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In this paper, we show that despite their distinction, both the Statonovich and Itos

calculi lead to the same reactive Fokker-Planck equation:

`: `:
`> `B `B

` H  ,: œ 7:ß Ð"Ñ’ “ -

describing stochastic dynamics of a particle moving under the influence of an

indefinite potential , a drift , and a constant diffusion .  We treat7ÐBß >Ñ ,ÐBß >Ñ H
the periodic-parabolic eigenvalue problem (1) for finite domains having

absorbing barriers.  We show that under conditions required by the maximum

principle, the positive principal eigenvalue  (and the negative principal-‡

eigenvalue  is connected to the probability eigendensity function  by a-‡Ñ :ÐBß >Ñ
Raleigh-Ritz like formulation. In the process, we establish the manner of effect of

the drift and any inducing potential on the size of the principal eigenvalue.  We

show that the degree of convexity of the potential plays a major role in this

regard.

   Fokker-Planck Equation, Indefinite Potential, PrincipalKey words:

Eigenvalue.

   49J20, 49J40, 49K20, 65N25.AMS subject classifications:

1.  Introduction

In the absence of randomness, the directed motion of a particle on the real line due to an

existing differentiable potential  (see [17]) is given byFÐBß >Ñ

.B `F

.> `Bœ œ ,ÐBß >ÑÞ Ð"Þ"Ñ
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The drift function  is then the velocity with which the particle travels, and in the event,ÐBß >Ñ
that  does not vary with time, the motion of the particle is steady and satisfies the equationF

BÐ>Ñ  FÐBÐ>ÑÑ œ -Þ Ð"Þ#Ñ

Assuming an additional random component for the motion of the particle without violating its

continuity, equation (1.1) can be expanded to the Langevin equation:

.BÐ>Ñ œ ,ÐBß >Ñ  =ÐBß >Ñ Ð>Ñ.>Þ Ð"Þ$ÑF

Here, the function  is rapidly fluctuating with time, having null statistical mean and DiracFÐ>Ñ
$ F variance function.  The quantity  is commonly known to be closely related to theÐ>Ñ.>
Wiener process  (see [13]).  The function  indicates the scale of randomness in theAÐ>Ñ =ÐBß >Ñ
particle motion and is connected with the phenomenon of diffusion in the prescribed medium

(see [9]).  In fact, the diffusion coefficient of the medium  is known to be given by theHÐBß >Ñ
relation:

HÐBß >Ñ œ Þ Ð"Þ%Ñ= ÐBß>Ñ
#

#

Clearly,  is a nonnegative function, and in this regard the Langevin equation mayHÐBß >Ñ
technically be called the stochastic drift-diffusion equation, and be written:

.BÐ>Ñ œ ,ÐBß >Ñ.>  #HÐBß >Ñ.AÐ>ÑÞ Ð"Þ&ÑÈ
The problem at hand is to estimate the influence of the drift  on the behavior of the,ÐBß >Ñ
particle motion described by the Langevin equation in a finite interval  havingÒ= ß = Ó" #

absorbing ends.  Assuming that the particle is subjected to a reactive potential  that7ÐBß >Ñ
changes sign in the interval , we may ask how is the long term behavior of the particleÒ= ß = Ó" #

affected if the drift is induced by .  The standing conjecture (see [2, 5]) is that for the7ÐBß >Ñ
reflecting barrier case a drift along  should settle the particle mostly in areas where the7B

potential  is optimally positive.  This is treated in [6].  Here, we only consider the absorbing7
barrier case.

2.  Stratonovich Versus Ito Integrations

Techniques for solving stochastic equations like (1.5) depart greatly from those for solving

ODEs.  In this regard, the authors of [11] state that:  The stochastic nature of the Langevin

equation allows an infinite number of possible trajectories for any given initial conditions.

The probability of any one trajectory is governed by the statistical properties of the randomly

fluctuating force.  The value of equation (1.5) comes from our ability to integrate it when

possible.  Integrating (1.5) in the interval  yields:Ò= ß = Ó" #

BÐ= Ñ  BÐ= Ñ œ ,.>  #HÐB>Ñ.AÐ>ÑÞ Ð#Þ"Ñ# "

= =

= =

' ' È          # #

" "

The first integral in the previous equation is a Riemann-Stieltjes one, and it may be calculated

by rules of ordinary calculus, while the second integral is stochastic in nature.  Given a

continuous, nonanticipating function  (see [13]), and a partition0Ð>Ñ
= œ >  >  á  > œ = Ò= ß = Ó > Ÿ Ÿ >" ! " 8 # " # 3 3" 3 3 of the interval , we choose 's such that 7 7
and compute the sequence of partial sums:
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W œ 0Ð ÑÒ Ð> Ñ  Ð> ÑÓÞ Ð#Þ#Ñ8 3 3 3"

8

3œ"

� 7 = =

The value of  depends greatly on how the 's are chosen and on the value of .  If weW 0Ð Ñ8 3 37 7
set , , then .  The stochastic integral of7 α α α α3 3" 3 8 8 " #œ >  Ð"  Ñ> ! Ÿ Ÿ " W œ W Ð ß 0 ß = ß = Ñ
0  may be defined in the following manner:

MÐ ß 0 ß = ß = Ñ œ 0Ð>Ñ. Ð>Ñ œ 7=  W Ð ß 0 ß = ß = Ñß Ð#Þ$Ñ
8 Ä ∞

α = α" # 8 " #

=

=

'     #

"

lim

where  means the limit in the mean square  norm).  The Ito stochastic integral is given7= ÐP s#

by:

MÐ"ß 0 ß = ß = Ñ œ 7=  W Ð"ß 0 ß = ß = ÑÞ Ð#Þ%Ñ
8 Ä ∞" # 8 " #lim

The Stratonovich stochastic integral, on the other hand, is given by:

M ß 0 ß = ß = œ 0Ð>Ñ. Ð>Ñ œ 7=  W ß 0 ß = ß = Þ Ð#Þ&ÑW
=

= 8 Ä ∞
ˆ ‰ ˆ ‰'" "
# #" # 8 " #

#

"

     
lim=

We remark that for , , while0Ð>Ñ ´ " MÐ"ß 0 ß = ß = Ñ œ M ß 0 ß = ß =" # " #
"
#

ˆ ‰
MÐ"ß Ð>Ñß = ß = Ñ œ Ð>Ñ  > ß Ð#Þ'Ñ= =" #

"
#

# =
=c d #

"

and

M ß Ð>Ñß = ß = œ Ð>Ñ Þ Ð#Þ(Ñˆ ‰ c d" "
# #" #

# =
== = #

"

 Note that the Stratonovich integral looks more like the regular Riemann integral and the

term  that occurs in the Ito formulation does not show up in the StratonovichÒ>Ó œ Ð=  = Ñ s=
= # "
#
"

model.  While the Ito integral may be mathematically and technically more satisfactory, thes

Stratonovich quadrature may naturally be a better choice physically.  Despite these

discrepancies, it can be easily shown (see [1, 2]) that both approaches yield  ifÐ. Ð>ÑÑ œ != $

$ = # Ð. Ð>ÑÑ œ .>, and  in the mean square.#

3.  Stratonovich Versus Ito Dynamical Model Formulations

For developmental and historical reasons, the stochastic equation (1.5) describing a Markov

process (See [14, 18]) has become to be known as the Ito Differential Equation (IDE):s

.BÐ>Ñ œ ,.>  #H. Ð>ÑÞ Ð$Þ"ÑÈ =
 Another rival model to the IDE also describing particle motion due to drift and diffusion is

given by the Stratonovich Differential Equation (SDE):

.BÐ>Ñ œ ,  .>  #H. Ð>ÑÞ Ð$Þ#Ñ: ‘ ÈH
#
B =
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 Ito and Stratonovich formulations are identical if the diffusion  is independent of thes H
location.  It is shown by the authors of [19] that both, the IDE (3.1) and the SDE (3.2), can

lead to natural solutions.  Here among other results, we develop their ideas further.  The Itos

change of variable formula is given by (see [1] for a proof):

.0ÐBÐ>ÑÑ œ Ò,0 ÐBÐ>ÑÑ  H0 ÐBÐ>ÑÑÓ.>  #H0 ÐBÐ>ÑÑ. Ð>Ñw ww wÈ =

œ 0 ÐBÐ>ÑÑ.BÐ>Ñ  H0 ÐBÐ>ÑÑ.>Þ Ð$Þ$Ñw ww

 On the other hand, the Stratonovich chain rule is that of ordinary calculus as can be seen

from the next result.

 Theorem 3.1:  For a differentiable function  of  given by the SDE ,0 BÐ>Ñ Ð$Þ#Ñ

.0ÐBÐ>ÑÑ œ 0 ÐBÐ>ÑÑ.BÐ>ÑÞ Ð$Þ%Ñw

   We start with the SDE:Proof:

.B œ , .>  #H. Ð>ÑÞ Ð$Þ&ÑW È =

This equation may be converted into an IDE as follows:

.BÐ>Ñ œ ,  .>  #H. Ð>ÑÞ Ð$Þ'Ñ: ‘ ÈW H
#
B =

 Now, letting  gives rise to the inverse , withC œ 0ÐBÑ B œ 1ÐCÑ

Š ‹.1 .C .0
.C .1 .B

"

œ œ Þ

 Furthermore, we have  and .  After substitutions of theseHÐBÑ œ HÐCÑ , ÐCÑ œ , ÐBÑW W

equalities, and manipulations of the IDE, we get:

 .C œ , H H .>  #H . Ð>ÑÞ Ð$Þ(Ñ” •Š ‹ Š ‹ Š ‹ Š ‹ÈW .1 .1 . 1 .1 .1
.C .C .C .C .C

" # $ "

C
#

# =

Now, we convert this IDE back to an SDE and obtain:

.0ÐBÑ œ .C œ , .>  #H. Ð>Ñ Þ Ð$Þ)Ñ’ “Š ‹ÈW .1
.C

"

=

Using the previous defining relations, we recover the theorem conclusion.

 It was shown (see [1, 6]) that a Langevin particle subject to diffusion  and to driftHÐBß >Ñ
,ÐBß >Ñ :ÐBß >Ñ, hence governed by the IDE (3.1), resulting in the probability density 

evaluating the chances of the particle being at location  at every time , and a probabilityB >
flux:

N ÐBß >Ñ œ ,ÐBß >Ñ:ÐBß >Ñ  ÒHÐBß >Ñ:ÐBß >ÑÓ Ð$Þ*Ñ`
`B .

It must satisfy the Fokker-Planck Equation (FPE):

`:
`> ` `B `B

` ` `œ  N œ ÐH:Ñ  ,: Þ Ð$Þ"!Ñ: ‘
 The next result establishes the correct form of the FPE due to a Stratonovich drift.
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 Theorem 3.2:  Assuming that the Langevin particle moves under the influence of a

Stratonovich drift  yields the corresponding FPE:, ÐBß >ÑW

`:
`> `B `B

` ` Wœ H Ð H:Ñ  , : Þ Ð$Þ""Ñ’ “È È
 Proof:  Since , where  is the Ito drift, we see that the FPE (3.10), œ ,  œ ,  == , sW H

# B
B

can lead to

`: `:
`> `B `B `B `B # #

` ` ` H Hœ ÐH:Ñ  ,: œ H  :  Ð,  Ñ: Þ Ð$ Ñ: ‘ ’ “B B .12

Exchanging  for  we get:=
#

#

H

`: `:
`> `B # `B # `B

` = = ` === W W
# #

œ  :  , : œ :  , : Þ Ð$Þ"$Ñ’ “ ’ “Š ‹#
B   È È

Substituting  for  in equation (3.13)  we get the Stratonovich FPE (3.11).ÈH =

#È
 Clearly, both formulations coincide if diffusion is isotropic;  constant.HÐBÑ œ H œ
Moreover, both equations (3.10) and (3.11) are valid in the absence of reactions.  In the next

section, we treat reactive versions of the FPEs with constant diffusion.  In the absence of

drift, equations (3.1) and (3.5) lead to the heat equation versions of (3.10) and (3.11) (see [10,

12, 18]).  Introduction of drift into the FPEs helped explain many cellular dynamic

phenomena (see, for instance, [3, 4, 9, 21]).

4.  Indefinite Reactions Effects on the Dynamics of a Langevin Particle

In this section, we treat the isotropic case of a Langevin particle subject to a -periodic driftX
,ÐBß >Ñ X 7ÐBß >Ñ and a -periodic indefinite reactive potential .  We seek a probability density

function  to the -periodic parabolic eigenvalue problem:ÐBß >Ñ X

`: `:
`> `B `B

`
" # H  ,: œ 7: Ð= ß = Ñ ‚ Ò!ß X Óß Ð%Þ"Ñ’ “ -  in 

with initial density , such that at all times, the given data at the boundary points: œ :ÐBß !Ñ!

= = : œ !" # and  is .  This means that we have Dirichlet conditions at

the endpoints.  The driftless problem with reflecting barriers at the endpoints  wasŠ ‹`:
`B œ !

treated in [8].  Further developments including drift can be found in [3,

5, 6, 16].  Here, however, we focus on the Dirichlet case.

 The recent results of [7] imply that under Dirichlet conditions, provided' X

! Ò=ß= Ó
‡max , problem (4.1) admits a principal eigenvalue 

#
Ð7ÐBß >Ñ.>ÑÑ  !  !-

having a positive -periodic density .  An easy consequence of the previousX :ÐBß >Ñ

statement shows that provided min , problem (4.1) admits a negative' X

! Ò= ß= Ó" #
Ð7ÐBß >Ñ.>ÑÑ  !

principal eigenvalue  having a -periodicity density  .  This can be easily seen by-‡ X ;ÐBß >Ñ
realizing that in problem (4.1), the quantity .  Both  and  are in- -7: œ Ð  ÑÐ 7Ñ: : ;

G ÐÒ= ß = Ó ‚ Ñ , 7 G ÐÒ= ß = Ó ‚ Ñ# ß" " ß"
" # " #

) )) )
# #‘ ‘ if  and  are in .

The next few results connect  and  to the coefficients of the eigenvalue problem.-‡ :
   Theorem 4.1: Let  and  be -periodic in , and let  be differentiable with res-7 , X > ,ÐBß >Ñ
pect to , then th positive principal eigenvalue  of problem (4.1) subject to DirichletB -‡
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conditions  is connected to the corresponding eigendensity functionÐ:Ð= ß >Ñ œ :Ð= ß >Ñ œ !# "

:ÐBß >Ñ by the following

-‡ # # #
X X X

! ! !

= = =

= = =
B

,
#

' ' ' ' ' '                           

  
# # #

" " "

B7: .B.> œ H Ð: Ñ .B.>  : .B.>Þ Ð%Þ#Ñ

 Proof:  Multiplying problem (4.1) by  and integrating over , we get:: Ò= ß = Ó" #

-' ' '              = = =

= = =

#
B

`:
`>

# # #

" " "

7: .B œ N :.B  .B

Ð%Þ$Ñ

œ ÒN:Ó .B  N: .B  .BÞ' ' '                = = =

= = =
B B

`:
`>

# # #

" " "

Using Dirichlet boundary conditions, the first integral on the right-hand side vanishes, and the

second integral yields:

 N: .B œ H Ð: Ñ .B  : .BÞ Ð%Þ%Ñ' ' '               = = =

= = =
B B

# #,
#

# # #

" " "

B

Therefore, we have

-' ' ' '                    = = = =

= = = =

# # #
B

,
# `>

`:
# # # #

" " " "

B7: .B œ H Ð: Ñ .B  : .B  .BÞ Ð%Þ&Ñ

Integrating equation (4.5) on interval , we obtain:Ò!ß X Ó

' ' ' ' '                       X X

! !

= = =

= = =

`: `:
`> `>

X
!

# # #

" " "

.B.> œ .>.B œ Ò:ÐBß >ÑÓ .B ´ !Þ Ð%Þ'Ñ

Since  is -periodic, we get::ÐBß >Ñ X

-' ' ' ' ' '                            X X X

! ! !

= = =

= = =

# # #
B

,
#

# # #

" " "

B7: .B.> œ H Ð: Ñ .B.>  : .B.>Þ Ð%Þ(Ñ

So that if ,  is the corresponding eigendensity.- -œ :‡
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   Similarly if , then .  Also, note that if we denote Remarks: - - -œ : œ ; œ‡
‡

- - -ÐHß ,ß7Ñ ÐHß , œ ß7Ñ œ ÐHß !ß7Ñ, we see that constant . In other words, a constant drift

in  has no effect on the value of the eigenvalue  (nor on the value of .  This is dueÒ= ß = Ó Ñ" # ‡
‡- -

to the fact that  is the smallest nonnegative eigenvalue of problem (4.1).-‡

 In the next results,  we consider the situation where for real ,α

, œ Þ Ð%Þ)Ñα `7
`B

 Corollary 4.2:  Let  and  in Theorem .  be related through equation .  Then:7 , % " Ð%Þ)Ñ

-‡ # # #
X X X

! ! !

= = =

= = =
B BB#

' ' ' ' ' '                           # # #

" " "

7: .B.> œ H Ð: Ñ .B.>  7 : .B.>Þ Ð%Þ*Ñα

   Clearly if  is related to  through relation (4.8), then:Proof: , 7

, œ Þ Ð%Þ"!ÑB
` 7
`Bα
#

#

Substituting this in equation (4.7) yields the desired result.

 Equation (4.9) shows that the principal eigenvalue  is influenced by the degree of-‡

concavity or convexity of the potential .  The next result is concerned with the7ÐBß >Ñ
influence of the drift  and weight  on the eigenvalue  (and  in the steady case (long, 7 Ñ- -‡

‡

term behavior).

 Corollary 4.3:  In the steady state case with , , we have  and, œ ,ÐBÑ 7 œ 7ÐBÑ : œ :ÐBÑ

-‡ # # #
= = =

= = =
B

,
#

' ' '              # # #

" " "

B7: .B œ H Ð: Ñ .B  : .BÞ Ð%Þ""Ñ

Furthermore, if  and  are related via equation , then, 7 Ð%Þ)Ñ

-‡ # # #
= = =

= = =
B BB#

' ' '              # # #

" " "

7: .B œ H Ð: Ñ .B  7 : .BÞ Ð%Þ"#Ñα

 Proof:  Equations (4.11) and (4.12) are obtained from (4.2) and (4.9) respectively, by the

obvious substitution, for the Dirichlet eigenvalue problem in :Ð= ß = Ñ" #

 H  ,: œ 7:ß Ð%Þ"$Ñ`
`B `B

`:’ “ -

considered periodic-parabolic for every period .X  !
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