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Abstract

Let S be a finite regular semigroup. We define the principal left
ideal graph of S as the graph SG with V (SG) = S and two vertices a
and b (a �= b) are adjacent in SG if and only if Sa ∩ Sb �= {}. The
principal right ideal graph is defined accordingly and is denoted by
GS . The principal ideal graph of Rees matrix semigroup is studied in
this paper. First, we describe the necessary and sufficient condition for
which two elements in a Rees matrix semigroup are adjacent in SG and
GS . Then we characterise the principal ideal graphs of a Rees matrix
semigroup. Finally we describe the number of edges in SG and GS and
then the number of elements in E(SG)∩E(GS) when S is a Rees matrix
semigroup.
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1. Introduction

Semigroups are the first and simplest type of algebra to which the methods
of universal algebra is applied. During the last three decades, Graph Theory
has established itself as an important mathematical tool in a wide variety
of subjects. The use of graph theory has become widespread in the algebraic
theory of semigroups. Graph is mainly used as a visual aid to represent several
problems in the theory of semigroups. In 1964, Bosak [1] studied certain graph
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over semigroups. In 1975, Zelinka [14] studied intersection graphs of nontrivial
subgroups of finite abelian groups. The well known study of directed graph
considering the elements of a group as its vertex set is the Cayley digraph [2,
8, 12, 13]. Recently Kelarev and Quinn [9, 10] defined two interesting classes
of directed graphs, namely, divisibility graph and power graphs on semigroups.
The divisibility graph Div(S) of a semigroup S is a directed graph with vertex
set S and there is an edge (arc) from u to v if and only if u �=v and u/v,
i.e., the ideal generated by v contains u. On the other hand the power graph,
Pow(S) of a semigroup S is a directed graph in which the set of vertices is
again S and for a, b ∈ S there is an arc from a to b if and only if a �= b and
b = am for some positive integer m. In 2005, Frank De Mayer and Lisa De
Mayer studied zero divisor graphs of semigroups [4]. In 2009, Ivy Chakrabarty,
Shamik Ghosh and M K Sen introduced undirected power graphs [7].Following
this, we define a new type of graphs on semigroups called the ’Principal Ideal
Graphs of Semigroups’. Here we characterise the principal ideal graphs of
Rectangular bands.

2. Preliminaries

In the following we give certain definitions and results from graph theory and
semigroup theory as given in [5], [11] and [3], [6] respectively, which are used
in the sequel.
A graph G = (V, E) consists of a set of objects V = {v1, v2, . . . }, called vertices
and another set E = {e1, e2, . . . } whose elements are called edges such that
each ek is identified with an unordered pair (vi, vj) of vertices. Two graphs G
and G′ are said to be isomorphic, denoted by G ∼= G′, if there is a one-to-one
correspondance between their vertices and between their edges such that the
incidence relationship is preserved. A graph G is said to be connected if there
exists atleast one path between any pair of vertices in G, otherwise G is called
disconnected. A graph in which there exists an edge between every pair of
vertices is called a complete graph. A complete graph of n vertices is denoted
by Kn.
A semigroup S is a non empty set S together with an associative binary oper-
ation on S. We define relations known as Green’s relations L and R on S as
follows:

L = {(a, b) ∈ S : S ′a = S ′b}
R = {(a, b) ∈ S : aS ′ = bS′}

An element x of a semigroup S is said to be regular if there exists an element
x′ ∈ S such that xx′x = x. A semigroup S is said to be regular if all elements
of S are regular. Let G be a group and let I, ∧ be non-empty sets. Let P =
(pλi) be a ∧× I matrix with entries in the group G. Let S = G×I×∧ and define
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a composition on S by, (a, i, λ)(b, j, μ) = (apλjb, i, μ). Then S = G × I × ∧
is a semigroup with respect to the multiplication defined above, called the
I × ∧ Rees matrix semigroup over the group G and is usually denoted by
S = M(G; I,∧; P ). Note that, a Rees matrix semigroup is always regular
(cf.[6]).

The following proposition is used in the sequel.
Proposition 2.1(cf.[6]) Let S = M(G; I,∧; P ) be a Rees matrix semigroup
and (a, i, λ), (b, j, μ) ∈ S. Then (a, i, λ)L(b, j, μ), if and only if λ = μ and
(a, i, λ)R(b, j, μ) if and only if i = j.

3. Prinicpal ideal graphs of Rees matrix semigroups

First, we describe the necessary and sufficient condition for two elements in S
to have an edge between them in SG.
Proposition 3.1 Let S = M(G; I,∧; P ) be a Rees matrix semigroup and
(a, i, λ), (b, j, μ) ∈ S. Then there exists an edge between (a, i, λ) and (b, j, μ)
in SG, if and only if (a, i, λ)L(b, j, μ).
Proof : Suppose that (a, i, λ)L(b, j, μ) for (a, i, λ), (b, j, μ) ∈ S. Then, by
Proposition 2.1, we have λ = μ. Now we have,
(a−1(pλi)

−1, j, λ) (a, i, λ) = (a−1(pλi)
−1pλia, j, λ)

= (e, j, λ), where e is the identity element in G.
Also we have, (b−1(pλj)

−1, j, λ) (b, j, μ) = (e, j, μ)
= (e, j, λ) as λ = μ.

This shows that, S(a, i, λ)∩S(b, j, μ) �= {}. Hence there exists an edge between
(a, i, λ) and (b, j, μ) in SG.
Conversely assume that, there exists an edge between (a, i, λ) and (b, j, μ) in

SG. Then, by definition, S(a, i, λ) ∩ S(b, j, μ) �= {}. Thus we have,
(c, i1, λ1)(a, i, λ) = (d, j1, μ1)(b, j, μ) for some (c, i1, λ1), (d, j1, μ1) ∈ S.
Now, (c, i1, λ1)(a, i, λ) = (d, j1, μ1)(b, j, μ)

⇒ (cpλ1ia, i1, λ) = (dpμ1jb, j1, μ).
⇒ λ = μ.

Hence, by Proposition 2.1, it follows that, (a, i, λ)L(b, j, μ).
In a similar manner, we have the following proposition.

Proposition 3.2 Let S = M(G; I,∧; P ) be a Rees matrix semigroup and
(a, i, λ), (b, j, μ) ∈ S. Then there exists an edge between (a, i, λ) and (b, j, μ)
in GS, if and only if (a, i, λ)R(b, j, μ).

The following corollary is a consequence of Proposition 2.1 and Proposition
3.1
Corollary 3.3 Let S = M(G; I,∧; P ) be a Rees matrix semigroup over the
group G. Let (a, i, λ), (b, j, μ) ∈ S. Then there exists an edge between (a, i, λ)
and (b, j, μ) in SG, if and only if λ = μ.
Proof : By Proposition 2.1, we have, (a, i, λ)L(b, j, μ) if and only if λ = μ.
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But, by Proposition 3.1, (a, i, λ)L(b, j, μ) if and only if there exists an edge be-
tween (a, i, λ) and (b, j, μ) in SG. Hence there exists an edge between (a, i, λ)
and (b, j, μ) in SG, if and only if λ = μ.

Similarly using Proposition 2.1 and Proposition 3.2, we have the following
corollary.
Corollary 3.4 Let S = M(G; I,∧; P ) be a Rees matrix semigroup over the
group G. Let (a, i, λ), (b, j, μ) ∈ S. Then there exists an edge between (a, i, λ)
and (b, j, μ) in GS, if and only if i = j.
Note that, from Corollary 3.3 and Corollary 3.4, it is trivial that, when S is
a Rees matrix semigroup, SG and GS are independent of the selection of the
∧× I matrix, P = (pλi).

The next lemma helps us in the characterisation of the principal left ideal
graphs of a Rees matrix semigroup.
Lemma 3.5 Let S = M(G; I,∧; P ) be a Rees matrix semigroup and La be
the L− class containing a ∈ S. Then
(i) LaG, the induced subgraph of SG with vertex set La, is complete.
(ii) |V (LaG)| = |G| × |I|
(iii) for a, b ∈ S and b �∈ �La, LaG and Lb

G are disjoint.

(iv) SG =
⋃
La

LaG, the disjoint union of LaG.

Proof : (i) Let x, y ∈ La for a ∈ S. Then we have xLa and yLa. Since L is
an equivalence relation, xLy. Hence, by Proposition 3.1, there exists an edge
between x and y. Since this is true for all x, y ∈ La, for a ∈ S, the induced
subgraph LaG of SG is complete.
(ii) Let a = (g, i, λ).
Now S = M(G; I,∧; P )

= {(g, i, λ) : g ∈ G; i ∈ I, λ ∈ ∧}.
By Proposition 2.1, it follows that La = {(g′, i, λ) : g′ ∈ G; i ∈ I}.
Hence |V (LaG)| = |La| = |G| × |I|.
(iii) Since L is an equivalence relation on S, b �∈ �La implies that
La ∩ Lb = { } for b∈ S. Then, by part (i), LaG and Lb

G are disjoint.
(iv) By definition V (SG) = S.
Also,

V
(⋃

La

LaG
)

=
⋃
La

V
(

La
G

)

=
⋃
La

La

= S.
Also, for distinct elements a, b ∈ S, there is an edge between a and b in SG if
and only if aLb. But, by (i) this is possible if and only if there exists an edge
between a and b in LaG. This happens if and only if there is an edge between
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a and b in
⋃
La

LaG. Hence, we have E(SG) = E
(⋃

La

LaG
)

.

Therefore SG =
⋃
La

LaG

From Lemma 3.5 it is clear that for a ∈ M(G; I,∧; P ), a is L related to
|G| × |I| elements and hence we have the following characterisation for the
principal left ideal graph of a Rees matrix semigroup.
Theorem 3.6 Let S = M(G; I,∧; P ) be a Rees matrix semigroup. Then the
principal left ideal graph SG is a disconnected graph with | ∧ | components in
which each component is complete with |G| × |I| vertices.

Proof : By Lemma 3.5(iv), we have SG =
⋃
La

LaG, the disjoint union of LaG.

But, by Lemma 3.5 (i) and (ii), each LaG is complete with |G| × |I| vertices.
Also, we have |S| = |G| × |I| × | ∧ | and V (SG) = S. Hence it follows that,

SG is a disconnected graph with | ∧ | components in which each component is
complete with |G| × |I| vertices.

Similar to Lemma 3.5, we have the following result.
Lemma 3.7 LetS = M(G; I,∧; P ) be a Rees matrix semigroup and Ra be the
R− class containing a ∈ S. Then
(i) GRa , the induced subgraph of GS with vertex set Ra, is complete.
(ii) |V (GRa)| = |G| × | ∧ |
(iii) for a, b ∈ S and b �∈ Ra, GRa and GRb

are disjoint.

(iv) GS =
⋃
Ra

GRa , the disjoint union of GRa .

From Lemma 3.7, it is clear that for a ∈ M(G; I,∧; P ), a is R related to
|G| × | ∧ | elements and hence we have the following characterisation for the
principal right ideal graph of a Rees matrix semigroup.
Theorem 3.8 Let S be a Rees matrix semigroup. Then the principal right
ideal graph GS is a disconnected graph with |I| components in which each
component is complete with |G| × | ∧ | vertices.

Proof : By lemma 3.7(iv), we have GS =
⋃
Ra

GRa , the disjoint union of GRa .

But by Lemma 3.7 (i) and (ii), each GRa is complete with |G| × | ∧ | vertices.
Also, we have |S| = |G| × |I| × | ∧ | and V (GS) = S. Hence it follows that,
GS is a disconnected graph with |I| components in which each component is
complete with |G| × | ∧ | vertices.

Now, the following corollary is immediate.
Corollary 3.9 Let S = M(G; I,∧; P ) be the Rees matrix semigroup over G
with |G| = g.
(a) If |I| = n and | ∧ | = 1, then SG ∼= KN , where N = ng.
(b) If |I| = 1 and | ∧ | = m then GS

∼= KM , where M = mg.
Proof : (a) Let S = M(G; I,∧; P ) be a Rees matrix semigroup over G with
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|G| = g, |I| = n and | ∧ | = 1. Since | ∧ | = 1, by Theorem 3.6, it follows
that SG has only one component. Again, by Theorem 3.6, we see that this
component is complete with |G| × |I| = gn vertices. Thus SG is a complete
graph with gn vertices. Hence SG ∼= KN , where N = ng.
(b) Proof follows from Theorem 3.8.
Now, we have the following theorem.
Theorem 3.10 Let H be a finite disjoint union of finite complete graphs Hλ,
λ ∈ ∧ such that |V (Hλ)| = |V (Hμ)| for all λ �= μ. Then there exists a Rees
matrix semigroup S such that SG ∼= H .
Proof : Let |V (Hλ)| = |V (Hμ)| = n for λ �= μ. Let G be any group of order n.
Consider the Rees matrix semigroup S = M(G; I,∧; P ) where I = {1}. Then,

by Lemma 3.5, we have SG =
⋃
La

LaG, the disjoint union of LaG, where each

LaG is complete with |V (LaG)| = |G| × |I| = |G| = n. Now the number of
L- classes in S is | ∧ |. Hence it follows that, SG is the disjoint union of | ∧ |
components of complete graphs, each of which is of order n. Thus SG ∼= H .

Dually we have the following theorem.
Theorem 3.11 Let H be a finite disjoint union of finite complete graphs Hi,
i ∈ I such that |V (Hi)| = |V (Hj)| for all i �= j. Then there exists a Rees
matrix semigroup S such that GS

∼= H .
Combining the above theorems, now we have the following main theorem.

Theorem 3.12 Let H be a finite disjoint union of finite complete graphs Hλ;
λ ∈ ∧ and K be a finite disjoint union of finite complete graphs Ki; i ∈ I such
that for some n, |V (Hλ)| = n|I| for all λ and |V (Ki)| = n| ∧ | for all i. Then
there exists a Rees matrix semigroup S such that SG ∼= H and GS

∼= K.
Proof : Let H be a finite disjoint union of finite complete graphs Hλ; λ ∈ ∧
such that for some n, |V (Hλ)| = n|I| for all λ. Let G be a group of n ele-
ments. Consider the Rees matrix semigroup S = M(G; I,∧; P ). By Lemma

3.5, we have SG =
⋃
La

LaG, the disjoint union of LaG, where each induced sub-

graph LaG is complete. Also for a = (g, i, λ) ∈ S, we have V (LaG) = La =
{(g, i, λ) : g ∈ G; i ∈ I}. Hence it follows that, |V (LaG)| = |La| = |G| × |I|
= n |I|. Also, the number of components in SG is | ∧ |. Therefore we have

SG ∼= H .
In a similar manner we can prove that if K is a finite disjoint union of finite
complete graphs, Ki; i ∈ I and such that for some n, |V (Ki)| = n| ∧ | for all
i, then GS

∼= K.
Now, we describe the number of edges of SG and GS when S is a Rees matrix
semigroup.
Theorem 3.13 Let S = M(G; I,∧; P ) be the Rees matrix semigroup with |G|
= g, |I| = n and |∧ | = m. Then SG has ng(ng−1)m

2
edges and GS has mg(mg−1)n

2

edges.
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Proof : Let S = M(G; I,∧; P ) be the Rees matrix semigroup with
|G| = g, |I| = n and | ∧ | = m. We have seen that SG is a disconnected
graph with m components in which each component is complete with ng ver-
tices [cf. Theorem 3.6]. Hence each component in SG has ng(ng−1)

2
edges. Since

there are m components, the total number of edges in SG is ng(ng−1)m
2

.

In a similar manner we can prove that GS has mg(mg−1)n
2

edges.
Finally, we describe the number of elements in E(SG) ∩ E(GS), when S is a
Rees matrix semigroup.
Theorem 3.14 Let S = M(G; I,∧; P ) be a Rees matrix semigroup with |G| =
g, |I| = n and | ∧ | = m. Then SG and GS have mn gC2 edges in common.
Proof : Let S = M(G; I,∧; P ) be a Rees matrix semigroup and x, y be two
elements in S. Let x = (a, i, λ), y = (b, j, μ). Now (x, y) ∈ E(SG), if and only
if λ = μ (cf. Corollary 3.3) and (x, y) ∈ E(GS), if and only if i = j (cf. Corol-

lary 3.4). Hence, E(SG) ∩ E(GS) =
⋃
i,λ

{((a, i, λ), (b, i, λ)) : a, b ∈ G, a �= b}.

Now there are | ∧ | × |I| = mn elements in S for which each (i, λ) is fixed
and there are gC2 combinations of such fixed (i, λ)’s. Therefore it follows that,
|E(SG) ∩ E(GS)| = mn gC2.
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