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SUMMARY

In behavioral medicine trials, such as smoking cessation trials, 2 or more active treatments are often
compared. Noncompliance by some subjects with their assigned treatment poses a challenge to the data
analyst. The principal stratification framework permits inference about causal effects among subpopu-
lations characterized by potential compliance. However, in the absence of prior information, there are
2 significant limitations: (1) the causal effects cannot be point identified for some strata and (2) indi-
viduals in the subpopulations (strata) cannot be identified. We propose to use additional information—
compliance-predictive covariates—to help identify the causal effects and to help describe characteristics
of the subpopulations. The probability of membership in each principal stratum is modeled as a function
of these covariates. The model is constructed using marginal compliance models (which are identified)
and a sensitivity parameter that captures the association between the 2 marginal distributions. We illustrate
our methods in both a simulation study and an analysis of data from a smoking cessation trial.
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1. INTRODUCTION

In behavioral medicine trials, new interventions are usually tested relative to a standard or existing be-
havioral or pharmacologic therapy. A specific example is the commit to quit (CTQ) trials (Marcus and
others, 1999, 2005), comprising 2 longitudinal follow-up studies of supervised exercise to promote smok-
ing cessation. Each study had 2 treatment arms. All participants received cognitive-behavioral smoking
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cessation therapy. For those in the intervention arm, cognitive-behavioral therapy (CBT) was augmented
by an individualized, supervised exercise program. In order to equalize contact hours between the 2 arms,
CBT for those in the control arm was augmented by a wellness education program that included lectures,
films, handouts, and discussions covering issues such as healthy eating and prevention of cardiovascu-
lar disease. Hence, the comparison is between standard therapy augmented by wellness education and
standard therapy augmented by an exercise regimen.

A key complication in drawing inference about causal effects in any trial is that compliance is rarely
perfect. A standard approach is to estimate the intention-to-treat (ITT) effect. The ITT effect describes
the benefit of being randomized to treatment. ITT can be used, for example, to determine the impact that
recommending (or encouraging; Hirano and others, 2000) a particular treatment over an alternative treat-
ment would have, on average, in the population. However, one treatment might appear superior because it
is better tolerated. For example, one could imagine a treatment that fewer people would comply with but
that has superior results among those that do comply. If this information was known, the recommended
treatment could potentially be tailored to individual subjects. Thus, in addition to knowing the ITT effect,
it would be useful to know which treatment would result in better outcomes among subjects who would
comply with and receive either intervention and which characteristics are predictive of compliance.

In trials of an active treatment versus placebo (or no treatment), it is possible to recover causal effects
under some reasonably mild assumptions. For all-or-none compliance situations, the method of instru-
mental variables can be particularly useful (Angrist and others, 1996). Causal effects among compliers
(subjects who would take treatment if offered) are identifiable under the assumption that there are no
subjects who would take the active treatment if randomized to the control arm but not to the treatment
arm (no defiers). This assumption is reasonable in trials where the control group does not have access to
the active treatment. In such settings, the instrumental variables estimator is equivalent to the estimator
from certain structural mean models (Robins, 1994; Goetghebeur and Lapp, 1997; Robins and Rotznitzky,
2004). Structural mean models can also be used when compliance is continuous and if there are interac-
tions between the causal effect and the baseline covariates. However, if it is unreasonable to assume there
are no defiers, the causal parameters are generally not identifiable without structural assumptions; several
authors have derived bounds on the causal effects (Robins, 1989; Manski, 1990; Balke and Pearl, 1997;
Joffe, 2001).

For comparisons of 2 active treatments, the principal stratification framework (Frangakis and Rubin,
2002) can be used to define and infer causal parameters of interest, such as the effect of the exercise in-
tervention compared with standard therapy among subjects who would comply with either intervention.
Direct implementation of the principal stratification approach has several limitations. First, causal effects
of interest would not be point identified (Cheng and Small, 2006). Further, it would not provide informa-
tion about characteristics of subjects in each subpopulation (stratum). To address these issues, we identify
causal parameters of interest, up to a sensitivity parameter, through the use of baseline covariates that are
predictive of compliance. Including covariates in the model is not straightforward as care has to be taken
to ensure the marginal compliance distributions are compatible with the joint distribution. In addition, our
model clearly separates parameters that can be identified from the data from those that cannot. Finally, we
illustrate how a constraint on the joint distribution of the potential compliance variables can be integrated
into the methodology. This approach provides investigators with additional useful information, beyond
just the ITT effect.

The remainder of the paper is organized as follows: In Section 2, we describe the smoking cessation
trial. We introduce the notations and assumptions in Section 3. In Section 4, we present the compliance
models. The likelihood, prior, and posterior distributions are described in Section 5. Data from the CTQ
smoking cessation trial are analyzed in Section 6. There are concluding remarks in Section 7. A simu-
lation study, derivation of the observed-data likelihood, and some additional results are presented in the
supplementary material available at Biostatistics online (http://www.biostatistics.oxfordjournals.org).
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2. DATA FROM “CTQ” TRIAL

The first CTQ study (Marcus and others, 1999) was a randomized controlled trial designed to assess
the efficacy of supervised vigorous exercise as an adjuvant treatment to CBT for promotion of smok-
ing cessation among women. A primary motivation behind studying women exclusively was that in the
mid-1990s, smoking prevalence rates among women were declining at a slower rate than among men
(Escobedo and Peddicord, 1996). In addition, relapse rates among women were higher. The study en-
rolled and assigned 134 women to receive CBT plus vigorous exercise (the new treatment) and 147
to receive CBT plus a wellness education program (the control treatment). CBT represents the stan-
dard of care for smoking cessation; the wellness education was added to the control arm to equal-
ize staff contact time between the 2 arms and to eliminate the possibility that treatment effects
associated with exercising might be confounded by added staff time. The CBT program was adminis-
tered to all women in group format weekly over the course of 12 weeks. The exercise program was
individually tailored to each woman based on achieving a target heart rate; women exercised 3 times
weekly, supervised by an exercise specialist. Women in the control arm participated in a program of
supervised lectures, films, and discussions 3 times weekly and were instructed not to adopt a program
of regular exercise until the study was completed. None of the women in the control arm had
access to the supervised exercise program, and none in the exercise group had access to wellness
classes.

The target quit date was week 5 following randomization. Cessation status was evaluated weekly over
the course of 12 weeks. Cessation was assessed by self-report and, for the first week in which abstinence
was reported, verified by carbon monoxide (<8 ppm) and saliva cotinine (<10 ng/mL). The primary
outcome of the study was continuous abstinence during the 8 weeks after the quit date. By definition, an
individual who was not present for scheduled testing at one or more occasions could not be counted as
continuously abstinent.

Subjects were expected to attend 3 wellness or exercise classes per week. CBT was administered
during the first exercise or wellness visit that was attended in a given week. We defined compliance based
on the number of sessions actually attended during the 4 weeks prior to the quit date. Specifically, a subject
was defined as compliant with their assigned treatment if she attended at least two-thirds of the classes
every week and attended all 3 classes at least twice, during weeks 1–4. Compliance status is observed for
all participants.

Compliance was similar in the wellness and exercise arms (41% and 43%, respectively). Continuous
abstinence rates were 10.8% in the wellness arm and 19.4% in the exercise arm. These are estimates of
the expected abstinence rates under the observed compliance pattern (ITT). Our goal is to estimate the
treatment effect among those who would comply with either intervention.

3. PRINCIPAL STRATIFICATION WITH 2 ACTIVE TREATMENTS

3.1 Notations and assumptions

We consider experimental trials with 2 arms—each with an active treatment. Our approach can easily be
extended to 3-arm trials with 2 active treatments (where one arm is a control group), such as considered
by Cheng and Small (2006). Let Z ∈ {0, 1} denote a randomization indicator, where Z = 1 indicates ran-
domization to the new treatment (e.g. supervised exercise plus CBT) and Z = 0 indicates randomization
to standard therapy (e.g. wellness sessions plus CBT). Let Az ∈ {0, 1} denote compliance with assigned
treatment under assignment z. Similarly, define Yz ∈ {0, 1} to be the outcome under assignment z. Each
person has 2 potential compliance levels, A0 and A1, that characterize compliance under either treatment
assignment; however, only A = Z A1 + (1 − Z)A0 is observed. Similarly, each subject has 2 potential
outcomes, Y0 and Y1, with Y = ZY1 + (1 − Z)Y0 observed.
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We make 3 standard assumptions for the development of analytic methods: (1) the stable unit-treatment
value assumption (SUTVA), (2) randomization (Z ⊥⊥ {Y0, Y1, A0, A1}), and (3) the exclusion restriction.
These assumptions have been described in detail elsewhere (Angrist and others, 1996). We make 2 addi-
tional assumptions.

Assumption 4. Treatment access restriction. Subjects in group Z = z do not have access to the treat-
ment assigned in arm Z = 1 − z, for z = 0, 1. This assumption holds in CTQ because subjects in the one
arm were not allowed to attend the classes in the other.

Assumption 5. Monotonicity. The probability of compliance with treatment assigned by Z = 1 is
higher among those who would comply with treatment assigned by Z = 0, compared to those who would
not; that is P(A1 = 1|A0 = 1) � P(A1 = 1|A0 = 0).

The purpose of Assumption 5 is to tighten the bounds on the causal effects because in many practi-
cal settings, they are too wide to be useful. The assumption is plausible in studies where both treatments
require a similar commitment of effort and where the two treatments are not polarizing in terms of pref-
erences. It should be noted that the assumption refers to average compliance rates and does allow for the
possibility that some subjects would comply with one intervention but not with the other. Applied to CTQ,
it states that compliance with exercise would be more prevalent among those who would comply with the
control condition (i.e. positive correlation between A0 and A1). In CTQ, both interventions required trav-
eling 3 days per week to attend the sessions. The study population only included subjects who were not
exercising regularly. The time commitment for both interventions was the same. We therefore believe the
assumption is plausible. However, our methods can easily be amended to exclude Assumption 5.

3.2 Defining causal effects

We assume that each individual belongs to one of 4 basic principal strata defined by unique combinations
of (A0, A1). The strata comprise the set S = {(0, 0), (1, 0), (0, 1), (1, 1)}. Hence, the subpopulation with
S = (1, 1) includes only women who would comply with whichever treatment was offered; S = (0, 1)
denotes the population that would comply with exercise but not with the control treatment, and so forth.

In the most general terms, we are seeking the joint distributions [(Y0, Y1) | S = s], for s ∈ S, which
characterize the causal effect of randomization to treatment within principal stratum s. Let π

(s)
z = P(Yz =

1|S = s). In our analysis of the CTQ trial, the risk difference π
(1,1)
1 − π

(1,1)
0 is a target for inference,

because it is the contrast that captures the effect of actually receiving exercise, and is therefore of direct
interest from the point of view of intervention design. In addition, we are interested in the distribution of
covariates, given the compliance class.

3.3 Bounds on causal effects in the absence of covariates

In trials with 2 active treatments, the causal effects within each basic principal stratum are not point
identified from the outcome and compliance data alone under Assumptions 1–4 (Cheng and Small 2006).
That is, even if the entire population was observed, the (frequentist) point estimate would only be known
to lie within an interval. We derive these bounds in Section A of the supplementary material available at
Biostatistics online (http://www.biostatistics.oxfordjournals.org).

Our strategy is to further reduce uncertainty about the treatment effects by using information from
baseline covariates that are predictive of compliance. For example, suppose women with a low body mass
index (BMI) were more likely to comply with the wellness intervention than women with a high BMI.
It is realistic to believe that a woman with low BMI in arm Z = 1 who complied with exercise is more
likely to have S = (1, 1) than a woman with high BMI who complied with exercise. We formalize this in
a model for (A0, A1) and use it to identify causal effects.
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4. UTILIZATION OF COMPLIANCE-PREDICTIVE COVARIATES

Assume that for each subject, we have several baseline covariates X that are associated with compliance
in one or both arms. We are able (using randomization of Z ) to identify the marginals [A0|X ] and [A1|X ],
but we cannot identify the conditional association between A0 and A1 given X . Our approach is to spec-
ify separately the marginal distributions [A0|X ] and [A1|X ], use a single non-identifiable parameter φ
to capture the association structure, and thereby characterize the joint distribution [A0, A1|X ] (see also
Heagerty, 2002; Dominici and others, 2006).

4.1 Marginal compliance models

We first modify 2 of the assumptions from Section 3.1 to take covariate information into account. We
assume that randomization and monotonicity hold conditional on x , that is Z ⊥⊥ {Y0, Y1, A0, A1, X} and
P(A1 = 1|A0 = 1, X = x) � P(A1 = 1|A0 = 0, X = x).

Let Xz ⊆ X denote covariates that are predictive of compliance in arm Z = z (i.e. [Az |X ] = [Az |Xz]),
z = 0, 1. We assume ψz(Xz) = P(Az = 1|Xz) = mz(Xz ; λz), where mz(Xz, λz) is a user-specified
function indexed by a finite-dimensional parameter λz , z = 0, 1. For example, one could specify logistic
regression models ψz(Xz) = logit−1(X T

z λz), for z = 0, 1. Recall that A = Z A1 + (1 − Z)A0 is the
observed compliance variable. By the randomization assumption, [A0|X ] = [A|X, Z = 0] and [A1|X ] =
[A|X, Z = 1]. Therefore, the λ parameters, and hence the marginal probabilities ψ0(X0) and ψ1(X1), are
identifiable from the observed data. The usual diagnostic methods can be used to check the adequacy of
the mz(·; ·).

4.2 Association model

To complete the specification of the joint distribution [A0, A1|X ], we link the 2 marginal distributions
together, using a model that satisfies the following: (1) any value of φ in the specified range should yield
a model for [A0, A1|X ] that is fully compatible with the assumed marginal distributions ψ0(X0) and
ψ1(X1) and (2) any value of φ in the specified range should lead to valid conditional probabilities (e.g.
P(A1|A0, x) must be between 0 and 1).

Given Assumptions 1–5 and marginal models ψz(Xz), the conditional distribution P(A1 = 1|A0 = 1,

X = x) is bounded below by ψ1(x) and above by U (x) = min
{
1, ψ1(x)

ψ0(x)

}
. We propose the following

association model to complete the specification of [A0, A1|X ]:

P(A1 = 1|A0 = 1, X = x) = ψ1(x) + φ{U (x) − ψ1(x)}, 0 � φ � 1. (4.1)

Interpretation of φ. If φ = 0, then P(A1 = 1|A0 = 1, X = x) = ψ1(x), for all x (i.e. A1 is independent
of A0 given X ). If φ = 1, then P(A1 = 1|A0 = 1, x) = U (x), the largest probability compatible with the
marginal distributions. For example, if more people with covariates x would comply with new treatment
compared to standard treatment (i.e. ψ1(x) > ψ0(x)), then setting φ = 1 implies that everyone with
covariates x who would comply with the standard treatment would also comply with the new treatment.
The marginal distributions ψz(Xz) and conditional probability (4.1) imply a model for P(A1 = 1|A0 = 0,
X = x). Specifically, the probability ψ1(x) = P(A1 = 1|X = x) can be written as

ψ1(x) =
1∑

a=0

P(A1 = 1|A0 = a, X = x)P(A0 = a|X = x)

= [ψ1(x) + φ{U (x) − ψ1(x)}]ψ0(x) + P(A1 = 1|A0 = 0, x){1 − ψ0(x)}.
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Solving for P(A1 = 1|A0 = 0, X = x) gives

P(A1 = 1|A0 = 0, X = x) = ψ1(x) − [ψ1(x) + φ{U (x) − ψ1(x)}]ψ0(x)

1 − ψ0(x)
,

and therefore the association model generalizes to

P(A1 = 1|A0 = a, X = x) = a[ψ1(x) + φ{U (x) − ψ1(x)}]

+(1 − a)
ψ1(x) − [ψ1(x) + φ{U (x) − ψ1(x)}]ψ0(x)

1 − ψ0(x)
, (4.2)

which shows the joint distribution f (A0, A1|X) = f (A0|X) f (A1|A0, X) is a function of the 2 marginal
distributions ψ0(X) and ψ1(X) and the parameter φ.

5. INFERENCE METHODS

Inferences are based on an observed-data posterior distribution. The main strategy pursued here is to spec-
ify the full-data model and then impose necessary assumptions for identifying parameters of interest. Let
β = (φ, λ1, λ0) and let θ denote the collection of parameters that characterize [(Y0, Y1) | S]. We denote
the full-data joint distribution generically as [Y0, Y1, A0, A1, Z , X ] (equivalently, [Y0, Y1, S, Z , X ]) and
decompose it using the following factorization:

f (Y0, Y1, A0, A1, Z , X | θ, β, ξ) = f (Y0, Y1 | S, Z , X, θ) × f (A0, A1 | Z , X, β) × f (X, Z | ξ). (5.1)

The variable S appears in the first factor because conditioning on (A0, A1) is equivalent to conditioning
on S. The full-data likelihood contribution for a single individual is any function proportional in (θ, β, ξ)
to the joint distribution (5.1), evaluated at Fi = (Y0i , Y1i , A0i , A1i , Zi , Xi ), and is denoted generically by
L(θ, β, ξ | F) = ∏n

i=1 L(θ, β, ξ | Fi ).
Because it is not possible to observe the full data, inference must be based on an observed-data pos-

terior distribution. The likelihood part of the observed-data posterior is derived by integrating missing
observations out of the joint distribution (5.1). Before proceeding, we make 2 assumptions about the full-
data likelihood. First, we assume that the potential outcomes are jointly independent of Z and X within
principal stratum so that f (Y0, Y1 | S, Z , X, θ) = f (Y0, Y1 | S, θ). This implies that the causal effects
within strata are independent of both Z and X . For discrete X , this assumption can be relaxed to the
extent that this methodology can be applied separately at distinct levels of X . Second, by randomization,
f (A0, A1 | Z , X, β) = f (A0, A1 | X, β).

To parameterize the joint distribution of potential responses, observe that there are 4 possible real-
izations of (Y0, Y1) at each level of S. Therefore, f1(Y0, Y1 | S, θ) can be parameterized in terms of the
probabilities θy0 y1(s) = pr(Y0 = y0, Y1 = y1 | S = s), where

∑1
y0=0

∑1
y1=0 θy0 y1(s) = 1 for any s. The

exclusion restriction implies that θ10(0, 0) = θ01(0, 0) = 0. Hence,

f (Y0, Y1 | S, θ) = {θ00(0, 0)(1−Y1)(1−Y0)θ11(0, 0)Y1Y0}I{S=(0,0)}

×
∏

s∈{(0,1),(1,0),(1,1)}
{θ00(s)

(1−Y1)(1−Y0)θ01(s)
(1−Y0)Y1θ10(s)

Y0(1−Y1)θ11(s)
Y0Y1}I (S=s).

The model for potential compliance variables is specified using the factorization f (A0, A1 | X) =
f (A0 | X) f (A1 | A0, X), where the first factor is the Bernoulli mass function f (A0 | X) = ψ0(X)A0{1−
ψ0(X)}1−A0 and the second factor is Bernoulli with probability given by (4.2).

To complete the model specification, we assume that the parameters (θ, β) are a priori jointly in-
dependent of ξ ; that is p(θ, β, ξ) = p(θ, β)p(ξ) which obviates the need to specify f (x, z|ξ). The
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observed-data likelihood is obtained by integrating over the sample space of missing potential outcomes
and can be written as

L(π, β | Y, A, Z , X) =
∑

s∈{(0,0),(0,1),(1,0),(1,1)}
(π

(s)
Z )Y {1 − π

(s)
Z }1−Y P(S = s | X, β)G(s, A, Z), (5.2)

where

G(s, A, Z) = I{s = (0, 0)}(1 − A) + I{s = (1, 0)}{A(1 − Z) + (1 − A)Z}
+ I{s = (0, 1)}{AZ + (1 − A)(1 − Z)} + I{s = (1, 1)}AZ .

See Section B of the supplementary material available at Biostatistics online for detailed calculation.
Specifics about priors are given in Section 6.

6. ANALYSIS OF CTQ DATA

6.1 Data

The CTQ study was described in Section 2. The outcome was defined as continuous abstinence during
the course of the trial, a common end point in smoking cessation trials. We defined someone as compliant
with their assigned intervention during the 4 weeks prior to the quit date if they attended at least 2 of the
3 required sessions every week and 3 sessions at least twice. Therefore, individuals with S = (1, 1) could
be thought of as those who would be highly compliant with either intervention during the pre-quit week
phase of the trial.

6.2 Model specification

Compliance model. We considered numerous predictors of compliance at the model selection stage,
including general characteristics of the subject (marital status, employment status, race/ethnicity,
age, income), measures of nicotine dependence (Fagerstrom scale of nicotine dependence (Heatherton
and others, 1991), number of cigarettes smoked per day, age started smoking), previous quit attempts
(number of quit attempts, ever quit for 24 hours), and body weight–related variables (BMI, percent body
fat, history of dieting). We selected a compliance model for each arm based on parsimony, predictive
accuracy, and model fit. We decided on the following model for ψ0(x):

logit−1(λ00 + λ01age + λ02employ + λ03married + λ05employ × married + λ06ed12 + λ06ed15),

where age is years of age of the subject at baseline, employ is an indicator variable for employment at
baseline and married is an indicator variable that the subject is married, and ed12 and ed15 are indicators
that the subject has at least 12 and 15 years of education, respectively. This model fitted the data well
(Hosmer–Lemeshow goodness-of-fit statistic = 5.57 on 8 degrees of freedom; p = 0.69). For the exercise
condition, we chose the model

ψ1(x) = logit−1(λ10 + λ11ed12 + λ12ed15).

Covariates other than education level did not seemed to have an effect on the exercise compliance
probability.
Gibbs sampler. We specified uniform (0, 1) priors for the π

(s)
z parameters, z = 0, 1, s = (0, 0), . . . , (1, 1).

Proper but relatively flat normal priors were assumed for the λ’s with mean 0 and variance 1000. At each
fixed value of φ, we generated 60 000 draws of the parameters using WinBUGS. The first 10 000 draws
were discarded. Convergence appeared to be reached by about the 1000th draw based on trace plots and
the Gelman–Rubin statistic.
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6.3 Results

The value of φ affects the estimated number of subjects in each stratum (i.e. the size of each compliance-
type subpopulation). In Figure 1, we display estimates of the proportion of subjects in each principal
stratum at various values of φ. These estimates were calculated by generating a value of S from the
posterior distribution for each subject at each Gibbs draw, calculating the proportion for each value of S,
and then averaging those over all 50 000 draws. When φ is assumed to be near 0, it follows that there are
a nontrivial number of subjects who would comply in one arm but not in the other (strata (1, 0) and
(0, 1)). When φ is set near 1, nearly everyone who would comply in one arm would also comply in the
other. Therefore, the estimated proportion of subjects in strata (0, 0) and (1, 1) increased as φ increased.

In Table 1, we present the 2.5, 50, and 97.5 percentiles of the posterior distributions of λ0 and λ1, under
the assumption of conditional independence (φ = 0); the results were similar at other values of φ. For

Fig. 1. Estimated proportion of population in each principal stratum at each value of φ.

Table 1. Estimates of the 2.5, 50, and 97.5 percentiles of the posterior distribution of the compliance
model parameters when φ = 0

Parameter 2.5 50 97.5

Contact compliance model
Intercept −4.36 −2.33 −0.50
Age 0.02 0.06 0.10
Employed −1.15 0.01 1.21
Married −0.02 1.31 2.73
Married × employed −3.15 −1.56 −0.02
Education � 12 years −0.67 0.19 1.04
Education � 15 years −1.74 −0.81 0.07

Exercise compliance model
Intercept −0.21 −0.49 1.21
Education � 12 years −1.22 −0.41 0.39
Education � 15 years −1.82 −0.89 0.01
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Fig. 2. Plot of 2.5, 50, and 97.5 percentiles of posterior distribution of the risk difference for stratum (0, 1),

π
(0,1)
1 − π

(0,1)
0 , in (a); for stratum (1, 1), π

(1,1)
1 − π

(1,1)
0 , in (b); and the combined stratum (0, 1) and (1, 1),

π
(0,1)∪(1,1)
1 − π

(0,1)∪(1,1)
0 , in (c), at different values of φ.

the control arm compliance model, older subjects and those with more education appeared more likely to
comply. In addition, subjects who were married and unemployed were more likely to comply than subjects
who were married and employed or who were not married. Based on results from the exercise compliance
model, subjects with 16 or more years of education appeared more likely to comply than subjects who
had fewer years of education.

Summary statistics relating to the posterior distribution of π
(s)
z are provided in Section D of the sup-

plementary material available at Biostatistics online.
Causal effect of exercise among compliers. Primary interest is in π

(1,1)
1 −π

(1,1)
0 , the difference in cessation

rates between exercise and contact groups for the subgroup that would comply with either intervention.
The posterior median, along with 95% credible interval for this causal risk difference, is displayed in
Figure 2(b) at various values of φ. For all values of φ, the posterior median is positive, indicating that
among highly compliant subjects, the cessation probability is higher when randomized to the exercise
condition. For values of φ near 0, the 95% interval is very wide, reflecting lack of information about
the intervention effect. A value of φ between 0.5 and 1 might be more plausible, however, as the
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2 interventions are similar in terms of what is expected from participants (both require attending a class
3 days per week). For large values of φ, the interval becomes much more narrow because class member-
ship in group 3 increases (see Figure 1). The interval overlaps the null value of 0, even when φ = 1, but
most of the posterior mass is greater than 0. The posterior median is 0.16 with 95% interval (−0.04, 0.36)
at φ = 1.
ITT effect for entire population. The traditional ITT analysis can be thought of as the causal effect of Z
on the entire population. The sensitivity parameter φ has no impact here because varying φ does not shift
the population in S ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. The posterior median and 95% credible interval for
the E(Y1 − Y0) were 0.085 and (0.002, 0.170), suggesting a benefit of being randomized to the exercise
group instead of the wellness group.
Causal contrasts for other subpopulations. The model can be used to infer other contrasts of potential
interest, such as the effect of exercise among subjects who would comply with exercise but not with
wellness. Figure 2(a) displays posterior quantiles of π

(0,1)
1 − π

(0,1)
0 as a function of φ. As shown in

Figure 1, when φ was near 0, group membership in S = (0, 1) was at its largest. Therefore, as φ increased,
the credible intervals for the causal effect in arm S = (0, 1) became wider. The majority of the posterior
draws of causal risk difference were greater than 0, suggesting a benefit of exercise for this subpopulation.
However, the 95% credible intervals always included 0, so we cannot rule out lack of effect.

Investigators might also be interested in the subpopulation that would comply with exercise if offered,
regardless of whether or not they would comply with the contact intervention (i.e. S = (0, 1) or (1, 1)). In
Figure 2(c), we display the posterior median and 95% credible interval for the ITT effect in the S = (0, 1)
or (1, 1) subpopulation at various values of φ. The interval did not overlap with 0 at any value of φ,
indicating a benefit of exercise for this subpopulation. The interval is much less sensitive to values of φ
than with the population of compliers S = (1, 1) or exercise-only compliers S = (0, 1). With S = (1, 1),
the width of the 95% interval for π

(1,1)
1 − π

(1,1)
0 changed dramatically as a function of φ because the

estimated proportion with S = (1, 1) increases sharply with φ (Figure 1); however, the proportion of
subjects in S = (0, 1) or (1, 1) is nearly constant as a function of φ. As φ increases, there is a shift from
S = (0, 1) to S = (1, 1), but the combined population remained about the same. Because S = (0, 1) or
(1, 1) includes everyone who would comply with exercise, information about that class comes from the
marginal distribution of A1.
Characteristics of subjects in each stratum. The model proposed here can also be used to characterize the
covariate distribution of individuals in each principal stratum; i.e. [X | S], as opposed to [S | X ], which is
summarized in Table 1. This can be useful for characterizing the subpopulation of compliers in terms of
their covariate profile. Detailed results are given in Section D of the supplementary material available at
Biostatistics online.
The impact of covariates. We explored the impact of modeling compliance as a function of covariates by
fitting a model with no covariates in the compliance models. As described previously, without covariates
the strata probabilities and causal effects are not point identified in this setting (2 active treatments). In
the absence of priors, however, these parameters can be bounded. Figure 3 includes plots of the estimated
posterior densities of π

(1,1)
0 , π

(1,1)
1 , and π

(1,1)
1 − π

(1,1)
0 in the models with and without covariates, for

φ equal to 0 and 1. When φ = 0, the posterior distributions from the model without covariates had flat
sections at the maximum height of the posterior density, reflecting the lack of information needed to
identify a maximum point. Instead, there were a range of values that could be viewed as “most likely.”
The plots from the model with covariates showed distributions that were more narrow and had clear
maxima. For φ equal to 1, as expected, the impact of covariates was less pronounced because a subject
who complied with one intervention would likely have complied with the other. Observed compliance
is essentially all that is needed to identify the stratum in that case. But because φ is unknown, Figure 3
demonstrates how conditioning on covariates in the compliance models can reduce the range of likely
values of the parameters of interest over the range of plausible values of φ.
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Fig. 3. Plot of posterior distribution of π
(1,1)
0 , π

(1,1)
1 , and π

(1,1)
1 − π

(1,1)
0 for the models with and without covariates

and at φ = 0 and φ = 1.

Sensitivity to Assumption 5. While we believe Assumption 5 is plausible, we also investigate the sensitivity
of inference to that assumption. Without Assumption 5, the lower bound of the association model P(A1 =
1|A0 = a, X = x) is

P(A1 = 1|A0 = a, X = x) = aL(x) + (1 − a)
ψ1(x) − L(x)ψ0(x)

1 − ψ0(x)
,

where L(x) = max[0, {ψ1(x) + ψ0(x) − 1}/ψ0(x)]. We fitted the full model assuming this is the true
association model. The posterior median and 95% credible interval for π

(1,1)
1 − π

(1,1)
0 were 0.10 and

(−0.55, 0.69), substantially wider compared to using Assumption 5 with φ = 0. The posterior mean for
the proportion of subjects in stratum S = (1, 1) was 0.05. Because the compliance rates are similar in
the 2 arms, if we do not make Assumption 5, then we allow for the possibility that nearly everyone who
would comply with one treatment would not comply with the other. In that scenario, strata S = (1, 0) and
S = (0, 1) are the largest. This demonstrates both the benefit and the risk of Assumption 5: if correct, it
can substantially shrink the bounds on the causal effects, if not it can produce misleading results.

7. DISCUSSION

Experimental studies with 2 active treatments are fairly common, especially in behavioral interven-
tion studies. When there is noncompliance in each arm, drawing causal comparisons between the 2
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interventions is challenging because the population of subjects who would comply with one intervention
might differ from the population that would comply with the other. We have proposed a model that uses
compliance-predictive covariates to identify principal effects (causal contrasts in subpopulations defined
by compliance behavior) up to a sensitivity parameter. Identification of the principal strata probabilities
relies on the specification of 2 marginal compliance models, conditional on covariates, and an association
model that ensures that the joint probability remains within the bounds of the parameter space. At each
value of the association parameter, we are able to make inference about the principal effects. In the smok-
ing cessation analysis, the evidence suggested that the exercise regimen would yield better results than the
wellness therapy, among subjects who would comply with either intervention, although the results were
not conclusive.

Our findings suggest that researchers who are planning trials with 2 active treatments would ben-
efit from collecting compliance information from both arms, as well as baseline covariate information
that they expect will be predictive of compliance. By collecting this additional information, the methods
described in this paper can be used to identify causal effects among subpopulations defined by their com-
pliance pattern. This should provide investigators with a far greater understanding of the effects of the
2 treatments, beyond what could be learned from the usual ITT approach and beyond what can be learned
without using covariates.

The proposed methodology has other applications. For example, if A is a binary mediating variable,
our approach could be used to estimate direct effects of the intervention on the outcome among subpopu-
lations for whom the intervention has no effect on the mediator (i.e. the population A0 = A1; Mealli and
Rubin, 2003).

As pointed out by a reviewer, the use of covariates might cause concerns similar to those in case–
control studies (e.g. concerns about overmatching). Our view is that if covariates that are predictive of
compliance are available, including them in the model accomplishes 2 things. First, it can reduce the width
of the credible intervals. Second, it can help to answer an important question that behavioral researchers
want more information about, who are the compliers. With that said, there is some risk involved with
introducing covariates into the model (covariate selection, model specification). However, the fit of the
marginal part of the compliance models can be checked using standard regression diagnostic methods.

A potential limitation with our analysis is that the SUTVA assumption might not hold. The interven-
tion was typically held in small groups, and it is possible that group dynamic could affect compliance
and/or cessation status. Based on our conversations with CTQ investigators, we believe that substantial
interference between subjects was unlikely. However, we cannot rule it out.
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