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Abstract. We characterize the principal differential ideals of a polyno-
mial ring in n2 indeterminates with coefficients in the ring of differential
polynomials in n2 indeterminates and derivation given by a “general”
element of Lie(GLn) and use this characterization to construct a generic
Picard-Vessiot extension for GLn. In the case when the differential base
field has finite transcendence degree over its field of constants we provide
necessary and sufficient conditions for solving the inverse differential Ga-
lois problem for this group via specialization from our generic extension.

Introduction

Given a differential field F and differential indeterminates Yij , i, j =
1, . . . , n over F one writes F{Yij} for the ring of differential polynomials
in the Yij , i.e., the polynomial ring F [Y1,1,0, Y1,1,1, . . . , Y1,1,s, . . . , Yn,n,0, . . . ]
with derivation extending the derivation on F by D(Yi,j,k) = Yi,j,k+1. For
convenience, denote Yi,j,k by Y

(k)
i,j and Yi,j,0 by Yij . Then one can extend

this derivation to the ring R = F{Yij}[Xij ] where the Xij are algebraically
independent over the differential quotient field F 〈Yij〉 of F{Yij} using the
formula D(Xij) =

∑n
`=1 Yi`X`j . If we pass to the above quotient field F 〈Yij〉

and then localize F 〈Yij〉[Xij ] at det[Xij ], we obtain the coordinate ring of
GLn over F 〈Yij〉 and D becomes a “general” element of Lie(GLn).

In this paper we show that the principal differential ideals of R (i.e., the
ideals I = (p) with p dividing D(p)) are the differential ideals generated by
elements of the form deta[Xij ], with a ∈ N. A polynomial p that divides its
derivative is called a Darboux polynomial. Our result can then be stated as
follows:
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Theorem 1. Let R = F{Yij}[Xij ] and let p be a Darboux polynomial in R.
Then there are ` ∈ F and a ∈ N such that p = `deta[Xij ]. Therefore, the
only principal differential ideals in R are those of the form I = (deta[Xij ]).

The proof of Theorem 1 involves some long and delicate computations
that make use of Gröbner bases machinery.

Now, suppose that the field C of constants of F is algebraically closed.
We use Theorem 1 to show that the quotient field F 〈Yij〉(Xij) of R is a
no-new-constant extension of F 〈Yij〉. Similar to the above, F 〈Yij〉(Xij) is
the function field of GLn over F 〈Yij〉. This allows us to give an affirmative
answer, for the group GLn(C), to the following

Generic Inverse Differential Galois Problem: For a connected al-
gebraic group G over C find a generic Picard-Vessiot extension of F with
differential Galois group G.

By generic extension we mean a Picard-Vessiot extension of a generic
field that contains F and such that every Picard-Vessiot extension of F for
G in the usual sense can be obtained from the generic one by specialization.
Conversely, any such specialization will provide a solution to the inverse
differential Galois problem in the usual sense, namely, to determine, given
F and C as above, and a linear algebraic group G over C, what differential
field extensions E ⊃ F are Picard-Vessiot extensions with differential Galois
group G and, in particular, whether there are any.

This result is the content of:

Theorem 2. The differential field extension F 〈Yij〉(Xij) ⊃ F 〈Yij〉 is a
generic Picard-Vessiot extension of F with differential Galois group GLn(C).

We point out that Theorem 2 is a consequence of Theorem 1 but not
equivalent to it: the fact that F 〈Yij〉(Xij) ⊃ F 〈Yij〉 is a no-new-constant
extension does not automatically give information about what the Darboux
polynomials in R are. Darboux polynomials are also interesting in other re-
lated applications such as studying the integrability of differential equations
[2, 9, 18, 16, 17, 35].

A more direct proof for Theorem 2 was pointed out to us by Michael
Singer. Singer proves that F 〈Yij〉(Xij) ⊃ F 〈Yij〉 is a no-new-constant ex-
tension by showing that F 〈Yij〉(Xij) is isomorphic to F 〈Xij〉. Singer’s proof
and our generalization of it to all connected linear algebraic groups will
appear in a subsequent publication [12].

Now, suppose that F has finite transcendence degree over C say, F =
C(t1, . . . , tm)[z1, . . . , zk], where the ti are algebraically independent over C
and the zi are algebraic over C(t1, . . . , tm). Consider the differential field
F (Xij) with derivation given by D(Xij) =

∑n
`=1 fi`X`j . Let C denote its

field of constants. Let R = F{Yij}[Xij ] be the differential ring defined
above. For k ≥ 1 let Tk denote the set of monomials in R which have total
degree less than or equal to k and which involve both the ti and the Xij .
Fix a term order on the set T of monomials in the ti and the Xij and let
Wk(Yij) denote the wronskian of Tk relative to that order (the order will
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only affect the wronskian by a sign). The following theorem summarizes our
specialization results:

Theorem 3. F (Xij) ⊃ F is a Picard-Vessiot extension for GLn(C) if and
only if all the wronskians Wk(Yij) map to nonzero elements in F (Xij) via
the specialization Yij 7→ fij ∈ F .

The above condition on the wronskians means that all the sets Tk, for
k ≥ 1, are linearly independent over C. This is in turn equivalent to the fact
that the set of all the ti and all the Xij are algebraically independent over C.
Unfortunately, Theorem 3 gives infinitely many conditions. We do not know
at present how to use these conditions to effectively construct solutions to
the inverse problem, and this constitutes an interesting open problem.

A specialization as in Theorem 3, however, is known to exist by a result of
C. Mitschi and M. Singer [23]. They give a constructive algebraic solution
to the inverse problem for all connected linear algebraic groups (and, in
particular, for GLn(C)) when F has finite transcendence degree over C.
An interesting direction of research in connection with the previous open
problem is to give a complete description of the solutions (isomorphic and
non-isomorphic) that may arise in this situation.

The work of Mitschi and Singer in [23] makes use of the logarithmic
derivative and an inductive technique developed by Kovacic [14, 15] to lift
a solution to the inverse problem from G/Ru, where Ru is the unipotent
radical of G, to the full group G. Using this machinery Kovacic proved that
it is enough to find a solution to the inverse problem for reductive groups
(observe that G/Ru is reductive). In [25], van der Put explains and partly
proves the results in [23].

In the introduction of [23] the authors briefly review previous work on
the inverse problem such as results of Bialynicki-Birula in [4], Kovacic [14,
15], Ramis [26, 27], Singer [30], Tretkoff and Tretkoff [32], Beukers and
Heckman [3], Katz [13], Duval and Mitschi [8], Mitschi [21, 22], Duval and
Loday-Richaud [7], Ulmer and Weil [33] and Singer and Ulmer [31]. A more
extensive survey on the inverse problem can be found in M. Singer’s [29].

The constructive algebraic solutions to the inverse differential Galois prob-
lem for connected linear algebraic groups that are currently available are
based on Kolchin’s Main Structure Theorem for Picard-Vessiot extensions
(see Theorem 2.1.1 below). In particular, a corollary to this theorem (see
Theorem 2.1.2) establishes that if E ⊃ F is Picard-Vessiot and G is, for
example, unipotent or solvable or G = GLn or G = SLn, then E is isomor-
phic as an F -module and as a G-module to the function field of the group
GF obtained from G by extension of scalars from C to F . Therefore, to
get a Picard-Vessiot extension E ⊃ F with group G (if it exists) one can
begin by taking E to be the function field of GF and then the problem re-
duces to extending the derivation from F to E in such a way that E ⊃ F
is Picard-Vessiot for that derivation. In this paper we use this approach for
our construction.
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The idea of tackling the inverse problem by constructing generic exten-
sions is inpired by the works of E. Noether [24] for the Galois theory of
algebraic equations. Following her approach, L. Goldman in [10] introduced
the notion of a generic differential equation with group G. Goldman explic-
itly constructed a generic equation with group G for some groups. However,
after specializing Goldman’s equation, the group of the new equation ob-
tained is a subgroup of the original group. In order to solve the inverse
problem by this means, we need to keep the original group as the group
of the equation after specialization. Goldman’s generic equation for GLn is
equivalent to Magid’s general equation of order n (Example 5.26 in [19]).

More work in the spirit of Goldman’s generic equation came some years
later in J. Miller’s dissertation [20]. He defined the notion of hilbertian
differential field and gave a sufficient condition for the generic equation with
group G to specialize to an equation over such a field with group G as well.
However, as pointed out by Mitschi and Singer in [23], his condition was
stronger than the analogous one for algebraic equations and this made the
theory especially difficult to apply for those groups that were not already
known to be Galois groups.

We use the terminology of A. Magid’s book [19]. In [19] the reader may
also find definitions and proofs of some results from differential Galois theory
that will be recalled here.

This paper contains the results of the author’s Ph.D. dissertation [11].
I wish to thank my Ph.D. advisor Andy Magid for the many valuable re-
search meetings that we had. I am also grateful to Michael Singer for many
enlightening conversations on the inverse problem.

Notation. Throughout this paper F denotes a differential field with alge-
braically closed field of constants C.

1. Principal Differential Ideals in F{Yij}[Xij ]

1.1. Darboux polynomials in F{Yij}[Xij].

Definition 1.1.1. Let D be a derivation on the polynomial ring
A = k[Z1, . . . , Zs]. A polyomial p ∈ A is called a Darboux polynomial if
there is a polynomial q ∈ A such that D(p) = qp. That is, p divides D(p).

An ideal I of A is a differential ideal if D(I) ⊂ I. In particular, I = (p) is
a principal differential ideal if p divides D(p). Hence, Darboux polynomials
in A correspond to principal differential ideals.

Let F{Yij} be the ring of differential polynomials in the Yij and F 〈Yij〉 its
differential quotient field. By that we mean the usual quotient field endowed
with the natural derivation:

D
(p
q

)
=
D(p)q − pD(q)

q2
.

for p, q ∈ F{Yij}, where D is the derivation on F{Yij}.
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Consider the differential ring R = F{Yij}[Xij ] where the Xij , 1 ≤ i, j ≤
n, are algebraically independent over F 〈Yij〉 and derivation extending the
derivation on F{Yij} by a formula

D(Xij) =
n∑
`=1

Yi`X`j .

An elementary computation shows that an element of the form p =
`deta[Xij ] with ` ∈ F and a ∈ N is a Darboux polynomial in R with
D(p) = ( `

′

` + a
∑n

i=1 Yii)p. The rest of this section is devoted to showing
that all the Darboux polynomials in R are of this form.

The multinomial notation aαZα will be used to denote a term of the form
aα1···αsZ

α1
1 · · ·Zαss .

First, we show that there are no non-trivial Darboux polynomials in the
Yij . For simplicity, if h(Y ) ∈ F{Yij}, we write h′(Y ) for D(h(Y )). Notice
that this is not the usual meaning h′(Y ) =

∑
h′αYα.

Proposition 1.1.2. If h(Y ) ∈ F{Yij} satisfies h′(Y ) = g(Y )h(Y ) for some
g(Y ) ∈ F{Yij} then h(Y ) ∈ F . That is, there are no non-trivial Darboux
polynomials in F{Yij}.

Proof. Write Yij,k for Yij(k) and order the set of subindices {ij, k}, i, j, k ∈ N,
with the lexicographical ordering. That is, {i1j1, k1} > {i2j2, k2} if and only
if the first coordinates s1 and s2 from the left, for s = i, j, k above, which
are different satisfy s1 > s2.

Let h(Yij) and g(Yij) be as in the hypothesis. Denote by {mn, t} the
largest subindex such that Ymn,t occurs in h(Y ) and put

h(Y ) =
∑
α

aαY
α11

11 · · ·Y
αmn,t
mn,t .

Then

h′(Y ) =
∑
α

a′αY
α11

11 · · ·Y
αmn,t
mn,t +

∑
α

aαα11Y
α11−1

11 Y
α11,1+1

11,1 · · ·Y αmn,t
mn,t

+ · · ·+
∑
α

aααmn,tY
α11

11 · · ·Y
αmn,t−1
mn,t Ymn,t+1

= h1(Y11, · · · , Ymn,t) +
(∑

α

aααmn,tY
α11

11 · · ·Y
αmn,t−1
mn,t

)
Ymn,t+1

= g(Y )h(Y ).

Now, for Ymn,t+1 = Y ′mn,t we have {mn, t+1} > {mn, t}. Thus it may not
occur in h(Y ) by the choice of {mn, t}. Also, it does not occur in h1(Y11, · · · ,
Ymn,t). Thus, the above equation implies that Ymn,t+1 must occur in g(Y ).
Let gt+1(Y ) be its coefficient in g(Y ) and write

h2(Y ) =
∑
α

aααmn,tY
α11

11 · · ·Y
αmn,t−1
mn,t .
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We have
h(Y )gt+1(Y )Ymn,t+1 = h2(Y )Ymn,t+1

or
h(Y )gt+1(Y ) = h2(Y ).

But the total degree of h2(Y ) is strictly less than the total degree of h(Y ).
This forces h(Y ) ∈ F.

Next, we proceed to the computations in R. The ring F [Xij ] is assumed
to be ordered with the degree reverse lexicographical order (degrevlex ). That
is, the set

T
n2

= {Xβ |X = (Xij), β = (βij) ∈ Nn
2}

of the power products in the Xij is ordered by X11 > · · · > X1n > · · · >
Xn1 > · · · > Xnn, and

Xα < Xβ ⇐⇒


∑n

j=1

∑n
i=1 αij <

∑n
j=1

∑n
i=1 βij

or∑n
j=1

∑n
i=1 αij =

∑n
j=1

∑n
i=1 βij , and the first coordinates

αij, βij from the right which are different satisfy αij > βij.

We will refer to the leading term of a polynomial with respect to this order
as its leading power product.

Remarks. 1.1.3 (Derivative of a power product in the Xij). Let

Xα = Xα11
11 · · ·X

α1n
1n · · ·X

αn1
n1 · · ·X

αnn
nn ,

then

D(Xα) =
( n∑
i=1

n∑
j=1

αijYii

)
Xα

+
n∑
i=1

n∑
j=1

(∑
`>i

αijYi`X
a11
11 · · ·Xij

αij−1 · · ·Xα`j+1
`j · · ·Xαnn

nn

+
∑
`<i

αijYi`X
a11
11 · · ·X

α`j+1
`j · · ·Xij

αij−1 · · ·Xαnn
nn

)
.

1.1.4. For a given α and Xα as before, we want find all the power products
Xβ such that Xα occurs in D(Xβ). If that is the case, Xα will appear in
D(Xβ) in a product of the form YrtXα. By Remark 1.1.3 all such power
products are of the form

Xαrs,t =

{
Xα11

11 · · ·Xαrs+1
rs · · ·Xαts−1

ts · · ·Xαnn
nn if r < t

Xα11
11 · · ·X

αts−1
ts · · ·Xαrs+1

rs · · ·Xαnn
nn if r > t

for 1 ≤ r, s ≤ n, t 6= r, and Xα itself.

1.1.5. Let p ∈ R. Since D(Xij) =
∑n

`=1 Yi`X`j, the total degree of p with
respect to the Xij does not change after differentiation. Therefore, if D(p) =
qp then q ∈ F{Yij}.
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Proposition 1.1.6. Let p ∈ R. Write it as p =
∑

α pα(Y )Xα, with pα(Y ) ∈
F{Yij}. Then for any α with pα(Y ) 6= 0, the coefficient of Xα in D(p) is

p′α(Y ) + pα(Y )
n∑
i=1

n∑
j=1

αijYii +
n∑
i=1

n∑
j=1

(αij + 1)
∑
`6=i

pαij,`(Y )Yi`,

where αij,` is the exponent vector of the power product

Xαij,` =

{
Xα11

11 · · ·Xij
αij+1 · · ·Xα`j−1

`j · · ·Xαnn
nn if i < `

Xα11
11 · · ·X

α`j−1
`j · · ·Xij

αij+1 · · ·Xαnn
nn if ` > i

as in Remark 1.1.4.

Proof. This is a direct consequence of Remarks 1.1.3 and 1.1.4.

Proposition 1.1.7. Let p ∈ R and suppose that D(p) = qp, for some q ∈
F{Yij}. Then p ∈ F [Xij ].

Proof. Let p =
∑

α pα(Y )Xα. Then

D(p) =
∑
α

p′α(Y )Xα + pα(Y )D(Xα)

= qp

=
∑
α

q(Y )pα(Y )Xα.

By Proposition 1.1.6, for each α with pα(Y ) 6= 0 the corresponding coef-
ficient of Xα in D(p) is

D(p)α = p′α(Y ) + pα(Y )
n∑
i=1

n∑
j=1

αijYii

+
n∑
i=1

n∑
j=1

(αij + 1)
∑
`6=i

pαij,`(Y )Yi`.

Since D(p) = qp, it must be D(p)α = q(Y )pα(Y ) or, equivalently,

q(Y )pα(Y ) = p′α(Y ) + pα(Y )
n∑
i=1

n∑
j=1

αijYii

+
n∑
i=1

n∑
j=1

(αij + 1)
∑
` 6=i

pαij,`(Y )Yi`.

This means that for each α, the coefficient pα(Y ) of Xα in p divides the
expression

p′α(Y ) +
n∑
i=1

n∑
j=1

(αij + 1)
∑
`6=i

pαij,`(Y )Yi`.
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Thus, for each α, there is uα(Y ) such that

pα(Y )uα(Y ) = p′α(Y ) +
n∑
i=1

n∑
j=1

(αij + 1)
∑
`6=i

pαij,`(Y )Yi`.

As in the proof of Proposition 1.1.2, order the triples {ij, k}, i, j, k ∈ N,
with the lexicographical order. Let {mn, t} be the largest subindex such that
Ymn,t occurs in p. We have D(Ymn,t) = Ymn,t+1 and {mn, t+ 1} > {mn, t}.

Now, for each α such that Ymn,t occurs in pα(Y ) we have that Ymn,t+1

will occur in p′α(Y ) but not in pα(Y ) or in
n∑
i=1

n∑
j=1

(αij + 1)
∑
`6=i

pαij,`(Y )Yi`

by the choice of {mn, t}. Therefore, it must occur in pα(Y )uα(Y ). Let

pα(Y ) =
∑

aβY
β11

11 Y β12
12 · · ·Y

βmn,t
mn,t

then

p′α(Y ) =
∑

a′βY
β11

11 · · ·Y
βmn,t
mn,t

+
∑

aβ β11 Y
β11−1

11 Y
β11,1+1

11,1 · · ·Y βmn,t
mn,t + . . .

+
∑

aβ βmn,t Y
β11

11 · · ·Y
βmn,t−1
mn,t Ymn,t+1.

So Ymn,t+1 occurs in p′α(Y ) only in∑
aβ βmn,t Y

β11
11 · · ·Y

βmn,t−1
mn,t Ymn,t+1

=
(∑

aβ βmn,t Y
β11

11 · · ·Y
βmn,t−1
mn,t

)
Ymn,t+1

= v(Y )Ymn,t+1.

Since Ymn,t+1 occurs in pα(Y )uα(Y ) and not in pα(Y ) it must occur in
uα(Y ). Let uα,t+1(Y ) be the coefficient of Ymn,t+1 in uα(Y ). Then it has to
be

pα(Y )uα,t+1(Y )Ymn,t+1 = v(Y )Ymn,t+1.

The above equation implies that pα(Y ) divides v(Y ). But this is impos-
sible since the total degree of v(Y ) is strictly less than the total degree of
pα(Y ). This contradiction yields the result.

Lemma 1.1.8. Let p ∈ F [Xij ] and suppose that there is q ∈ F{Yij} such
that D(p) = qp. Then q is a linear polynomial in the Yij. If β = (βij) is
such that Xβ occurs in p, then for 1 ≤ i ≤ n the coefficient of Yii in q is∑n

j=1 βij. In particular, the sums
∑n

j=1 βij, for 1 ≤ i ≤ n, are independent
of the choice of Xβ.

Proof. We have p =
∑
aβXβ, with aβ ∈ F.
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Thus,

D(p) =
∑

a′βX
β + aβD(Xβ)

= qp

=
∑

q(Y )aβXβ.

By Proposition 1.1.6, the coefficient of Xβ in D(p) is

a′β + aβ

n∑
i=1

n∑
j=1

βijYii +
n∑
i=1

n∑
j=1

(βij + 1)
∑
`6=i

aβij,`Yi`.

Hence, it must be

q(Y )aβ = a′β + aβ

( n∑
i=1

n∑
j=1

βijYii +
n∑
i=1

n∑
j=1

(βij + 1)
∑
` 6=i

aβij,`Yi`

)
.

From this,

q(Y ) =
a′β
aβ

+
n∑
i=1

n∑
j=1

βijYii +
n∑
i=1

n∑
j=1

(βij + 1)
∑
` 6=i

aβij,`
aβ

Yi`.

The coefficient of Yii in the above expression is
∑n

j=1 βij , for 1 ≤ i ≤ n.
Since this expression for q is valid for any index β, the “in particular” part
follows immediately.

Corollary 1.1.9. Let p be as in Lemma 1.1.8. Let Xα be the leading power
product of p. Let Xβ be any power product with non-zero coefficient in p.
Then

∑n
j=1 βij =

∑n
j=1 αij, for 1 ≤ i ≤ n. Thus p is homogeneous of degree∑n

j=1

∑n
i=1 αij .

Proof. This is an immediate consequence of the “in particular” part in
Lemma 1.1.8.

Corollary 1.1.10. Let p ∈ F [Xij ] and suppose that D(p) = qp, for some
q ∈ F{Yij}. Let Xα be the leading power product of p, and let ` ∈ F be its
coefficient. Then

q =
`′

`
+

n∑
i=1

n∑
j=1

αijYii.

Proof. By Proposition 1.1.6 and since D(p) = qp, the coefficient of Xα in
D(p) is

`q = `′ + `
( n∑
i=1

n∑
j=1

αijYii +
n∑
i=1

n∑
j=1

(αij + 1)
∑
` 6=i

pαij,`Yi`

)
.(1)

The pαij,k are the coefficients of the power products Xαij,k in p, with
αij,k 6= α, such that D(Xαij,k) contains an expression of the form YstXα. By
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Remark 1.1.4, these power products are

Xαrs,t =

{
Xα11

11 · · ·Xαrs+1
rs · · ·Xαts−1

ts · · ·Xαnn
nn if r < t

Xα11
11 · · ·X

αts−1
ts · · ·Xαrs+1

rs · · ·Xαnn
nn if r > t

,

all of which violate Corollary 1.1.9 for i = r and i = t. Therefore it must be
pαij,k = 0, for all 1 ≤ i, j ≤ n; k 6= i. But now, substituting back in (1), we
see that

`q = `′ + `

n∑
i=1

n∑
j=1

αijYii.

Hence,

q =
`′

`
+

n∑
i=1

n∑
j=1

αijYii.

Our next step in order to show that the Darboux polynomials p ∈ R have
the desired form will be to show that such a p is not reduced with respect
to det[Xij ]. For that we will show that the leading power product of p is a
power of the leading power product of det[Xij ]. First, we have

Lemma 1.1.11. Let p ∈ F [Xij ] be such that D(p) = qp, q ∈ F{Yij}. Let
Xα be its leading power product. Then αij = 0 for j 6= n − i + 1 and
αi,n−i+1 > 0, 1 ≤ i ≤ n. That is, Xα = Xα1n

1n X
α2,n−1

2,n−1 · · ·X
αn1
n1 .

Proof. To prove that αij = 0 for j 6= n− i+ 1 we first show that αij = 0 for
j > n − k + 1, i ≥ k, 2 ≤ k ≤ n. Indeed, for k = 2 we have j > n − 1, so
j = n and

D(Xα) = αnn

n−1∑
k=1

YnkX
α11
11 · · ·X

αkn+1
kn · · ·Xαnn−1

nn + . . .

Since q has no Yij with i 6= j, each term in D(Xα) containing such a Yij
must be cancelled. In particular we need to cancel the terms containing

YnjX
α11
11 · · ·X

αjn+1
jn · · ·Xαnn−1

nn

for 1 ≤ j ≤ n− 1 above. For that we can only use the derivatives of power
products of the form

Xαnl,j =
Xα11

11 · · ·X
αj`−1
j` · · ·Xαjn+1

jn · · ·Xαn1
n1 · · ·X

αn`+1
n` · · ·Xαnn−1

nn , ` < n.

But these are all strictly greater than Xα (the leading power product of p),
and they may not occur in p. As a consequence, it has to be αnn = 0. Now
let k > 2 be such that αin = 0 for i ≥ k. Then

Xα =
Xα11

11 · · ·X
αk−1,n

k−1,n · · ·X
αk,n−1

k,n−1 X
αk+1,1

k+1,1 · · ·X
αk+1,n−1

k+1,n−1 · · ·X
αn,n−1

n,n−1
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and

D(Xα) = αk−1,n

( ∑
i<k−1

Yk−1,iX
α11
11 · · ·X

αin+1
in · · ·Xαk−1,n−1

k−1,n · · ·Xαn,n−1

n,n−1

+
∑
i>k−1

Yk−1,iX
α11
11 · · ·X

αk−1,n−1
k−1,n · · ·Xαin+1

in · · ·Xαn,n−1

n,n−1

)
+ . . .

Likewise, we need to cancel all the terms in D(Xα) that contain Yk−1,i,
for i 6= k − 1. In particular, we need to cancel

Yk−1,iX
α11
11 · · ·X

αin+1
in · · ·Xαk−1,n−1

k−1,n · · ·Xαn,n−1

n,n−1 ,

for i < k − 1. For that we can only use the power products of the form

Xαk−1,`,i =
Xα11

11 · · ·X
αi`−1
i` · · ·Xαin+1

in · · ·Xαk−1,`+1
k−1,` · · ·Xαk−1,n−1

k−1,n · · ·Xαn,n−1

n,n−1 ,

for i < k − 1.
But all of them are strictly greater than Xα and cannot occur in p. Thus,

it has to be αk−1,n = 0. Since this argument is valid for any k > 2, it follows
that αkn = 0, for 2 ≤ k ≤ n. This makes the statement that αij = 0 for
j > n− k + 1, i ≥ k, true for k = 2.

Now assume that k is such that αij = 0 for j > n− k + 1, i ≥ k. So

Xα =
Xα11

11 · · ·X
α1n
1n · · ·X

αk,n−k+1

k,n−k+1 X
αk+1,1

k+1,1 · · ·X
αk+1,n−k+1

k+1,n−k+1 · · ·X
αn,n−k+1

n,n−k+1

and for i > k

αi,n−k+1YijX
α11
11 · · ·X

α1n
1n · · ·X

αk,n−k+1+1
k,n−k+1 · · ·Xαi,n−k+1−1

i,n−k+1 · · ·Xαn,n−k+1

n,n−k+1

occurs in D(Xα). Thus we need to cancel it. For that we can only use the
derivatives of power products of the form

Xαij,k =
Xα11

11 · · ·X
αkj−1
kj · · ·Xαk,n−k+1+1

k,n−k+1 · · ·Xij
αij+1 · · ·Xαi,n−k+1−1

i,n−k+1 · · ·Xαn,n−k+1

n,n−k+1

with j < n− k+ 1 since αkj = 0 for all j > n− k+ 1 by hypothesis. But all
such power products are strictly greater than Xα and therefore they cannot
occur in p. This forces αi,n−k+1 = 0 for i > k. We can repeat this process
until k = n and get αij = 0 for all j > n− k + 1, i ≥ k, 2 ≤ k ≤ n, that is,

Xα =
Xα11

11 · · ·X
α1n
1n Xα21

21 · · ·X
α2,n−1

2,n−1 X
α31
31 · · ·X

αn−1,2

n−1,2 X
αn1
n1 .

Now we show that αij = 0 for j < n − k + 1, 1 ≤ k ≤ n − 1, i ≤ k. The
process is analogous to what we just did. First we show that αi1 = 0 for
i < n. Indeed, for each i we have for ` > i that

αi1Yi`X
α11
11 · · ·X

αi1−1
i1 · · ·Xα`1+1

`1 · · ·Xαn1
n1
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occurs in D(Xα). So, in order to cancel it, we need to use the derivatives of
power products of the form

Xαij,` =
Xα11

11 · · ·X
αi1−1
i1 · · ·Xij

αij+1 · · ·Xα`1+1
`1 · · ·Xα`j−1

`j · · ·Xαn1
n1

with j > 1, all of which are strictly greater than Xα if ` < n, and for ` = n
we cannot simply have one of those since αnj = 0 for j 6= 1. Thus such
power products cannot occur in p and it has to be αi1 = 0 for i < n.

Let k ≤ n− 1 be such that αij = 0 for j < n− k + 1, i ≤ k. We have

Xα =
X
α1,n−k+1

1,n−k+1 · · ·X
α1n
1n · · ·X

αk,n−k+1

k,n−k+1 · · ·X
αn1
n1

and for all i < k, ` > i, we have that

αi,n−k+1Yi`X
α1,n−k+1

1,n−k+1 · · ·X
αi,n−k+1−1
i,n−k+1 · · ·Xα`,n−k+1+1

`,n−k+1 · · ·Xαn1
n1

occurs in D(Xα) and in order to cancel it we only have the derivatives of
power products of the form

Xαij,` =
X
α1,n−k+1

1,n−k+1 · · ·X
αi,n−k+1−1
i,n−k+1 · · ·Xij

αij+1 · · ·Xα`,n−k+1+1
`,n−k+1 · · ·Xα`j−1

`j · · ·Xαn1
n1

with j > n− k + 1 since αij = 0 for i ≤ k, j < n− k + 1.
For ` < k, all these power products are strictly greater than Xα and

therefore they cannot occur in p. For ` ≥ k we cannot simply have such
power products since for ` ≥ k, α`j = 0 if j > n− k + 1. Thus it has to be
αi,n−k+1 = 0 for i ≤ k − 1.

We can repeat this process until k = n− 1 and get αij = 0, j < n−k+ 1,
i ≤ k, 1 ≤ k ≤ n − 1. This completes the proof of the first part of the
lemma.

To prove that αi,n−i+1 6= 0, for all 1 ≤ i ≤ n, suppose that there is i such
that αi,n−i+1 = 0 and let j 6= i be such that αj,n−j+1 6= 0. Then D(Xα) will
contain

αj,n−j+1YjiX
α1n
1n · · ·X

αj,n−j+1−1
j,n−j+1 · · ·Xi,n−j+1 · · ·Xαn1

n1 + . . . if i > j

or

αj,n−j+1YjiX
α1n
1n · · ·Xi,n−j+1 · · ·X

αj,n−j+1−1
j,n−j+1 · · ·Xαn1

n1 + . . . if i < j.

As noted above, since q does not contain any Yij with i 6= j, we need to
cancel the terms in D(p) involving either of the above. But that is impossible
since αij = 0 for all j and by Corollary 1.1.9 all the power products

Xβ11
11 · · ·Xij

βij · · ·Xβnn
nn

in p must have βij = 0 for j = 1, . . . , n. In particular, we cannot have in p
power products of the form Xαj,n−j+1,i as in Remark 1.1.4

Next we show that the exponents αst of the Xst in Xα, the leading power
product of p, are all equal:
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Lemma 1.1.12. Let p ∈ F [Xij ] be such that D(p) = qp, q ∈ F{Yij}. Let

Xα = Xα1n
1n X

α2,n−1

2,n−1 · · ·X
αn1
n1

be its leading power product. Then αi,n−i+1 = α1n, for i > 1, that is, if
a = α1n, then

Xα = (X1nX2,n−1 · · ·Xn1)a.

Proof. Let ` be the coefficient of Xα in p. We have

D(`Xα1n
1n X

α2,n−1

2,n−1 · · ·X
αn1
n1 ) =( n∑

i=1

αi,n−i+1`Yii

)
Xα1n

1n X
α2,n−1

2,n−1 · · ·X
αn1
n1

+ α1n`
∑
k 6=1

Y1kX
α1n−1
1n · · ·Xαk,n−k+1

k,n−k+1 · · ·Xkn · · ·Xαn1
n1

+ `
∑
1<i

αi,n−i+1

∑
k>i

YijX
α1n
1n · · ·X

αi,n−i+1−1
i,n−i+1 · · ·Xαk,n−k+1

k,n−k+1 · · ·Xk,n−i+1 · · ·Xαn1
n1

+ `
∑
1<i

αi,n−i+1

∑
k>i

YijX
α1n
1n · · ·Xk,n−i+1 · · ·X

αk,n−k+1

k,n−k+1 · · ·X
αi,n−i+1−1
i,n−i+1 · · ·Xαn1

n1

+ `′Xα1n
1n X

α2,n−1

2,n−1 · · ·X
αn1
n1 .

In order to cancel

α1n`Y1kX
α1n−1
1n · · ·Xαk,n−k+1

k,n−k+1 · · ·Xkn · · ·Xαn1
n1 , k 6= 1,

above, we can only use the derivatives of the power product

Xα1,n−k+1,k =
X1,n−k+1 · · ·Xα1n−1

1n · · ·Xαk,n−k+1−1
k,n−k+1 · · ·Xkn · · ·Xαn1

n1 ,

since for j 6= n− k + 1 we have αkj = 0.
Let aα1,n−k+1,k

be the coefficient of Xα1,n−k+1,k in p. Then

aα1,n−k+1,k
= −`α1n(2)

On the other hand, in order to cancel

αk,n−k+1`Yk1X1,n−k+1 · · ·Xα1n
1n · · ·X

αk,n−k+1−1
k,n−k+1 · · ·Xαn1

n1 , k 6= 1

above, the only power product that we can use is, again,

Xαkn,1 = X1,n−k+1 · · ·Xα1n−1
1n · · ·Xαk,n−k+1−1

k,n−k+1 · · ·Xkn · · ·Xαn1
n1

= Xα1,n−k+1,k ,

since α1j = 0 for j 6= n. Thus it must be

aα1,n−k+1,k
= −`αk,n−k+1(3)

as well.
From (2) and (3) it follows that, for k 6= 1, α1n = αk,n−k+1.
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As a consequence of the above results we obtain the following expression
for q:

Corollary 1.1.13. Let p ∈ F [Xij ] and suppose that D(p) = qp, q ∈ F{Yij}.
Let Xα be the leading power product of p. Let a ∈ N be such that

Xα = (X1nX2,n−1 · · ·Xn1)a

and let ` ∈ F be the coefficient of Xα in p. Then

q =
`′

`
+ a

n∑
i=1

Yii.

Proof. This is a consequence of Corollary 1.1.10 and Lemma 1.1.12.

Corollary 1.1.14. Let p be as in Corollary 1.1.13. Then p is homogeneous
of degree na.

Proof. This is a consequence of Corollary 1.1.8 and Lemma 1.1.12

Lemma 1.1.12 implies that p is not reduced with respect to det[Xij ]. Since
this is a key point in the proof of our main result we restate it as the following

Theorem 1.1.15. Let p ∈ F [Xij ] be such that D(p) = qp, q ∈ F{Yij}. Let
Xα be its leading power product. Then

Xα = (X1nX2,n−1 · · ·Xn1)a = lp(det[Xij ])a.

Thus p is not reduced with respect to det[Xij ].

Note. If f is a polynomial, lp(f) denotes its leading power product with
respect to a given order.

Proof. This is just a restatement of Lemma 1.1.12.

Remark 1.1.16. Let p1, p2 ∈ F [Xij ] be two polynomials such that lp(p1) =
Xα = lp(p2). Then we can write p1 = f p2 + r where f ∈ F and r is
reduced with respect to p2. Indeed, since lp(p1) = lp(p2), we have that lp(p2)
divides lp(p1). So p1 is not reduced with respect to p2 . We may apply the
Multivariable Division Algorithm (see [1]) to p1 and p2, to get f, r ∈ F [Xij ],
such that p1 = f p2 + r, with r reduced with respect to p2 and lp(p1) =
lp(f)lp(p2). The last equation implies that lp(f) = 1. Hence, f ∈ F .

We are now ready to prove our main result on the form of the Darboux
polynomials in R:

Theorem 1.1.17. Let p ∈ F [Xij ] and q ∈ F{Yij} be polynomials in R that
satisfy the Darboux condition D(p) = qp. Then there is a ∈ N and ` ∈ F
such that

p = ` det[Xij ]a

and

q =
`′

`
+ a

n∑
i=1

Yii.
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Proof. Let q1 =
∑n

i=1 aYii, so that,

D(det[Xij ]a) = q1 det[Xij ]a = (q − `′

`
) det[Xij ]a.

By Remark 1.1.16 we can write p = `det[Xij ]a + r, with r reduced with
respect to det[Xij ]a. Now,

D(p) = D(`det[Xij ]a) +D(r)

= `′ det[Xij ]a + `(q − `′

`
) det[Xij ]a +D(r)

= `′ det[Xij ]a + q`det[Xij ]a − `′ det[Xij ]a +D(r)
= q`det[Xij ]a +D(r).

On the other hand, we have

D(p) = qp

= q`det[Xij ]a + qr.

Therefore, it has to be D(r) = qr. But r is reduced with respect to
det[Xij ]a. It follows, by Theorem 1.1.15, that r = 0. The statement about
the form of q is just the content of Corollary 1.1.13.

1.2. Principal differential ideals in F{Yij}[Xij]. As mentioned in the
introduction, if we pass to the quotient field F 〈Yij〉 of F{Yij} and localize
F 〈Yij〉[Xij ] at det[Xij ], we get the coordinate ring of GLn over F 〈Yij〉. The
derivation D on F 〈Yij〉[Xij ] defined above can then be seen as a “general”
element of Lie(GLn). In particular, D is a linear combination of the basis of
Lie(GLn) consisting of the derivations DE(ij) given by multiplication by the
matrix E(ij), with 1 in position (i,j) and zero elsewhere and the coefficient
of DE(ij) in D is Yij .

We will show next that the result in Theorem 1.1.17 is true for any other
such element of Lie(GLn). That is, the result does not depend on the par-
ticular basis of Lie(GLn) used.

Theorem 1.2.1. Let Dst, 1 ≤ s, t ≤ n, be any basis of Lie(GLn). Define
a derivation in the ring R = F{Yij}[Xij ] by D =

∑
YstDst. Let p and q be

polynomials in R that satisfy the Darboux condition D(p) = qp. Then there
is a ∈ N and ` ∈ F such that p = `det[Xij ]a and q = `′

` + a
∑n

i=1 Yii.

Proof. Since {DE(ij)| 1 ≤ i, j ≤ n} is a basis of Lie(GLn(C)) we have

Dst =
∑

cst,ijDE(ij),
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with cst,ij ∈ C. Thus,

D =
∑
s,t

YstDst

=
∑
s,t

Yst
∑
i,j

cst,ijDE(ij)

=
∑
i,j

∑
s,t

cst,ijYstDE(ij)

=
∑
i,j

ZijDE(ij),

where Zij =
∑

s,t cst,ijYst. Now, [cst,ij ] is a matrix of change of basis so it is
invertible. Also the cst,ij are contants for D, thus the map Zij,k → Yij,k is a
differential bijection. In other words, the differential rings

R = F{Yij}[Xij ], D

and
R′ = F{Zij}[Xij ],D

are isomorphic and therefore we can apply Theorem 1.1.17 to R′.

Theorem 1.2.2. Let R = F{Yij}[Xij ] be a differential ring with derivation
obtained by restriction of a general element of Lie(GLn) in the sense de-
scribed above. Then the principal differential ideals in R are those of the
form I = (deta[Xij ]) for a ∈ N.

Proof. This is a consequence of Theorems 1.1.17, 1.2.1 and of the observation
that Darboux polynomials correspond to principal differential ideals in R.

2. A Generic Picard-Vessiot Extension for GLn(C)

2.1. Preliminaries on Differential Galois Theory. As before, F is a
differential field with algebraically closed field of constants C. If E ⊇ F is
a differential field extension then the group of differential automorphisms of
E over F is denoted by G(E/F ).

If G is a linear algebraic group over C and K is an overfield of C we
denote by GK the group obtained from G by extending scalars from C to
K.

We will show that F 〈Yij〉(Xij) is a generic Picard-Vessiot extension of
F for the group GLn(C). Notice that F 〈Yij〉(Xij) is the function field of
GK with G = GLn(C) and K = F 〈Yij〉. The following two results ([19],
Theorem 5.12 and Corollary 5.29) will be used:

Theorem 2.1.1 (Kolchin Structure Theorem). Let E ⊇ F be a Picard-
Vessiot extension, let G ≤ G(E/F ) be a Zariski closed subgroup and let
T be the set of all f in E that satisfy a linear homogeneous differential
equation over K = EG. Then T is a finitely generated G-stable differential
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K-algebra with quotient field E, and if K denotes the algebraic closure of
K, then there is a G-algebra isomorphism

K ⊗K T → K ⊗C C[G].

Note that C[G] denotes the affine coordinate ring of G and that the target of
the above isomorphism is the affine coordinate ring of the group GK obtained
from G by extension of scalars from C to K.

Theorem 2.1.2. Let E ⊇ F be a Picard-Vessiot extension, let G ≤ G(E/F )
be a Zariski closed subgroup with EG = F . Let F be an algebraic closure of
F , and suppose the Galois cohomology H1(F/F,G(F )) is a singleton. Let
T (E/F ) be the set of all f in E that satisfy a linear homogeneous differential
equation over F . Then there are F - and G-isomorphisms T (E/F )→ F [GF ]
and E → F (GF ). In particular, this holds if G is unipotent or solvable, or
if G = GLn(C) or if G = SLn.

The following characterization of Picard-Vessiot extension (see [19], Propo-
sition 3.9) will be employed:

Theorem 2.1.3. Let E ⊇ F be a differential field extension. Then E is a
Picard-Vessiot extension if and only if:

1. E = F 〈V 〉, where V ⊂ E is a finite-dimensional vector space over C;
2. There is a group G of differential automorphisms of E with G(V ) ⊇ V

and EG = F ;
3. E ⊃ F has no new constants.

In particular, if the above conditions hold and if {y1, . . . , yn} is a C-basis
of V , then E is a Picard-Vessiot extension of F for the linear homogeneous
differential operator

L(Y ) =
w(Y, y1, . . . , yn)
w(y1, . . . , yn)

where w(−) denotes the wronskian determinant and L−1(0) = V .

For the base field F 〈Yij〉 and group G = GLn(C) we first show that
F 〈Yij〉(Xij) ⊃ F 〈Yij〉 is a Picard-Vessiot extension with differential Galois
group GLn(C). To that end, we only need to show that F 〈Yij〉(Xij) ⊃ F 〈Yij〉
is a no-new-constant extension. Conditions 1. and 2. in Theorem 2.1.3 are
then easily verified with V the C-span of the Xij and G = GLn(C).

2.2. Darboux polynomials and the constants of F〈Yij〉(Xij). We will
show that the field of constants C of F 〈Yij〉(Xij) coincides with the field of
constants C of F . We first show (Corollary 2.2.2) that this can be reduced to
proving that the only Darboux polynomials in R are, up to a scalar multiple
in F , powers of det[Xij ].

The following basic proposition (proven in [34] for A as in Definition 1.1.1)
characterizes new constants for the extension F 〈Yij〉(Xij) ⊃ F in terms of
Darboux polynomials:
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Proposition 2.2.1. Let p1, p2 ∈ R = F{Yij}[Xij ], p1, p2 6= 0, be relatively
prime. Then D(p1

p2
) = 0, if and only if p1 and p2 are Darboux polynomials.

Moreover, if q1, q2 ∈ R are such that D(p1) = q1p1 and D(p2) = q2p2, then
q1 = q2.

Proof. For the necessity of the condition we have

D

(
p1

p2

)
=
D(p1)p2 − p1D(p2)

p2
2

= 0,

thus D(p1)p2 − p1D(p2) = 0, that is

D(p1)p2 = p1D(p2).(1)

Since p1 and p2 are relatively prime, the last equation implies that p1 divides
D(p1) and p2 divides D(p2).

Now, let q1, q2 ∈ R be such that D(p1) = q1p1 and D(p2) = q2p2, respec-
tively. Then it follows from (1) that

q1p1p2 = q2p1p2.

Hence, q1 = q2.
The proof of the converse is obvious.

Corollary 2.2.2. Let f ∈ F 〈Yij〉(Xij) be such that D(f) = 0 and assume
that f /∈ F then there are relatively prime Darboux polynomials p1, p2 ∈ R
which satisfy the Darboux condition with respect to the same q ∈ R (i.e.,
D(pi) = qpi, i = 1, 2) and such that f = p1

p2
. Therefore, if such relatively

prime Darboux polynomials in R do not exist, the constants of F 〈Yij〉(Xij)
coincide with the constants of F .

Proof. F 〈Yij〉(Xij) is the fraction field of R.

2.3. The generic extension.

Theorem 2.3.1. F 〈Yij〉(Xij) ⊃ F 〈Yij〉 is a generic Picard-Vessiot exten-
sion with differential Galois group GLn(C).

Proof. First we need to show that F 〈Yij〉(Xij) ⊃ F 〈Yij〉 is a Picard-Vessiot
extension with differential Galois group GLn(C). We will use the character-
ization of Theorem 2.1.3. We have

1. F 〈Yij〉(Xij) = F 〈Yij〉〈V 〉, where V ⊂ F 〈Yij〉(Xij) is the finite dimen-
sional vector space over C spanned by the Xij .

2. The group G = GLn(C) acts as a group of differential automorphisms
of F 〈Yij〉(Xij) with G(V ) ⊆ V and F 〈Yij〉(Xij)G = F 〈Yij〉. This fol-
lows from the fact that F 〈Yij〉(Xij) is the function field of GLn(C)F 〈Yij〉.

3. F 〈Yij〉(Xij) ⊇ F 〈Yij〉 has no new constants. This is a consequence of
Proposition 2.2.1, Corollary 2.2.2 and Theorem 1.1.17.

Now, suppose that E ⊇ F is a Picard-Vessiot extension of F with differ-
ential Galois group GLn(C). By Theorems 2.1.1 and 2.1.2, we have that in
this situation E is isomorphic to F (Xij) (the function field of GLn(C)F ) as
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a GLn(C)-module and as an F -module. Any GLn(C) equivariant derivation
DE on F (Xij) extends the derivation on F in such a way that

DE(Xij) =
n∑
`=1

fi`X`j

with fij ∈ F . Since E ⊃ F is a Picard-Vessiot extension for GLn(C),
then so is C〈fij〉(Xij) ⊃ C〈fij〉, the derivation on C〈fij〉(Xij) being the
corresponding restriction of DE . From this Picard-Vessiot extension one
can retrieve F (Xij) ⊃ F by extension of scalars from C to F . In this way,
any Picard-Vessiot extension E ⊃ F with differential Galois group GLn(C)
can be obtained from F 〈Yij〉(Xij) ⊃ F 〈Yij〉 via the specialization Yij 7→ fij .
This means that F 〈Yij〉(Xij) ⊃ F 〈Yij〉 is a generic Picard-Vessiot extension
of F for GLn(C).

2.4. Specializing to a Picard-Vessiot extension of F. In this section
we give necessary and sufficient conditions for a specialization Yij 7→ fij ,
fij ∈ F , with C〈fij〉(Xij) ⊃ C〈fij〉 a Picard-Vessiot extension, to exist. We
restrict ourselves to the case when F has finite transcendence degree over
C.

Our goal is to find fij ∈ F such that the specialization (homomorphism)
from C{Yij} to F given by Yij 7→ fij is such that C〈fij〉(Xij) ⊃ C〈fij〉, with
derivation given by D(Xij) =

∑n
`=1 fi`X`j , has no new constants. We have:

Theorem 2.4.1. Let F = C(t1, . . . , tm)[z1, . . . , zk] where the ti are alge-
braically independent over C and the zi are algebraic over C(t1, . . . , tm).
Assume that the derivation on F has field of constants C and that it extends
to F (Xij) so that D(f⊗Xij) = D(f)⊗Xij+f⊗

∑n
`=1 fi`X`j on F ⊗C[Xij ].

Let C be the field of constants of F (Xij). Then C = C if and only if the set
of all the ti and all the Xij are algebraically independent over C.

Proof. (Sufficiency) Suppose that C properly contains C. Let r be the tran-
scendence degree of C over C. Since C is algebraically closed, r has to be at
least one.

We have the tower of fields

C ⊂ C ⊂ C(Xij) ⊂ F (Xij)

where the transcendence degree of C ⊂ C(Xij) is n2 and the transcendence
degree of C ⊂ F (Xij) is n2 +m. Since r ≥ 1 the transcendence degree ` of
C(Xij) ⊂ F (Xij) has to be ` < m and therefore there is an algebraic relation
among the ti over C(Xij). Let g(Xij), fi(Xij) ∈ C[Xij ], g(Xij) 6≡ 0, be such
that

tδs +
fs−1(Xij)
g(Xij)

tδs−1 + · · ·+ f0(Xij)
g(Xij)

= 0.

Then
g(Xij)tδs + fs−1(Xij)tδs−1 + · · ·+ f0(Xij) = 0.
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Since the fi(Xij) and g(Xij) are polynomials in the Xij with coefficients
in C, the last equation gives an algebraic relation among the ti and the Xij

over C.
For the necessity we only need to point out that by construction the set

of all the ti and all the Xij are algebraically independent over C.

Now to check whether the set of all the ti and all the Xij are algebraically
independent over C, we let Tk, k ≥ 1, denote the set of monomials in both
the ti and the Xij of total degree less than or equal to k. Then the set of
all the ti and all the Xij are algebraically independent over C if and only if,
for each k, the set Tk is linearly independent over C.

Fix a term order on the set T of all monomials in both the ti and the Xij

and let Wk denote the wronskian of the set Tk relative to that order. Then
the above condition is equivalent to the fact that Wk 6= 0 for k ≥ 1. Now
go back to C{Yij}[Xij ] and extend scalars from C to F . Let Wk(Yij) be the
Wronskian of Tk in F ⊗ C{Yij}[Xij ].

Then, the condition of Theorem 2.4.1 for finding a specialization Yij 7→ fij
so that C〈fij〉(Xij) ⊃ C〈fij〉 has no new constants can be expressed as
follows:

Theorem 2.4.2. There is a specialization of the Yij with no new constants
if and only if there are fij ∈ F such that all the wronskians Wk(Yij), k ≥ 1,
map to non-zero elements under Yij 7→ fij.

2.5. Specialization results for connected linear algebraic groups.
The proofs of the specialization theorems in 2.4 do not make any special use
of the fact that the group under consideration is GLn(C) and can be applied
to arbitray connected linear algebraic groups as follows:

As in the previous section, F = C(t1, . . . , tm)[z1, . . . , zk] where the ti are
algebraically independent over C and the zi are algebraic over C(t1, . . . , tm).
We let Y1, . . . , Yn denote differential indeterminates over F and X1, . . . , Xn

algebraically independent elements over F 〈Yi〉.
In this section G is assumed to be a connected linear algebraic group with

function field C(G) = C(Xi).
If {D1, . . . , Dn} is a basis for Lie(G), DY =

∑n
i=1 YiDi is a G-equivariant

derivation on F 〈Yi〉(Xi). Let D =
∑n

i=1 fiDi, fi ∈ F , be a specialization
of DY to a G-equivariant derivation on F (Xi) with field of constants C. We
have,

Theorem 2.5.1. The field of constant C of F (Xi) coincides with C if and
only if the set of all the ti and the Xi are algebraically independent over C.

Now, fix an order in the set T of monomials in both the ti and the Xi and
let Wk(Yi) be the wronskian (with respect to this order) of the monomials
in both the ti and the Xi of degree less than or equal to k computed in
F ⊗ C{Yi}[Xi]. Then,
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Theorem 2.5.2. There is a specialization of the Yi with no new constants
if and only if there are fi ∈ F such that all the wronskians Wk(Yi), k ≥ 1,
map to non-zero elements under Yi 7→ fi.

For the proofs of Theorems 2.5.1 and 2.5.2 we only need to replace the
Xij with Xi , the Yij with Yi and n2 with n in the proofs of Theorems 2.4.1
and 2.4.2.

Observe that the proofs of Theorems 2.5.1 and 2.5.2 do not use the fact
that C(Xi) is the function field of G. However, this hypothesis is used in
the following theorem to show that F (Xi) ⊃ F is a Picard-Vessiot extension
with group G.

Under the hypothesis and notation of Theorems 2.5.1 and 2.5.2 we have:

Theorem 2.5.3. F (Xi) ⊃ F is a Picard-Vessiot extension with Galois
group G if and only if the set of all the ti and all the Xi is algebraically
independent over the field of constants C of F (Xi).

Proof. First assume that F (Xi) ⊃ F is a Picard-Vessiot extension. Then
the field of constants C of F (Xi) coincides with C. So we can apply Theo-
rem 2.5.1 and get the result.

Conversely, if the set of all the ti and all the Xi are algebraically indepen-
dent over C, by Theorem 2.5.1, F (Xi) ⊃ F is a no-new-constant extension.
On the other hand, F (Xi) is obtained from C(Xi) by the extension of scalars:

F (Xi) = q.f.(F ⊗C C(Xi))
= q.f.(F ⊗C C[G])

where C[G] is the coordinate ring of G and G acts on F ⊗C C[G] fixing F .
So, G ⊆ G(F (Xi)/F ). Counting dimensions we get that G = G(F (Xi)/F )
since C(Xi) = C(G), the function field of G. Finally, F (Xi) = F 〈V 〉, where
V is the finite-dimensional vector space over C spanned by the Xi. By
Theorem 2.1.3, F (Xi) ⊃ F is a Picard-Vessiot extension.

Applying Theorems 2.5.2 and 2.5.3 we also obtain:

Theorem 2.5.4. There is a specialization of the Yi such that F (Xi) ⊃ F is
a Picard-Vessiot extension if and only if there are fi ∈ F such that all the
Wk(Yi), k ≥ 1, map to non-zero elements via Yi 7→ fi.

2.6. An example. The previous Theorem 2.4.1 says that if there is an
algebraic relation among the set of all the ti and all the Xij over the field of
constants C of F (Xij) then C properly contains C.

In this section we give an example in which a new constant is produced
from such an algebraic relation. We assume F = C. So, in particular, the
coefficients fij in the derivation of F are constant. In this situation, since
the transcendence degree of F over C is zero, if C ' C, the condition of
Theorem 2.4.1 means that the Xij are algebraically dependent over C.

We restrict ourselves to the case n = 2 and consider the following partic-
ular dependence relation.
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Let

D(Xij) =
2∑
`=1

fi`X`j ,

where the fij are such that the wronskian W1 = w(X11, X12, X21, X22) = 0.
That is, the Xij are linearly dependent over C. Furthermore, assume that
the linear relation among the Xij is such that there are β12, β21, β22 ∈ C
with

X11 = β12X12 + β21X21 + β22X22(1)

and that X12, X21 and X22 are linearly independent. In order to simplify
the computations we will also assume that det[fij ] = 0.

We want to find a, b, c ∈ F such that p = aX12 +bX21 +cX22 is a Darboux
polynomial in F [Xij ], that is D(aX12+bX21+cX22) = q(aX12+bX21+cX22)
for certain q ∈ F .

We have,

D(aX12 + bX21 + cX22)
= a(f11X12 + f12X22) + b(f21X11 + f22X21) + c(f21X12 + f22X22)
= bf21X11 + (af11 + cf21)X12 + bf22X21 + (af12 + cf22)X22

= bf21(β12X12 + β21X21 + β22X22) + (af11 + cf21)X12 + bf22X21

+(af12 + cf22)X22

= (af11 + bf21β12 + cf21)X12 + b(f22 + f21β12)X21

+(af12 + bf21β22 + cf22)X22

= qaX12 + qbX21 + qcX22.

Therefore,

[a(f11 − q) + bf21β12 + cf21]X12 + b(f22 + f21β12 − q)X21

+ (af12 + bf21β22 + c(f22 − q)X22 = 0.
(2)

Since we are assuming that X12, X21 and X22 are linearly independent
their coefficients in (2) must be equal to zero. So we have the following
homogeneous linear system in a, b, c:

(f11 − q) a + f21β12 b + f21 c = 0
(f22 + f21β12 − q) b = 0

f12 a + f21β22 b + (f22 − q) c = 0

In order for the above system to have non-trivial solutions we need that

det

 f11 − q f21β12 f21

0 f22 + f21β12 − q 0
f12 f21β22 f22 − q

 = 0.
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But,

det

 f11 − q f21β12 f21

0 f22 + f21β12 − q 0
f12 f21β22 f22 − q


= (f22 + f21β12 − q) det

[
f11 − q f21

f12 f22 − q

]

= (f22 + f21β12 − q)(det[fij ]−
( 2∑
i=1

fii

)
q + q2)

= 0.

This gives either

f22 + f21β12 − q = 0(3)

or

det[fij ]−
( 2∑
i=1

fii

)
q + q2 = 0.(4)

From (3)-(4) we get

q = f22 + f21β12(5)

or

q =

∑2
i=1 fii ±

√(∑2
i=1 fii

)2 − 4 det[fij ]

2
(6)

Since we are assuming that det[fij ] = 0, (6) becomes:

q =

{∑2
i=1 fii, or

0
(7)

Choose q =
∑2

i=1 fii and assume that q 6= 0, q 6= f22 + f21β12. Then the
second equation in the system implies that b = 0 and the system becomes:

−f22 a+ f21 c = 0
f12 a− f11 c = 0

If f22 6= 0 then the above system has the general solution

a =
f21

f22
c, where c ∈ C .

In particular, if we take c = 1 then p = f21

f22
X12 +X22 satisfies

D
(f21

f22
X12 +X22

)
=
( 2∑
i=1

fii

)(f21

f22
X12 +X22

)
.
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On the other hand we also have that

D(det[Xij ]) =
( 2∑
i=1

fii

)
det[Xij ].

Let

θ =
f21

f22
X12 +X22

det[Xij ]
.

We have,

D(θ)

= D
( f21

f22
X12 +X22

det[Xij ]
)

=
D
(f21

f22
X12 +X22

)
det[Xij ]−

(f21

f22
X12 +X22

)
D(det[Xij ])

det[Xij ]2

=

( 2∑
i=1

fii
)(f21

f22
X12 +X22

)
det[Xij ]−

(f21

f22
X12 +X22

)( 2∑
i=1

fii
)

det[Xij ]

det[Xij ]2

= 0.

That is, θ is a new constant in F (Xij).
Now we show that under the restrictions that we imposed on the fij it is

possible to find a non-zero f22.
Since we have a linear dependence relation among the Xij , the wronskian

W1 must be equal to zero. This Wronskian can be expressed, up to a sign,
as the following product of determinants:

W1 =

∣∣∣∣∣∣∣∣
1 0 0 1
f11 f12 f21 f22

A B E F
C D G H

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
X11 X12 0 0
X21 X22 0 0

0 0 X11 X12

0 0 X21 X22

∣∣∣∣∣∣∣∣ = M(fij) det[Xij ]2,

where

A = f ′11 + f2
11 + f12f21,

B = f ′12 + f11f12 + f12f22

C = f11A+ f21B +A′

= 3f11f
′
11 + 2f11f12f21 + 2f ′12f21 + f ′′11 + f12f

′
21 + f3

11,
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D = f12A+ f22B +B′

= 2f ′11f12 + f2
11f12 + f2

12f21 + f21f
2
22 + 2f ′12f22 + f11f

′
12

+f12f
′
22 + f ′′12 + f11f12f22,

E = f ′21 + f21f11 + f22f21,

F = f ′22 + f12f21 + f2
22,

G = f11E + f21F + E′

= 2f ′21f11 + f21f
2
11 + f22f21f11 + 2f ′22f21 + f12f

2
21

+f2
22f21 + f ′′21 + f21f

′
11 + f22f

′
21,

H = f22F + f12E + F ′

= f21f11f12 + 2f22f21f12 + +3f22f
′
22 + 2f12f

′
21 + f ′12f21

+f3
22 + f ′′22.

and

M(fij) =

∣∣∣∣∣∣∣∣
1 0 0 1
f11 f12 f21 f22

A B E F
C D G H

∣∣∣∣∣∣∣∣ .
We have after simplifying using the hypothesis that det[fij ] = 0,

M(fij) = (f22 − f11)(f ′12f
′′
21 − f ′21f

′′
12) + (f ′22 − f ′11)(f ′′12f21 − f12f

′′
21)

− f ′12f
′
21(f11 − f22)2 − f12f21(f ′11 − f ′22)

+ f12f
′
21(f11f

′
11 + f22f

′
22 − f ′11f22 − f11f

′
22 + f ′′22 − f ′′11 + f12f

′
21 − f ′12f21)

+ f ′12f21(f11f
′
11 + f22f

′
22 − f ′11f22 − f11f

′
22 + f ′′11 − f ′′22 + f ′12f21 − f12f

′
21).

Getting the above expression for M(fij) took long and involved computa-
tions. We first computed the determinant directly and then we checked the
result using Dogson’s method [6, 28].

The wronskian W1 = 0 if and only if M(fij) = 0. Now, observe that if
f12 = 0 then f ′12 = 0 which implies that B = 0 and D = 0 as well. Therefore
M(fij) = 0. So, if we let M(Yij) be the differential polynomial in the Yij
whose specialization to the fij is M(fij) then M(Yij) is in the differential
ideal

I = {det[Yij ], Y12}
= {Y11Y22 − Y12Y21, Y12}
= {Y11Y22, Y12}

of C{Y11, Y12, Y21, Y22}. It is easy to see that Y22 is not in I. Indeed, suppose
that

Y22 = p Y11Y22 + q Y12 + r,(8)
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where p, q ∈ C{Y11, Y12, Y21, Y22},

r =
∑
i,j

[
pi (Y11Y22)(i) + qj Y

(j)
12

]
with pi, qj ∈ C{Y11, Y12, Y21, Y22}.

Now, consider the map

ψ : C{Y11, Y21, Y22} −→ C[Y11, Y21, Y22]

given by ψ(Y22) = Y22 and ψ(Yij) = 0 for i, j 6= 2. Let p = ψ(p), q = ψ(q),
r = ψ(r). We have that r = 0 and (8) becomes

Y22 = 0.

which is impossible.
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Studies in Mathematics, American Mathematical Society (1994).

2. D. W. Albrecht, E. L. Mansfield, A. E. Milne, Algorithms for special integrals of
ordinary differential equations. J. Phys. A 29 (1996), 5, 973–991.

3. F. Beukers, G. Heckmann, Monodromy for the hypergeometric function nFn−1, Invent.
Math. 95 (1989), 325–354.

4. A. Bialynicki-Birula, On the inverse problem of Galois theory of differential fields,
Bull. Amer. Math. Soc. 16 (1963), 960–964.
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