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Abstract
A new method of analyzing the efficient portfolio problem under the assumption that short sales

are allowed is presented. It is based on the remarkable finding that the original asset set can be re-
organized as a set of uncorrelated portfolios, here named principal portfolios. The original problem
of portfolio selection from the existing, correlated assets is thereby traded for the reduced problem
of choosing from a set of uncorrelated portfolios. These portfolios constitute a new investment
environment of uncorrelated assets, thereby providing significant conceptual and practical simplifi-
cation in any portfolio optimization process such as the determination of the efficient frontier. The
principal portfolio analysis of the efficient frontier reveals new features of the volatility structure
of the optimal portfolios.
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1. Introduction

About half a century ago, Markowitz (1952, 1959) ushered in the modern era of portfolio
theory when he introduced the mean-variance formulation of the efficient portfolio problem.
His approach was based on the assumption that short-time changes in risky asset prices are
best described as random fluctuations, an idea that goes back at least as far as Bachelier
(1900). Markowitz treated risky asset prices as normally distributed, correlated random
variables, and characterized each asset price by a mean value and a variance, and the mutual
interaction of each pair of assets by its covariance, hence the designation “mean-variance”
formulation. The addition of a riskless asset to the picture by Tobin (1958) a few years
later completed the formulation of the basic model and produced a simple and intuitively
appealing solution to the portfolio selection problem. However, a practical implementation
of this solution for a set of N risky assets required an input set consisting of N estimated
rates of return together with N(N + 1)/2 estimated values for the corresponding variances
and correlation coefficients, as well as a numerical inversion of the resulting N×N covariance
matrix for the asset set. In response to these difficulties, a simplified model of stock price
movements, namely the single-index model, was subsequently proposed by Sharpe (1963).
This model significantly reduces the estimation and computation work involved in finding
the efficient frontier, and in practice yields results that are actually better than one might
have expected. Consequently, it has come to be used widely as a tool of portfolio analysis,
with its jargon routinely employed in discussions of investment strategies. The simplification
achieved by the introduction of this model, on the other hand, raised the question of the
nature and economic significance of the single index which occurs in the model and on which
all asset prices are anchored. The answer came in the celebrated work of Sharpe (1964),
Lintner (1965), and Mossin (1966), the standard CAPM model, in which the requirement of
equilibrium in the capital markets was invoked to identify the said index as derived from the
market portfolio and the prevailing prices. An analytic derivation of the efficient frontier,
developed by Merton (1972), provided a detailed verification of the properties of efficient
portfolios. These foundational developments in portfolio theory, as well as many others such
as option pricing theory and its derivatives which have followed since (Ingersoll, 1987), were
either direct outgrowths of Markowitz’ original work or inspired by it.

The purpose of this communication is to present a reformulation of the efficient portfolio
problem which greatly simplifies its structure and leads to a conceptually more transparent
solution procedure as well as a calculationally simpler problem. It is based on the fact that
portfolio analysis would be greatly simplified if asset prices were uncorrelated. While actual
market assets such as stocks or mutual fund shares are in fact significantly correlated, one
can inquire whether certain mixtures of them might be completely uncorrelated. If this
possibility could be realized, one would simply trade the original problem of stock selection
from the existing, correlated assets for the much simpler problem of choosing from a set
of uncorrelated portfolios. Indeed for all intents and purposes, these uncorrelated portfolios
would function as a new, totally uncorrelated asset set. We shall refer to such special
mixtures of the original set as principal portfolios. Remarkably, it turns out that when short
sales are allowed, it is always possible to reorganize the entire asset set as an equivalent set
of principal portfolios. Mathematically, this reorganization amounts to a change of basis
from the initial asset set to the set of principal portfolios, with the collection of all possible
asset mixtures constituting the underlying linear space. A standard result in linear algebra
then guarantees that the new basis vectors can always be so chosen as to diagonalize the
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covariance matrix, i.e., eliminate all correlations. Thus the new basis greatly simplifies the
general problem of portfolio optimization. An example is Eq. (9) which demonstrates the
volatility reduction property of the efficient frontier as the number of assets is increased.

A second point worth emphasizing here is that a typical principal portfolio is in general
leveraged1 as well as hedged when short sales are allowed. A measure of the volatility reduc-
tion feature of principal portfolios can be gleaned from the following qualitative argument.
We will show below that the mean weighted variance of the principal portfolios is equal to the
mean variance of the original asset set. This implies that the variance of a typical principal
portfolio is about the same as that of a single asset in the original set. Since all covariance
terms (N2 − N in number) among the principal portfolios vanish, it follows that a major
reduction of price volatility is already achieved by these portfolios without any optimiza-
tion. It is important to realize that hedging and leveraging are not the defining or intended
characteristics of principal portfolios but simply properties that are concomitant with the
elimination of correlations.

2. Casting Assets as Principal Portfolios

To motivate the transformation from the market assets to principal portfolios, let us start
with the standard portfolio selection problem essentially as set forth by Markowitz in 1952.
Consider the problem of selecting an efficient portfolio from a set of N risky financial assets
si under idealized market conditions, including the possibility of a riskless asset and short
sales. Treating returns as random variables, the model seeks to find the portfolio which
achieves a prescribed level of expected return with a minimum variance. It can thus be
formulated as the optimization problem (Markowitz 1952, 1959; see also Fama and Miller
1972, Elton and Gruber 1991)

min x x†σx s.t. 1 =
∑N

i=1
xi and R = r†x, (1)

where −∞ < xi < +∞ represents the fraction of the total investment allocated to asset si,
σ stands for the covariance matrix of the asset set, ri represents the expected rate of return
for asset si, R is the prescribed expected rate of return for the portfolio, and “†” signifies
matrix transposition. The possibility of short sales implies that the vector x is unrestricted
in the sign and magnitude of its components, being only subject to the pair of constraints
in Eq. (1). Note that we have adopted here the unrestricted interpretation of short sales
according to which the proceeds from the sale are immediately available for investment.
The problem posed in Eq. (1) and variants of it have been extensively analyzed by various
methods during the half century since its introduction. Our purpose here is to solve this
problem in two steps: first, we shall reorganize the asset set into principal portfolios, then
we shall select the optimal portfolio from the set of principal portfolios.

That the first step in the above program is actually implementable simply follows from
the fact that any real, symmetric, N×N matrix is orthogonally diagonalizable and possesses
a complete set of orthogonal eigenvectors. Thus we are assured that σ admits a set of N
orthogonal eigenvectors eµ, µ = 1, 2, . . . , N , so that σeµ = v2

µe
µ, where v2

µ ≥ 0 are the

1 We use the term “leveraged” here to imply that the portfolio contains borrowed assets, e.g., short-sold
positions.
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eigenvalues of the covariance matrix. With no loss in generality, we will take these vectors
to be of unit length, so that eµ†eν = δµν , where δµν is the Kronecker symbol. The covariance
matrix itself can then be represented in terms of its eigenvalues and eigenvectors in the
form σij =

∑N
µ=1v

2
µe

µ
i e

µ
j , according to a well-known result in linear algebra. The principal

portfolios are now defined by Sµ
def
=

∑N
i=1e

µ
i si/Wµ, i.e., the principal portfolio Sµ is defined

to be a mix which contains an amount eµ
i /Wµ of asset si, where Wµ

def
=

∑N
i=1e

µ
i . Note that

Wµ represents the relative investment weight of the µth eigenvector, a quantity which is in
general different from unity and may even be negative if asset (short) sales dominate asset
purchases in the mix that constitutes the portfolio.

In order to avoid dealing with negative weights and at the same time remove the remaining
arbitrariness2 in the definition of eµ, we shall stipulate that the latter be chosen so that
Wµ ≥ 0. Observe that Wµ = 0 implies that purchases and (short) sales are equal in the
portfolio, i.e., the portfolio is totally leveraged so that in any given portfolio asset purchases
are financed by the proceeds from the short sales. If N is sufficiently large, one would expect
a typical Wµ to be of the order of N

1
2 for portfolios that solely consist of purchased assets. To

see the basis of this estimate, recall that the condition eµ†eν = δµν stipulated above implies

that 1 =
∑N

i=1(e
µ
i )2. Using the latter and the self-evident inequality

∑N
i=1(e

µ
i −Wµ/N)2 ≥ 0,

we find that Wµ ≤ N
1
2 , where the upper limit of N

1
2 is reached for a uniformly allocated

portfolio with eµ
i = N− 1

2 . This inequality, together with the condition Wµ ≥ 0 stipulated

above, in turn implies that 0 ≤ Wµ ≤ N
1
2 , hence the above-stated estimate for the case

where all contributions to Wµ are positive.
Returning to principal portfolios, we note that each is characterized by an expected rate

of return Rµ =
∑N

i=1e
µ
i ri/Wµ and a variance Vµ

2 =
∑N

j=1

∑N
i=1e

µ
i σije

µ
j /Wµ

2 = v2
µ/Wµ

2, to be
referred to as expected principal rate of return and principal variance, respectively. Note that
the expected principal rate of return is unrestricted in magnitude and sign, so that a negative
Rµ is entirely possible. A general portfolio, initially specified by xi, is now described by Xµ,
which, by definition, is the fraction of the total investment allocated to principal portfolio
Sµ. Having chosen the relative weights to be non-negative, we are assured that a positive
Xµ corresponds to a net purchase of assets, whereas a negative one designates a net sale.

Clearly, the allocation vectors x and X are fully equivalent and related by the following
change of basis in the linear space of allocation vectors: xi =

∑N
µ=1e

µ
i X̃µ and X̃µ =

∑N
i=1e

µ
i xi,

where X̃µ
def
= Xµ/Wµ. The pair of constraints 1−∑N

i=1xi = 0 and R− r†x = 0, on the other
hand, are transformed into 1 − ∑N

µ=1Xµ = 0 and R − R†X = 0, respectively. Moreover,
observe that matrices σ and V have equal traces by virtue of being similar, and furthermore

that the sum of the variances of the original asset set, which is given by tr(σ)
def
=

∑N
i=1σii, is

equal to the sum of the eigenvalues of the original covariance matrix, namely
∑N

µ=1v
2
µ. Using

the latter equality, we arrive at the result that N−1∑N
µ=1Wµ

2Vµ
2 = N−1∑N

i=1σii, i.e., the
weighted average of the principal variances is equal to the mean of the original variances, as
noted earlier.

We may summarize the above transformation by saying that the original investment
environment {si, ri, σij}N

i,j=1 has been transformed into the equivalent, principal environment

2 If the spectrum of the covariance matrix is nondegenerate, then the definition given here uniquely deter-
mines the principal portfolios. Otherwise, one can arbitrarily fix these portfolios, subject to the stipulated
conditions.
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{Sµ, Rµ, Vµν}N
µ,ν=1 where the transformed covariance matrix V has a diagonal form.

A riskless asset, if present, would constitute a principal portfolio by itself, with a vanishing
variance and a certain return rate of return. As is well known, the efficient frontier in the
presence of a riskless asset is a simple linear combination of the latter and a particular
efficient portfolio formed of risky assets. Accordingly, we will continue dealing with risky
assets, excluding riskless assets from consideration until explicitly introduced in §3B. We will
thus assume the principal variances to be positive definite, i.e. Vµ

2 > 0, since a principal
portfolio with a vanishing principal variance is essentially equivalent to a riskless asset and
can be treated separately as stipulated.

At this juncture it is useful to summarize the main properties of principal portfolios:
Proposition 1. Every investment environment {si, ri, σij}N

i,j=1 which allows short sales

can be recast as a principal portfolio environment {Sµ, Rµ, Vµν}N
µ,ν=1 where the principal

covariance matrix V is diagonal. The weighted mean of the principal variances equals the
mean variance of the original environment. In general, a typical principal portfolio is hedged
and leveraged.

3. The Efficient Frontier

Having described the construction and properties of principal portfolios, we now turn to
the second step of determining the composition of the efficient frontier within the principal
portfolio environment. We start our analysis by considering risky assets only.

A. Riskless Asset Excluded

In this section we will assume that the principal portfolios of the original (risky) asset
set have already been determined and the transformation from the investment environment
{si, ri, σij}N

i,j=1 to the principal portfolio environment {Sµ, Rµ, Vµν}N
µ,ν=1 has been effected.

The efficient frontier in the principal portfolio environment is defined by the constrained
optimization problem

min X

∑N

µ=1
Vµ

2Xµ
2 s.t. 1−

∑N

µ=1
Xµ = 0 and R−R†X = 0, (2)

where Vµ
2 > 0 are the principal variances as already defined, and −∞ < Xµ < +∞,

µ = 1, 2, . . . , N . This is the principal-portfolio version of the problem posed in Eq. (1), to
which it is identical in form except for the absence of correlations here.

The solution to the problem in Eq. (2) is most conveniently expressed in terms of rescaled

vectors. These are the volatility-adjusted return vector Řµ
def
= Rµ/Vµ, the inverse volatility

vector Zµ
def
= 1/Vµ, and the vector X̌µ

def
= XµVµ. In terms of these rescaled vectors, the

Lagrange function appears as

L(X̌, Ř,Z,R)
def
= X̌†X̌ + λ1(1− X̃†Z) + λ2(R− Ř†X̃), (3)

where λ1 and λ2 are the Lagrange multipliers.
The solution to this problem is readily found as

X̃(Ř,Z,R) = (λ1Z + λ2Ř)/2. (4)
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Note that since Xµ = (λ1 + λ2Rµ)/2Vµ
2, the efficient portfolio buys or sells (short) each

principal portfolio in a risk-adjusted manner, that is, in inverse proportion to the principal
variance Vµ

2 of that portfolio and as an increasing linear function of the portfolio’s expected
return, Rµ. This will of course ensure that high-volatility and low-return portfolios are
relatively suppressed, exactly as expected of a portfolio selection algorithm whose objective
is volatility reduction subject to an expected level of return.

It should also be noted that Eq. (4) displays the two-mutual-fund theorem of Merton
(1972) in the principal portfolio environment. The two mutual funds are defined in terms
the vectors Z and Ř which are entirely determined by the parameters of the principal
portfolio environment. The optimal portfolio chooses from these “mutual funds” according
to Eq. (4), with the mix determined by the Lagrange multipliers λ1 and λ2. Inasmuch as the
composition of the optimum portfolio depends on R only through the Lagrange multipliers,
one can see that a specific optimum mix of the two mutual funds is determined by the
expected portfolio return R, exactly as expected.

The pair of constraint equations can now be used to find the multipliers. These are given
by

λ1=2(Ř†Ř−RŘ†Z)/D, λ2=2(RZ†Z− Ř†Z)/D,

where
D def

= (Ř†Ř)(Z†Z)− (Ř†Z)
2 ≥ 0.

Using these relations, we can rewrite Eq. (4) in terms of the allocation vector X̌ as a function
of Ř, Z, and R. The result is

X̌(Ř,Z,R) =
Ř†Ř−RŘ†Z

(Ř†Ř)(Z†Z)− (Ř†Z)
2Z +

RZ†Z− Ř†Z

(Ř†Ř)(Z†Z)− (Ř†Z)
2 Ř. (5)

This equation specifies the composition of the efficient portfolio in terms of the principal
investment environment.

The minimized value of the objective function, which we shall refer to as the efficient
variance and denote by Veff

2, can now be determined from the above equations as follows:

Veff
2(Ř,Z,R) =

(Ř−RZ)†(Ř−RZ)

(Ř†Ř)(Z†Z)− (Ř†Z)
2 . (6)

This equation defines the efficient frontier in terms of the inverse volatility and volatility-
adjusted return vectors of the principal investment environment. Observe that the quadratic
dependence of the efficient variance Veff

2 on the expected return R, a well-known result of
portfolio analysis, has emerged in a simple and general manner from our analysis. Solving
Eq. (6) for R will thus yield the familiar (double-valued) expected return-volatility relation
for the efficient portfolio.

The minimum value of Veff
2 with respect to R, on the other hand, occurs at R? def

=
Ř†Z/Z†Z, as can be readily verified. Its value, on the other hand is given by

min R Veff
2(Ř,Z,R) = V ?

eff
2(Z) = (Z†Z)

−1
= 1/

∑N

µ=1
Vµ

−2. (7)

This result can be restated in the form

1

V ?
eff

2 =
1

V1
2 +

1

V2
2 + . . . +

1

VN
2 , (8)
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a remarkably simple result expressing the fact that at the minimum volatility point of the
efficient frontier (R?, V ?

eff ), the inverse variance of the efficient portfolio is the sum of the
inverse principal variances. The relative suppression of the contribution of high-volatility
portfolios pointed out earlier is particularly evident in this expression. It is also evident
from Eq. (8) that

Vmin
2

N
≤ V ?

eff
2 ≤ Vmax

2

N
, (9)

where Vmin(max)
2 denotes the minimum (maximum) of the principal variances. This equation

expresses the volatility eduction property of the efficient frontier in a particularly transparent
manner.

B. Riskless Asset Included

Thus far we have excluded riskless assets from consideration. We will now add a riskless
asset, s0, with expected (and, by assumption, certain) return r0, to the original environment.
In keeping with our basic assumptions, we will allow both lending and borrowing of the
riskless asset.

As observed earlier, a riskless asset is already a principal portfolio, which we shall des-
ignate as S0, with a unit weight W0 = 1, a vanishing (principal) variance V0 = 0, and a
principal return R0 = r0. Therefore, the optimization problem now appears as

min X0,X

∑N

µ=1
Vµ

2Xµ
2 s.t. 1−

∑N

µ=0
Xµ = 0 and R−

∑N

µ=0
RµXµ = 0 (10)

where −∞ < Xµ < +∞, 0 ≤ µ ≤ N , as stipulated. Because the variance V0 corresponding
to the riskless asset X0 vanishes, a simpler solution than the one above obtains here, much
in the same manner as in the textbook treatments of this problem. It therefore suffices
to state the results here. The allocation rule for an efficient portfolio with unlimited short
selling and use of a riskless asset is found to be

Xµ(R0,R,Z,R) = A(Rµ −R0)Zµ
2, 1 ≤ µ ≤ N, (11)

and
X0(R0,R,Z,R) = 1−

∑N

µ=1
Xµ(R0,R,Z,R), (12)

where A is given by

A
def
= (R−R0)/[

∑N

µ=1
(Rµ −R0)

2Zµ
2].

Note that the expected portfolio return R would ordinarily be set at a level higher than the
riskless return R0 in which case A would be a positive quantity proportional to the expected
return surplus R − R0 of the efficient portfolio relative to the riskless asset. Thus with
R− R0 > 0, the allocation rule given in Eq. (11) would simply require that each principal
portfolio (other than the riskless asset S0) be bought, or sold short, according to whether
it produces an expected return surplus, or deficit, relative to the riskless asset, and in a
quantity which is in direct proportion to the said surplus or deficit and in inverse proportion
to the variance of the principal portfolio. For the low-return branch which corresponds to
the condition R − R0 < 0, the allocation rule simply reverses the role of the surplus and
deficit producing portfolios. Thus every principal portfolio is put to work, as it were, the
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high-return ones by purchase and the low-return ones by short sale (assuming the upper
branch).

It should be noted here that Eqs. (11) and (12) contain the two-mutual-fund theorem of
Merton (1972) in the present context. Note that here the riskless asset itself constitutes one
of the two mutual funds.

The efficient frontier in the presence of a riskless asset is a two-branch linear function, as
is well known. Here these branches appear as

R = R0 ± [
∑N

µ=1
(Rµ −R0)

2Zµ
2]

1
2
Veff , (13)

with the upper branch being the high return choice. Both branches can be written in the
equivalent form

(R−R0)
2

Veff
2 =

(R1 −R0)
2

V1
2 +

(R2 −R0)
2

V2
2 + . . . +

(RN −R0)
2

VN
2 , (14)

another simple result with an intuitively appealing content. At this point we summarize the
properties of the efficient portfolio in the presence of a riskless asset:

Proposition 2. In the presence of a riskless asset, the upper branch of the efficient
portfolio is formed by buying or selling each principal portfolio in proportion to its expected
return surplus or deficit and in inverse proportion to its variance, and conversely for the
lower branch. When so formed, the square of the volatility-adjusted return surplus or deficit
for the efficient portfolio is the sum of the squares of the volatility-adjusted return or deficit
for each risky principal portfolio for either branch.

4. Conclusion

Being free of correlations, principal portfolios are the natural instruments for portfolio
analysis when short sales are allowed. The portfolio selection rules found above are simple
and intuitive, and directly reflect the underlying objective of achieving a given return with
a minimum of volatility. In particular, Eqs. (8) and (14) display the volatility structure
of the optimum portfolio in a strikingly simple form. Similarly, Eq. (9) establishes the
volatility reduction feature of the optimum portfolio with the increasing size of the asset set
in a transparent and general manner. On the other hand, the principal variances in terms
of which these relations are expressed are subject to the quadratic sum rule expressed in
Proposition 1. These findings clearly show that the return-volatility structure of the efficient
frontier is more simply related to the the principal portfolio environment than the original
asset set. This confirms the expectation that a correlation-free representation of the original
asset set is the natural environment for analyzing portfolio selection problems.

The next step in this investigation is the application of the principal portfolio analysis
to the single-index model of stock prices. The properties found above for the principal
portfolios and the volatility structure of the efficient frontier can then be studied in more
detail and in terms of the familiar parameters of that model.
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