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Abstract

We study numerical semigroups of the form (x+S)∪{0} with S a numerical
semigroup and x ∈ S \ {0}. We pay special attention to the cases when S is
symmetric, pseudo-symmetric, Arf and saturated.

Introduction

A numerical semigroup S is a subset of N closed under addition, 0 ∈ S and such
that the group generated by S is Z (N and Z denote the set of nonnegative integers
and integers, respectively). If S is a numerical semigroup and x ∈ S \ {0}, then
(x+S)∪{0} is again a numerical semigroup. The subject of this paper are precisely
numerical semigroups of this form, that is, numerical semigroups that are principal
ideals of other numerical semigroups. We will call them PI-semigroups for short.
Observe that if S is a numerical semigroup, then x + S is a principal ideal of S.

Given A a nonempty subset of N, we denote by 〈A〉 the submonoid of (N, +)
generated by A, or in other words, the smallest (with respect to set inclusion)
submonoid of N containing A. If S is a numerical semigroup and S = 〈A〉, then we
say that A is a system of generators of S; and it is a minimal system of generators of
S provided that no proper subset of A generates S. It is well known (see for instance
[25]) that every numerical semigroup admits a unique minimal system of generators,
and that this system of generators has finitely many elements. If {n1 < · · · < np} is
a minimal system of generators of S, then n1 is the least positive integer in S, which
is called the multiplicity of S, denoted here by m(S). The integer p, the cardinality
of a minimal system of generators of S, is the embedding dimension of S and is
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denoted by e(S). The elements of {n1, . . . , np} are known as minimal generators of
S.

From the above paragraph it follows that the study of numerical semigroups is
equivalent to the study of nonnegative integer solutions of a linear equation with
coefficients in N. For this reason, this has become a classical problem for which there
exists a long list of papers dealing with it (see for instance [5, 6, 15, 29, 30, 9, 11, 13]).
Along this line, two important invariants of a numerical semigroup have been studied
for a numerical semigroup S: its set of gaps H(S) = N \ S, and the maximum of
this set, called the Frobenius number of S and denoted by g(S) (the integer g(S)+1
is called conductor of S). The cardinality of H(S) is usually known as degree of
singularity of S (see [3]).

The reader not acquainted with numerical semigroups might find the above
notation surprising. In the literature there exists a large list of publications de-
voted to the study of analytically irreducible one dimensional local domains via
their value semigroups, which turn out to be numerical semigroups (see for instance
[3, 8, 12, 4, 14, 16, 31, 32]). All the invariants introduced above have their inter-
pretation in this context and it is from there that their names are taken. Following
this line of research, several interesting numerical semigroups appear: numerical
semigroups with maximal embedding dimension (MED-semigroups for short), sym-
metric and pseudo-symmetric numerical semigroups, Arf numerical semigroups and
saturated numerical semigroups. In this sense [3] is a good “dictionary” for the
translation of results between semigroup theory and ring theory.

The contents of this paper are organized as follows. We start in Section 1 by
pointing out that the concepts of MED-semigroup and PI-semigroup are equivalent.
This will allow us (see Corollary 8) characterize PI-semigroups as those numerical
semigroups satisfying a formula relating their number of gaps and their minimal
generators. For a numerical semigroup S we denote by PI(S) the set {(x + S) ∪
{0} | x ∈ S \ {0}}, which is a family of MED-semigroups. We will show that
the elements in this family are determined by their Frobenius numbers. This fact
will enable us to define an operation ∗ on PI(S) in such a way that (PI(S), ∗) is
isomorphic as a semigroup to the ideal g(S) + (S \ {0}) of S. As a consequence we
obtain that the set of MED-semigroups is a disjoint union of semigroups isomorphic
to ideals of numerical semigroups.

In section 2 we study those numerical semigroups of the form (x+S)∪{0} with
S an irreducible numerical semigroup and x ∈ S \ {0}. A numerical semigroup is
irreducible if it cannot be expressed as the intersection of two numerical semigroups
containing it properly. In [24] it is shown that a numerical semigroup S is irreducible
if and only if it is maximal (with respect to set inclusion) in the set of all numer-
ical semigroups with Frobenius number g(S). Thus, from [14, 3] it follows that a
numerical semigroup with odd (respectively even) Frobenius number is irreducible
if and only if it is symmetric (respectively pseudo-symmetric). This kind of semi-
group has been widely studied in the literature since an analytically irreducible one
dimensional local domain is Gorenstein (respectively Kunz) if and only if its value
semigroup is symmetric (respectively pseudo-symmetric) (see [16, 3]). Section 2 is
divided in two subsections. In the first one we deal with numerical semigroups of
the form (x + S) ∪ {0} with S a symmetric numerical semigroup and x ∈ S \ {0}.
This numerical semigroups will be called for short PISY-semigroups (principal ide-
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als of symmetric numerical semigroups). In Corollary 19, we characterize them
as those numerical semigroups fulfilling a certain formula relating their number of
gaps and minimal generators. A special kind of symmetric numerical semigroup are
the so called MEDSY-semigroups, which are symmetric numerical semigroups with
maximal embedding dimension with respect to the multiplicity (these semigroups
are studied for instance in [21, 26]). Corollary 23 characterizes PISY-semigroups as
those numerical obtained from a MEDSY-semigroup by adjoining its Frobenius num-
ber. We finish this subsection showing that the gaps of PISY-numerical semigroups
are distributed analogously as in symmetric numerical semigroups (see Corollary 26).
In the second subsection of Section 2 we study numerical semigroups of the form
(x+S)∪{0} with S a pseudo-symmetric numerical semigroup and x ∈ S \{0}. The
analogy existing between symmetric and pseudo-symmetric numerical semigroups
will infer an structure to this subsection similar to the preceding one, and for this
reason most of the proofs of the results appearing there are left to the reader.

From [2], Lipman in [17] introduced and motivated the study of the so called
Arf rings. The study of value semigroups of these rings yields the concept of Arf
semigroup. In Section 3 we study Arf numerical semigroups and its subclass of sat-
urated numerical semigroups. The idea of saturation of singularities was introduced
in three different ways by Zariski in [33], Pham and Teissier in [19] and Campillo
in [7]. As in the Arf case, the study of saturated semigroups arises via the study of
value semigroups of these rings (see [10], [18]). We start Section 3 by proving that a
numerical semigroup S has the Arf property if and only if all the elements of PI(S)
have also the Arf property. This fact will allows us to give a constructive character-
ization of Arf numerical semigroups (see Corollary 39). We show that a numerical
semigroup S is saturated if and only if PI(S) contains at least a saturated numer-
ical semigroup. Finally, in Corollary 45 we give a constructive characterization of
saturated numerical semigroups.

1 General results

A numerical semigroup S is a PI-semigroup if there exists a numerical semigroup S ′

and x ∈ S ′ \ {0} such that S = (x + S ′)∪ {0}. A numerical semigroup S is a MED-
semigroup if e(S) = m(S). The following result can be deduced from Proposition
I.2.9 in [3].

Lemma 1. Let S be a numerical semigroup. Then S is a MED-semigroup if and
only if S ′ = {s−m(S) | s ∈ S \ {0}} is a numerical semigroup.

Proposition 2. Let S be a numerical semigroup. Then S is a MED-semigroup if
and only if S is a PI-semigroup.

Proof. Let S be a MED-semigroup. Then by Lemma 1, we know that S ′ = (−m(S))+
(S \ {0}) is a numerical semigroup. Clearly S = (m(S) + S ′) ∪ {0} and thus S is a
PI-semigroup.

Assume now that S is a PI-semigroup. Then there exists a numerical semigroup
S ′ and x ∈ S ′ \ {0} such that S = (x + S ′) ∪ {0}. Note that m(S) = x and that
S ′ = {s−m(S) | s ∈ S \{0}}, whence Lemma 1 asserts that S is a MED-semigroup.

�
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Corollary 3. If S is a PI-semigroup, then there exists a unique numerical semigroup
S ′ and a unique x ∈ S ′ \ {0} such that S = (x + S ′) ∪ {0}.

Proof. Follows from the proof of Proposition 2, since in this setting m(S) = x and
S ′ = {s−m(S) | s ∈ S \ {0}}. �

Corollary 4. Let S1 and S2 be two numerical semigroups, and let x1 ∈ S1 \{0} and
x2 ∈ S2 \ {0}. If (x1 + S1) ∪ {0} = (x2 + S2) ∪ {0}, then x1 = x2 and S1 = S2.

Given a numerical semigroup S, set

PI(S) = {(x + S) ∪ {0} | x ∈ S \ {0}}.

Corollary 5. The set {PI(S) | S is a numerical semigroup} is a partition of the
set of MED-semigroups.

For a numerical semigroup S and x ∈ S \ {0}, the Apéry set of x in S (see [1])
is defined by

Ap(S, n) = {x ∈ S | x− n 6∈ S}.

The following result gather some well known facts of Apéry sets (see for instance
[20] or [25]).

Lemma 6. Let S be a numerical semigroup with minimal system of generators
{n1 < · · · < np} and let n ∈ S \ {0}. Then

1. #Ap(S, n) = n (# stands for cardinality),

2. g(S) = max(Ap(S, n))− n (max stands for maximum),

3. {0, n2, . . . , np} ⊆ Ap(S, n1),

4. S is a MED-semigroup if and only if Ap(S, n1) = {0, n2, . . . , np},

5. if S is a MED-semigroup, then g(S) = np − n1.

Next result can be found in [29].

Lemma 7. Let S be a numerical semigroup with multiplicity m. Then

#H(S) =
1

m





∑

x∈Ap(S,m)

x



−
m− 1

2
.

As an immediate consequence of Lemmas 7 and 8 we obtain the following result.

Corollary 8. Let S be a numerical semigroup with minimal system of generators
{n1 < · · · < np}. Then

1. #H(S) ≥ 1
n1

(n2 + · · ·+ np)−
n1−1

2
,

2. S is a PI-semigroup if and only if #H(S) = 1
n1

(n2 + · · ·+ np)−
n1−1

2
.
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For S a numerical semigroup, set

n(S) = #{s ∈ S | s < g(S)}.

Clearly g(S) + 1 = n(S) + #H(S).

Proposition 9. Let S be a numerical semigroup, x ∈ S \ {0, 1} and S ′ = (x + S)∪
{0}. Then

1. g(S ′) = g(S) + x,

2. #H(S ′) = #H(S) + x− 1,

3. n(S ′) = n(S) + 1.

Proof. If Ap(S, x) = {0 = w(0), w(1), . . . , w(x − 1)}, then Ap(S ′, x) = {0, w(1) +
x, . . . , w(x−1)+x}. By Lemma 6, g(S ′) = g(S)+x. It is easy to check that S ′ ⊆ S

and that S \ S ′ = {w(1), . . . , w(x− 1)}, whence #H(S ′) = #H(S) + x− 1. Finally,
n(S ′) = g(S ′) + 1−#H(S ′) = n(S) + 1. �

Remark 10. In Proposition 9, x must be different from 1, since otherwise x = 1 and
x ∈ S \ {0} force S to be N and S ′ = S = N.

If S is a numerical semigroup and s is an element of S, then g(S) − s 6∈ S.
Therefore #H(S) ≥ 1

2
(g(S) + 1).

Corollary 11. Let S be a PI-semigroup with minimal system of generators {n1 <

· · · < np}. Then #H(S) ≥ 1
2
(np − 1).

Proof. Let S ′ be a numerical semigroup and let x ∈ S ′ \ {0} for which S = (x +
S ′) ∪ {0}. By Proposition 9, we have that g(S) = g(S ′) + x and that #H(S) =
#H(S ′)+x−1. Since #H(S ′) ≥ 1

2
(g(S ′)+1), we obtain that #H(S) ≥ 1

2
(g(S)+x−1).

As m(S) = n1 = x, and in view of Lemma 6, g(S) = np − n1, we conclude that
#H(S) ≥ 1

2
(np − 1). �

In the next section we will study those PI-semigroups reaching this bound.
The following result shows that the elements of PI(S) are uniquely determined

by their Frobenius numbers.

Corollary 12. Let S be a numerical semigroup and let S1, S2 ∈ PI(S). Then
S1 = S2 if and only if g(S1) = g(S2).

Proof. Let x1, x2 ∈ S \{0} be such that S1 = (x1 +S)∪{0} and S2 = (x2 +S)∪{0}.
By Proposition 9, g(Si) = g(S) + xi, for i ∈ {1, 2}. Thus g(S1) = g(S2) if and only
if x1 = x2, or equivalently, S1 = S2. �

Lemma 13. Let S be a numerical semigroup, S 6= N. Then

{g(S ′) | S ′ ∈ PI(S)} ∪ {0}

is a numerical semigroup.

Proof. From Proposition 9 it is deduced that {g(S ′) | S ′ ∈ PI(S)} = {g(S)+x | x ∈
S \ {0}}. The reader can easily check that (g(S) + (S \ {0})) ∪ {0} is a numerical
semigroup. �
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Note that g(S) + (S \ {0}) is an ideal of S, since from the definition of g(S), it
follows that g(S) + (S \ {0}) ⊆ S and that if a ∈ g(S) + (S \ {0}) and s ∈ S, then
a + s ∈ g(S) + (S \ {0}).

Lemma 14. Let S be a numerical semigroup. Define on PI(S) the following oper-
ation:

S1 ∗ S2 = (g(S) + (S1 \ {0}) + (S2 \ {0})) ∪ {0}.

Then (PI(S), ∗) is a commutative semigroup.

Proof. The result follows easily from the fact that if x1, x2 ∈ S \ {0} are such that
S1 = (x1+S)∪{0} and S2 = (x2+S)∪{0}, then S1∗S2 = ((g(S)+x1+x2)+S)∪{0},
and as g(S) + x1 + x2 ∈ S \ {0}, we get that S1 ∗ S2 ∈ PI(S). �

Proposition 15. Let S be a numerical semigroup, S 6= N. The semigroups (PI(S), ∗)
and (g(S) + (S \ {0}), +) are isomorphic.

Proof. Let f be the map defined by

f : PI(S) → g(S) + (S \ {0}), f(S ′) = g(S ′).

The reader can proof that this map is an isomorphism of semigroups using Propo-
sition 9, Corollary 12, and Lemmas 13 and 14. �

As a consequence of Corollary 5 and Proposition 15 we obtain the following.

Corollary 16. The set of MED-semigroups is a disjoint union of semigroups that
are isomorphic to ideals of numerical semigroups.

Remark 17. If S is a numerical semigroup, then the elements of PI(S) are per-
fectly determined by their number of gaps. To see this, take S1, S2 ∈ PI(S). If
#H(S1) = #H(S2), then using a similar argument to the one used in the proof
of Corollary 12, one can easily show that S1 = S2. Observe also that for any
S1, S2 ∈ PI(S), Proposition 9 states that n(S1) = n(S2), and thus the elements of
PI(S) are not determined by the number of their elements that are less than their
Frobenius numbers.
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2 Principal ideals of irreducible numerical semigroups

In this section semigroups of the form (x+S)∪{0} with S a an irreducible numerical
semigroup and x ∈ S \ {0} are the subject of study. As we mentioned in the
introduction the class of irreducible numerical semigroups is the disjoint union of
two subclasses of numerical semigroups: the set of symmetric numerical semigroups
and the set of pseudo-symmetric numerical semigroups.

2.1 Principal ideals of symmetric numerical semigroups

A numerical semigroup S is symmetric if for every z ∈ Z\S, we have that g(S)−z ∈
S. It is well known (see for instance [14]) that S is a symmetric numerical semigroup
if and only if #H(S) = 1

2
(g(S) + 1). A numerical semigroup is a PISY-semigroup

if there exits a symmetric numerical semigroup S ′ and x ∈ S ′ \ {0} such that
S = (x + S ′) ∪ {0}. As a consequence of the proof of Corollary 3 we have that a
numerical semigroup S is a PISY-semigroup if and only if {s−m(S) | s ∈ S \ {0}}
is a symmetric numerical semigroup.

Theorem 18. Let S be a numerical semigroup such that S 6= N. Then S is a PISY-
semigroup if and only if S is a MED-semigroup and #H(S) = 1

2
(g(S) + m(S)− 1).

Proof. Necessity. Let S ′ be a symmetric numerical semigroup and let x ∈ S ′\{0} be
such that S = (x+S ′)∪{0}. By Proposition 2 we know that S is a MED-semigroup.
Since S ′ is symmetric, we have that #H(S ′) = 1

2
(g(S ′) + 1). Using now Proposition

9 and that x = m(S), we get #H(S) = 1
2
(g(S) + m(S)− 1).

Sufficiency. Let S be a MED-semigroup. Then by Proposition 2, we know that
S is a PI-semigroup, whence there exists a numerical semigroup S ′ and x ∈ S ′ \ {0}
such that S = (x + S ′)∪ {0}. Using again Proposition 9 and that x = m(S), we get
that #H(S ′) = 1

2
(g(S ′) + 1), which implies that S ′ is symmetric. �

Corollary 19. Let S be a numerical semigroup with minimal system of generators
{n1 < · · · < np}, S 6= N. Then S is a PISY-semigroup if and only if #H(S) =
1
n1

(n2 + · · ·+ np)−
n1−1

2
= 1

2
(np − 1).

Proof. Necessity. By Corollary 8, we know that #H(S) = 1
n1

(n2 + · · ·+ np)−
n1−1

2
.

By Proposition 2, S is a MED-semigroup, and in view of Lemma 6, we obtain that
g(S) = np − n1. Using now Theorem 18 and taking into account that n1 = m(S),
we conclude that #H(S) = 1

2
(np − 1).

Sufficiency. Since #H(S) = 1
n1

(n2 + · · ·+ np)−
n1−1

2
, Corollary 8 asserts that S

is a PI-semigroup and thus by Proposition 2, S is a MED-semigroup. Thus we can
apply again Lemma 6 and obtain that g(S) = np − n1, and as #H(S) = 1

2
(np − 1),

we deduce that #H(S) = 1
2
(g(S) + m(S) − 1). Theorem 18 implies that S is a

PISY-semigroup. �

We will now relate the concepts of PISY-semigroup and that of UESY-semigroup
(unitary extension of a symmetric numerical semigroup). A numerical semigroup
S is a UESY-semigroup if there exists a symmetric numerical semigroup S ′ such
that S ′ ⊂ S and #(S \ S ′) = 1. In [22], it is shown that S is a UESY-numerical
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semigroup if and only if there exists a symmetric numerical semigroup S ′ such that
S = S ′ ∪ {g(S ′)}. Note that if S is a numerical semigroup other than N, then
S ∪ {g(S)} is also a numerical semigroup.

The following result can be found in [22].

Lemma 20. Let S be a numerical semigroup, S 6= N. The following conditions are
equivalent:

1. S is a UESY-semigroup,

2. #H(S) = 1
2
(g(S) + m(S)− 1) and g(S) + m(S) is a minimal generator of S.

Corollary 21. Let S be a numerical semigroup, S 6= N. Then S is a PISY-
semigroup if and only if S is a MED-semigroup and a UESY-semigroup.

Proof. Necessity. By Theorem 18 we know that S is a MED-semigroup and that
#H(S) = 1

2
(g(S) + m(S)− 1). In view of Lemma 20 it suffices to show that g(S) +

m(S) is a minimal generator of S, but this follows from Lemma 6.
Sufficiency. This is an immediate consequence of Theorem 18 and Lemma 20. �

Observe that the preceding corollary is telling us that every PISY-semigroup is
obtained from a symmetric numerical semigroup by adjoining to it its Frobenius
number. It is clear that if we add to a symmetric numerical semigroup its Frobenius
number, then the resulting semigroup is not in general a MED-semigroup, and
thus we do not obtain a PISY-semigroup. A MEDSY-semigroup is a symmetric
numerical semigroup such that m(S) ≥ 3 and e(S) = m(S)− 1 (MEDSY stands for
symmetric numerical semigroup with maximal embedding dimension, with respect
to the multiplicity).

The following result appears in [22].

Lemma 22. Let S be a symmetric numerical semigroup with m(S) ≥ 3. Then

1. e(S ∪ {g(S)}) = e(S) + 1,

2. m(S ∪ {g(S)}) = m(S).

Corollary 23. Let S be a symmetric numerical semigroup with m(S) ≥ 3. Then
S is a PISY-semigroup if and only if there exists a MEDSY-semigroup S ′ such that
S = S ′ ∪ {g(S ′)}.

Proof. Necessity. By Corollary 21, we know that S is a UESY-semigroup and thus
there exists a symmetric numerical semigroup S ′ such that S = S ′ ∪ {g(S ′)}. Using
Lemma 22, we obtain that e(S) = e(S ′) + 1 and that m(S) = m(S ′). By Corollary
21, we know that S is a MED-semigroup and thus e(S) = m(S), whence e(S ′) =
m(S ′)− 1 and thus S ′ is a MEDSY-semigroup.

Sufficiency. By Lemma 22 we deduce that e(S) = m(S) and thus S is a MED-
semigroup. Since in addition S is a UESY-semigroup, Corollary 21 ensures that S

is a PISY-semigroup. �
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Remark 24. Let S be a numerical semigroup with m(S) ∈ {1, 2}.

• If m(S) = 1, then S = N and N = (1 + N) ∪ {0}.

• If m(S) = 2, then clearly e(S) = 2, S = 〈2, g(S)+2〉 and S = (2+ 〈2, g(S)〉)∪
{0}. It is well known (see for instance [14]) that every numerical semigroup
with embedding dimension two is symmetric.

Hence if S is a numerical semigroup with m(S) ∈ {1, 2}, then S is a PISY-semigroup.

We finish this section by observing how the gaps in a PISY-semigroup are dis-
tributed.

Proposition 25. Let S be a numerical semigroup. Then S is a PISY-semigroup if
and only if S is a MED-semigroup and for all a ∈ Z, a + m(S) ∈ Z \ S, implies
g(S)− a ∈ S.

Proof. Necessity. Let S ′ be a symmetric numerical semigroup such that there exists
x ∈ S ′ \ {0} for which S = (x + S ′) ∪ {0}. Clearly x = m(S). If a + m(S) ∈ Z \ S,
then a ∈ Z \ S ′, and as S ′ is symmetric, we have that g(S ′) − a ∈ S ′, whence
g(S ′)− a + m(S) ∈ S. By Proposition 9, we know that g(S) = g(S ′) + m(S), which
leads to g(S)− a ∈ S. Finally, Proposition 2 ensures that S is a MED-semigroup.

Sufficiency. As S is a MED-semigroup, we know by Proposition 2 that S is a PI-
semigroup. Hence there exists a numerical semigroup S ′ and x ∈ S ′ \ {0} such that
S = (x + S ′) ∪ {0}. Again, x = m(S) and by Proposition 9, g(S) = g(S ′) + m(S).
Take a ∈ Z \ S ′. Then a + m(S) ∈ Z \ S, and by hypothesis this implies that
g(S)− a ∈ S. Hence g(S)− a−m(S) ∈ S ′ and consequently g(S ′)− a ∈ S ′. �

Corollary 26. Let S be a PISY-semigroup and let a ∈ H(S). Then either a+m(S)
is a minimal generator of S or g(S)− a ∈ S.

Proof. If a + m(S) 6∈ S, then by Proposition 25, we obtain that g(S)− a ∈ S. If, to
the contrary, a + m(S) ∈ S, then a + m(S) ∈ Ap(S, m(S)) \ {0}. Using Lemma 6,
we obtain that a + m(S) is a minimal generator of S. �

2.2 Principal ideals of pseudo-symmetric numerical semigroups

A numerical semigroup S is pseudo-symmetric if g(S) is even and for all x ∈ Z \ S,
either x = 1

2
g(S) or g(S) − x ∈ S. It is well known (see [14] or [3]), that this

condition is equivalent to #H(S) = 1
2
(g(S) + 2).

A numerical semigroup S is a PIPSY-semigroup (principal ideal of a pseudo-
symmetric numerical semigroup) if there exists a pseudo-symmetric numerical semi-
group S ′ and x ∈ S ′ \ {0} such that S = (x + S ′) ∪ {0}. The following two results
are the analogs of Theorem 18 and Corollary 19, respectively, for PIPSY-semigroups
(and their proofs are similar; that is why we omit them).

Theorem 27. Let S be a numerical semigroup, S 6= N. Then S is a PIPSY-
semigroup if and only if S is a MED-semigroup and #H(S) = 1

2
(g(S) + m(S)).
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Corollary 28. Let S be a numerical semigroup with minimal system of generators
{n1 < · · · < np}, S 6= N. Then S is a PIPSY-semigroup if and only if #H(S) =
1
n1

(n2 + · · ·+ np)−
n1−1

2
= np

2
.

As we did in the preceding section with PISY-semigroups and UESY-semigroups,
we now relate the concepts of PIPSY-semigroup and UEPSY-semigroup (unitary
extensions of a pseudo-symmetric numerical semigroup). A numerical semigroup S

is a UEPSY-semigroup if there exists a pseudo-symmetric semigroup S ′ such that
S ′ ⊂ S and #(S \ S ′) = 1. In [23] the author proves that S is a UEPSY-semigroup
if and only if there exists a pseudo-symmetric numerical semigroup S ′ for which
S = S ′ ∪ {g(S ′)}.

A numerical semigroup is said to be an interval if it has the form {0, m,→} =
(m+N)∪{0} for some positive integer m. Intervals are PISY-semigroups, and thus
they are not PIPSY-semigroups.

The following result can be found in [23].

Lemma 29. Let S be a numerical semigroup that is not an interval. The following
conditions are equivalent:

1. S is a UEPSY-semigroup,

2. #H(S) = 1
2
(g(S) + m(S)) and g(S) + m(S) is a minimal generator of S.

The proof of the next result is similar to the proof of Corollary 21.

Corollary 30. Let S be a numerical semigroup that is not an interval. Then S is a
PIPSY-semigroup if and only if S is a MED-semigroup and a UEPSY-semigroup.

The following two results appear in [23].

Lemma 31. Let S be a pseudo-symmetric numerical semigroup with g(S) > 2m(S)
and m(S) ≥ 4. Then e(S ∪ {g(S)}) = e(S) + 1 and m(S ∪ {g(S)}) = m(S).

Lemma 32. Let S be a pseudo-symmetric numerical semigroup with g(S) < 2m(S).
Then S ∪ {g(S)} is an interval.

The proof of next result follows the line of that of Corollary 23.

Corollary 33. Let S be a numerical semigroup that is not an interval and with
m(S) ≥ 4. Then S is a PIPSY-semigroup if and only if S = S ′ ∪ {g(S ′)} with S ′ a
pseudo-symmetric numerical semigroup such that e(S ′) = m(S ′)− 1.

Remark 34. Observe that if S is a PISY-semigroup, then S is not a PIPSY-semigroup.
From Remark 24, we deduce that if S is a numerical semigroup with m(S) ∈ {1, 2},
then S is not a PIPSY-semigroup. In [23] it is shown that S is a pseudo-symmetric
numerical semigroup with m(S) = 3 if and only if S = 〈3, x+3, 2x+3〉 for some pos-
itive integer x not divisible by 3. Hence, PIPSY-semigroups with multiplicity 3 are
those numerical semigroups of the form (3+〈3, x+3, 2x+3〉)∪{0} = 〈3, x+6, 2x+6〉
with x a positive integer not divisible by 3.

The following two results can be proved analogously to Proposition 25 and Corol-
lary 26, respectively.
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Proposition 35. Let S be a numerical semigroup. Then S is a PIPSY-semigroup
if and only if S is a MED-semigroup and for all a ∈ Z, a + m(S) ∈ Z \ S implies
that either a = 1

2
(g(S)−m(S)) or g(S)− a ∈ S.

Corollary 36. If S is a PIPSY-semigroup and a ∈ H(S), then either g(S)− a ∈ S

or a = 1
2
(g(S)−m(S)) or a + m(S) is a minimal generator of S.

3 Arf numerical semigroups

A numerical semigroup S is an Arf numerical semigroup if for every x, y, z ∈ S such
that x ≥ y ≥ z, one has that x+y−z ∈ S. It is well known (see for instance [3]) that
every Arf numerical semigroup is a MED-semigroup and thus it is a PI-semigroup
in view of Proposition 2.

Proposition 37. Let S be a numerical semigroup and let x ∈ S \ {0}. Then S is
Arf if and only if S ′ = (x + S) ∪ {0} is Arf.

Proof. Follows easily from the definition. �

Corollary 38. Let S be a numerical semigroup. Then S is Arf if and only if all the
elements of PI(S) are Arf numerical semigroups.

Let S be an Arf numerical semigroup. Then S is a PI-semigroup and thus there
exists a numerical semigroup S ′ and x ∈ S ′\{0} such that S = (x+S ′)∪{0}. If S 6=
N, then S ( S ′. Moreover, by Proposition 37, S ′ is also an Arf numerical semigroup.
We can repeat this reasoning with S ′, and get an Arf numerical semigroup S ′′ and
y ∈ S ′′ \ {0} such that S ′ = (y + S ′′) ∪ {0}. As N \ S has finitely many elements,
this process is finite, obtaining in this way an stationary ascending chain of Arf
numerical semigroups: S0 = S ( S1 ( · · · ( Sn = N, with Si = (xi+1 + Si+1) ∪ {0}
for some xi+1 ∈ Si+1 \ {0}. The following statement can be derived from this idea
or using the results appearing in [27].

Corollary 39. Let S be a proper subset of N. Then S is an Arf numerical semigroup
if and only if there exist positive integers x1, . . . , xn such that

S = {0, x1, x1 + x2, . . . , x1 + · · ·+ xn−1, x1 + · · ·+ xn,→}

and xi ∈ {xi+1, xi+1 + xi+2, . . . , xi+1 + · · ·+ xn,→} for all i ∈ {1, . . . , n}.

Proof. Necessity. Follows from the construction of the chain S = S0 ( S1 ( · · · (

Sn = N, with Si = (xi+1 + Si+1) ∪ {0} and xi+1 ∈ Si+1 \ {0}.
Sufficiency. It suffices to proof that for all k ∈ {1, . . . , n}, the semigroup Sk =

{0, xk+1, xk+1+xk+2, . . . , xk+1+· · ·+xn,→} is an Arf numerical semigroup. But this
follows from Proposition 37, since Sk = (xk+1+(xk+2+(· · ·+((xn+N)∪{0}) · · · )∪{0}
and as N is Arf, Sn, Sn−1, . . . , Sk are also Arf numerical semigroups. �

Example 40. The integers x1 = 6, x2 = 2, x3 = 2 and x4 = 2 fulfill the conditions of
Corollary 39. Hence S = {0, 6, 8, 10, 12,→} is an Arf numerical semigroup.
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3.1 Saturated numerical semigroups

An special kind of Arf numerical semigroup is that of saturated numerical semi-
groups. A numerical semigroup S is saturated if the following condition holds: if
s, s1, . . . , sr ∈ S are such that si ≤ s for all i ∈ {1, . . . , r} and z1, . . . , zr ∈ Z are
such that z1s1 + · · ·+ zrsr ≥ 0, then s + z1s1 + · · ·+ zrsr ∈ S.

For A ⊆ N and a ∈ A, define dA(a) = gcd{x ∈ A | x ≤ a}, where gcd stands for
greatest common divisor.

The following result appears in [28].

Lemma 41. Let A be a subset of N such that 0 ∈ A and gcd(A) = 1. The following
conditions are equivalent:

1. A is a saturated numerical semigroup,

2. a + dA(a) ∈ A for all a ∈ A,

3. a + kdA(a) ∈ A for all a ∈ A and k ∈ N.

Note that if S is a saturated numerical semigroup and x ∈ S\{0}, then in general
(x + S) ∪ {0} does not have to be a saturated numerical semigroup. Using Lemma
41 it is easy to check that S = {0, 4, 6, 8, 9,→} is a saturated numerical semigroup,
while (9 + S) ∪ {0} = {0, 13, 15, 17, 18,→} is not, since gcd{0, 13, 15} = 1 and
15 + 1 = 16 6∈ (9 + S) ∪ {0}.

Proposition 42. Let S be a numerical semigroup. The following conditions are
equivalent:

(1) S is saturated,

(2) there exists x ∈ S\{0} such that (x+S)∪{0} is a saturated numerical semigroup.

Proof. (1) implies (2). Assume that S = {0 < s1 < s2 < · · · < sn < · · · }. We
prove that (s1 + S) ∪ {0} = {0 < s1 < s1 + s1 < s1 + s2 < · · · < s1 + sn < · · · } is
saturated. In view of Lemma 41, it suffices to show that for all n ∈ N, the element
s1 + sn + gcd{0, s1, s1 + s1, . . . , s1 + sn} lies in (s1 + S) ∪ {0}. Since S is saturated,
sn + gcd{0, s1, . . . , sn} ∈ S. Moreover gcd{0, s1, s1 + s1, s1 + s2, . . . , s1 + sn} =
gcd{0, s1, s2, . . . , sn}, whence s1+sn+gcd{0, s1, s1+s1, . . . , s1+sn} ∈ (s1 +S)∪{0}.

(2) implies (1). If S = {0 < s1 < · · · < sn < · · · }, then (x+S)∪{0} = {0 < x <

s1+x < · · · < sn+x < · · · }. Since gcd{0, x, x+s1, . . . , x+sn} = gcd{0, x, s1, . . . , sn},
we have that gcd{0, x, x + s1, . . . , x + sn} divides gcd{0, s1, . . . , sn}, namely, there
exists k ∈ N such that k(gcd{0, x, x + s1, . . . , x + sn}) = gcd{0, s1, . . . , sn}. By
Lemma 41, if we want to prove that S is saturated, it suffices to show that sn +
gcd{0, s1, . . . , sn} ∈ S for all n. As (x+S)∪{0} is saturated, we have that x+ sn +
k(gcd{0, x, x+ s1, . . . , x+ sn}) ∈ (x+S)∪{0} and thus sn +gcd{0, s1, . . . , sn} ∈ S.

�

Corollary 43. Let S be a numerical semigroup. Then S is saturated if and only if
PI(S) contains at least a saturated numerical semigroup.
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Corollary 44. Let S be a numerical semigroup. Then S is saturated if and only if
(m(S) + S) ∪ {0} is saturated.

Proof. Necessity. Follows from the proof of (1)⇒(2) in Proposition 42.
Sufficiency. This is a consequence of Proposition 42. �

Corollary 45. Let S be a proper subset of N. Then S is a saturated numerical
semigroup if and only if there exist positive integers x1, . . . , xn such that

S = {0, x1, x1 + x2, . . . , x1 + · · ·+ xn,→}

and gcd{x1, . . . , xk} ∈ {xk+1, xk+1 + xk+2, . . . , xk+1 + · · · + xn,→} for all k ∈
{1, . . . , n}.

Proof. Necessity. Since S is a saturated numerical semigroup, S is also Arf, whence
by Corollary 39 there exist positive integers x1, . . . , xn such that

S = {0, x1, x1 + x2, . . . , x1 + · · ·+ xn,→}.

As S is saturated, for all k ∈ {1, . . . , n}, (x1 + · · ·+xk)+gcd{0, x1, x1 +x2, . . . , x1 +
· · ·+ xk} ∈ S and since gcd{0, x1, x1 + x2, . . . , x1 + · · ·+ xk} = gcd{x1, . . . , xk}, we
have that (x1 + · · ·+ xk) + gcd{x1, . . . , xk} ∈ {0, x1, x1 + x2, . . . , x1 + · · ·+ xn,→},
or equivalently, gcd{x1, . . . , xk} ∈ {xk+1, xk+1 + xk+2, . . . , xk+1 + · · ·+ xn,→}.

Sufficiency. Using Lemma 41, it suffices to show that (x1+· · ·+xk)+gcd{0, x1, x1+
x2, . . . , x1 + · · ·+xk} ∈ S for all k ∈ {1, . . . , n}. As pointed out above, this is equiv-
alent to prove that (x1 + · · ·+ xk) + gcd(x1, . . . , xk) ∈ S, and this follows from the
hypothesis. �

Example 46. For x1 = 3, x2 = 2, x3 = 1 = x4, we obtain that S = {0, 3, 5, 6, 7,→}
is a saturated numerical semigroup.
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