with flotiation rates between $S_{f} 3-4$), LDL 7-8, and HDL 3 (High Density Lipoprotein) in the sample of 81 men. Figures $6.6 \mathrm{a}-\mathrm{d}$ are different views of the principal surface found for the data. Quantitively this surface explains 97.4% of the variability in the data, and accounts for 80% of the residual variance unexplained by the principal component plane. Qualitatively, we see that the surface has interesting structure in only two of the co-ordinates, namely LDL 3-4 and LDL 7-8. We can infer from the the surface that the bow shaped relationship between these two variables does not change for varying levels of HDL 3. It exhibits an independent behaviour. We have included a co-ordinate plot (figure 6.6e) of the estimated co-ordinate function for the variables LDL 7-8 which helps confirm this claim. The relationship between LDL 7-8 and ($\hat{\lambda}_{1}, \hat{\lambda}_{2}$) depends mainly on the level of $\hat{\boldsymbol{\lambda}}_{1}$. Similar information is conveyed by the other co-ordinate plots, or can be seen from the estimated surface directly. This suegests a model of the form

$$
\left(\begin{array}{c}
\text { LDL 3-4 } \\
\text { LDL 7-8 } \\
\text { HDL 3 }
\end{array}\right)=\left(\begin{array}{l}
f_{1}\left(\lambda_{1}\right) \\
f_{2}\left(\lambda_{1}\right) \\
f_{3}\left(\lambda_{2}\right)
\end{array}\right)+\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) .
$$

As specified λ_{2} is confounded with HDL 3, and is thus unidentifiable. We need to estimate the first two components of the model. This is a principal curve model, and figure $6.6 f$ shows the estimated curve. It exhibits the same dependence between' LDL 7.8 and LDL $3-4$ as did the surface. The curve explains 92.6% of the variance in the two variables, whereas the principal component line explains only 80%.

Williams and Krauss performed a similar analysis look 2 , , at pairs of variables at a time. We discuss their techniques in chapter 7. Their results are qualitatively the same as ours for the LDL pair.

Figure 6.6a The principal surface for the seram concentrations LDL 7-8, LDL 3-4 and HDL 3 in a sample of 81 sedentary men. Variable HDL 3 is into the page.

Figure 6.6b The principal surface a's in figure 6.6 a from + different viewpoint. Variable LDL 7-8 is into the page.

Figure 6.6d The principal surface as in figure 6.6a from a slightly oblique perspective.
figure 6.6 a from a different viewpoint Variable LDL $3-1$ is into the page.

Figure 6.6e The estimated co-ordinate function for LDL $7-8$ versus $\boldsymbol{\lambda}$. $\hat{\lambda}_{2}$ bas little effect.

Figure 6.6f The principal curve for the serum concentrations LDL 7-8 and LDL 3-4 in a sample of 81 sedentry men.

Chapter 7

Discussion and conclusions

In this chapter we discuss some of the existing techniques for symmetric smoothing, as well as the various generalizations of principal components and factor analysis. We compare these techniques with the methodolcgy developed here. The chapter concludes with a summary of the uses of principal curves and surfaces.

7.1. Alternative techniques.

Other non-linear generalizations of principal components exist in the literature. They can be broadly classified according to two dichotomies.

- We can estinate either the non-linear manifold or the non-linear constraint that defines the manifold. In linear principal components the approaches are equivalent.
- The non-linearity can be achieved by transforming the space or by transforming the model.

The principal curve and surface procedures model the non-linear manifold by transforming the model.

7.1.1. Generalized linear principal components.

This approach corresponds to modeling either the nonlinear constraint or the manifold by transforming the space. The idea here is to introduce some extra variables, where each new variable is some non-linear transformation of the existing co-ordinates. One then seeks a subspace of this non linear co-ordinate system that models the data well. The subspace is found by using the usual linear eigenvoctor solution in tha new enlarged space. This technique was first suggested by Gnanadesikan \& Wilk (1966,1968), and a good description can be found in Gnanadesikan (1977). They suggested using polynomial functions of the original p co-ordinates. The resulting linear combinations are then of the form (for $p=2$ and quadratic polynomials)

$$
\begin{equation*}
\lambda_{j}=a_{1 j} x_{1}+a_{2 j} x_{2}+a_{3 j} x_{1} x_{2}+a_{4 j} x_{1}^{2}+a_{5 j} x_{2}^{2} \tag{7.1}
\end{equation*}
$$

and the $\boldsymbol{a}_{\boldsymbol{j}}$ will be eigenvectors of the appropriate covariance matrix.
This model has appeal mainly as a dimension reducing tool. Typically the linear combination with the smallest variance is set to zero. This results in an implicit non-linear construint equation as in (7.1) where we set $\lambda=0$. We then have a rank one reduction that telle us that the data lies close to a quadratic manifold in the original co-ordinates.

The model has been generalized riurther to include more general transformations of the co-rdinates other than quadratic, but the idea is essentiaily the same as the above; a linear solution is found in a transformed space. Young, Takane \& de Leeuw (1978) and later Friedman (1983) suggested different forms of this generalization to include non-parametric tranaformations of the co-ordinates. The problem can be formulated as follows: Find a and $\delta^{\prime}(x)=\left(s_{1}\left(x_{1}\right), \cdots, s_{p}\left(x_{p}\right)\right)$ such that

$$
\begin{equation*}
\text { I }\left\|a(x)-a e^{\prime} a(x)\right\|^{2}=\min ! \tag{7.2}
\end{equation*}
$$

or alternatively such that

$$
\begin{equation*}
V=\left[d^{\prime} s(x)\right]=\max ! \tag{7.3}
\end{equation*}
$$

where $\mathrm{If}_{\mathrm{j}}\left(\mathrm{x}_{j}\right)=0, \alpha^{\prime} \in=1$ and $E s_{j}^{2}\left(x_{j}\right)=1$. The idea is to tranform the coordinates suitably and then find the linear principai componente. if in (7.3) we replaced max by min then we would be eatimating the constraint in the trisulormed apsee.

The entimation procedure alternatee betwee forvg the $s_{i}(\cdot)$ and finding the linear principal components in the tranaformed apace

- For a fixed vector of functions 91 i, re -hoen a to be the first principal component of

- Por a known, (7.2) can be written in the form

$$
\begin{equation*}
k E\left\{o_{1}\left(x_{1}\right)-\left.\sum_{j=2}^{p} \mu_{y_{j}} n_{j}\left(x_{j}\right)\right|^{2} i \quad \text {, w, 山in } o_{2}(\cdot), \cdots, s_{p}(\cdot),\right. \tag{7.4}
\end{equation*}
$$

 by

$$
v_{1}\left(x_{1}\right)=E\left(\sum_{j=2}^{\infty} b_{1 j} \varepsilon_{j}\left(z_{j}\right) \mid x_{1}\right)
$$

Thim in true for asy e_{j}, and sugsome an inser iterative loop. This inaer loop is very similar to the ACE agorithm (Breiman and Friedman, 1982), except the normalization
is alightly different. Breiman and Friedman proved that the ACE algorithm converges under certain regularity conditions in the distributional case.

The disadvantages of this technique are:

- The space is transformed, and in order to understand the resultant fit, we usually would need to transform beck to the ori-iaal space. This can only be achieved if the transformations are reatricted to monotone functions. In the transformed space the extimated manifold is given by

$$
\left(\begin{array}{c}
s_{1}\left(x_{1}\right) \\
\vdots \\
a_{n}\left(x_{p}\right)
\end{array}\right)=a a^{\prime} s(x)
$$

Thus if the $s_{j}(\cdot)$ are monotone, we get untransformed estimates of the form

$$
\left(\begin{array}{c}
x_{1} \tag{7.5}\\
\vdots \\
z_{p}
\end{array}\right)=\left(\begin{array}{c}
s_{1}^{-1}\left(a_{1} z\right) \\
\vdots \\
s_{p}^{-1}\left(a_{p} z\right)
\end{array}\right)
$$

where $x=c^{\prime} s(x j$. Equation (7.5) defines a parametrized curve. The curve is not completaly general aince the co-ordinate functions are monotone. For the same reason, Gnanaderikn (1978) expreesed the desirability of havirg procedurea for eatimating modele of the type proponed in this diseertetion.

- We are eetimating manifolda that are clove to the data in the tranuformed co-ordinates. When the trandormations are non-linear this can reault in distortion of the error variances for individual variablee. What we really require is a method for estimating manifolds that are cloee to the date in the original p co-ordinates. Of course, if the fusctions are linear, both appronches are identical.

An adveatege of the techaique in that it cas eamily be generalised to take care of higher dimencional manifolda, although not in an entiroly general fanhion. This is mehieved by repleciag e with A where A is $p \times 9$. We then get a 1 dimeational hyperplane in the treneformed spece given by $A A^{\prime}\left(x_{1}\right)$. However, we end up with a mumber of implicit conetrain: aquetions which are hard to deal with and interpret. Depite the problems mociated with generalised principal componenta, it remains a usful tool for performing rank 1 dimmoionality reductions.

7.1.2. Multi-dimensional scaling.

This is a technique for finding a low dimensional representation of high dimensional data. The original proposal was for data that consists of $\binom{n}{2}$ dissimilarities or distances between n objects. The idea is to find a m (m small, 1,2 or 3) dimensional euclidean representation for the objects such that the inter-object distances are preserved as well as possible. The idea was introduced by Torgerson (1958), and followed up by Shepard (1962), Kruskal (1964a ,1984b), Shepard \& Kruskal (1964) and Shepard \& Carroll (1966). Gnanadesikan (1978) given a concise description.

The procedurea have also been suggested for situations where we simply want a lower dimensional representation of high dimensional euclidean data. The lower dimensional representation attempta to reproduce the interpoint distances in the originai space. We It a principal curve to the color data in example 6.5; these data were originally analyzed by Shepard and Carroll (1966) using MDS techniques. Alhough there have been some intriguing exampler of the technique in the literature, a number of problems exist.

- The solution consinte of a vector of m co-ordinates representing the location of points on the low dimensional manifold, but only for the n date pointa. What we don't get, and often denire is a mapping of the whole apace. We are unable, for example, in find the locetion of new pointe in the reduced apace.
- The procedure are computationally expensive and unfeasible for large n ($n m>300$ in considersit large). They are umally expremed as non-linear optimization problems in non paramoters, and differ is the choice of criterion.

The principal curve and surface procedurei partially overcome both the problems listed above; they are unable to find atructuree as general as thowe that can be found by the MDS procedures due to the averaging nature of the scatterplot amoothers, but they do provide a mapping for the spece. We have demonstrated their ability to model MDS type data in examplea 6.4 and 6.5. They do not, bowever, provide a model for dimimilarition which was the original intention of multidimentional scaling.

7.1.3. Procimity models.

Shepard \& Carroll (1966) suggeeted a functional model similar in form to the model we suggent. They required oaly to entirnate the n vectors of m pararnetera for each point, and considered the data to be functions thereof. The parameters (nm altogether) are found
by direct search as in MiDS; with a different criterion to be minimized. Their procedure, however, was geared towards data without error, as in the ball data in example 6.4. This becomes evident when one examines the criterion they used, which measures the continuity of the data as a function of the parameters. When the data is not amooth, as is usually the case, we need to estimate functions that vary smoothly with the parameters, and are close to the data.

7.1.4. Non-linear factor analysis.

More recenily, Etesadi-Amoli and McDonald (1983) approached the problem of non-linear factor analyais using polynomial functions. They use a model of the form

$$
x=f(\lambda)+e
$$

where f is a polynomial in the unknown parameters or factors. Their procedure for estimating the unknown factora and coefficienta is similar to ours in this restricted setting. * Their emphacia is on the factor analysis model, and once the appropriate polynomial terms have been found, the problem in treated as an enlarged factor analysis problem. They do not entimpte the λ 's as w do, uning the geometry of the problem, but instead perform a search in $n q$ parameter apece, where q is the dimension of λ and n is the number of obserrations. Our emphacis is on providing one and two dimensional summaries of the data. In cartain situations, theoe summaries can be used as eatimates of the appropriate non-linear functional and factor models.

7.1.5. Axis interchangeable smoothing.

Cleveland (1983) deacribee a technique for symmetrically amoothing a scatterplot which he calle asio intercheagesble amoothing (which we will refer to as AI amoothing). We briefly outline the idea:

- standardize each coordinate by some (robuat) meanure of scale.
- rokete the coordinate axee by $\mathbf{4 5}^{\circ}$. (if the correlation is positive, else rotate through -45).
- amooth the tranformed y against the tranaformed x.

[^8]- rotate the axes back.
- unstandardize.

If the standardization uses regular standard deviations, then the rotation is simply a change of basis to the principal component basis. The resuiting curve minimizes the distance from the points orthogonal to this principal component. It has intuitive appeal since the principal component is the line that is closeat in distance to the points. We then allow the points to tug in the principal component line. It is simple and fast to compute the AI Smooth, and for many ecatterplots it produces curves that are very similar to the principal curve solution. This is not surprising when wo consider the following theorem:

Theorem 7.1

If the two variables in a scatterplot are standardized to have unit standard deviations, and if the amoother used is linear and reproducea straight lines exactly, then the axis interchangeable amooth is identical to the curve of the first iteration of the principal curve procedure.

Proof

Let the variables x and y be atandardized as above. The AI Smooth transforms to two new variables

$$
\begin{align*}
& x^{*}=\frac{(x+y)}{\sqrt{2}} \\
& y^{*}=\frac{(x-y)}{\sqrt{2}} \tag{7.6}
\end{align*}
$$

Then the AI Smooth replecee $\left(x^{*}, y^{*}\right)$ by $\left(x^{*}, \operatorname{Smooth}\left(y^{*} \mid x^{*}\right)\right.$). But Smooth $\left(x^{*} \mid x^{*}\right)=$ 3^{0} aince the amoother reproducee atraight lines exactly.* Thus the AI Smooth transforms beck to

$$
\begin{align*}
& t=\frac{\left(\operatorname{Smooth}\left(x^{*} \mid x^{*}\right)+\operatorname{Smooth}\left(y^{*} \mid x^{0}\right)\right.}{\sqrt{2}} \\
& \hat{y}=\frac{\left(\operatorname{Smooth}\left(x^{*} \mid x^{*}\right)-\operatorname{Smooth}\left(y^{*} \mid x^{0}\right)\right)}{\sqrt{2}} \tag{7.7}
\end{align*}
$$

Since the amoother is linear, and in view of (7.6), (7.7) becomes

$$
\begin{align*}
& z=s_{\text {mooth }}\left(x \mid x^{*}\right) \\
& \xi=S_{x w o t h}\left(y \mid x^{*}\right) \tag{7.8}
\end{align*}
$$

- Any wieghed local linear amoother has thim property. Local averages, however, do not unless the prodictore are aronly spaced.

This is exactly the curve found after the first iteration of the principal curve procedure, aince $\hat{\lambda}^{(0)}=x^{*}$.

Williams and Krauss (1982) extended the AI smooth by iterating the procedure. At the second step, the residuals are calculated locally by finding the tangent to the curve at each point and evaluating the residuals from these tangents. The new fit at that point is the amooth of these residuals against their projection onto the tangent. This procedure would probably get closer to the principal curve solution than the AI smooth (we have not implemented the Williams and Krauss smooth). Analytically one can see that the procedures differ from the second step on.

Thin particular approach to symmetric smoothing (in terms of residuals) suffers from several deficiencies :

- the type of curves that can be found are not as general as those found by the principa! curve procedure.
- they are designed for scatterplots and do not generalize to curves in higher dimensions.
- they lack the interpretation of principal curves as a form of conditional expectation.

7.2. Conclusions.

In conciusion we summarive the role of principal curves and surfaces in statistics and data analysis.

- They generalise the one and two dimensional summaries of multivariate data usually provided by the principal components.
- When the principal curves and aurface are linear, they are the principal component summaries.
- Locally they are the critical pointe of the usual distance function for such summaries; thin gives an indication that there are not too many of them.
- They are defined in term of conditional expectations which satisfies our mental image of a summary.
- They provide the least squaree eatimate for generalized versions of factor analysis, functional models and the errori in variablea regreasion models. The non-linear errors
in variables model has been used successfully a number of times in practical data analysis problems (notably calibration problems).
- In some situations they are a useful alternative to MDS techniques, in that they provide a lower dimensional summary of the space as opposed to the data set.
- In some situations they can be effective in identifying outliers in higher dimensional space.
- They are a useful data exploratory tool. Motion graphice cechniques have be oome popular for looking at 3 dimensional point clouds. Experience shor's that it is often imposaible to identify certain structures in the data by simply rotating the points.' A summary such as that given by the principal curve and surfaces can identify structures that would otherwise be transparent, even if the data could be viewed in a real three dimensional model.

Acknowledgements

My great appreciation goes to my advisor Werner Stuetzle, who guided me through all stages of this project. I aleo thank Werner and Andreas Buja for suggesting the problem, and Andreas for many helpful discussions. Rob Tibehirani helped me a great deal, and some of the original ideas emerged whilst we were suntanning alougside a river in the Californian mountains. Brad Efion, as usual, provided many insightful commerts. Thanks to Jerome Friodmer, for his idear and constant support. In addition I thank Persi Diaconis and lain Johnstone for their help and comments, and Roger Chaffee and Dave Parker for their computer aseia yace. F'inally I thank the trustees of the Queen Victoria, the Sir Robert Kotke and tha Sir Harry Cromey acholarahips ior their generous assistence.

Bibliography

Anderson, T.W. (1982), Estimating Linear Structural Relationships, Technical Report \# 389, Institute for Mathematical studies in the Social Sciences, Stanford University, California.

Barnett, V. (Ed) (1981), Interpreting Multivariate Data, Wiley, Chicheater.
Becker, R.A. and Chambers, J.M. (1984), S: An Interactive Environment for Data Analysis and Graphics, Wadsworth, California.

Boynton, R.M. and Gordon, J. (1965), Bezold-Brüke Hue Shift Measured by Color-Naming Technique, J. Opt. Soc. Amer, 55, 78-86.

Breiman, L. and Friedman, J.H. (1982), Estimating Optimal Transformations for Multiple Regreseion and Correlation, Dept. of Statistics Tech. Rept, Orion 16, Stanford Univeraity.

Chernoff, H. (1973), The wee of Faces to Represent Points in K-dimensional Space Graphically, Journial of the American Statistical Association, 68, \#342, 361-368.

Chung, K.L. (1974), A Course in Probebility Theory, Academic Press, New York.
Cleveland, W.S. (1979), Robust Locolly Weighted Regression and Smoothing Seatterplots. Journal of the American Statistical Association, 74, 829-836.

Cleveland, W.S. (1983), The Many Faces of a Scatterplot, Submitted for publication.
Craven, P. and Wahba, G. (1979), Smoothing Noisy Data with Spline Functions: Estimating the Correet Degree of Smoothing by the Method of Generalized Cross-validation, Numer. Math., 31, 377-403.
do Carmo, M.P. (1976), Differential Geometry of Curves and Surfaces, Prentice Hall, New. Jersy.

Etezadi-Amoli, J. and McDonald, R.P. (1983), A Second Generation Nonlinear Factor Analyois, Psychometrika, 48, \#3, 315-342.

Efron, B. (1981), Non-parametric Standard Errore and Confidence Intervals, Canadian Journal of Statistics, 9, 139-172.

Efron, B. (1982), The Jacknife, the Bootstrap and other Resampling Plans, SIAM-CBMS, 38.

Efron, E. (1984), Bootstrap Confidence Intervale for Parametric Problems, Technical Report \#90, Division of Biostatistics, Stanford University.

Friodman, J.H. (1983), Personal communication.
Friedman, J.H, Bently, J.L. and Finkel, R.I. (1976), A'n Algorithm for Finding Beat Matches in Logerithmic Expected Time. STAN-CS-75-482, Stanford University.

Friedman, J.H. axd Stuetzle, W. (1982), Smoothing of Scatterplots, Dept. of Statistics Tech. Rept. Orion 3, Stenford Univerrity.

Gassar, Th. and Muller, H.G. (1979), Kernel Estimation of Regression Functions, in Smoothing Techniques for Curve Estimation, Proceedings, Heidelberg, Springer Verlas.

Gnanadesikan, R. (1977), Methods for Statistical Date Analysis of Multivariate Observations, Wiley, New York.

Gnanadesikan, R. and Wilk, M.B. (1969), Data Analytic Methodo in Multivariate Statistical Axalysio, in Multivariate Anelysis II (P.R. Krishnaiah, ed.), Academic Press, New York.

Golub, G.H. and Reinsch, C. (1970), Singular Value Decompcsition and Leant Squares Solutione, Numer. Math. 14, 403-420

Golub, G.H. and van Loan, C. (1979), Total Least Squares, in Smocthing Techniques for Curue Estimation, Proceedings, Heidelberg, Springer Verlag.

Greenscre, M. (1984), Theory end Applications of Correspondence Azalysis, Academic Press, London.

Kastie, T.J. (1983), Principal Curves, Dept. of Statistics Tech. Rept. Orion 24, Stanford Univeraity.

Hastie, T.J. and Stuetzle, W. (1984), Prineipal Curves and Surfaces, (Motion Graphics Movie), Dept. of Statistics, Stanford University.

Hotelling, A. (1933), Analysio of a Complex of Statistical Variables into Principal Componexta, J. Educ. Psych., 24, 417-441, 498-520.

Kendali, M.G. and Stuart, A. (1961), The Advanced Theory of Statistics, Volume 2, Hafner, New York.

Kruskal, J.B. (1964a), Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Bypothesio, Psychometrika, 2!?, \#1, 1-27.

Kruskal, J.B. (1964b), Nonmetric Multidimensional Scaling: a Numerical Method, Psychometrika, 29, \#2, 115-129.

Lindley, D.V. (1947), Regression Lines and the Linear Funetional Relationship, Journal of the Royal Statistical Society, Supplement, 9, 219-244.

Madanaky, A. (1959), The Fitting of Straight Lines when both Variables are Subject to Error, Journal of the American Statistical Society, 54, 173-205.

Moateller, F. and Tukey, J. (1977), Data Analysis and Regression, Addison Wesley, Masaschusetta.

Reinsch, C. (1967), Smoothing by Spline Functions, Numer. Math., 10, 177-183.
Shepard, R.N. (1962), The Analysis of Proximities: Multidimensional Scaling with an inknown Distance Punction, Psychometrika, 27, 123-139, 219-246.

Shepard, R.N. and Carrol, J.D. (1966), Parametric Representations of Non- Linear Data Structures, in Multivariate Analysis (Krishnaiah, Y.R.ed), Academic Press, New York.

Shepard, R.N. and Kruskal, J.B. (1934), Non-metric Methods for Scaling and for Factor Analyois, Amer. Psychologist: 19, 557-558.

Spearman, C. (1904), General Intelligence, Objectively determined and Measures, American Journal of Psychology, 15, 201-293.

Stone, M. (1977), An Asymptotic choice of Model by Cross-validation and Akaike's Criterion, Roy. Stat. Soc. B, 7, 44-47.

Thorpe, J.A. (1978), Elementary Topics in Differential Geometry, Springer-Verlag, New York. Undergraduate Text in Mathematics.

Tibshirani, R.J. (1984), Boototrap Confidence Intervals, Technical Report \#91; Division of Biostatistics, Stanford Univeraity.

Torgeson, W.S. (1958), Theory and Methods of Scaling, Wiley, New York.
Wilkinson, J.H. (1965), The Algebraic Eigenvalue Problem, Clarendon Press, Oxford.

Wahba, G. and Wold, S. (1975), A Completely Automatic French Curve: Fitting Spline Fuactions by Cross-validation, Comm. Statistics, 4, 1-7.

Williams, P.T. and K :auss, R.M. (1982), Graphical Analysis of the Sectional Interrelationshipe among Subfractions of Serum Lipoproteins in Middle Aged Men, unpublished manuscript, Stanford University.

Young, F.W, Takane, Y, and de Leuuw, J. (1978), The Principal Compunents of Mired Measurement Level Multivariate Data: an Alternating Leant Squares Method with Optimal Scaling Features, Psychometrika, 43, no.2.

[^0]:
 in US. Aswa Resemeh Ofice under costract DAAG23-82-K-00se.

[^1]: - $H X$ in act ceatered wo center it by forming $\bar{X}=X-18$. Then the priscigal component is. $\lambda=f$ and the entimate in popace for the projection of the ith obeerration onto the principal

[^2]: *This discertation is accompanied by a motion graphics movie called Principal Curves and Sirfacer. The half-sphere is one of 4 examples demonstiated in the movie.

[^3]: - We keop in mind that X in coanidorid to be centered, or alteramivily that $E(x)=0$. The above resulte are atill true if thin in not the caes, but the equationa are menier.

[^4]: - I am gratoful to H. Künoch of ETH, Zürich, for getting me started on. this proof.

[^5]: - I thank Art Owoa for suggeating thin result.

[^6]: * In the linear model one usually requires that $\operatorname{Var}\left(e_{j i}\right)=$ constant j. This aseumption can be relaxed here.

[^7]: * For our smoothern, each row of C is the row of a projection matrix, and hence $e_{i}^{\prime} c_{i}=c_{i j}$.

[^8]: - Thair paper win peblinhod in the September, 1983 ineue of Paychometrika, wherean Hastie (1983) appeared in July.

