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)-principal component lin, or plane. Each successive iteration is a ,mortk or local average of the p

dimensional points, where local is based on the projections of the point, onto the curve or surface of

the previous iteration.

A aumber of linear techniques, such as factor analysis, and errmr in variables regreilon, end

up using the principal components as thenr estimates (after a suitables scaling of the co-ordinates).

P~rincipal curves and surface can be viewed as the estimates of non-hmew generalizations of these

procedures. We present oqae real data examples, that illustrate these applications.

,.Pritncipai Curves (or surfaces) have a theoretical definitiom for distuibntions: thei, wre the Self

Con.sistent curves. A curv is self consistent if eachpointoanthe carvis theconditional mean of

the points t has project there. The zmain theorems proms thaprincipal curves mre critical values of

the expected squared distance between the points and the curve. Linear priaci~al comuponents have

this property as wAf in fact, we prove tikt Nf a principal curve is straighat, then it is a principal

component. These result. generalist the usual duality between, conditiosial expectation and distance

mianmisatiosm. We also examine two sources a( bias in the procedures, which it&ve the satisfactory

property of partially cancelling each ioth..

We compare thAp* cia curve and suWace procedures to otter generalisations of principal

components i the literature; the usual gemera~limations tranisformi the spae, whereas we transform

the mmodel. There ane also sting tie with mmutidiimeasional. scaling.
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Abstract

Principal curves are or ioth one dimensional curves that pan through the middle of a. p dimensional

data set. They minismise the distance from the points. and provide a non-linear summary of the

data. The curves are ion-parametric and their shape is suggested by the data. Similarly, principal

surfaces are two dimensional surfaces that pan through the middle of the data. The curves and

surfaces are found using an iterative procedure which starts with a linear summzry such as the usual

principal component line or planet. Each successive iteration is a smooth or local average of the p

dimensional points, where locul is based on the projections of thes points onto the curve or surface of

the previous iteration.

A number of linear techniques, such as factor analysis and errors in variables regression, end

up using the principal components astheir estimates (after a suitable scali; of the co-or dinates).

Principal curves and surfaces can be viewed asthe estimates of non-livear generalizations of these

procedures. We present some real data, examples that illustrate these applications.

Principal Curves (or surfaces) have a theoretical definition for distributions: they are the sell

C4%uiatents curves. A curve is sel consistent if each point on the curve is th. conditional mean of

the points that project there. The main theorem proves' that principal curves are critical values of

the expected squared distance between the points and the curv. Linear principal components have

.this propertyas we%- in fait, we psowethat if %principal cumvis straight',thenit is aprincipal

component. These results generalize the usual duality between conditional expectation and distance

minimization. We also eaamine two sources of bias in the procedures, which hae" the satisfactory

property ofpartially cancelling each other.

We compare the prnipal curv and surface procedure to oth~e generalizations of principal

components in the literature; the usual generalisations transform the *space, whereas we transform

the model. There are also strong ties. with multidimensional scalin g.
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Chapter 1

Introduction

Consider a data set consisting of n observations on two variables, z and y. We can

represent the n pointa im a scatterplot, as in figure 1.1. It is natural to try and summarize

the joint behaviour exhibited by the points in the scatterplot. The form of summary we

chose depends on the goal of our analysis. A trivial summary is the mean vector which

simply locates the center of the cloud but conveys no in rrmation about the joint behaviour

of the two variables.

o.-..

0 00*

Figure 1.1 A bivriat. data set represente by a ucatterplot.

@S

It -is often sensible to treat one of th~e variables as a response variable, and the other

as an explanatory Variable. The aim of the analysis is then to seek a rule for predicting the

response (or average response) using the value of the explanatory variable. Standard linear

regression produces a linear prediction rule. The expectation of V is modeled as a linear

~~~~o *:.,-*:..."*



2 Chapter 1: Jstrodtctio,

function of : and is estimated by least squares. This procedure is equivalent to finding the

line that minimizes the sum of vertic-l squrxn d errors, as depicted in figure 1.2a.

When looking at such a regressiov 1. un, it is natural to think of it as a summary- of the

data. However, m. constructing this summary we concerned ourselves only with errors in

the response variable. In many situations we don't have a preferred variable that we wish

to label response, but would still like to summarize the joint behaviour of and V. The

dashed line in figure 1.2a shows what happens if we used x as the response. So simply

assignm g the role of response to one of the variables could lead to a poor summary. An

obvious alternative is to summarize the data by a straight line that treats the two variables

symmetrically. The first principal component line in figure 1.2b does just this -it is found

by minimizing the orthogonal errors.

Linear regression has been generalized to include nonlinear functions of.: . This has

been achieved using predefined parametric functions, and more recently non-parametric'

ecatterplot smoothers such as kernel smoothers, (Gasser and Muller 1979), nearest neighbor

smoothern, (Cleveland 1979, Friedman and Stustzle 1981), and spline smoothers (Reinsch

1967). In general scatterplor smoothers produce a smooth curve that attempts to minimize

the vertical errors as depicted in figure 1.2c. The non-parametric versions listed above -

allow the data to dictate the form of the non-linear dependency.

In this dissertatiGn we consider similar generalizations for the symmetric situation.

Instead of summarizing the data with a straight line, we use a smooth curve; in finding the

curve we treat the two variables symmetrically. Such curves will pass through the midle -

of the data in a smooth way without restricting smooth to mean linear, or for that matter

without implying that the saiddle of the data is a straight line. This situation is depicted

in figure 1.2d.' The figure saggests that such curves minimize the orthogonal distances to

the points. It turns out tbal for a suitable definition of middle this is indeed the case. We

name them Prncipal Curvet. U1, however, the data cloud is ellipsoidal in shape then one

could well imagine that a stA aight line passes through the middle oftth. cloud. In this case

we .*xpect our principal cum e to be straight as well.

The principal component plays roles other than that of a data summary:

In error, in variables gression the explanatory variables are observed with error (as

well as the r-sponse). T 2is can occur in practice when both vauiables are measurements

of some underlying vari bles, and there is error in the measunmenti. It also occurs in

observational studies wi ere neither variable is fixed 4y design. ifth* aim of the analysis

, t #. * ~ r * . o*. . . *~ V *~~~* ..- * * ~ * . . . ~ 4



Chapter 1: Introduction 3

is prediction o. or regression and if the z variable is never observed without error, then

the best we can do is condition on the observed z's and perform the standard regression

analysis (Madansky 1959, Kendall and Stuart 1961, Lindley 1947). If, however, we do

expect to observe x wiLhout error then we can model the expectation of y as a linear

function of the systematic component of z. After suitably scaling the variables, this

model is estimated by the principal component line.

e Often we want to replace a number of highly correlated variables by a single vari-

able, such as a normalized linear combinatiou of the original set. The first principal

component is the normalized linear combination with the largest variance.

* In factor analysis we model the systematic component of the data as linear combina-

tions of a small subset of vow unobservable variables called factors. In many cases

the models are estimated using the linear principal components summary. Variations

of this model have appeared in many different forms in the 'literature. These include

linear functional and structural models, errors in variables and total least squares.

(Anderson 1982, Golub and van Loan 1979).

In the same spirit we propose using principal curves as the estimates of the systematic -

components in non-linear versions of the mnodels mentioned above. This broadens the scope

and use of such curves considerably. This dissertation deals with the definition, description 7"

and estimation of such principal curves, which are more generally one dimensional curves

in p-space. When we have three or more variables we, -n carry the generalizations further.

We can .think of modeling the data with a 2 or more dimensional surface in p space. Let us

first consider only three variables and a 2-surface, and deal with each of the four situations

in figure 1.2in turn.

H If one of the variables is a response variable, then the usual linear regression model.

estimates .he conditional expectation of y given - (zI,22) by the least squares

plane. 7his is a planar response surface which is once again obtained by minimising

the squared e~r ors ilug. These errors .-re the vertical distances between g and the point

on the plane vertically above or below y.

• Often a linear response surface does not adequately model the conditional expectation.

We then turn to nonlinear two dimensional response surfaces which are smo.oth surfaces

that minimize the vertical errors. They are estimated by surface smoothers that are

direct extensions of the scatterplot smoothers for curve estimation.

* .' .?:

-.- ,---.---..-'.•...- - - -. - ..



A Chazpter 1: Int roduction

Figure 1-2a The linear regression' line mini- Figure 1.2b The principal component line
mise t~es~r of uard erorsin te rspone mnimies the sum of squared errors in all the

variable. variables.

Figure 1-2c The smooth regression curve Figure 1.2d The principal c~urve rni-imixes
minimizes the smn of squared. errors in the the suam of squared emrso in Al the variables,
response variable, subject to smoothness con subject to smoothness constraints.



Chapter' I: Introduction 5

H If all the variables are to be treated symmetrically the principal component plane passes

through the data in such a way that the sum of squaced distances from the points to

the plane as minimized. Thii in turn is an estimate for the systematic component in a

2-dimensional linear model for the mean of the three variables.

* Finally, in this symmetric situation, it is often unnatural to assume that the best two

dimensional summary is a plane. Principal surfaces are smooth surfaces that pass

through the middle of the data cloud; they minimize the sum of squared distances

between the points and the surface. They can also be thought of as a an estimate for

thi two dimensional syrtematic component for the means of the three variables.

These sturface are easily generalized to 2-dimensional su-faces in p space, although they

are hard to visualize for p > 3.

The dissertation is organized as follows:

* In chapter 2 we discuss in more detail the linear principal components model, as well

as the linear relationship model hinted at above. They are identical in many caes,

and we attempt to tie them together in the situation' where'this is pomible. We then

propose the non-linear generalizations.

'In Chapter 3 we define principal curves and surfaces in detail. We motivate an al-

gnrithm for estimating sech models, and demonstr-A~e the algorithm using simulated

data with very definite and difficult structure.

* Chapter 4 it theoretical in nature, and proves some of the claims in the previous chap-

term. The main result in this chapter is a theorem which shows, that curves that pass

through the middle of the data are in fact critical points of a distance function. The

prncipal curve and ý.*&rface procedures are inherently biased. This chapter concludes

with a discussion of the various forms and severity of this bias.

. Chapter 5 deals with the algorithms in detail there is a brief discussion of scatterplot

smoothers, and we show how to deal with the problem of finding the closest point on

the curve. The algorithm is explained by means of simple examples, and a method for

span selection is given.

* Chapter 6 contains six examples of the use and abilities of the procedures using real

and simul•ted data. Some of the examples introduce special features'of the procedures

surh as inference using the bootstrap, robust 'options and outlir.r detection.,
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"e Chapter 7 pro. des a discussion of related work in the literature, and gives details of

Ssome of the more recent ideas. This in followed by some concluding remarks on the

work covered in this dimertation.

-.
I
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Chapter 2

.Background and Motivation

COmelde a dat Matrix X with va rows and p columns. The matrix consists of ns points or

vectwor with p coodiates. In many situations the matrix will have arisen as ni observations

of a vector random variable.

.2.1. Linear Principal Components.

The AMrs (linear) princqpa compoosent is'the nomu~lized linear combination of the p variables

With the largest sample variance It is convenient to think of X as a cloud of n points in

p~spmc. The irincipal componet is then the length of the projection of the' a points onto

a direction vector. TMe vector is chosen so that the var4'mnce of the projected points along

it is largest. Any live parallel to this vector will have the same property. To tie it down we

ins@4 that it pase through the muan vector. This lIne then has the appealing property of

being the line in posepw that is closest to the data. Closest is in terms of average squared

~icwidiaa distance. We think of the projection ws being the best linear one dimensional

swimmary O the data X. OfW cours this linear summary might be totally inadequate locally

but it attempts to proviode a reasonable global summary.

The theory and practical isses involved in linear principal components analysis are

wellD known (Barnett 1961, Guanadesikan 1977), and the technique is'originally due to

Spearman (1904), and then late developed by Hotelling (1933). We can find the the

*asecond componsnt, orthagonal to the first, that has the next highest variance.' The plane

* spanned by the tee vectors and including the Wean vector is the plano closest to the data.

In &emssal va can flm4 the m,< p dimensional hyperplane that contains the most variance,

samd is loesest to the data.

The solution to the problem in obtained by computing the singular value decomposi-

tics or basic structure at X, (centered with respet to the sample mean vector), or equiva-

lently the eigen decomposition of the sample covariance mnatrix (Golub and Reinsch 1970,

Greenacre 1964). Without any lows in generality we assume from now on that X is centered.

if this is Wot the cles, we can center X, perform the, analysis, and uncenter the result. by



0 Section Lti: A linear model famultation

adding back the mean vector.

In particular, the fir-* principal component direction vector a is the largest normalized

eigenvector of S, the varaple covariance matrix. The principal component itself is Xo, an

a vector wihelemntsA, = z'4where iis the it aw of Xand A ,is theone dimensional

sumimary variable for t.he ith observation. The coordinates in p-space of the projection of

the ith observation on a ame given by

(2.1)

Ilaer is so underlying model in the above. We merely regard the first component

io a good summsary a( the original variables if it accounts for a large fraction of the total

variance.

2.2. A linear model formulation.

In this section. we duscrib. a linear model formulation for the p variables. This formulation

* inchudes many- familia models such as linear regression and factor analysis. We end up

showing in 2.2.2 that the estimation of the systematic component of some of these models

is Once again the principal component procedure.

2.2.1. Outline of the linear model.

Consider a model for the observed data

Xi ad+ ei(2.2)

where vi is an- unobservable systematic component and ej an unobservable random comn-

ponent (We only got to. a" their sum). We usually impose some linear structure on uj,

* naaedy

ej so +AAj (2.3)

*where u0 is constant location !eOctor, A is a p x mn matrix and. Aj is an rn-vector. For the

procedures considered so it always estimated by the L~imple mean vector 3; without loss of

generality we will simply aume that X has be~en centered and ignore the term uo. We also

N NX Is otcenesred we center it by forming tIr- X- is. Thouash. pr'ci6pal component is,

W - I and the estimate in p space for the projection at. the ith observation ont* the principal
cempaent ae I+ is a + ea~ + se'(2d - )
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amume that ei are mutually independent and identically distributed random vectors with

mean 0 and covariance matri 9 and are independent of the Aq.

Nf the A. are considered to be random as well, the model is referred to as the linear

structural model, or more commonly as the factor analysis model. If the k are fixed it is

refere as the linear functional model. The model (2.3) includes some familiar models as

speaial m

LtA be p x (p -1) with rank (p -i). We can write A as

whwe aus a(p-1.) vector&WdI is (p -1) x(p- 1)since we canpost-multiply Aby

an arbitrary non-singular (p - 1) x (p - 1) matrix. and premultiply A. by its inverse.

Thus we can write the model (2.3) as

where(. ) = oand assume .co(,) =diag(,e2,.a,). If; =as'=... =2 = 0

then we have the usual linesr regreion model with response zli and regressor variables

N if the variances are not sero we have the'errors in variables reqessioa model. The idea

is to Aind a (p -i) dimensional hyperp~ane in p.-space that approximates the data well.

The model takes cwe of errors in all the variables, whereas the usual linear regression

model considers errors only in the response variable. This is a form of linear functional

analysis.

* When tA are random we have the usual factor analysis model, which includes the

random effects Anova. Thid is alms referred to as the linear structural model.

* If all the variances we ero and the Ad ae random and A is p x p the model represents

the principal component change a( basis.' In this situation it is clear that the Ai are

each functions of the si.

For a full treatment oa the above models see Anderson (1962).

%. .,: -



10 Setio. 5.1: A Enter model formulation

2.2.2. Estimation

We return for simplicity to the cas where m 1. Thus

Si + Ci(2.5)

The systematc components &A, ae points in p-space confined to the line defined by a

multiple A. of the vectors• We need to estimate A, for each observation, and the direction

vector.

We now state bwne results which can be found in Anderson (1982).

fe either

* the ej are jointly Normal with a scalar covariance cl, whet c is possibly unknown,

and if • are random or fixed, and we estimate by maximum likelihood

or

Sas above but we drop the Normal assumption and estimate by least squares,

than the estimate of A. isce again the first principal component and that of& the principal

component direction vector. In both cases the quantity we wish to minimize is

RSS(A,,) - 12i - "11- (2.6)

It is easy to see that for any a the a ppropriate'value for A is obtained by projecting the

point i auto s. Thu equation (2.6) reduces to

RsS( ,) = 12 - a &41, (2.7)

- trXX4 - s'X"OX

The normalized solution to (2.7) is the largest esgeavector of X'X.

If the errot coverianc# is general but known, we can transform the problem to the

previous can. This is the same as using the Mahalanobis distance defined in terms of t.

In particular when 9 is diagonal the procedure amounts to finding the line that minimizes

the weighted distance to the points and is depicted in figure (2.1) below.'

If the error cvariance is unknown and not scalar then we require riplicate observations

in order to estimat it.

;. .%,_*..........., . . . . . . . . . .. .. •.' ...



Chapter 2: Background and Motivation 11

1d3

Figure 2.1 Vf 9 = diag(Oj,v22) then we minimise the weighted

distamne r7.(d~u/vu + 4/o22) &aom the points to the line.

2.2.3. Units of mneasurement.

It is often a problem in multivariate data analyei that variables have different error vari-

ances, even though they are measured in the same units. A worm situation is that often

the variables are measured in completely different and incommensurable units. When we

use least squares to estimatie a lower dimesoa summary, we explicitly combine the errs

on each variable using the usual sum of cw.,ponenta lons ftunction, as in (2.6) . This then

gives equal weight, to each of the components. The solution is thus not invariant to changes

in the scale of any, of the variables. This is easily, demonstrated by considering a spherical

point cloud. If we scale up one of the co-ordinates an arbitrary amount, we can create

as znuch linear structure so we like. In this situation we would really like to weigh the

w~rot in the estimation of our model according to the variance of the measurement errors,

which is seldom, known. The saest procedure in this situation is to standardize each of the

coordinates to have unit variance. This could destroy some of the structure that exists but

without further knowledge about the scale of the components this yields a procedure that

is invariant to coordinate scale transformatious.

If, on the other hand, it in known that the variables are measured in the same units,

we should not do any scaling as all.- An apparent counter-example occurs if we make
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measuremnts of the same quantities in different situations, with different measurement

devices. An example might be taking seismic readings at different sights at the same

instances with different recording devices. If the error variances of the two devices are

different, we would want to scale the components differently.

To sum up so far, the principal component summary, besides being a convenient data

reduction technique, provides us with the estimate of a formal parametric linear model

which cover a wide variety of situations. An original example of the one factor model

given here is that of Spearnmn (1904). The zx are scores on psychological tests and the X,

i some underlying unobservable general intelligence factor.

The estimation in all the eae amounts to finding a m-dimensional hyperplane in

p4pace that is closet to the points in some metric.

2.3. A non-linear generalization of the linear model.

The above formulation is often very restrictive in that it assumes that the systematic com-

ponent in (2.2) is linear, a in (2.3). It is true in Some cases that we can approximate a

nonlinear surface by its first order linear component. In other cases we do not have sufficient

data to ,stimate any more than a linear component. Apart from thee cases, it is more

reeso�able to amume a model of the form

f ( + (2.8) -

where Aj is a m-vector as before and f is a p-vector of functions, each with m arguments. The

functions are required to be smooth relative to the errors. This is a natural generalization

of the linear model.

This dissertation deals with a generalization of the linear principal components. In- -

stead of finding lines and planes that come close to the data,, we find curves and surfaces.

Just the linear principal components are estimates for the variety of linear models listed

above, so will our non- linear versions be estimates for models of the form (2.8) . So in

addition to having a more general summary of multidimensional data, we provide a means

of estimating the systematic component in a large class of models suitably generalized to

include no-linearitiss. We refer to thesm summaries as principal curves and surfaces.

So far the discussion has concentrated on data sets. We can just as well formulate the

above models for p dimensional probability distributions. We would then regard the data set

' % *.***- * ** , " ., . .' , . , . -. . .' ..-" ' , " ... ... ** * ' ':-
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Ws a Sample from this distribution and the functions derived for the data set will be regarded

as estimates of the corresponding functions defined for the distribution. These models then

define one and two dimensional surfaces that summarize the p dimensional'distribution.

The point 1 (A) or. the surface that corresponds to a general point x from the distribution

is a p dimensional random variable that can be summarized by a two dimensional random

variable A.

2.4. Other generalizations.

There have b,--a a number of generalizations of the principal component model suggested

iv. tIhe literature.

* "Generalized principal componente usually refers to the adaptation of the linear model

in which the coordinates are first transformed, and then the standard principal com-

poiwaet analysis is carried out on the transformed coordinates.

* M~altamensional scaling (MDS) finds a low dimensional representation for the. high

dimensional point cloud, such that the sum of squared interpoint distances are pre-

served. Thij constraint has been modified in certain case to cater only for points that

are 4affe 2n the original space.

*Prcxinnlty ana!ysis ovn'des parametric representations for data without noise.

*Non-linea-r facter analysis is a generalization similar to ours, except parametric co-

ordfinate functions arm used.

We have been deliberately brief in listing these alternatives. Chapter 7 contains a detailed

discussion and comparison of each of the above with the principal curve and surface models.



Chapter 3

The Principal Curve and Surface models

In his chapter we define the principal curve and surface models, first for a p dimensional

probability distribution, and then for a p dimensional finite data set. In order to achieve

wmo continuity in the presentation, we motivate and then simply state results and theorems

in this chapter, and prove them in chapter 4.

3.1. The principal curves of a probability distribution.

We first give a brief introduction to one dimensional surfaces or curves, and then define the

principu esrwe of smooth probability distributions in p space.

3.L-1. One d~imensional curves.

A one dimensional curve f is a vector of functions of a single variable, which we denote by -

A. Thea functions are called the coordinate functions, and A provides an ordering along .

the curve. If the coordinate functions are smooth, then f will be a smooth curve. We can

clearly make any monotone tr-sformaton to A, say m(A), and by modifying the coordinate

functions appropriately the curve remains unchanged. The parametrization, however, is

different. There is &anatural parametrization for curves in terms of the arc-length. The

arc-length of a curve f from Ao to A, is given by

1 = J jI'(s)JI dz.

If IjI'(z)I aE 1 then I = A- 1-A 0 . This is a rather desirable situation, since it.all the coordinate

variables ae in theism. units of measurement, then A is also in those units. The vector ""- "'

f(A) is tangent to the curve at A and is sometimes &alled the vel.oiti-vector at A. A curve

with 11JP11 a 1 is cAed a unit speed parametrized curve. We can always reparametrize any

unooth curve to make it unit speed. If v is a unit vector, then I(A)-vo + Aw is a unit

speed straight curve.

The vector fJ(A) is called the acceleration of the curve at A, and for a unit speed

curve, it is easy to check that it is orthogonal to the tangent vector. In this cane is/lI uI

-.-- ,;,.- - ;- .-. '.,,. -' .p.. . .....- ". .. , ,..%;.... '. ,.t '- '.-. .. / .-. , .. • . . '
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Figure (3.1) The radius of curvature is-the radius of the circle

tangent to the cumv with the same acceleration an the curve.

im called the principal normal of the curve at A. Since the acceleration measures the rate

and direction in which the tangent vector turns, it is not surprising that the curvature of

a parametrized curve im defined in terms of it. The easiest way to think of curvature is in

terms of a circle. We -fit a circle tangent to the curve at a particular point and lying in the

plane spanned by the velocity vector and the principal normal. The circle is constructed to

have the same acceleration as the curve, and the radius of curvature of the curve at thit

point is defined am the radium of the circle. It is easy to check that for a unit speed curve

we get

rf (A) 4-fradius of curvature of f at A

= :/::-:;:I

Theenter of curvature of the curve at A is denoted by ef (A' and is the center of this circle.

3.1.2. Definition of principal curves.

We now define what we mean by a curve that passoel through the middle of the data -. what

we call a principal curve. Figure 3.2' represens such a curve. At any particular. location

on the curve, we collect all the points in p space that have that location as their cloaest

point on the curve. Loosely. speaking, we collect all the points that project there. Then

the location on the curve is the average of these points. Any curve that has this property

point i* deie ., s th raiu of the * ir le It ' is eas to* ..hec. tha for a5~~. uni ~speed5~ curveS "*• *S.S "
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0

Fiue 32) oc pon ona rncpl uveiste vsa f
pont tatpojctthre•

0 0:-i

0 0 s p0 0 eteo co in

00 0 0

e ingire (3.2) Each point on n principal curve is the tv-age of th..
points that p~roject there.""

in called a principal curve. One might say that principal curves ure their own conditional ..-.

expectation. We will prove later these curves are critical points of a"'distance function, as .. '-

wre the principal components. ..

In the figure we have actually shown the points that project into a neighborhood on

the curve. We do this because usually for finite data sets at most one data point projects

at any particular spot, on the curve. Notice that the points lie ina segment with center at

the center of curvature of the arc in question. We will discuss this phenomenon in more

detail in the section on bias in chapter 4.

We can formalize the above definition. Suppose X is a random vector in p"space,

with continuous probability density h(x). Let g be the class of differentiable 1-dimensional

curves in RP, parametrized by A, In addition we do not allow curves that form closed loops,

so they'may not intersect themselves or be tangent to themselves. Suppose A E Af for each

f in 9. For f e g and z-E JRP, we define:the projection index'A 1 : ]R '-R Af by

()= ()mx{A: - f(A)II inIf 1z- A(S)II}. (3.1)

.......... . . .. . ., ', " • • .'', . ... • . .. . .. •. .. . ,;

n 
*
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The projection index A,(z) ofx is the value of A for which f(A) is closest to z. There might

be a number of such points (suppose I is a circle and z is at the center), so we pick the

largest such value of A. We will show in chapter 4 that A1 (z) is a measureable mapping

from BR to R" and thus A1 (X) is a random variable.

Definition

The Principal Curves of h are those members of 9 which are self conaistent. A curve f C 9

is self consistent if

IC(XIJAf(X) A) f (A) VA Af

We call the clas of principal curves F(h).

3.1.3. Existence of principal curves.

An immediate question might be whether such curves exist or not, and for what kinds of-

distributions. It is easy to check that for ellipsoidal distributions, the principal components

are in fact principal curves. For a spherically symmetric distribution, any line through the

mean vector is a principal curve.

What about data generated from a model as in equation 2.8, where A is 1 dimensional?

Is f a principal curve for this distribution? The answer in general is no. Before we even

try to answer it, we have to enquire about the distribution of ), and ei. Suppose that the

data is weil behaved in that the distribution of ei has tight enough support, so that no .:

points can fall beyond the centers of curvature of f. This guarantees that each point has

a unique closest point to the curve. We show in the next chapter that even under these

ideal conditions (spherically symmetric errors, slowly changing curvature) the average of

points that project at a particular point on the curve from which they are generated lies

outside the circle of curvature at that point on the curve. This means that the principal

curve will be different from the generating turve. So in this situation an unbiased estimate

of the principal curve will be a biased estimate of the functional model. This bias, hLt er,

is small and decreases to zero as the variance of the errors gets small relative to the radius

of curvature.

3.1.4. The distance property of principal curves.

The principalcomponent ware critical points of the squared distance from. the- points to their

projections on straight curves (lines). Is there any analogous property for principal curves?

-- a-- .~ -9-. . -" .. C t,. J.. S * *'~ a a a. .-
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It turns out that there is. Let d(x, 1) denote the usual euclidian distance from a point z to

its projection on ýhe curve f:

dc=, f) 1= x- fC lC ())l(.2

and define the function D2 : - JR1 by

D2(f) d=, Ed2 (X,f).

We show that if we restrict the curves to be straight lines, then the principal components

are the only critical values of D2(f). Critical value here is in the variational ".nse: if f and

g are straight lines and we form f~ + feg, then we d&fine f to be-a critical value of D2 iff

dD2(f.dcJ4 =o = 0.

This means that they an minima, maxima or saddle points of this distance function. If we

restrict I and g to be members of the subset of 9 of curves defined on a compact A, then

principal curves have this property as well. In this case f, describes a class of curves about

f that shrink in as e gets small. The corresponding result is: dD 2 (f)/Idi.,o = 0 iff f is

a principal curve of h. This is a key property and is an essential link to all the previous

models and motivation in chapter 2. This properLy is similar to that enjoyed by conditional

expectations or projections; the residual distance is minimized. Figure (3.3) illustrates the

idea, and in fact is almost a proof in oue direction.

Suppose k is not a principal curve. Then' dia curve defined by f (A) - E(X AAk(XI -

A) certainly gets closer to the points in any of the neighborhoods than the original curve.

This is the property of conditional expectatioM. Now the points in any neighborhood defined

b-y AXimightend up in different neighborhoods when projected onto I, but this reduces the

distances even further. This shows that k cannot be a critical value of the distance function.

An immediate consequence of thes two results is that if a principal curve is a straight

line, P.2ev i! ;- a principal component. Another result is that principal components are self

consistent if we replace conditional expectations -by linear project-ns..

3.1.4.1 A sMooth subset of principal curves.

We have defined principal curves in ; rather general fashion without 'any smoothness re-

strictions. The distance theorem tells us that if we have a, principal. curve, we will not find

any curves nearby with the same expected distance. We have a mental image of what we



Chapter 3: The Principal Curve and Surface models 19

0

00

0

• 

"0 0 f(X

Figure 3.3 The conditional expectation curve gets at least as close

to the points as the original C-Mve.

woulk like the curves to look like. They should pas through the data smoothly enough so

that each data point has an unambiguous closest point on the curve. This smoothness will

be dictated by the density h. It turns out that we can neatly summarize this requirement.

Consider the subset 1.(h) C T(h) of principal *curves of h, where f E 7.(h) iff f E 6 (h)

and A,(z) is continuous in s for all points x in the support of h. In words th.is says that if

two points x andp are close together, then their points of projection on the curve are close'

together. This has a number of implications, some of which are obvious, which we will list

now and prove later.

* There is only one closest point on the principal curve for, each x in the support of h.

* The curve is globally well behaved. This means that the curve cannot bend back and

come too close to itself since that will lead to ambiguities in projection. (If we want

to deal with ckoeed curves, such as a circle,, a technic6- modification in the definition

of Aisrequired).

" There are nopoints at or beyond the centers of curvature of the curve. This says that.

the curve is smooth relative to the variance of the data about, the curve. This has

intuitive appeal. If the data is very noisy, we cannot hope to recover more than a very

smooth curve (nearly a straight fine) from it.

0.. ........ ... ....... .. k...... .. .. ... e e . .. r. ..... % ... e..
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II 1

II

_ ___ __ I __ __

(a) 4b)

Plgtne 3.4 The continmity conmrains avoids global ainbiguaies a)

,W local ambiguiti, (b) in projection.

Figure 3.4 ilustraws te way in which the continuity coastraint avoid* gl)ba and local

ambiguities. Notice that (h) epend on the denuity h of X. We say in the support of

4, but if the erros halve an infinite rang., thi definition would only allow straight lines.

We can make some technca modifications to overcome thi, hurdle, such as insisting that h

has compact support. This rules out any theoretical consideration of curves, with gausian

errors, although in practice we always have compact support. Neverthele;s, the clam 1(h)

will prove to be useful in understanding somei pt the properties of principal curves.

3.2. The principal surfaces of a probability distribution.

3.2.1. Two dimensional surface..

The level of difficulty increaes, dramatically as we move from one dimensional surfaces or

curves to higher dimensional surfaces. In this work we will only deal with 2-dimensional our-

aces in p space. In fact we "iall deal only with 2-surfaces that admit a global parametriza-

tion. rhis allows us to define I to be a smooth 2-dimensional g!obally parametrizal surface

; . . .. .. _ _ _ - .. ...... '. . ..o. ,.
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if :f - RP for A C_ 2R is a vector of smooth functions:

fi(A)
I(A)

/ (3.3)

= (A•,• A2)

Another way of defining a 2-eurface in p space is to have p- 2 constraints on the p coordi-

nates. An example is the unit sphere in W'. It can be defined as {( : z E , lzJJ = 1}.

There is one constraint. We will call this the implcit definition.

Not all 2-surface. have implicit definitions (mfbius band), &ad similarly nat all surfaces

have global pasmetatonma. However, locally an equivalence can be established (Thorpe
1978).

The concept of arc-length generalizes to surface area. However, we cannot always re-

paramstrise the surface so that units of area in the parameter space correspond to units of

area in the surface. Once again, local parametrizations do permit this change of units.

Curvature also takes on another dimension. The curvature of a surface at any point

might be different depending on which direction we look from. The way this is resolved

is to look from all pomible directions, and the first princi•-l curveture is the curvature

corresponding to the direction in which the curvatuie is-greatest. The second prineiral

Curvature corresponds to the largest curvature in a d rection orthogonal to the first. For
.2-surfaces there are only two orthogcnal directions, so we are done.

3.2.2. Definition of principal surfaces.

Once again let X be a random vector in p-space, with continuous probability density h(z).

Let 9S be the class o differentiable 2-dimensional surf ces in RP, parametrized by' A E Af,

a -dimesional parameter vecto,.

For I E • and s 4E BR, we define the projection index A,(x) by

A,(s) = mama(A: I1: - 1(A)II inftix - 1(,)ll). (3.4)
AS A&

-I i%- . . . ..
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The projectica index defines the closest point on the surface; if there is more than one, it
picks the one with the largest first component. If this is stAl not unique, it then maximizes

over the second component. Once a Aj(z) is a measureable mapping from EP into I R,

and A1(X) is a random vector.

Definition

The Principal Surfaces of h wre those members of g2 which ame self consistent:

1(X IAg(X) = A) = (A)

Figu , (3.5) demonstrates the situation.

410

Fplgre .5 t Ea pai on a principal surace is the averag, of the
Pains" that projet there.

The plane spanned by the first and second principal components minimizes the distance
from the points to their projections onto any plane. Once again let d(z, f) denote the usual

euclidian distance from a point 2 to its projection on the surface f, and D2 (f) -Ed2 (X, 1).
IU the surfaces ae restricted to be planes, then the planes spanned by any pair of principal

S• , ... 
.. . . _ 

_ . . . .. o • o.- - o, ... . -. 
•. .
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components are the only critical values of D 2(f). There is a result analogous to the one

to be proven for principal curves. If we restrict f to be the members of g2 defined on 0

connected compact sets in R 2 , then the principal surfaces of h are the only critical values

of D2(f).

Let 7'(h) c GI denote the clan of principal 2-surfaces of h. Once again we consider a

s sooth subset of this clan. Form the subset 1,(h) q 72(h), where f E 1,2(h) if f .72(h) 0

and A1(z) is continuous in x for all points z in the support of h. Surfaces in Y,2(h) have

the following properties.

* There is only one closest point on the principal surface for each z in the support of h. S

0 The surface is globally well behaved, in that it cannot fold back upon itself causing

ambiguities in projection.

* We saw that for principal curves in Y.(h), there are no points at or beyond the centers S

of curvature of the curve. The analogous statement for principal surfaces in 1,2(h) is

that there are no points at or beyond the centers of normal curvature of any unit speed

curm in the surac.

3.3. -An algorithm for finding principal curves and surfaces.

We are AM in the theoretical situation of finding principal curves or surfaces for a probability

distribution. We will refer to curves (1-dimensional surfaces) and 2-dimensional surfaces

jointly es surfaces in situations where the distinction is not important.

When eking principal surfaces or critical values of D2(f), it is natural to look for a

smooth curve that corresponds to a local minimum. Our strategy is to start with a smooth

curve and then to look around it for , local minimum. Recall that

D'(f) = Zi x- i((Xj (3.5)D[Jx lf1.fY I (nil

A ,( Z X) -f(X)(n 1 l •f(x). (3.) ".-.

We can write this as minimization problem in f andA: find f and A such that 9

Df(f,A) = ] CJX -(A)II' (3.7)

is a minimum. Clearly, given any candidate solution I and A, I and A, is at least as good.

Two key ideas emerge from this:

, ,* *% • * , * .. *. * . - ... . . . . . . ..- •°



24 Section 3.3: An algorithm for findinag prnacipal curves and asrfacc&

"* If we knoew f s a function of A, then we could minimize (3.7) by picking A= Af(z)

at each point x in the support of A.

"* Suppose, on the ollier hand, that we had a function A(x). We could rewrite (3.7) as:

y' ,A) = A(Z F ] E[(X, - f,((X))2 I A(X)I .(3.8)

We could minimi•e D2 by choosing each fj separately so as to minimize the corre-

sponding term in the sum in (3.8). This amounts to choosing

h (A) = 1(X9 I(X) = A). (3.9)

In this last step we have to check that the new f is differentiable. One can construct many

situations where this is not the case by allowing the starting curve-to be globally wild. On

the other hand, if the starting curve is well behaved, the sets of projection at a particular

point 'in the curve or surface lie in the normal hyperplanes which vary smoothly. Since the

density h is smooth we can expect that the conditional expectation in (3.9) will define a

smooth function. We give mor details in the next chapter. The above preamble motivates

the following iterative algorithm.

Principal surface algorithm

Inltializatlon: Set f( 0 )(A) = AA where A is either a column vector (principal 6

curves) and is the direction vector of the first linear principal

component of h or A is a p x 2 matrix (principal surfaces) con-

Sifting of the first two principal component direction vectors.

Set AM1o = Ap(e).

repeat: over iteration counter j

1) Set o)(.) = z (X IAu-)(x) =( 1

2) Choose AM = ij)

3) Evaluate D3 U) - D!y(f) AW)).

until: D2 (J) fails to decrease.

Although we start with the linear principal component solution, any reasonable starting

values can be used.
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It is easy to check that the criterion D 2 (A) must converge. It is positive and bounded

below by 0. Suppose we have ,f(-1) and AUC-,). Now Df(I,"),A•€- 1 )) <_ D?•( U-1),,AUC-)) .

by the properties o conditional expectation. Also D!(I•,. AW) 5 D€(fUi), (.- 1)) since the

Au) •re chosen that way. Thus each step of the iteration is a decrease, and the criterion

converges. This does not moat that the procedure has converged, since it in conceivable that

the algorithm oscillates between two or more curves that are the same expected distance 0

from the points. We have not found an example of this phenomenon.

The definition of principal surfaces is suggestive of the above algorithm. We want a

moth surface that is self consistent. So we start with the plane (line). We then check

if it is indeed self consistent by evaluating .the conditional expectation. If not we have a

surface as a by-product. We then check if this is self consistent, and so on. Once the self

consistency condition is met, we have a principal surface. By the theorem quoted above,

this surface is a critical point of the distance function.

3.4. Principal curves and surfaces for data sets.

So far we have considered the principal curves and surfaces for a continuous rmltivariate

probability distribution. In reality, we usually have a finite multivariate data set. How do

we define the principal curves and surfaces for them? Suppose then that X is a n x p matrix

of a observations on p variables. We regard the data set ans a sample from an underlying'

probability distribution, and use it to estimate the principal curves and surfaces of that

distribuf m-n. We briefly describe the ideas here and leave the details for chapters 5 and 6.

* The first step in the algorithm uses linear principal components as starting values.

We use the sample principal components and their corresponding direction vectors as

initial estimates of A, and °(0).

SGiven functions ?U-) we can rind for each zi in the sample avalue =,'-•1 U_. (). -

This can be done in a number of ways, using numerical optimization tochniques. In

practice we have JU-1) evaluated at n values of A, in fact at -, "., V".

)(1-t) is evaluated at other points by interpolation. To illustrate the idea let us con-
eider a curve for which we have *U-i) evaluated at j-)for i = 1, n. For each

point i in the sample we can project x onto the line joining each pair (?U-)(•-I),

-( l Suppose the distance to the projection is 4-h, and if the point projects

beyond either endpoint, then di is the distance to the closest endpoint. Correspond.

inlg to each isa Value .1 6 [ ,^•+j 1" We then let be the Ai, that

. . . . ... -.-. .. . . -. ........ ...... , .. .... . ... ,.. ... .. . .. . . .. . ... *. ... ... . *. ...... :2 . ::
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corresponds to the smallest value of d,1h. This is an O(n 2).procedure, and as such is

rather naive. We use it as an illustration and will describe more efficient algorithms

0 We have to ematimate f U).(A) Z (X JAU- 1) -A). We restrict ourselves to estimating

this quantity at only n values of AU- 1), namely V -1) ... ,A•J which we have already

estimated. We require E(X IJ- 1 ) -A- This says that we have to gather all

the observations that project onto )U-a) at and find their mean.. Typically

we have only one such observation, namely zi. It is at this stage that we introduce

the .cat•t•rplt m*oother, the fundamental building block in the principal curve and

surface procedures for finite data sets. We estimate the conditional expectation at

Sby averaging all the observations zi in the sample for which is close to

1j-t). As long as these observations are close enough and the underlying density is

smooth, the bias introduced will be small. On the ,other hand, the variance of the

estimate decreases as we include more observations in the neighborhood-. Figure (3.6)

demonst s this local averaging. Once again we have just given the ideas here. avd

wilgo into details in later chapters.

* .-

P.gure 3.8 We estimate the conditional expectatio

Z(X A'J - Al)-) by averaging the observations z for which •.

-isClose to
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* One property of catterplot smoothers in general is that they produce smooth curves

and surfaces as output. The larger the neighborhood used for averaging, the smoother

the output. Since we are trying to estimate differentiable curves and surfaces, it is

convenient that our algorithm, in seeking a conditional expectation estimate, does

produce smooth estimates. We will have to worry about how smooth these estimates

should be, or rather how big to make the neighborhoods. This becomes a variance

versus bias tradeoff, a familiar issue in non-parametric regression.

e Finally, we estimate D2 (U) in the obvious way, by adding up the distances of each point

in the sample from the current curve o: surface.

3.5. Demonstrations of the procedures.

We look at two examples, one for curves and one for surfaces. They both are generated

from an underlying true model so that we can easily check tnat the procedures are doing

the correct thing.

3.5.1. The circle In two-space.

The series of plota in figure 3.7 show 100 data points generated from a circle in 2 dimlensions

with independent Gaussian errors in both coordinates. In fact, the generating functions are

wher~ianifriny (:)Gcs~. )+el)(3.10)X2 , CNA + C2)o.

where A isuniformly distributed on [0, 2x] and el and e2 are independent NI(0, 1).

The solid curve in each picture is the estimated curve for the iteration as labelled, and

the dashed curve-is the true function. The starting curve is the first principal component,

in figure. 3.7b. Figure 3.,a gives the usual scatterplot smooth of z2 against 'zl, which is

clearly an inappropriate summary for this constructed data set. ,

The curve in figure 3.Tk does substantially better than the previous iterations. The

figure caption gives us a clue why - the span of the smoother is reduced. This means that

the ass of the neighborhood used for local averaging is smaller. We will see in the next

chapter how the bias in the curves depends on this span.

The square root of the average squared orthogonal diatance is displayed at each iter-

ation. If the true curve was linear the expected orthogonal distance for any point would

be o = 1. We willsee in chapter 4 that for this situation, the true circle does not

*. ... ,.....,,..†† †.,* . . . . . .. ., : ::-
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8* 
0 3

Figure M.e DO(3())=2.64 Figure 3.7f D(Y(4)) 2:'37

41.0
Fiur 3.7g D(A..2 iue .hD M



30 Section S.5. Demonsjtrationse of the procedures

Figure 3.71 D(?(")) Figure 3.7j D(j(8)) -1.60

P- 41 a

bea

U s 6 e

Figure 3.7k D(?(')) 0.97. The span is Figure 3.71 D(J(10)) C.96

automatically reduced -A this stage.
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minimize the distance, but rather a circle with slightly larger radius. Then the minjiizing

distance is approximately a2(1 - 1/4,p2) - .99. Our final distance is even lower. We still

have to adjust for the overfit factor or number of parameters used up in the fitting przce-

dure. This deflation factor is of the order. n/(n - q) where q is the number of parameters.

In linear principal components we know q. In chapter 6 we suggest sme rule of thumb

approximations for q in this non-parametric setting.

This example presents the principal curve procedure with a particularly tough job.

The starting value is wholly inap-nop-iate and the pr':jection of the points onto this line

does not nearly represc-n, the final ordering of the points projected onto the solution curve.

At each iteration the coordinate system for the 1U() is transferred from the previous curve

to the current curve. Points initially project in a certain order on the starting vector, as

depicted in figure 3.8a. The new curve is a function of !( 0) measured along this vector

as in figure 3.8b obtained by averaging the coordinates of points local in 10(). The new,

•(i) values are found by projecting the points onto the new curve. It can be seen that the

ordering of the projected points along the new curve can be very different to the ordering

along the previous curve. This enables the successive curves to bend to shapes that could

not be parametrized in the original principal component coordinate system.

3.5.2. The half-spbere in three-space.

Figure 3.9 shows 150 points generated from the surface of the half-sphere in 3-D. The

simulated model in polar co-ordinates is

I 5s3iD(Al) Cos(A 2) (ei

Z2 - (5cos(Ai)cos(A:) C+ e (3.11) 4
W 5sin(A2) CS)

for At 6 [0, 21] and A2 E [0, r/2). The vector e of errors is nimulated from a M'(0, I)

distribution, and the values of A, and A2 are chosen so that the points are distributed

uniformly in the surface. Figure 3.9a shows the data and the generating surface. The

expected distance of the points from the generating half-sphere is to first order 1, which is 4
the expected squared longth of the residual when. projecting a spherical standard gaussian

3-vector onto a plane through the origin. Ideally we would disrlay this example on a motion

graphics workstation in order to see the 3 dimensions.*

* This disertation is, accompanied by a motion graphics movie, called Principal Curve and

Surfa'es. The half-sphere is one of 4 examples demonstrated in the movie.

Si
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I7.

(*) (b)

FIgu~re 3.8 The curve of the the first iteration is a function of 1(o)-

measured along the starting vector (a). The curve of the the secon'd

iteration is a function of ~()measured along the curve of the first

iteration (b).

3.6. Principal surfaces and principal components.

In this section we draw some comparisons between the principal curve and surface models

and their linear counterparts in addition to those already mentioned.

3.6.1. A Variance decomposition.'

Usually linear principal components are approached via variance considerations. The first

-component is that linear combination of the variables with the largest variiws~. Th. second

component is uncorrelated with thefirst and has largest variance subject to this constraint.

Another way of saying this is that the total variance in the plane spanned by ths first two

components is larger than that in any other plane. By total variance we mean the sum of

the variiances of the data projected onto any orthonormal basis of the subspace defined by

the plane. The following treatment is for one comporent, but the ideas easily generalize to

two.
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Figure 3.9a. The geeratiag narface and FIgure 3.9b. The principal co'mponent
ti, datA. D(S) -1.0 plane. D~OM)) 1.59

3

* . ..

*. ., •*

* o*

I

Figreta9. D($ s) ) , 1.00pFlgue 3. D((o)) ) 0.78
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If A = (A,, A,,)' is the first principal component of X, a n x p data matrix, and

a is the corresponding diroction vector, then the following variance decomposition is eAsily

derived:

E Var(zi) = Var (A) + EIllz- eA12 (3.12)
3=1

where Va" (-) and E(.) refer to sample variance and expectation. If the principal component

was defined in the parent opulbAtion then the result is still true and Var(-) and E(-) have

their utual meaning. The second term on the right of (3.12) is the expected squared

distance of a point to its projection onto the principal direction.*

The total variance in the original p variables is decomposed into twn components: the

variance explained by the linear projection and the residual varian-e in the distances from

the points to their projctions. We would like to have a similar decomposition for principal

curves and surfaces.

Let w now be any random variable. Standard results on conditional expectation show

thatL
Va~i Z (z IC z ))2 + r Va(Z(zi I w)). (3.1)

jul Jul -

If = Af (z) and f is a principal cur-e so that Z(zi I A(z)) = fi (A1(x)), we have

~jVar (zi) = Z - !(IAj(X))[+ Vaf(Az)) (3.14)
k,. 11 .%+ = a1 h(% ()

This gives us an analogous result to (3.12) in the distributional case. That is, the total

varince in the p coordinate is decomposed into the variance explained by the true curve

and the residual variance in the expected squared distance from a point to its true position

on the curve. The sample version of (3.14) holds only approximately:

SVarkzj) N r x Iz- loo)II +E Var (/,(4.)) (315
Jul itl jut

The reason for this is that most practical scatterplot smoother. an not projections, where"

conditional expectations ane.

We r.ake the following observations:

• We kep ia naind that X is considriKd to b. centwed, or altomativiy that E (a) - 0. The

above results are still true if this is eo the cae, but the equations we memier.

- , , ,
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if fi(A) a=A, the linear principal component function, then

P p

Z Var(fi(Aflx)))= Z a V.ar(A•,())
j=i j=i

SVar (A)

since a has length 1. Here we have written A for the function A)(z) = d'.

* if the fj ae approximately linear u p" .,'• the Delta method to obtain

,.,Var (fj Of,(x))) ow rj(4 E(of(z))) 2 Va (A (z)).

=Var(A,(W))

sice we reoticit ou curves to be unit speed and thus we have have Ilrll = 1.

3.6.2. The power method.

W. already mentio•md that when the data is ellipeoidal the principal curve procedure yields

liner prbici ompet. We now show that if our smoother fits straight lines, then

ow= again the principal curve procedure yields linear principal components irrespe.tive of

the starting lnm

Theorem 3.1

If the smoother in the principal curve procedure produces least squares straight line fits,

and if the initial fiuntios describe a straight line, then the procedure converges to the first

principal component.

Proof

*Let e(o) be any starting vector which has unit length and is not orthogonal to the largest

principal component of X, and assume X is centered. We find A0 by projecting =, onto
*(°) which we denote collectively by

where A(O) ii•a vector with elements A, i= ,... ,n.Wefind a,' by re.ressing or

projecting the vector 2. = (,.,,j)' onto AM:

• \..

GO\,O)z

",." .. ... ,'...-'.'o;•'-..•'.... ..- '%".:. .-..... .. . .".. . •. * .. .' - . ," . . . . .A.7 0 .-TA7.0T• ,.,•

S • .o • . .• .o .. . . . .. o . , o . o . . , . o . • . o = . . . L . . 0 , . . . , 0 .0 " . .6 Wo . 0 . 0,
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or

A(0 )'A(0

X'Xa(O)
-Oa X•'Xa•.)

and (1) s renormalized. It can now be seen that iteration of this procedure is equivalent

to' finding the largest eigenrector of X'X by the power method (Wilkinson 1965). *

M°



Chapter 4

Theory for principal curves and surfaces

In this chapter we prove the results referred to in chapter 3. LI most cases we deal only

with the principal curve model, and suggsst the analogues for the principal surface model.

4.1. The projection index is measureable.

Since the first thing we do is condition on A, (X), it might be prudent to check that it is

indeed a random variable. To this end we need to show that the function Af: RP I'- RI1

i measureable.

Lot f(A) be a unit ipeed parameterized continuous curve in p-space, defined for A Er

[Ao, Al = A. Let

D()= inf {d(:,f(A))) V x YeR
A4EA

where

d(Z',f(A)) 1=2 - f (A) ,"

the usual euclidean dibtance between two vectors. Now set

M(z) = {A;d(z, I(A)) = D(z)) .

Since A is compact, M(z) is not empty. Since f, and hence d(zx (A)) is continuous, Me(z)

is open, and hence M(z) is closed. Finally, for each z in EP we define.the projection index:

Aj(X) =sup M(z)

A,(x) is attained because M(z) is closed, and we have avoided ambiguities.

Theorem 4.1

A (z) is a measureable function of x.

I am grateful to H. Kinsch o( ETH, Zrich, for getting me started on, this proof.

S..... 2 .
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Proof

In order to prove that Af,(z) is measureable we need to show that for any c E A, the set

(x IA,(s) < c} is a measureable set.

Now x e ({ I A(z) _ 4) -=• for any A E (c,Ail there exists a A' - [Ao,cI such

that d(x, 1(A)) > d(z, f(A')). (i.e. if there was equality then by our convention we choose

A(z) = A > e.) In symbols we have

{x IA(:)<wc) = n U {zId(x,l(A))>d(z,(A'))}

dd

The first step in the proof is to show that

B. e n U -{: ,id(z,f(A)) > d(s,f(Ad))}

where Q is the set of rational numbers. Since for each A -

U (x Id(z,,(A)) > d(,,f(A'))) D U (z 1d(x,1(A)) > d(xf(A•))},
A'E[A.,.J A•E[A.,I• :.

it follows that B. A .4. We need to show that B. 2 A4. Suppose z E A. i.e. for any given

A C (e,AAi 3 A# E [Ao, c] such that

d(z, f(A)) > d(x, f(A')).

For any given such A and A' we can find an e > 0 such that

d(-, f(A)) = d(z, (A')) + e

Now since f is continuous and the rationals are dense in RI we can. find a At e Q such

that All < A'. and d(f (A#), f(A)) < e. ( A' E Q we need go no further). This implies that

d(x, f(A)) > d(z, f(All)) by the pythagorean property of euclidean distance. This in turn

implies that x e B. and thus A,, ' C,,and therefore A. = B,.

: . ,. . .. . . . . . . . . ..

.... .... .. . . . .... " . ... .. '... ..". .". . . ..".". ."". . . .? ;2 : " :::: " :": : ? :'- :'"_ "_': ? "
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The second step is to show that

, f U {xId(zf (A,)) > d(z,f(A))}

"-B-

Now clearly B. 5 D,. Suppose then that x e D.. i.e. for every Ag E (c,,Afl n Q, there

is a A;, E [AO, c ln Q such that d(z, f(A,)) > 4d(z, I(f')). Once again by continuity of f and

becaue the rationsl- are dene in R' we can find another Ae Q, At > ,1 such that

d(z, f(A)) > d(zf(A;)).

for all A4E[AV, A;:.Thsmastt

SNE n u {z1id(z,f(A)) > d(,f(A;))}

dot

for every A• (c, All n Q. In other words

=E n Et;

and we have that D. B.. Finally, each of the sets in D, is a halfspace, and thus

measureable, D, is a countable union and intersection of measurable sets, and is thus itself

measurable.

4.2. The stationarity property of principal curves.

We first prove a result for straight lines. This wi lead into the result for curves. The

straight line theorem says that a principal component line is a critical point of the expected

distance from the points to itself. The converse is also true.

We first establish some more notation. Suppose f(A) A i-. 9 a unit speed con-

tinuously eifferentiable parametrized curve in ]RP, where A is an interval in IR. Let g(A)

be defined similarly, without the unit speed restriction. An e perturbed version of f is

1f, = f) + etg(A). Suppose X has a continuous density in RP which we denote by h, and

. ,, . ... 7
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let D2(h, f,) be defined as before by

D2(h,tE =c I li- IE(AI.(X))jjI

where Af,,(X) parametrizes the point on f, closest to X.

Definition

The curve I is a critical point of the dietance function in the clams 9 iff

dD'(hIE) 0 VgEg.

(We have to show that this derivative. exists.)

Theorem 4.2

Let f (A) = ]X + Ago with 1lvo01 =1, and suppose we restrict g(A) to be linear as well.,

So(•A)= Y, 11 = I and, 9 the clas of all unit speed straight lines. Then'" is a

critical point of the distamce function in f iff vo is an eigenvector of • = COV(X).-

Note,

SWLOG we assume that EX-O.

* 11.1 iI is simply for convenience.

Proof

The closest point from x to any line Aw 'through the origin in found by projecting z onto

w and has parameter value

Ilk ---

Upon taking expected values we get

D2 (h,Aw) = tr E*- (4.1)

We now apply the above to f, instead of fa, but first make a simplifying assumption. We

can MRSUme w.l.o.g that ., - el since the problem is invariant to rotations.

~ . / . O'o O
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We split 9 into a component.. = eel along el and an orthogonal component Y*. Thus

= c- , + 9" where J4* = 0. So , = A((1 + cc)ze + e&'). We now plug this into (4.1) to

get •'(h/,1=• r.((1+ ,ce•e + e,')'E((1 + ce)ej + e,')..•-""':"'..-
D(f. rE-(1 + CC)2 + C2- ""

= E- (1 + cc)2eEei + 2e(I + ce)te,"v + e2 Ev, (4.2)-
(1 + cc)2 + 62-

Differentiating wr.t. e and setting e =0 we get

dD3(h, . =)

If I is a; principal component of E then this term is azro for all 9* and hence for all v.

Alternatively, if this term, and hence the derivative, is zero for all v and hence all Y'e"l =0,

we have

='Eel 0 V veel =0 -

=)-Eel eel ::..:

*.ej is an eigenvector of E

Note:

Suppose , is in fact another eigenvector of E, with eigenvalue d, then

SD
2 
(h~,f.) -~ D2(hf) - -,0-)

This shows that f might be aSmaximum, a mi nimum or a saddle point.

Theorem 4.3

Let 9 be the class of unit speed differentiable curves defined on A, a closed interval, of 'the

form [a, b]. The curve f is a principal curve of h ifff is a critical point of the distance

function in the class 9.

'We make some observations before we prove theorem 4.3. Figure 4.1illustrates the situation.

The curve f. wiggles about/ and approaches as c approaches 0. In fact, we can see that

the curvature of f, is close to that of, f for small e. The curvature of is given by

1/rIIG) N1(A)II2  -

. . . . . . . . . . . . .. . . . . . . . . . :. ..

. . . . . . . . . . . .. . . . . . . . . ... p *

:.""". . .".'- o".'." '-." . "o .. .- ".-°..". ". ". "'-". '• • 2

S,, , .:'• , % • . , . • ,,.7,%.



42 Section 4.2: TAe stationarity property of principal curves

F7gure (4.1) 1MA) depicted as a function of 1(A). -

where N(A) is the normal vector to the curve at A. Thus 1/rf() < IlX(A)II/ lII(P)ll since

the curve is not unit speed and so the acceleration vector is slightly off normal. Therefore

Whave rf.1(.) -> ilf(A) + g'C(A)11 2 / Il"(A) + eell which converges to r,'(A)as c ---1' 0.

The theorem is stated only. for curves f defined on compact sets. This is not such a

restriction an it might seem at first glance. The notorious space filling curves are excluded,

but they are of little interest anyway. If the density h has infinite support, we have to box it

in RF in order that f, defined on a compact set, can satisfy either statement of the theorem.

(We show this later.) In practice this is not a restriction.

Proof of theorem 4.3.

We use the dominated convergence theorem (Chung, 1974 pp 42) to show that we can

interchange the orders of integration and differentiation in the expression

2D(h,I 4 )= E EAIX- (,(X))ll. (-3)

We need to find a random variable Y which is integrable and dominates almost surely the

absolute value of

2i 2

- lix - I. of, (n i - f ('X - (n
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for all e> 0. Notice that by definition

d

4-0Z = -t- 4A(X))I LO

if this limit exists. Now

< X - (A (X))" l. - f of (X,

Expanding the first norm we get

IIx - O,'. )1,, (•))11 2 = Ix - A,())I 2 Ji+- ig(A,(X))11-2E (X - (A.,(X))) , g(Af (X)),

and thus

Z, 5 -2 (X - i,\,.(x))) .,g(A,(X)) + eI,(Ao(x))l1'

where Y, is some bounded random variable.

Similarly we have

lix f ý- f.(A(X))l -1 liX - fI(Af (X)) jJ2

We expand the first norm again, and get

Z. _ -2 (x- i, 4(x(.)X). g(A,,.X)) +.E Ilg(Aj.(X))11 2

* y2Y
where Y2 is once again some bounded random variable. These two bounds satisfy the con-

ditions of the dominaed convergence, theorem, and so the interchange is justified. However,

from the form of the two bounds, and because f and g are continuous functions, we see,

that the limit lim,-.o Z, exists whenever A)i (X) is continuous in e at e = 0. Moreover, this

limit is given by . .
u~~z, = ~lx-/,(,(x)):-'..I

C-40 de ~ IIX-hA'()121=0

-2 (x - I(..,(X))) • go,(x)).:

We show in lemma 4.3.1 that this continuity condition is met almost surely.

• , ,, , , .-. . .. .,. * . . . . . .... . . .... ~ . . . . . . ..*
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We denote the distribution function of Af(X) by h., and get

2 D(h, f,) -2'E I, (X JAh(X) A) - (.X)) -g(.). (4.4)

If f (A) is a principal curve of h, then E (X AI (X) = A) = 1(A) for all A in the support

of h.%, and thus

d 2= 0 h differentiable g.

Alternatively, suppose that

z1"(z(X - f(A) IA(X)= A) . g(A)) =0 (45)

for all differentiable g. In particular we could pick g(A) = E(X IAf(X) = A) - !(A). Then
2I

MIII E(X IJA(X)= A)1 (A) =0

and consequently I is a principal curve. This choice of g, however, might not be differen-

tiable, so some approximation is needed.

S'nce (4.5) holds for all differentiable g we can use different g's 'to knock off different'

pieces of X(X A, (X) A A) - f(A). In fact we can do it one co-ordinate at a time. For

example, suppose E(XI A1 (X) = A) is positive for almost every A E (Ao, A,). We s, ggest

why such an interval will always exist. We will show that Af(z) is continuous at almost

every z. The set {X I A(X) = A E (Ao, AI)} is the set of X which exist in an open connected

set in the normal plane at A, and these normal planes vary smoothly a we move along the

curve. Since the density of X& is smooth, it does not change much as we move from one

normal plane to the next, and thus its expectation does not change much either. We then

pick a differentiable gi so that it is also positive in that interval, and sero elsewhere, and

set g2- g s 0. We -apply the theorem and'get E(XI JIA(X). = A) -- f1 f(A) for

A E (Ao, A,). We can do this for all such intervals, and for each co-ordinate, and thus the

result is true. "

Corollary

Ifa principal curve is a straight line, then it is a principal component.

, . ,.4.,, ... .,.,.., -.. .. ", ".'. - . ,, .. -...... . , .--.. . .".. .•
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Proof
0

If f is a principal curve, then theorem 4.3 is 'rue for all g, in particular for g(A) = A. We

then invoke theorem 4.2.

In order to complete the proof, we need to prove the following

Lemma 4.3.1

The projection function Af, (z) is continuous at e - 0 for almost every z in the support of

h.

Proof

Let us consider first where it will not be continuous. Suppose there are two "ints on '

equidistant from z, and no other points on f are as close to z. Thus 3 A0 > Al , A,(z) Ao

and flz - f(Ao)I = IJz - f(AdIl[. It is easy to pick g in this situation such that A',(z) is not .O

continuous at e - 0. We call such points ambiguous. However, we prove in lemma 4.3.2

that the set, of all ambiguity points for a finite length differentiable curve has measure zero.

Wd thus exclude them.

Suppose w > 0 is given, and there is no point on the curve as close to z as f(A,(z))

f(Ao). Thus IiX -, (Ao)ll < II: - f(A1 )I V A, e [a, b] n (Ao - w, Ao + w)9. (Notice that at

the boundaries the w interval can be suitably redefined.) Since this interral is compact,

and the distance functions are differentiable, we can find a 5 > 0 such that 11z - f(Ao)ll <"

li - /(AI)li - 6. Let M = supA[.aI JIg(A)lJ I-and co = 8 /(2M). Then Iz -. ,€(Ao)ll <

llx- .(AI)li V Al e [a, b 11 (Ao - w, Ao + w) ind .e • co. This implies that Af,(z) e

(Ao - w, Ao + w), and the continuity is established.

Lemma 4.3.2

The set of ambiguity points has probability measure zero.

P roof

We prove the lemma for a curve in 2-space, but the proof generalizes to higher dimensions.

Referring to figure 4.2, suppose a is an ambiguity point for the curve f at A. We draw the

circle with center a and tangent to f at A. This means t!iat f must be tangent to the circle

somewhere else, say at /(A'). If 1 on the normal at 1(A) is also an ambiguity point, we can

draw a similar circle !or it. But. this contradicts the fact that f(A) is the closest point to a,

e, or e-.
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Figazre 4.2 There are at moat two ambiguity points on the normal

to the curve; one on either aide of the curve.

5imce the circle for b lies entirely inside the circle for a, and by the ambiguity of b, we know

the curve must touch this inner circle somewhere other than at f (A).

Let I(X) be an indicator function for the set of ambiguity points. Since ther.. are -at

moat two at each A, we have that E (1(X,) Af A(X) =A) =0. But this also implies that the

unconditional expectation is zero.

Corollait

'The projection index Af (z) is continuous at almost every' .,

Proof

We show that if Af (x) is not continuous at x, then x is tn ambiguity point. But this set*. -

has measure zero by lemma 4.3.2.

N f A(x) is not continuous at x, tLere exists a. to .O 0such that for every 6 > 0 3 zF

such that lix - x6li <56 but A()-A()I> to. LettiL.. Z' o to ziro, we mee that x must

......... ...........................
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Sx

I o

I p
I /

1(a)
rI

Flgure 4.3 The set of points to the right of f(a) that project there

has meauM geo

be equidistant to A 1(z) and at least one other point on the curve with projection index at

least (o from ,f (z).

Theorem 4.3 proves the equivaience of two statements: f is a principal curve and f

is a critical value of the distance funct-on. We needed to assume that f is defined on a

compact set A. This means that the curve has two ends, and any data beyond the ends

might well project at the endpoints. This leaves some doubt as to wethet the endpoint can

be'the average of these points. The next lemma shows that for either statement of the

theorem to be true, some truncation of the sup ort of h might be necessary if the support

is unbounded).

Lemnma 4.3.3

If I is a principal curve, then (2- f( O(f)) - I(A(z)) = 0 as. for z in the support of

h. If ---- 0 V differentiable g, the the same 6i true. By f'(a) we mean the

derivative from the right, and similarly from tbo, left for r(b).

Proof

If A,(x) e (a,b) the p.oof is immediate. Su ose then that Af.(z) = a. Rotate the co.

ordinates so that f'(a) = el. No points to the left of f(a) project there. Suppose f is a

"~~~~~~~~~~~.....'....'.....'..'..'...'....'••...'..'...". ... '....'.... .i" .. "•" " ".. .""
:<w-w~w <.~ .. . .q o.*. K. *o°..

• "• "," : .'.".:. "'.'..'.-'. ".2'. _." " " - -'..
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principal curve. This then implies that the set of points that ate to the right of f(a) and

project atf 1(a) has conditional mewire zero, ele the conditional expectation would be to

the right. Thus they also have unconditional measure zero.

Alternatively, suppose that ther is a set of z of positive measure to the right of f(a)

that projects there. We can construct # such that #(a) = f(a), and zero everywhere else.

For such a choice of #it is clear that the derivative cannot be zero. However, this choice of

t is not continuous. But we can construct a version of g that is differentiahle and does the

same job a #. We have then reached a contradiction to the claim that 0 V

differentiable g. 
0

4.3. Some results on the subclass of smooth principal curves.

We have defined a subset Y.(h) of principal curves. Thes a•e principal curves for which

A,(s) is a continuous function at each x in the support of h. In the previous section we

showed that if A/(z) is not continuous at x, then x is an ambiguity point. We now prove the

converse: no points of continuity wre ambiguity points. This will prove that the continuity

constraint inder4 avoids ambiguitiss in projection.

In figure 4.4& the curve is smooth but it wrap. around so that points close together

might project to completely different parts of the curve. This reflects a global property of

the crzve and presnts an ambiguity that isunsatisfactory in a summary of a distribution.

Thsorem 4.4

If .f,(z) is continuous at x, then z is not an ambiguity point.

Proof

We prove by .contradiction. Suppose we have an x, and At'* A, such that

j11 - f(,00I = 112 - 1(A,)II
= A(x, P)

It is eayto se that if AI yields the closest point on the curve for z, then At is the position

that yields the minimum for al ., = atf(A,) + (1 - aj)x for a e (0, 1). S-milarly for A,.

Now the idea is to let at and oa get arbitrarily small, and thus .,la. - x.,1ll gets small, but

A - A/(x.,) = constt and this violates the continuity of Af(.)

Figure 4.4b repristnts the other ambiguous situation, this time caused by a local

property of the curve. We consider only points inside the curve. If such points can occur at

• % '.'.'o'' .' . .. j' .. .' ." : ." .. "..'.... .'.,...+.'......',......-...-.. , , . . - -. + "...".. . .. ,. .,•

• ; +. . .. .. ,, • . .
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-, IfQ g
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.) ( (b)

FIgure 4.4 The contiunity co,.traizA avoids global ambi.iu, (a)

,sid local abigaki (b) i projeqtac.

the center of curvature, then there is o unique point of projection on the curve. By inside

we mean tha the' in'n product (s - f(A,*(z)))'. (ef(Af(x)) - (A,/(z))) is non-negative,

where e,(A) i th Center o curvature off at the, point 1(A).

Theorem 4.5

If A/ (x) i continu atz, then u is not at the center of curvature of f at A.

Proof

The idea of the proofi illustrated in igure .4.4b. If apoint at.e,(A) projects at A, then it

will project at many other points immediately around A, since locally f(A) behaves like the.

wre of a circle.with center ef(A). This would contradict the continuity of Af. Furthermore,

if a point at z beyond e,(A) projects at A, we would expect that points on either side of '

would project to different parts of the curve, and this would also contradict the continuity

of A,.

_ _" .K." --. ,- .. : • '_ _J "+- • +" "" ''I""•
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We now make theme ideas precise. Assume x projects at Af(z) - AO, where

f = (Ao) + iZ1" (o' -. i +8)

and 6 0. Thus x is on or beyond the center of curvature of f at Ao. Let q(A) d 111(A) - zJ.

By hypothesis q(A) > q(Ao) with equality holding iff = A•0 . (Otherwise there would be at

least two points on the curve the same distance from x and this would violate the continuity

of A1) This implies that

(1) 110o) =0

(2) q'(Ao) > 0 for a strict minimim to be achieved.

We evaluate these two couditions.

eo) =f(Ao) I(A)- ( 1 +))

= ( P) iI1)11 1I(,)II

e(4) = (O1). (1(A) -() + r(A,). ,f,(Ao)
= J(•) I/'(11111'•''•+ 81+

which contradicts (2) above. U -

4.4. Some results on. bias.

The principal qrve procedure i inherently biased. There aretwo forms of bias that can

occur concurrently. We identify them as model Usi and eetimetion bia,.

Model bias occurs in the framework 'of a functional model, where the data is generated

from a model of the form =s (A) + e, and we wish to recove.r (A). In general, starting

At f(A), the principal curve procedure will not have f(A) as its solution curve, but rather

a biased version thereof. This bias goes to zero-with the ratio .of the noise variance tothe

radius of curvature.

Estimsaion bias occurs because we use scatterplot smoothers to estimate conditional

expece.aions. The bis is introduced because we average over neighborhoods, lnd this

usually has flattening effect.

I,...
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1 S0

Plgwr. 4.5 The data is generated from the arc of a circle with

radius p sad with iid JI(Oouzl) errors. The location on the circle is

selected wiilwinly.

4.4.1. A simple model for investigating bias.

The scenairio we shall consider is the arc of a circle -in 2-apace. This can be parametrized-

by a unit speed curve 1 (A) with constant curvature l1p, where p is the radius of the circle:

1(A) = (4.6)__

for A e (-A11 AfJ s - plup. For the remainder of this section we will denote intervals of

the type 1-.,A41 by A#..

The points x wre generated as follow.: First a A is selected uniformly fr-om Af. Given

this value of A we pick the Point x from some smooth symmetric distrioution with first two

ments (f (A)I,. 2 ! ) where.a has yet to be specified. Lintuitively it seems that more mass

gets put ou.tside the circle than inside, and so the circle, nr arc thereof, that gets closet

to the data has radius larger than p. Consider the point. that project onto a small arc of

the circle (seo figure 4.5). 'They lie in a segment which fans out from the origin. As we

shrink this arc down to a point, the segment shrinks down to the normal to the curve at

that point, but there is always more mass outside the circle than inside. So when we take

conditional expectations, the mean lies outside the circle.

One would hope that the principal curve procedure, operating in distribution space
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and starting at the true curve, would converge to this minimizing distance circle in this

idealizedý situation. It turns out that this is indeed the case.

Figure 4.5 depicts tho situation. We have in mind situi~tions where the ratio 0u/P is

small enough to guarantee that P(IeI > p) su 0. This effectively keeps the points local;

they will not. project to a region on the circle too far from where they were Pnerated.

Theorem 4.8

Lot f (A), A -E A, be the arc of a circle as described above. The parameter A is distributed

uniformly in the arc, and given A, z=J (A) + e where the components of e are fid with mean

o variance o,2. We concentrate on a smaller arc A, inside Af, and assume that the ratio

w/p io small enough to guarantee that all the points that £p-oject into A* actually originated

-from somewhere within A1 .

Then,-

where

.~sin(0/2) (4-7)

As/p 0/2 and'

Finally r*-.*p as a/p -0.

Lemma 4.6.1

* Suppose A/ = P. (We have a full circle.) The radius of the circle, with the same center

as f (A), that minimizes the expected squared distance to the points is*

I = E(+ea)2+eC2

,>p

* Also r-.as a/P -0.

.1I thank -Art Owes for suggesting this reult.
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Proof of lemma 4.6.1

The situation is depicted in Figure 4.5. For a given point z the squared distance from a

circle with radius r is the radial distance and is given by .. "

aN(z, r) = (1l:ll - r)..

The expected drop in the squared distance using a circle with radius r instead of p is given

by

ZAD2 (;,rp) = Zd 2 (:,p) - EdC(zr)
(4.8) -

= Z(llll - W)- E(l-IIl -..

We now condition on A 0 and expand (4.8) toget

ZAD2(,.,,I•= O) = r2 + 2(r - p) E•/I(p + el)2 + e'.

DifferentiaiLg w~r.t. r we se that a maxirmm is achieved for

r= re ___

Z= p /(p + CI)2 + (.-) 2

> C 1 1 + I/,,I"-:'

->pIz(1+ei/,,)l (Jensen)

with strict inequality if Var(eq/p) - o2 /p 2 =0. Note that

3&),2 (Zr',p) (p- E (p+ l)I +e2) (4.9)

which is non-negative.

When we condition on some other value of A, we can rotate the system around so that

A =0 since, the distance is invariant to such rotations, and thus for each value of A the same

r* maximizes ZAD(z,r,p IA ), and thus maximizes AD2 ,X,p). n p

Note: We can write the expression for r° as

re= , • +E + 24 (4.10) -

*.' s.-'-,..:.-*- . * *.

* "-, -. .".0 -"-. . ""9 .- .- *.- ,, ''.•. ."'2 ."-" ,''.- -... , .. -".. -".. .".', ".. "-. .".. .." . .".. ,; ' . .".. ."*, ,"• .- -....... [...,.".-.
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where ei = ei/u, ej (0, 8), avd 8 = o/p. Expanding the square root expression using the

Taylor's expansion we get
," p + u2/(2p). (4.11) i -:

This yields an expected squared distance of

Zd2(X, ') ~ 2 - o,'/(4p)

which is smaller than the usual v3. This expression was also obtained by Efiom (1984).

Proof of theorem 4.6.

We will show that in a segment of size • the expected distance from the points in the

segment to their mean converges to the expected radial distance as 0-*0. If we consider

all such segments of size 0, the conditional expectations will lie on the circumference of

a circle. By definition the conditional expectations minimize the squared distances to the -

points in their segments, and hence in the limit the radial distance in each segment.. But

so did r*, and the results follow.

Suppose that ÷ is chosen so that 2r/O is a positive integer. We divide the circle up

into segments each with arc angle I. Consider E(z 1Af(z) 6 A#), where A# and A# are

defined above.

Figure 4.6depicts the situation. The points are symmetrical about the'z 1-axis, so the

expectation will be of the form (r, 0)'. By the rotational invariance of the problem, if we

find these conditional expectations for each of the segments in the circle, we end up with a

circle of points, spaced 0 degrees apart with radius r.

We t show that as 4--0, r- r*. In'order to do this, let us compare the distance

of points from their mean vector r = (r, 0)' in the segment, to their radial distance from the

circle wi radius r. If we let r(z) denote the radial projection of z onto the circle, we have

z [(z - E (z Af (z) C AO) 2 IAf (z) A AI = [(z -)2, IAf(z) r = 1 (4.12)

> Z((x - r())1 I,(fz) A•I, ---

Also, we ave

Z ((X r)2 I,%(S) CE Ai,•,

Z [(X - ,(x))12 f, (z) E A#1 + C[(r(x) - r) (•A(z) 9 A#]

-2 z (I,(x) - rl Ix - (z)I cos('(z)) I A ,() r A#)

(4.13)

* 2.. .o 
• 

. -
-

-
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XS

r~x
- r(x

/2

(r0)/4.•%.

F gur, 4.8 The coaditiomal expectation of z, giveas A ,.() eA#.

where t#() ere the angles adepicted in figure 4.6. The second term on the right of (4.13)

is smaller than (rO/2)2. We treat separately the case when z is inside the circle, and when

z is outside.

P When x is iside the circle,O(z) is acute and hence coe(O(z)) > O. Thus

S E (z -r(z)) ' IA1(z) E A ¢]j+ -O (#) (4.14)."-":

•[i; ' 

.'A.-.',

* When z is outside the circle, t(z) is obtuse and cos(O(x)) < 0. Since - cos(@(z))

sin(f#(z) - r/2) and from the figure O(x) - r/2 S #/4, we have that - cos(O (z)) <5

sWn(÷/4) = O(0). Now Z.[(r(z)'- i Ia 1z- r(z)1) 1A1(z) e AJ in bounded since the.

errors are assumed to have finite second moments. Thus (4.14) once again holds.

So from (4.12) and (4.14) , as 0 -- 0, the expected squared radial distance in the segment

and the expected squared distance to the mean vector converge to the same limit. Suppose

3z(X l~ f(X) =01 = ,'

0I

** .**** S."*.-,S .,..."
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Since the conditional expectation r'* minimizes the expected squared distance in the seg-

ment, this tells us that a circle with radius r* minimizes the radial distance in the segment.

Since, by rotational symmetry, this is true for each such segment, we have that r** minimizes

Z,, z(fIIl - 0)' 1 W(z) = = .(IIzII - r)

This then implies that r* - r" by lemma 4.6.1 and thus

lim Z(ztAj(z)rEA,#)= Z(zI•A(1)=o)

This is the conditional expectation'of points that project to a an arc of size 0 or simply a

point. In order to get the conditional expectation of points that project onto an arc of size

0, we simply integrate over the arc:

3(s IAf(z) e A,) Z A(z)EZ E(X IAf,(Z) =-A)

Suppose A corresponds to an angle x, then

z(A I /(X) A) (r" cos(z)'.

S,.) sin(z))

Thus

-/r°2 • dz\"'

II

Corollary ''"

The above results generalize exactly for the situation where data is generated from a sphere

in IRS. The sphere that gets closest to the data has radius

,." = /e(pe+ct)too, + n + h4 i .-.v.-.

and this is exactly the conditional expectation of zz fOr points whose projection is at (p, O, 0)'. ..

S" "" " " "-..-
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Corollary

If the data is generated from the circumference of a circle as above, the principal curve

procedure converges after one iteration if we start at the model. This is also true for the

principal surface procedure if the data is generated from the surface of a sphere.

Proof -

After one iteration, we have a circle with radius rv. All the points project at exactly the

same position, and so the conditional expectations are the same. This is also true for the

principal surface procedure on the sphere. .

4.4.2. From the circle to the helix.

The circle gives us insight into the behaviour of the principal curve procedure,, since we lop

can imagine any smooth curve as being made up of many arcs of circles. Equation (4.15)

clearly separates and demonstrates the two forms of bias:

e Model bias since r" > p.

* Estimation Was since the co-ordinate functions are shrunk by a factor sin(9/2)/(0/2)

when we average within arcs or spans of size 9. ....-

For a sufficiently large span, the estimation bias will dominate. Suppose that in the present

setup, • = p/4. Then from (4.11) we have that r* = 1.031p. From (4.7) we see that

a smoother with span corresponding to 0.27s or 14% of the observations will cancel this

effect. This is. considered a small span for moderate sample sizes. Usually the estimation

bias-will 'tend to flatten out curvature. This is not always the case, as the circle example

demonstrates. In this special setup, the center of curvature 'remains fixed and the result of

flattening the co-ordinate functions is to reduce the radius of the circle. The central idea is

still clear: model bias is in a direction away from. the center of curvature, and estimation

-bias towards the center.

We can consider a circle to be a flattened helix. We show that as we unflatten the helix, /
the effect of estimation bias changes from reducing the radius of curvature to increasing it.

To fix ideas we consider again ,the circle in RI. As we have observed the result of

estimation and model bias is to reduce the expected radius from 1 to r (for a non-zere span

I o ano-eO spa ,.. 4
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smoother such that r < 1). Thus we have

ri )c(A)

r sin(A) '

with II?.'(A)tI r. The repairameterised curve is given by

and by definition the radius of curvature is r < 1. Here the center of curvature remains the

same, but this is not usually the case.

A unit speed helix in R5 can be represented by'

f,(A) =/sin(A/c)

bA/c :

where c2  1 + P. It is' easy to check thatr= 1 + b 1, so even though the helix looks like a

circle with radius 1 when we look down the center, it has a radius of curvature larger than

1. This is because the osculating plane, or plane spanned by the normal vector and the

velocity vector, makes an angle with the zi - z2 plane. In the case of a circle, the effect of

the smoothing was to shrink the co-ordinates by a factor r. For a certain span smoother,

the helix co-ordinates will become (rcoo(A/c), r sin(A/c), bA/c)'.' Notice that straight lines

are preserved by the smoother. Thus the new unit speed curve is given by

(r cos(X/c*)
,)(A) r |,in(A,/o*) ,::•-.....

bA/c" "..

where c = r2 + V.. The radius of curvature is now (r' + b2)/r. If we look at the difference

in the radii we get
r2 + 62:'':::r) I-" -- + Vt

= ¢ , r)€(P ,,- r)....--.
r

> 0 if bP > r

This satisfies our intuition. For small b the helix is almost like a circle and so we expect

circular behaviour. When b gets large, the helix is stretched out and the smoothed version

has a larger radius of curvature.

.* . ,::.:.:::.,
t.*. .. .0- .. ,,:. , -
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4.4.3. One more bias demonstration.

We conclude this section with one further example. So far we have discussed bias in a rather

oversimplified situation of constant curvature.

•.............................. I.... 'I''. "

3

-3

-a .". .- ..... .1....--.-

a 4 .

Figu~re 4.7 The thick curve is the'the principal curve using conditional expectations at the

model, and shows the model bias. The two dashed curves show the compounded effect of model

and estimation bias at spans of 30% and 40%.

A sine wave in BR2 does not have constant curvature. In parametric form we have

A simple caltulation shows that the radius of curvature rf (A) is given by

rj(A) (I + Cog,2(Ajr))S/2'

"and achieves a minimum radius of I unit. The model for the data is X (A) e where

A tT[0, 21 and e X1(O, 1/4) independent of X. Figure 4.7shows the true model (solid

curve), and the points are a sample from the model, included to give An idea of the error

structure. The thick curve is Z ,(X A(X) =A). iHere is's£ situation where the model

bias results In a curve. with more caturvatre, namely a minimum radius of 0.88 units. This



60 Section 4.5: Principal curies of elliptical distributions

curve was found by simulation, and is well approximated by 1/0.88sin(Ar). There are two

dashed curves in the figure. They represent E (X I Af(X) E A.(A)), where A.(A) represents

a symmetric interval of length sA about A (Boundary effects were eliminated by cyclically

extending the range of A.) 'We see that at s - 30% the estimation bias approximately

cancels out the model bias, whereas at a = 40% there is a residual estimation bias. -.

4.5. Prirh:ipal curves of elliptical distributions.

We have seen that for elliptical distributions the principal components are principal curves.

Are there any more principal curves? We first of all consider the uniform dis with no holes.

For this distribution we propose the following:

Fligure (4.8) The only principal curves in T,(h) of a uniform disk

ane the p~incipal components..

Proposition

The only principal curves in ),(h) ar%, straight lines through the center of the (Usk.

An informal proof of this claim is as follows:

o Any principal curve must enter the disk once and leave it once. This must be true

since if it were to remain inside it would have to circle atound. But this would violate

the continuity constraint imposed by n.(h) sincethere would have to exist points at

- -.-.. -
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the centers of curvature of the curve at some places. Furthermore, it cannot end inside

the disk for reasons sirailar to those used in lemma 4.3.3.

* The curve enters and leaves the disk normal'to the circumference. For symmetry

reasons this must be true. As it enters the disk there must be equal mass on both

sides.

* The curve never bends (see figure 4.8). At the first point of curvature, the normal

to the curve will be longer on one side than the other. The set of points that project

at this spot will not be conditionally u-iformly distributed along the normal. This

is because the set is the limit of a sequence of segments with center at the center of

curvature of the curve at the point in question. Also, all points in the segment will

project onto the arc that generates. the segment; if not the continuity constraint would

be violated. So in addition to the normal being longer, it will have more mass on the .

long side as well. This contradicts the fact that the mean lies on the curve.

Thus the only curves allowed are straight lines, and they Will then have to pass through the

center of the dank.

Suppose now that we have a convex combination of two disks of different radii but the p

same centers. A similar argument can be used to show that once again the only principal

curves are the lines through the center. This then generalizes to any mixture of uniform"

disks and hence to any spherically symmetric distribution of this form.

We conjecture that for ellipoidal distributions the only principal curves are the prin- 9-

cipal components.

XS

Oil

................................ .. o



Chapter 5

Algorithmic details

In this chapter we describe in more detail the various constituents of the principal curve

and surf&-.* algorithms.'

5.1. Estimation of curves and surfaces.

We described a simple smaotia or local averaging procedure in chapter 4. There it was

convenient to describe the sm-cother as a method of averaging in p spae., although it bas -

been pointed out that we can do the smothing co-ordinate wise. That simplifies the

treatment here, sin" we only need to discuse smoothers in their more usual regression

context.

Usually a icatterplot smootheri regarded as an estimate of the conditional expectation-

Z (YjIX), where Yand X werandom variables. For our pirpoon X way beoneor two

dinmenional. We will discuss one dimensional simoothers first, since they are easier to

implement than two dimensional smoothers.

5.1.1. One dimenslonil smsoothers.

Tne following subset of smaothers evolved naturally as estimates of conditional expectation,

and are, listed in order of complexity and computational cost.

5.1.1.1 1?%ovinj aver*agsmboothers.

The simplest and most natural estimate of E(Y IX) is the moving averagre smoother.

Given a sample (pits4)# i =0 1. ... n, with the xj in. secending-order, we define

Smooth (V~ O~.- X j (5. 1)

where k [(n - 1)/21 and a e (0, 11 is called the span of the smoother. An estimate of

the conditional expectation at zj is the zverag, of the yi for all those observations with x

value equal to zj. Since we usually only have one such observation, we average the VIj for
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all those observations with z value close to xj. In the definition above, close is defined in

the ordinal scale or in ranks. We can also use the interval scale or simply distance, but this

Js computationally mare expensive. This moving average smoother suffers fromi a number

o( draiwbacks, it does not produce very smooth Uis and does not even reproduce straight

lines unless the z, are equispaced. It also suffers from bias effects on the boundaries.

5.1.12 Local linewam moothem.

An improvement an the moving average smoother is the local linter smoother of Friedman

and Stuetzle (1981). Here the suioother estimates the conditional expectation at Zi by

the fitted value from the leost squares line fit of y on &. using only those points for which

xj e (xi...h,zj+h). This suffers lessfrom boundary bias than the moving average and always

reproducas straight lines exacty. The cost of computation for both of the above smoothers

is 0(n) ortie.Of course we can think of fitting local polynomials as well, but in

practice the gain in bias issmall relative to the extra computational burden.

5.11.13 Loallyt weighted flaeaz smoothems

Cleveland (1979) suggested using the local linear smoother, but also suggested weighting-

the points in the neighborhood according to their distance in z from mi. This produces even

smoother curves at the expense of an incremdul computation time of O(kn) operations. (In

the local linear smoother, we can obtain the fitted value at zi~ from that at zj by applying

some simple updating algorithm to the latter. If local weighting is perf-bemed, we can no

longer use updating formulae.)

5.1.1.4 Kernel smoother.

The kernel smoother (Gamser and Muller, 1979) applies a weight function to every observa-

tion in calculating the fit at zi. 'A variety of weight functions or kernels exist and a popular

choice is the gpassian kevnel centered at zj- They produce the smoothest functions and are

computationally the motexpensive. The cost is OWn) operations, although in practice

the kernels have a bounded domain and this brings the cost down to 0(en) for some athat

depends On the kea mi and the data.

In all but the kernel smoother, the span controls the smoothness of the estimated

function. The larger the span, the smoother the function. In the case of the kernel smoother,

there is a scale parameter that controls the spread of the kernel; and the larger the spread,

the smoother the function. We will discuss the choice of spans in section 5.4.
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For our particular application, it was found that the locally weighted linear smoother

and the kernel smoo;her produced the most satisfactory residts. However, when the sample

size gets large, these smoothers become too expensive, and we have to sacrifice smoothness

for computational speed. In this case we would use the faster local linear smoother.

5.1.2. Two dimensional smoothers.

There are substantial differences between one and two dimensional sinoothers. When we

find neighbors in two space, we immediately force some metric on the space in the way we

define distance. In our algorithm we simply use the euclidean distance and assume the two

variables are in the same scale.

It is also computationally harder to find neighbors in two dimensions than in one. The

k-d .t.e ( Friedman, Bently and Finkel, 1976) is an efficient algorithm and data structure for

finding neighbors in k dimensions. The name arises from the data structure used to speed -

up the search time - a binary tree. The technique can be thought of as a mltivariable

version of the binary search routine. Friedman et al show that the computation required

to build the tree is O(kn log n) and the expected search time for the m nearest neighbors

of any point is O(og n).

5.1.3. The local planar surface smoother.

We wish to find Smooth (p z0) where xo is a 2-vector not necessarily present in the sample.

The following algorithm is analogous to the local linear smoother:

* Build the 2-d tree for the n pairs (zi,z 2 )," ,(zI.,zX.).

* Find the nu nearest neighbors of zo, and fit the least squares plane through their

associated y values.

o The smooth at so is defined to be the fitted value at so.

This algorithm doe. not allow updating 'as in the ono-dimensional local linear smoother.

The computation time for one fitted value is O(log n + nh). For this reason, we can include

weights at no extra order in computation cost. We use gaussian weights with covariance

hI3r and centered at -so, snd h is another parameter of the procedure.

* A simpler version of this, smoother uses the (gaussian weighted) average of the V values

for the ne'neighbonr. In the one dimensional came, we fird that fitting local straight lines

reduces the bias at the boundaries. In surface smoothing, the proportion of points on the

S ... .. .. .....%:.. .*.*.*...........'. .. ,-,......,.','..'.. .,,.o......,,. ....... . ......... "
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boundary increases dramatically as we go from one to two dimensions. This provides a

strong motivation for fitting planes instead of simple averages.

5.2. The projection step.

T7e other step in the principal curve and surface procedures is to project each point onto

the current surface or curve. In our notation we require APs) (a4) for each i. We have already

described the exact approach in chapter 3 for principal curves, which we repeat here for

5.2.1. Projecting by exact enumeration.

We project z. into the line segment joining every adjacent pair of fitted values of the curve,

and find the closest such projection. Into implies that when projecting we do not go beyond

the two points in question. This procedure is exact but computationally expensive (O(n)

operations per search.) Nonethelees, we have used this method on the smaller data sets

(_S 150 observations.) There iso analogue for the principal surface routine.

5.2.2. Projections using the k-d tree. _

At esh of the a values of I we have a fitted p vector. This is true for either the principal

curv or- surface procedure. We can build a p-4 tree, and for each x., find its nearest

neighbor amoungt thes fitted values. We then proceed differently for curves and surfaces.

o For curves we project the point into the segments joining this nearest point and its -

left neighbor. We do the sami for the right neighbor and pick the closest projection.

o For surfacs we find the nearest fitted' value as above. Suppose this is at fi )(A-')."

We then project *I oato the plancorresponding to this fitted value and get a new

value AV. (This plane has already been calculated in the smoothing step and, is stored.)

We then evaluate JOI(A.) and check if it is indeed closer. (This precautionary step

is similar to projecting j4 into the line segment& in the case of curves.) If it is, we

= = One could think of iterating this prere,

which is simile to a gradient msarch. Alternatively one could perform a Newton-

Raphson search using deri"vive information contained in the least squares planes.

These approaches ate expensive,- and in the many examples tested, made little or no

difflerence to the estimate.

£. AA-~A..& '6 6
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5.2.3. Rescaling the A's to arc-length.

In the principal curve procedure, as a matter of practice, we always rescale the A's to arc-

length. The estimated A's are then measured in the same units as the observations. Let A:

* denotes the resealed $)'s, and suppose are sorted. We define " recursively as follows:

0 =0.

* =+ Pwa)(S)) - fN01

"5................. I......."".

oo

4 de

103

-1..".

Unsealed A

1Fgw. (5.1) A A plot for the circle example. Along the vertica ala H
pwe pot tenal valu. for 1j, after reecaling the a's at ev•y itera•io'n.

in the principal curve procedure. Along the horisontal aide we hive

kke "Ia's uinag the pincipalacurv, procedure with no reicaling.-

In general there is no analogue of resealing to Wr-length for surface. Surface arew is the

corresponding quantity. We can adjust the parameters locally so that the are& of a small

region in parametwr space has the same area as the region it defines on the surface. But

this adjustment will be different in other regions of the surface having the same values for

one of the parameter.. The exceptions ane surfaces with sero gaussian curvature. (These

we surfaces that can be obtained by .metnW denting a hyperplane to form something like

a corrugted shest. One can imagine that such a resealing is then posibl).

. ... '.. . .•

*. F - .. *
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FIgure (5.2) Each iteration approxmately preserves the metric

from the previos one. The starting curve is unit speed, and so the

nanl curve in apprdximately so, up to a constant.

Even though it is not poesible to do such a rescaling for surfaces, it would be comforting

to know that our parametrization remains reasonably consistent over the surface as we go

through the iterations.

Figure 5.1 demonstrates what happens if we use the principal- curve procedure on the

circle example, and do not rescale the parameter estimates at each iteration. The tnetric

gets preserved, up to a scalar. Figure 5.2showe why this is so. The original metric gets

transferred from one iteration to the next. As long as the curves do'not change draw'mtieally

from one iteration to the next, there will not be much distortion.

5.3. Span selection.

We consider there to be 'two categories of spans corresponding to two distbict stages in the

algorithm.

"5.3.1. Global proicedural spans.

The first gumss for f is a straight line. In many of the interesting situations, the final

curve will not be a function of the arc length of this initial curve. The final curve is

reached by successively bending the original curve. We have found that if the initial spans

of the smoother awe too small, the curve will. bend too fast, and may get lostl The most

........................................ -... -
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msuccewafu! strategy has been to initially use large spans, and then to decrease them slowly

In particular, we start with a span of 0.5n, and let the procedure converse. We then drop

the span to 0.4n and coverge again. Finally the same is done at 0.3n by which time the

procedure has found the general shape of the curve. We then switch to mean squate error

(MSE) span selection mode.

5.3.2. Mean squared error spans.

The procedure has converged to a self consistent curve for the span last used. If we reduce

the spcz, the average distance will decrease. This situation arises in regression as well. In

regression, however, there is a remedy. We can use cros-validation (Stone 1977) to select

the span. We briefly outline the idea.

5.3.2.1 Crosa-valIdation In regresalon.

Suppose we have a sample of r. independent pairs (pi, z=) from the model Y = f(X) + e.

A nonparametric estimate of f(zo) is ia(xo) = smooth.(y Io). The expected squared

prediction error is

EPE = E(Y - f(X)) 2  (5.2)

where the expectation is taken over everything random (i.e. the sample used to estimate

!(.) and the future pairs (X,Y)). We use the residual sum of squares,

RSS(e) = -(X,))2

as the natural estimate of EPE. This is however, a biassed estimate, as can be sen by

letting the span s shrink down to 0. The smpoth then estimates sk by itself, and RSS is: 7,

-zero. We call this bias due to overfitting since the bias is due to the influence yj has in

forming its own prediction. This also shows us that we cannot use RSS to help us ick the

span. We can, however, use the cross-validated residual sum of squares (CVRSS). This is

defined as
CVaSS(*) = (u' - Smoot(I) )2  (5.3)

where Smooth (y !,z) is the smooth calculated from the data with the pair (W z,) re-

moved, and then evaluated at zr. It can be shown that this estimate is approx mately

unbiaused for the true prediction error. In minimizing the prediction error, we als mini-

. . . .. . . . . . . . . . . . . . . . . ..

, P ".- -o
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miz. the integrated mean square error EMSE given by*

EMSE(a) = E(f.(X) - (X)) 2

since they differ by a constant. We can decompose this expression into a sum of a variance

and bias terms, namely

EMSE(S) = IC( Var(f.(X)I + EL[( E(!.(X) IX) - 1 (;)) 21

= VAR(&) + BIAS 2 (a).

As.s gets smalkc the variance gets larger (averaging over less points) but the bias gets

smaller (width of the neighborhoods gets smaller), and vice versa. Thur if we pick a to

minimise CVRSS(s) we are trying to minimize the true prediction errcv or equivalently to

find. the span' which optimally mixes bias and variance.

Getting back to the curves, one thought is to crossvalidate the orthogonal dista nce

fun-tion. This, however, will not 'work because we would st.ill tend to use span zero. (In

general we have more chance of being close to the interpohxting curve. than any other curve).

Instead, we cross-validate the co-ordinates separately.

5.3.2.2 Crose-validation for principal curvba.

Suppose f in is principal curve o( h, for which we have an estimate Jbased on a sample

A natural requirempent is to choose a to minimize EMSE~s) given by

EMSE(S) = k (,X lI(X)) - !.(Af(X))11 2

which is once again a tiruie-off between bias and variance. Notice that were we to look at the

clowsest distance between these curves, then the interpolating curve would be favored. As in

the regression case, the quantity ATE(*) = ,% liX - 1-o(A,(X))ll estimates EMSE(.) +

D(J), where D(f) = Z' li (,X). It is thus equivalent to choose.s to minimize

EMSE(a) or EPE(a). As in the regression case, the cross-ali-dated estimate

CVRSS(S) = O - Smooth~z 2~D (5.5)
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where >, -" (x(), attempts to do this. Since we do not know >,, we pick A, - Apk) (zi)

where () is the (non croas-validated) estimate off. In practice, we evaluate CVRSS(s)

for a few values of s and pick the one that gives the minimum.

From the computing angle, if the smoother is linear one can easily find the cross-

validated fits. In this case C Cy for some smoother matrix C, and the cross-validated fit

Sis given by 90(, = E (Wahba 1975).

There are a number of issues connected with the algorithms that have not yet been

mentioned, such as a robustness and outlier detection, what to display and how to do it,

and bootstrap techniques. The next chapter consists of many examples, and we will deal -

with these issues as they arise.

~ .* * %~. . ~ ~ ***... *. ~ ~ * * * ~ ~ .. ,..,..,,- - . -",. .



Chapter 6

Examples

This chapter contains six examples that demonstrate the procedures on real and simulated

data. We also introduce some ideas such as bootstrapping, robustness, and outlier detection.

Example 6.1. Gold assay pairs.

This real data example illustrates:

o A principal curve in 2-space,

o non-linear errors in variables regression,

"* co-ordinate function plots, and

" bootstrapping principal curves.

A California based company collects computer chip waste in order to sell it for its content

of gold and other precious metals. Before bidding for a particular cargo, the company takes

a sample in order to estimate the gold content of the the whole lot. The sample is split in

two. One sub-sample is assayed by an, outside, laboratoM, the other by their own inhouse

laboratory. (The names of the company and' laboratory are withheld by request). The

company wishes to eventually use only one of the assays. It is in their interest to know

which'laboratory produces on average lower gold content assays for a given sample.

The data in figure 6.1a consists of 250 pairs of gold assays. Each point is represented

by

where x -' log(l + assay yield for ith away pair for lab j) and where I = 1 corresponds

to the inhouse lab and j - 2 the outside lab. The log transformation tends to stabilize the

variance and produce a more even scatter of points than in the untransformed data. (There

were many more small assays (1 os per ton) than larger ones (> 10 os per ton)).

S. .. o . .-.::- -
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o......... ...../..........

• ' . . fi

S~ i5I., . IT-3• 3- de" -.
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0 0 2 3 4 2 / 4 1

Inhouse Laboratory f '..

Figure. 6.1a Plot of the log asays for the Figure 6.1Sb Estimated' coordinate rune-"."'Y

inhouse and outside labs. The solid curve is the tions. The dashed curve is the outside lab,' the
principal curve, the dashed curve the scatter- solid curve the inhottse lab. """'
plot smooth.

A standard analysis might be a paired t-test for an overall difference in asasys. This""-'

* . -. .

would not reflect local differences which can be of great importance since the higher the""•..olevel of gold the more, important the difference.

noTh data was actually analyzed by smoothing the differences in log assays against the.'.'•

* ... * .-.

average of the two assays. This can be considered a form of symmetric smoothing and was
suggested by Cleyeland (1983). We discuss the method further cin chapter T.side'lb-"th

Itn model presented here for the above data is ,heinoue.ab

'where ro is the unknown true.gold content for sample i (or any monotone function thereof),.

fi(r) is the expected ualy result for lab s , and ejg is measurement error. We wish a g tothe

analyze the relationship betw cn fj and be for different true gold contents. sohgnw

This is a generalization of, the errorsin variables model or the structural modelr(if weo

_______I -
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regard the ri themselves as unobservable random variables), or the functional model (if the

r, are considered fixed). This model is' traditionally expressed as a lincar model:

(zn) (a+ zi) + (e: 62

where f2(ri) = z and

fi (n) = ao fj7-(4) (assuming 12 is monotone)

It suffers, however,. from the same.drawback as the t-test in that only global inference is

possible.

We assume that the eji are palrwise independent and that *

Vaz(ei,)= Var(e 2,) vi.

The model is estimated using the principal curve estimate for the data and is repre-

sented by the solid curve in igure 6.1a. The dashed curve is the usual scatterplot smooth

of z2 against z, and is dearly misleading as a scatterplot summary. The curve lies above

the 45" line in the interval 1.4 . 4 which represents an untransformed assay interval of 3 to

15 oz/ton. In this interval the inhouse average assay is lower than that of the outside lab.

The difference is reversed at lower levels, but this is of less practical importance since at

,these levels the cargo is less valuable. This is Tpore clearly seen by examining the estimated

coordinate function plots in figure 6.1b.

A natural question arising at this point wether the kink in the curve is real or not.

If we had access to more data from the sae population we could simply calculate the

principal curves for each and see how often th kink is reproduced. We could then perhaps

construct a 95% confidence tube for the true curve.

In the absence of such repeated samples we use the bootstrap (Efron 1981, 1982) to
* simulate them. We would like to, but cannot generate samples of size n from F, the true

distribution of x. Instead we generate sample of size n from P, the empirical or estimated

distribution function, which puts mass 1/n € n each of the sample points xi. Each such

sample, which samples the points zi with repl acement, is called a bootstrap sample*.

In the linear model one usually requires. thad Var(ej,) constanti. This assumption' can be

relaxed here.
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F]gure 6.1c 25 bootstrap curves. The data X is sampled 25 times

with replacement, each time yielding a bootstrap sample X*. Each

curve is the principal curve of such a sample.

Figure 6.1c shows the principal curves obtained for 25 such bootstrap samplA. The

450 line is included in the figure, and we see that none of the curves cross the line in the

region of interest. This provides strong evidence that the kink is indeed real.

When we compute a particular bootstrap curve, we use the principal curve of the

original sample as a starting value. Usually one or two iterations are all that is required

for the procedure to converge. Also, since each of the bootstrap points occurs at one of 'the

sample sitos, we know where they project onto this initial curve.

It is tempting to extract from the procedure estimates of Pi, the true gold level for

sample i. However,. fi need not be the true gold level at all. It may be any variable that

orders the pairs f(f) along the curve, and is probably some monotone function of the true

gold level. It is clear that both labs could consistently produce biased estimates of the true

gold level and there is thus no information at all in the data about the true level.

Estimates of ri do, provide us with a good summary variable for each of the pairs, if
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that is required:

,= h(zi)

since w obtain Pi by projecting the point xi onto the curve. Fiaally we observe that the

above analysis could be extended in a straightforward way to include 3 or more laboratories.

It is hard to imagine how to tackle the problem using standard regression techniques.

Example 6.2. The helix in three-space.

This is a simulated example illustrating:

* A principal curve in 3space,

* co-ordinate pkos, and

* croms-validation and span selection.

We looked at the bias of the principal curve procedure in estimating the helix in chapter 4.

We now demonstrate the procedure by generating data from that model. We have

min(41)b

co(A) 4zA) +xe,

where A U[0, 11 and. JJ(O,.-). This situation does not present the principal curve

procedure with any real problems. The reason is that the starting vector pass down the

middle of the helix and the data projects onto it in nearly the correct order. Table 6.1shows

the steps in the iterations as the procedure converges at each of the procedural spans shown.

At a span of e - .2 we use croum-validation to find. the minimutm mre span.

Figure 6.2c shows the CVRSS'curve used to select the span, which is 0.'1 with a

value of CVRSS of 0.1944. One more step is performed and the procedure is terminated.

Figure 6.2d shows the estimated co-ordinate functions for this choice of span. We see

that the estimate of the linear co-ordinate is rather. wiggly. It is clear that a smali span

Wam required to estimate the sinusoidal co-ordinates,, but a large span would suffice for

th* linear co-ordinate. This suggests a different scheme for croes-validation--choosing the

spans separately for each co-ordinate. The results are shown in figures d-.2e and 6.2f. As

predicted, a larger span is chosen for the linear co-ordinate, and its estimate is no longer

wiggly. This is the final model referred to in Use table and represented in figure 6.2.

.
. ...

. . . .. . . . .\
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x. wt -dpne. " : . • c"

Tabe 61.TheAm inthitraton.* Inta. l th prcdr

S. .: ." . . ..

Sspa"

Figure S.la Data generaed fron a he.- Figur 6.2b Another ye of the htelix, the

lix writh bidependent aerrn cm each coordinte data an the principal cmiv..

The dashed curve a the orgi helix, the solid

cu.0 1.1 the principal cournen estiate

Table 8.1. The u n tP4 0.t40 4. initial the procedurea&

3 0.meed7uonvale

start 1.0qr rln o 1poceu10 2l•,n.0 pr"hncip •al copon ine

2kr ~ 0.4p 0.56 4.6. omnt -:

4 0.4 0.549 4.7 converged

. 0.3 0:376 5.7 reduce span
6 0.3 0.361 5.4
7 0.,3 0.360 5.4 converged

8 0.2 0.222 7.3 reduce spas
9 0.2 0.217 6.9
10 '0.2 0.217 '6.9 converged

Mae spans

final 0.07, 0.09, 0.3 0.162 9.7

0.189 cross-validated

. o-. .o.
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027

00.10

Span 9Etmae

Figue 62c ko rowa~aiomcum Fiurve2 The etmtdc-rlnt
sosCVRSS(s) wa function of the Spanea. fauctiono for the helix, using the span fomnd in

On pai used for all13 co-crdints. figure 6.2c.-

0.07

01

00 -2

0 0.1 0.2' 0.3 -.4 0 2.5 5 7.5 10 12.5
Span 9 Estimated X

Figure' 6.2i The eroe...ualidation curve Figure 6.2f The estimated co-ordinate func-
shows. CVRSSJ(S) as a function of the $pan a. tions for the helix, using the spans found in fig.
A separate &pan is found for each co-ordinate. ure 6.2f.



78 Ezample 6.S: Geolo*ical dats

The entry labelled d.of. in table 6.1is an abbreviation for degrees of freedom. In

linear regression the number of parameters used in the fit is given by tr(H) where H is the

projection or kat matrix. If the response variables Vi are iid with variance a2, then

vea ow = Var (h: )

= 2 tr (H'H)

W2 .tr (H)

We can do the same calculation for a linear smoother matrix C, and in fact for the local

straight lines amoother we even have tr (CC) = tr (C). As the span decreases, the diagonal

entries of C gSt larger, and thus the variance of the estimates increases, as we would expect.

One can also approach this from the other side by looking at the residual sum of squares.

In the absence of bias we !i.v

• ZASS - z 11(1 - OVIll,
ERSS= (- C)'(u - c)

= tr[(I - C)'•, - C) cow(v)I (.

= (n - tr(C))o,

if tr(CC) = t(C). • ore motivation for regarding tr(C) as the number of parameters or

do•.. can be found in Cleyland (1979) and Tibehirani (1984). Same calculations similar to

thoe in 3.5.1 show that the expected squared distance of X from the true f is D2  2s 2 , or

more precisely V) s 2or 2-0,4/(4p 2 ) where p is the radius of curvature, which in our example

is I + 1/0 2 . Thus D2 
va 0.18. The crows validated residual estimate E CVIZSSi was found

to be 0.189. The orthogonal distance from the fnal curve is D'("1 ) = 0.162. This is deflated

due 'to overfitting. The average value of d.o.f for the final curve is (one for each co-ordinate)

9.7, or, a total of 29.1. Some simple heuristics show that the we should scale this value up by

by 2n/(2n - d.o.f) = 300/(300 - 29.1) = 1.11. We then get 2n/(2n - d.o.f)D2 (11 ) = 0.179

which is. back in the correct ballpark.

It is more convenient to view the 3 dimensional examples on a color graphics system

(such as the Chromatics system of the Orion group, Stanford University). This allows one

to rotate the points in real time and thus see the 3rd dimension.

For our smoothers, each row of C is the row of a projection matrix, and hence <e, = C,--
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Example 6.3. Geological data.

This real data example illustrates:

* Data modelling in 3 dimensions,

* noo-linear factor analysis, and

o outlier detection and robust fitting.

The data in this example. consists of measurements of the mineral content of 84 core samples,

each taken at different depths (Chernoff, 1973). Measurements were made of 10 minerals

in each sample. We simply label the minerals X 1 , -- X10 , and analyze the first three.

Mineral X

Fiur 63 Te ricpa crv orth mnra dta Vaial

X$ s. ntothepag).Thespies ointhepontsto hei prjecio

onth crv. he4 uties e one t te ure it te roe

lineals.

Figure 6.3a shows the data and the solution curve. (A final spa n of 0.35 was manually

selected.) In 3-D the picture looks like a dragon with its tail pointing to the left and the
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LO SDm
0

9.0
IsI

Depth order of core

Figure 6.3b The values AI(xi) are plotted against the deptk

rder of the core samples.

long (outlier) spikes could be a mane. The linear principal component explains 55% of the

variance, whereas this solution explains 82%.

The spikes join the observations to their closest projections on the curve. This is a

useful device for spotting outliers. A robust version of the principal curve procedure was

used in this example. After the first iteration, points receive a weight which is inversly

proportional to their distance from the curve. In the smoothing step, a weighted smooth

is used, and if the weight is below a certain threshhold, it is set to 0. Four points were

identified as outliers, and are labelled differently in figure 6.3a . We would really consider

them model ouItliars, since in that region of the curve the model does not appear to fit very

well.

Figure 6.3b shows the relationship between the order of the points oa the curve, and

the depth order of the core samples. The curve appears to recover this variable for the most

nart. The area where it does not recover the order is where the curve appears to fit the

data badly anyway. So here we have uncovered a hidden variable or factor that we are able

to validate with the additional information we have about the ordering. The co-ordinate

S . .. *.*. . .

*... . . . . .. . . . . . . .. . . -... -. F..* .. . . . .- .S ,,, -,- ,-:•-••, %.' '.•, .
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Estimated X

Fignur 6.3c The estimated co-ordinate functions or fator loadisng

Mcsrm for the three mmierals.

plots would then represent the mean level of the particular mineral at different depth. (see
figure 6.3c). Usually one would have to use these co-ordinate plots to identity the factors,
just as one us" the factor loading$ in the linear case.

Example 6.4. The uniform ball. .

This example illustrates:

A principal surface in 3 space, and

*a connection to multidimnensional scaling.

The data is artificially constructed, with no noise, by generating points uniformly from the
surface of a sphere. It;is the same data used by Shepard and Carroll (196) to demonstrate
their parametric mapping algorithm. (see reference and chapter 7). We simply use it here
to demonstrate the ability of the principal surface algorithm to produce surfaces that are
not a function of the starting plane (in analogy to the circle example in chapter 3).

There are 61 data points, as shown in figure 6.4a. One point is placed at each

intersection of 5 equally spaced parallels and 12 equally spaced meridians. The extra point

S• ,•I• •
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A0* 0

Estimated A,

Figure 6.4. Another view of the final prin- Figure 6.Sf The A map is a&two dimensional
Cipal surface. summary of the data. It resembles a stereo.

graphic map of the world.

is placed at the north pole. (If we placed a point at the south pole the principal surface

prccedure would never move from the starting plane, which is in fact a principal surface.)

Figures 6.4b to 6.4d show various stages in the iterative procedure, and figure 6.4e sc.-is

another view of the final surface. Figure 6.4f is a parameter map of the two dimensional A.

It resembles a stereographic map of the earth. (A stereographic map is obtained by placing

the earth, or a model thereof, on a piece of paper., Each point on the surface is mapped

onto the paper by extrapolating the line segment joining the north pole to the point until

it reaches the paper.) Points in the southern hemisphere are mapped on the inside of a

circle, points in the northern hemisphere on the outside, and there is a discontinuity at the

north pole. Points close together on this map are close together in the original space, but

the converse is not necessarily true. This map provides a two dimensional summary of the

original data. If we are presented with any. new observations, we. -an easily locate them on

.the map by finding their closest position on the surface.

Example 6.5. One dimensional color data.

This almost real data example illustrates: •

°..-
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space, is also projected onto this plane. the true waveleugtit. .""

" r A principal curves in 4-space, and (vlngh

" a one dimensional MDS exeample. c dg"Te ec d

These data were tsed by Shepard and Carroll (1966) (who cite the original source as Boynton.

and Gordon (1965)) to illustrate a version of their parametric data representation techniques

called proximity analysis. We give more details of this technique in chapter 7.

Each of the 23 observations represents a spectral color at a specific wavelength. Each

observation has 4 psychological variables associated with it. They are the relative frequen-

ciao with which 100 observers named the color blue, gy-een, yellow and red. As can be seen in

figure 6.5a4 there is very little error in this data, and it is one dimensional by construction.

Since the color changes Slowly with wavelength, so should these relative frequencies, and

they should thus fall on a one dimensional curve, as they do. The data, by construction lies

in a 3 dimensional simplex since the four variables add up to 1. The pictures we show are

projections of this simplex onto the 2-D subspace spanned by the first two linear principal

components. Figure 6.5a shows the solution curve and figure 6.5b shows the recovered

parameters and co-ordinate functions. This solution is in qualitative agree-nent with the

data and with the solution produced by Shepard and Carroll.

•..... ...-..-.-.-...-..-......-..-..... ,., . •...... : .... .... .....-.... -



Chapter 6: Ezamples 85

Example 6.6. Lipoprotein data.

This real data example illustrates:

& A principal surface in 3 space with some interpretations,

& a principal curve suggested by the surface, and

4 co;ordinate plots for surfaces.

Wila;•m and Krause (1982) conducted a study to investigate the inter-relationships between

the serum concentrations of lipoproteins at varying densities in sedentry men. We focus

on a subset of the data, and consider the serum concentrations of LDL 3-4 (Low Density

Lipoprotein with flotation rates between S3 - 4), LDL 7-8, and HDL 3 (High Density

Lipoprotein) in the sample of 81 men. Figures 6.6a-d are different views of the principal

surface found for the data. Quantitively this surface explains 97.4% of the variability in the

data, and accounts for 80% of the residual variance unexplained by the principal component,

plane. Qualitatively, we see that the surface has interesting structure in only two of the

co-ordinates, namely LDL 3-4 and LDL 7-8. We can infer from the the surface that the

bow shaped relationship between these two variables does not change for varying levels of

HDL 3. It exhibit. an independent behaviour. We have included a co-ordinate plot (figure

6.68) of the estimated co-ordinate function for the variables LDL 7-8 which helps confirm

this claim. The relationship between LDL 7-8 and (11,12) depends mainly on the level of

.l. Similar information is conveyed by the other co-ordinate plots, or can be seen from the "

estimated surface directly. This suggests a model of the form

LDL 3-4 (fi(A) el
"DL 7-8 I. 2(

HDL3 A (A 2) e3)

As specified A2 is confounded with HDL 3, and is thus unidentifiable. We need to estimate.

the first two compoz.ents of 'the model. This is a principal curve 'model, and figure 6.6f

shows the estimated curve. It exhibit. the same dependence between' LDL 7.8 and LDL 3-4

as did the surface. The curve explains 92.6% of the variance in the two variables, whereas

the principal component line explains only 80%.

Williams and Krauss performed a similar analysis look.., 'at pairs of variables at a

time. We discuss their techniques in chapter 7. Their' results are qualitatively the same as

ours for the LDL pair. .
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Chapter 7

Discussion and conclusions

In this chapter we discuss some of the existing techniques for symmetric smoothing, as well

as the various generalizations of principal components and factor analysis. We compprre

these techniques with the methodolcgy developed here. The chapter concludes with a

summary of the uses of principal curves and surfaces.

7.1. Alternative techniques.

Other non-linear generalizations of principal components exist in the literature. They can

be broadly classified according to two di&otornies.

* We can estimate either the non-linear manifold or the non-linear constraint that defines

the manifold. In linear principal components the approaches are equivalent.

* The non-linearity can be achieved by transforming the space or by transforming the

model.

The principal curve and surface procedures model the hon-linear manifold by transforming

the model.

7.1.1. Generalized linear principal components.

This approach corresponds to modeling either the nonlinear constraint' or the manifold by

transforming the space. The idea here is to introduce some extra variables, where each new

variable is some non-linear transformation, of the existing co-ordinates. One then seeks a

subspace of this non linear co-ordinate system that models the data. welL The subipace

is found by using the usual linear eigenv'ctor solution in th3 new enlarged space. This

technique was first suggested by Gnanadesikan & Wilk (1966, 1968), and a good description

can be found in Gnanadesikan (1977). They suggested using polynomial functions' of the

original p co-ordinates. The resulting linear combinations are then of the form (for p • 2

and quadratic polynomials)

A= alixI + a2,x2 + a3izl 2 + 24 2 (7.1) "";
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and the iýj wfll be eigenvectors of the appropriate covariance matrix.

This model has appeal mainly as a dimension reducing tool. Typically the linear,

combination with the smallest variance is set to zero. This results in an implicit non-linear

constraint equation as in (7.1) where we set A = 0. We then have a rank one reduction

that tells us that the data lies close to a quadratic manifold in the original co-ordinates.

The model has been generalized farther to includo' more general transformations of

the co-ordinates other than quadratic, but the idea is ementially the same as the above; a

linear solution is found in a transformed space. Young, Takane & de Leeuw (1978) and later

Friedman (1983) suggested different forms of this generalization to include non-parametric

transormations of the co-ordinates. The problem can be formulated as follows: Find a and

,'(S)=((s(.z),."",(',)S ) such that

X Il(x) - -&',(x)II'= mini (7.2)

or alternatively such that

V,-[,',(z)j = max! (7.3)

where i(z,).=0,d= la 1and Z s2-. (zi 1. The. idea is to trandorm the coordinates

,,itably and then find the linea pr ncipal components. f in (7.3) we replaced max by min

them we would be estimating the constraint in the tmnaEormed space.

The estimation procedure alternates between ,g the aj(-) and finding the linear

principal components in the transformed space
a

* For a fixed vector c4 function ,( -. "howe a to be the first principal component of

the cu'ariance matrix Zs(s))e,•:).

*For a known, (7.2) can be w tn in the form

P'

,h Zj,,(X,) - D 'US..'"A -+ ,, r.v. in f(.),......,000, (7.4)

and Oi, we functions a(,@ abo . If. 2 ... ,. av known,. equaio (7.4) is minimised

by

*I ,(,) Z( b•e,, (,j) XIx)

Th is tMe for any ej, and suggests an inner iterative loop. This inaer loop is very

similar to the ACE algorithm (Breiman and Friedman, 1982), except the normalization

6

S,.
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in slightly different. Breiman and Friedman proved that the ACE algorithm converges

under certain regularity conditions in the distributional case.

The disadvantages of this techniqu. awe:

7%Th space is transformed, and in order to understand -the resultant fit, we usually

would need to transform back to the ori-ial apace. This can only be achieved if the

transformations awe resficted -to monotone functions. In the transformed apace the

estimated manifold is given by

Thus if the .,(. are monotone, we get untransformed estimates of the form'

:;: (x:))(7.5)

where xa = .(x). rquatiom (7.5), defines a parametrized -curve. The curve is not

copltely general since the co-ordinate functions are monotone. Far the same reason,

Guanadesian (1978) expressed the desirability, of having procedure for-estimating

models ofi the typ proposed in this dissertation.

e We are estimating manifold that are lones to the data in the transformed co-ordiznates.

When the wr~ratceae non-linear this can result in distortion of the error

variances for individual variables. What 'we really require is a method for, estimating

manifoids that are clones to the data in the original p co-ordinatesL Of course, if the,

Aunctions are liser, both approrice are identical.

An. advantage of the technique is that it can eassily be gmneralised to tak. care of higher

dimensional manifolds, altkcogh not in an entirely general fashion. This is achieved by

replacing awith Awhom Ainp x q. We then got aqIdimesnsionaal hyperplan*in the

transformed space given by AA'.*(xj. However, we ead up with a asnsbow of implicit

cntraip., equations which are hard to deal with and interpret. Despite the problems

ainsociated with generalized principal components, it remains a useful tool for performing

rank I dimmnsionality reductions.
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7.1.2. M•ulti-dimensional scaling.

This is a technique for finding a low dimensional representation of high dimensional data.

The original proposal was for data that consists of (2) dissimilarities or distances between n-

objects. The idea is to find a m (m small, 1, 2 or 3) dimensional euclidean representation for

the objects such that the inter-object distances are preserved as well as possible. The idea

was introduced by Torgerson (1958), and followed up by Shepard (1962), Kruskal (1964a

,1964b), Shepard & Kruskal (1964) and Shepard & Carroll (1966). Gnanadcsikan (1978)

gives a concise description.

The procedures have also been suggested for situations where we simply want a lower

dimensional representation of high dimensional euclidean data. 'The lower dimensional

representation attempts to reproduce the inteepoint distances in the originai space. We

fit a principal curve to the color data in example 6.5; these data were originally analyzed

by Shepard and Carroll (1968) using MDS techniques. Although there have been some

intriguing exampk.- of the technique in the literature, a number of problems exist. p

e The solution consists of a vector of m co-ordinates representing the location of points,

on the low dimensional manifold, but only for the n data point&. What we don't get,

and often desire is a mapping of the whole space. We are unable, for example, w find

the location of new poaints in the reduced space.

SThe procedures are computatiomally expensive and unfeasible for large n (nm > 300

is considered large). They awe usually expressed as non-linear optimization problems

in am parameters, and differ in the choice of criterion. I-

The princpal curve and surface proced partially overcome both the problems listed

above; they ae unable to Bad structures as general as those that can be found by the MDS

procedures due to the averaging nature of he scatterplot smoothers, but they do provide

""usapping for the space. We have demonsrated their ability to model MDS type data in

emmples 6.4 and 6.5. They do not,ý howeve, provide a model for dissimilarities which was

the oiginal intention of multidimensional aling.

7.L3. Poximity models.

Shepard & Carroll (1966) suggested a ional model similar in form to the model we

ugget They required onlay to esimat the vectors of m parameters for each. point, and

coumidered the data to be functions t The parameters (aim altogether) wre found

I-

• .* .,
:• -' , ' .
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by direct search as in bMS,, with a different criterion to be minimized. Their procedure,

however, was geared towards data without error, as in the ball data in example 6.4. This

becomes evident when one examines the criterion they used, which measures the continuity

of the data as a function of the parameters. When the data is not smooth, as is usually the

cae, we need to estimate functions that vary smoothly wit.h the parameters, and are close

to the data.

7.1.4. Non-linear factor analysis.

More recently, Etesadi-Amoli and McDonald (1983) approached the problem of non-linear

factor analysis using polynomial functions. They use a model of the form

X =(A) +*

whei. f is a polynomial in the unknown parameters or factors. Their procedure for esti-

maktng the unknown factors and coefficients is similar to ours in this restricted setting. •

Their emphasis is on the factor analysis model, and once the appropriate polynomia terms

have been found, the problem is treated as an enlarged factor analysis problem. They do

not estimae the A's as we do, using the geometry of the problem, but instead perform a

search in nq parameter space, where q is the dimension of A and nt is the number of obser-

vstions. Our emphasis is on providing one and two dimensional smmroies of the data. In

certain situations, the.. summarie can be used as estimates of the appropriate non-linear

functiocal and factor model."

7.L.5. Axis interchangeable smoothing.

Cleveland (1983) describes a technique for symmetrically smoothing a scatterplot which he

calls azis itevcangesiki e. thins ( which we will refer to as AI smoothing). We briefly

outlin the idea:

* standardiseeach coordinate by some (robust) measure of scale.

* rotate the coordinate axes by 45". (if the correlation is positive, else rotate through

* smooth the transformed V against the transformed z."

0 Their pape ýws pblihed in the September, 1983 issue of Puychometrika, whereas Ha"tie

(1963) appeared in Ju.

4ý3.
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e rotate the axes back.

e unatandardize.

If the standardization uses regular standard deviations, then the rotation is simply a change

of basis to the principal component basis. The revulking curve minimizes the distance from

the points orthogonal to this principal component. It has intuitive appeal since the principal

component is the line that is closest in distance to the points. We then allow the points

to tug in the principal component line. It is simple and fast to compute the Al Smooth,

and for many scatterplots it produces curves that are very similar to the principal curve

solution. This is not surprising when w- consider the following theorem:

Theorem 7.1

If the two variables in a scatterplot are standardized to have unit standard deviations,

and if the smoother used is linear and reproduces straight lines exactly, then the axis

interchangeable smooth is identical to the curve of the first iteration of the principal curve

procedure.

Proof

Let the variables s and V be standardized as above. The AI Smooth transforms to two

new variables

0" 
.(7.6)

Then the Al Smooth rep1aces (x, p*) by (z*, Smooth(y" Ix*)). But Smooth(z I:') =

3* since the smoother reproduces straight lines exactly.* Thus the Al Smooth transforms

back to
(Smooth(i" I ') + Smooth(V" x-)

V• ' (7.7)"
(Smooth (z ) - Smooth(y" Iii) (7

Smnc the smoothe, is linear, and in vis* of (7.6), (7.7) becomes

A = Smooth ( Ii')
S= smnooth(vi:) (7.8)

Any weighted local lsear smoother has this property. Local averages, however, do not unlems

the predictors m wvenly spaced.
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This is exactly the curve found after the first iteration of the principal curve procedure,

sice •)(o = ..

Williams and Krauas (1982) extended the AI smooth by iterating the procedure. At

the second step, the residuals are calculated locally by finding the tangent to the curve at

each point and evaluating the residuals from these tangents. The new fit at that point is

the smooth of thes residuals against their, projection onto the tangent. This procedure

would probably get closer to the principal curve solution than the Al smooth (we have

not implemented the Williams and Krauss smooth). Analytically one can see that the

procedures differ from the second step on.

This particular approach to symmetric smoothing (in terms of residuals) suffers from

several deficiencies:

* the type of curves that can be found are not as general as those found by the principa!

curve procedure.

* they are designed for wAtterplots and do not generalize to curves in higher dimensions.

* they lack the interpretation of principal curves as a form of conditional, expectation.

2.2. Conclusions.

In conclusion we summarz the role of principal curves and surfaces in statistics and data

analyis.

* They generalize the one and two dimensional summaries of multivariate data usually

provided by the principal components.

o When, the principal curves and surface are linear, they are the principal component

summaries.

* Locally týhy are the critical points of the usual distance function for such summaries;

ths gives an indication that there are not too many of them.

e They are defined in terms of conditional expectations which satisfies our mental image

of a summary.

* They provide the least squares estimate for generalized versions of factor analysis,

functional models and the errors in variables regression models. The non-linear errors

• ,. .. .o .... ... . .. . .... ,... : .-. . .• . . . .... -. ,i.. . .. . .2. .. . . .. ..-. '
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in variables model has been used successfully a number of times in practical data

analysis problems (notably calibration problems).

* In some situations they are a useful alternative to MDS techniques, in that they provide

a lower dimensional summary of the space as opposed to the data set.

o In some situations they can be effective in identifying outliers in higher dimensional

space.

0 They are a useful data exploratory tool. Motion graphice 6echniques have be ;ome

popular for looking at 3 dimensional point clouds. Experience shows that it is often

impossible to identify certain structures in the data by simply rotating the points.' A

summary such as that given by the principal curve and surfaces can identify structures

that woeld otherwise be transparent, even if the data could be viewed in a real three

dimensional model.
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