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Abstract

We propose a nonparametric approach to learning of principal surfaces based on
an unsupervised formulation of the Nadaraya-Watson kernel regression estimator. As
compared with previous approaches to principal curves and surfaces the new method
offers several advantages: first of all it provides a practical solution to the model selec-
tion problem, because all parameters can be estimated by leave-one-out cross-validation
without additional computational cost. In addition, our approach allows for a conve-
nient incorporation of nonlinear spectral methods for parameter initialization, beyond
classical initializations based on linear PCA. Furthermore, it shows a simple way how to
fit principal surfaces in general feature spaces, beyond the usual data space setup. The
experimental results illustrate these convenient features on simulated and real data.

1 Introduction

The close relation between supervised and unsupervised learning of functions1 has been in-
dicated by many researchers within the field of machine learning. While in the supervised
case one is usually interested in the relationships between two kinds of observable variables,
in the unsupervised case one is interested in the relationships between the observable data
variables in a d-dimensional space and some unobservable latent variables in a q-dimensional
space. In both cases most existing approaches are based on functions of the form

f(x;W) = Wb(x), W ∈ R
d×M (1)

with b(x) ∈ R
M being a vector of M basis functions and W denoting a matrix of weights

for linear combination of the basis functions. In supervised learning a large variety of dif-
ferent realizations of (1) has been proposed and only a few shall be mentioned here. In
neural networks, multilayer-perceptrons (MLP) and radial basis function (RBF) networks
are prominent examples which utilize functions of the above form. Usually, these functions
involve many additional free parameters for the realization of the nonlinear basis functions,
which in the RBF-case specify the location, shape and size of the basis functions and in the
MLP-case may include several layers of nested functions, that is the basis functions them-
selves are linear combinations of nonlinear functions. In contrast to the more complex neural

1here in the sense of vector-valued multivariate functions according to general mappings from one multi-
dimensional space to another
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network basis functions recent kernel-based approaches to function learning are usually based
on simple basis functions with only a very small number of free parameters (e.g. the kernel
bandwidth) and incorporate all flexibility into the weights. This strategy is also followed by
most unsupervised approaches to function learning and, depending on the choice of the latent
variable domains and the associated basis functions, a variety of unsupervised methods, rang-
ing from principal component analysis to vector quantization, may all be realized by flexible
linear combinations of fixed basis functions [1]. In particular most approaches to Principal
Curves and Surfaces [2] can be stated in terms of fitting a specific instance of (1) with fixed
basis functions to multivariate data: Polygonal Lines [3] arise from piecewise linear basis
functions according to degree one B-splines with the columns of W representing the vertices
of the polygonal curve. In a similar way, Adaptive Principal Surfaces [4] can be specified
using products of one-dimensional degree one splines as basis functions together with some
constant function for compensation of the bias. Regularized Principal Manifolds [5] can be
represented using general kernels and a constant term as basis functions. Probabilistic Princi-
pal Surfaces [6] have been proposed as an extension to the Generative Topographic Mapping
[7] using a more general noise model but the same manifold parametrization according to
Gaussian and constant basis functions. With some extensions to the original formulations,
Self-Organizing Maps [8, 9] can be viewed as discrete approximations of principal manifolds
using piecewise constant basis functions according to products of degree zero B-splines, in
which case the columns of W represent the supporting points of the discrete approxima-
tion. This has been generalized in the Parametrized Self-Organizing Maps [10], where the
piecewise constant functions were replaced by a set of orthogonal polynomials and where the
supervised learning of mappings between different subsets of the observable data variables
is viewed as the construction of a single data space manifold indicating the close relation
between supervised and unsupervised learning of functions.

Although most approaches to principal surfaces are actually based on some realization of
(1), in practice that function model implies some inherent difficulties which arise from the
necessity to provide viable solutions to the model selection problem. First the model requires
an a priori specification of the M basis functions which should somehow cover the latent space
in a sufficient way. Using localized basis functions, like Gaussians or splines, the locations in
latent space have to be specified. Often, a regular square grid is imposed in order to restrict
the range of possible models to some tractable set of candidates. In general, this choice
cannot be expected to be optimal and for higher dimensionalities of the latent space such
an approach becomes impractical. In addition, certain types of basis functions also require
to specify an additional smoothness parameter, e.g. the bandwidth in the Gaussian case. If
the number of basis functions is not restricted, i.e. it may even be higher than the number
of data points, then some regularizer for the corresponding weights has to be introduced in
order to make learning feasible. In that case a sensitive regularization parameter has to be
adjusted to control generalization.

For the Regularized Principal Manifolds the model has been restricted to a regular square
grid for the experimental results reported in [5]. The width of the Gaussian basis functions
was chosen in an ad hoc manner and the regularization parameter was adjusted manually
for the reported results. For the Adaptive Principal Surfaces an iterative model refinement
for successively adding new basis functions has been proposed in [4]. The stopping criterion
for that scheme depends on a regularization parameter, which has been fixed at a certain
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value. Although the authors tried to motivate their particular choice for that parameter as a
general rule, for some of the datasets considered in the paper, actually different values were
used to achieve the reported results. For the Probabilistic Principal Surfaces [6] candidate
models were restricted to a regular square grid in the experiments. The width of the Gaussian
basis functions and a regularization parameter were fixed in an ad hoc manner. Then the
authors just compared several choices for a continuous noise model parameter and two discrete
complexity parameters for the resulting projection error on hold-out data. With respect
to Self-Organizing Maps only probabilistic formulations like the Generative Topographic
Maps [7] have actually faced the model selection problem. In [11] a scheme for Bayesian
inference with regard to the regularization parameter and the bandwidth of the Gaussian
basis functions has been proposed. For the experimental results on synthetic data the authors
utilize a regular square grid with an ad hoc choice of the number of basis functions and the
number of latent sample points.

In this paper we introduce an approach to principal surfaces based on an alternative class
of functions together with an associated learning scheme, which constitutes an unsupervised
version of classical kernel regression. The resulting unsupervised kernel regression (UKR)
approach aims at overcoming the before-mentioned shortcomings of previous approaches to
principal surfaces. Thereby the focus of this paper is not on theoretically achievable learning
rates2 but on motivation and demonstration of the practical advantages of the UKR approach.

In the following section, UKR is derived as the unsupervised counterpart of the Nadaraya-
Watson kernel regression estimator. After that, a general UKR learning scheme is proposed
in terms of minimization of some cross-validated reconstruction error. Next, by means of the
kernel trick [12], the concept of UKR is extended to general feature spaces. In the subsequent
section, examples on synthetic and real-world data illustrate some of the convenient features
of the UKR approach in practice. In the discussion, we focus on the relations to other
approaches to nonlinear dimensionality reduction, especially on the pros and cons with regard
to spectral embedding methods. In the last section we draw some final conclusions.

2 Kernel Regression on Latent Variables

The basic idea of the UKR approach is to generalize the Nadaraya-Watson kernel regression
estimator [13, 14] to the unsupervised case of function learning. In the supervised case with
multivariate inputs and outputs, given a sample {(x1,y1), . . . , (xN ,yN)} from the joint distri-
bution of both variables, classical kernel regression is based on an estimate of the conditional
density p(y |x) = p(x,y)/p(x) using kernel density estimators [15] of the joint and marginal
densities, respectively. Then the corresponding conditional mean 〈y|x〉 yields an estimator
of the regression function f(x). In order to derive an unsupervised counterpart of a given
method for supervised function learning, we follow the Generalized Regression Framework
[1], which simply suggests to choose the same functional form of the corresponding estimator,
but to treat the missing input data as parameters. These parameters xi ∈ R

q serve as lower-
dimensional latent representations of the data points yi ∈ R

d and in general some suitable
constraints on these parameters have to be introduced in order to make learning possible.
For reasons which will be indicated below we here assume the latent locations to be restricted

2the study of learning rates is nevertheless important and will be the subject of future work.
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to some compact subset X ⊂ R
q. In the following, these latent points are the columns of

the parameter matrix X = [x1, . . . ,xN ], while the actual data points are the column vectors
of the matrix Y = [y1, . . . ,yN ] according to an iid sample from the unknown data space
distribution. With that choice the UKR function model takes the form

f(x;X) =
N

∑

i=1

K(x − xi)
∑N

j=1 K(x − xj)
yi = Yb(x;X), (2)

where the N -vector b(x;X) contains the kernel-based latent basis functions, normalized ac-
cording to a unit sum of its components bi(x;X). The density kernels K(v) are assumed to
have a continuous first derivative and may be chosen from a wide range of possible functions
(see e.g. [15]). Usually, the argument of a multivariate density kernel is subject to a linear
transformation by means of an invertible smoothing matrix H. In that way the common
notation K(H−1/2u) implies a prior scaling of the data dimensions and obviates the incorpo-
ration of any smoothing parameters into the kernel. Here we follow this convention but we
drop the smoothing matrix because the scale of the latent points themselves can be used to
control the degree of smoothing.

In general, the objective of unsupervised function learning is to find a suitable realization
of the mapping f : X → R

d together with an associated latent representation [16]. Remark-
ably, in the UKR case that objective can be stated as the problem of finding a suitable latent
mixture density

p(x;X) =
1

N

N
∑

i=1

K(x − xi), (3)

which takes the form of a kernel density estimator, given the latent points as “data”. For
notational convenience, in the following the dependency on the parameters X shall be omitted
from references to p. With that latent density model, the UKR-function can be completely
specified without any further parameters, except for some suitable restriction of the latent
domain X . Each basis function response bi(x;X) is then derived from the latent mixture
model as the posterior probability that x has been generated by the i-th mixture component.
As compared with function (1), the UKR-function (2) is also realized by linear combinations
of nonlinear latent basis functions. However, the corresponding weight matrix is now replaced
by the data matrix and all flexibility is incorporated into the N basis functions, which are
realized by normalized kernels with locations as free parameters. Thereby, each of the N basis
functions is associated with a data point such that the response of the i-th basis function
determines the weight of yi within a convex combination of data points.

In the following, we will show how the latent variable domain X may be restricted in
order to control the complexity of the UKR-manifold

M = {y ∈ R
d | y = f(x;X), x ∈ X}, (4)

which contains all possible images of the UKR-function. According to the UKR function
model (2), f can be viewed as an estimator based on a weighted average of data points with
the kernel defining the effective size of a latent neighborhood, which in turn determines the
weights of the data points. From this formulation it is clear that for a sufficiently smooth
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UKR-manifold q-dimensional points which are close in latent space are associated with d-
dimensional points on the manifold which are close in data space. Therefore, each point on
the UKR-manifold has to be the result of local averaging with respect to a non-vanishing
latent neighborhood in order to provide generalization, i.e. a sufficient smoothness of the
manifold. On the other hand, a necessary condition for generalization is that the UKR-
manifold has to be restricted in terms of an explicit or implicit upper bound on its spatial
extension. Otherwise, as with any other realization of principal curves or surfaces, a nonlinear
manifold may interpolate the data to yield a trivial solution for any approximation criterion
based on minimization of some empirical risk or reconstruction error.

For q = 1 the spatial extension can be measured by the curve-length
∫

X

‖Yb′(x)‖dx ≤ ‖Y‖2

∫

X

‖b′(x)‖dx ≤ ‖Y‖2 max
x∈X

‖b′(x)‖

∫

X

dx, (5)

where b′(x) denotes the vector of all derivatives at x with components

b′i(x) =
K ′(x − xi)

Np(x)
−

K(x − xi)p
′(x)

Np2(x)
. (6)

Thus, for compact support X and continuously differentiable kernels the length of the curve
is upper bounded if the density is lower bounded by some positive nonzero constant within
the latent domain. In a similar way the argument applies to manifolds with q > 1 (see
Appendix 7.1).

Recently, for principal curves within an empirical risk minimization framework [3] it has
been shown that an upper bound on the curve length is also sufficient for generalization. In
[17] it has been shown that alternatively also a bounded total turn of the curve provides a
sufficient condition for generalization. This formulation also includes the first principal axis
of a distribution as a special case. An extended analysis which directly applies to general
multidimensional manifolds has been provided in [5].

The above considerations imply that an upper bound on the spatial extension of the
manifold can be realized by defining the UKR-functions only on latent regions where the
density p(x) is sufficiently high. Then, the size of the latent domain will always be bounded
while at the same time the magnitude of the derivatives of the basis functions will be bounded.
From (5) and (6) it follows that an upper bound on the manifold’s spatial extension can
be directly controlled by a lower bound on the latent density, which determines both the
maximum possible magnitude of the derivatives and the size of the latent domain. Therefore,
in order to control the complexity of the UKR-manifold, it makes sense to define the latent
domain X by means of a density constraint

Xη = {x ∈ R
q | p(x) ≥ ηK(0)} , 0 < η < 1. (7)

As the manifold does not exist for regions of low density, the above constraint can give rise to
perforated or even disconnected manifolds. Although to our knowledge such manifolds have
not been considered by previous approaches to principal surface learning so far, for a good
low-dimensional representation it makes sense to define the approximating manifold only in
regions which are actually supported by the data space distribution, i.e. where it can be
estimated from the data.

In the following three subsections, we propose a UKR learning scheme for estimation of
the latent points.
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2.1 Data Space Reconstruction Error

After having defined the UKR function model, some learning scheme for selecting a certain
instance from the set of possible functions has to be specified. Analogous to the supervised
case where the regression function minimizes the mean square error (MSE), for the unsuper-
vised case we shall now consider the error which occurs if the data points are reconstructed
from their latent representations. Given N d-dimensional data points yi (the columns of Y)
which are reconstructed from N q-dimensional latent variable vectors xi (the columns of X),
the reconstruction error of the data can be defined in terms of the Frobenius-norm

R(X) =
1

N

N
∑

i=1

‖yi − f(xi;X)‖2 =
1

N
‖Y − YB(X)‖2

F , (8)

where B(X) = [b(x1;X), . . . ,b(xN ;X)] is the matrix of latent basis function responses.
Following the arguments in [3] we restrict the set of candidate models according to UKR-
manifolds with a bounded spatial extension. Using the density constraint (7) learning requires
to solve the constrained optimization problem:

minimize R(X) subject to ∀i xi ∈ Xη. (9)

For the limiting case η → 1 the kernel centers are forced to coincide in order to reach the
maximum possible overlap, which in turn lets the UKR-manifold shrink towards the sample
mean of the data. Unfortunately, prior specification of the parameter η would be difficult
without any knowledge on the optimal latent density. Considering η as a hyperparameter,
several values have to be compared for the generalization of the resulting UKR-manifolds.
As a convenient alternative, in the following we shall consider a learning objective for im-
plicit restriction of the latent variable domain, which does not require a prespecified density
threshold.

2.2 Leave-One-Out Cross-Validation

With respect to the model selection problem, a striking and very attractive feature of the
UKR-approach is that it allows us to perform leave-one-out cross-validation (CV) with ac-
tually no additional computational cost. As an analogue to the supervised CV-scheme for
finding suitable kernel bandwidths [15], the reconstruction error (8) may be replaced by the
cross-validated version

Rcv(X) =
1

N

N
∑

i=1

‖yi − f−i(xi;X)‖2 =
1

N
‖Y − YB̃(X)‖2

F ,

where f−i denotes the above linear combination of the data in (2) with the i-th data point
excluded. This leave-one-out UKR CV-error can simply be realized by a slightly modified
matrix of basis function activations B̃(X) where all kernel functions K(0) have been replaced
by zeros. To see the regularizing impact of the leave-one-out scheme, the CV-error can be
written as a modification of the original objective function (8) with penalty functions Si

scaling the terms of the original error sum

Rcv(X) =
1

N

N
∑

i=1

Si(X)‖yi − f(xi;X)‖2 (10)
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with penalty factors

Si(X) =

{

1 +
K(0)

∑

j 6=i K(xi − xj)

}2

∝

{

p(xi)

p−i(xi)

}2

.

From this formulation it is clear that the penalty is realized by an increasing weight Si(·)
according to an increasing ratio between the latent density and its leave-one-out version
p−i. In that way, the kernel functions are forced to overlap in order to prevent the latent
points from occupying regions of vanishing density. In the following we will outline an overall
optimization scheme for achieving good local minima of that objective function.

2.3 Parameter Optimization

For minimization of the UKR CV-error (10) it is important to find a sufficiently deep local
minimum of the highly nonconvex objective function. As with other approaches to principal
surfaces, shallow local minima can be associated with arbitrarily bad manifolds which com-
pletely miss the latent structure of the data. Because general methods for global optimization,
like simulated annealing, become impractical for large parameter spaces, a good initial guess
for the parameters is crucial for the success of any method for learning of principal surfaces.

If the optimal surface is not too far from a linear manifold then principal component
analysis (PCA) can provide a sufficiently good initialization of the parameters. However,
with UKR it is straightforward to exploit any algorithm for multidimensional scaling (MDS)
to yield a suitable initialization of the latent points, which are the only free parameters of the
model. In particular recent spectral embedding methods [18, 19, 20] which attempt to recover
the coordinates of the data with respect to some implicit nonlinear manifold model should be
well-suited for an initial guess of the UKR-parameters. Given a set of latent coordinates for
the data, all that is needed to specify a suitable initial UKR-function is an adequate scaling
of these coordinates. The scaling corresponds to the selection of the kernel bandwidth in the
case of normalized latent coordinates with a fixed scale (e.g. unit variance). Optimal scale
factors are crucial for adjusting the complexity of the initial UKR model and can be achieved
by minimization of the UKR CV-error.

In practice we might have to choose an optimal initialization from a set of candidates. If
we are using a nonlinear spectral method like LLE [18] to find an initialization, for example,
the set of candidates will result from the fact that spectral embedding methods depend on
a natural neighborhood parameter that will have to be adjusted prior to using UKR. In
addition, it can be valuable to include a PCA solution in the candidate set, since for example
in case of very noisy data, the nonlinear spectral method might fail.

In order to select the optimal initialization, we can compare the CV-errors for several
candidates and choose the one with the lowest error. If a particular nonlinear manifold
model provides the best candidate solution we assume that this solution is close enough
to the optimal manifold and therefore, starting with the corresponding scaled coordinates,
we directly minimize the CV-error. If, however, a coarse PCA-based solution is selected
among all candidate solutions, we apply a homotopy method [21] for gradually increasing
the model complexity during optimization in order to prevent bad local minima. This can
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be achieved by stepwise relaxation of the density constraint (7) via decreasing η until finally
the unconstrained CV-error is minimized.

In the following we summarize the overall optimization scheme for learning of the UKR
model:

1. Initial candidates: Provide a set of L normalized candidate solutions

C = {X̄j ∈ R
q×N |X̄jX̄

T
j = Iq, j = 1, . . . , L}.

2. Scale optimization: Find optimal scale factors sj = [s
(j)
1 , . . . , s

(j)
q ]T according to

sj = arg min
s

Rcv(diag(s)X̄j)

and set Xj = diag(sj)X̄j.

3. Candidate selection: As an initial guess select best matrix X̂ = Xk according to

k = arg min
j

Rcv(Xj).

4. Homotopy method: If X̂ corresponds to the scaled PCA solution then for a sequence of
n decreasing density thresholds η = η1, . . . , ηn solve

X̂ = arg min
xi∈Xη

Rcv(X).

5. CV-error minimization: Starting either with step 3) or step 4) solution, compute

X̂ = arg min
X

Rcv(X).

6. Density threshold: Select final density threshold according to

η = min
i

p(xi;X)/K(0).

For gradient-based optimization in steps 4 and 5, the required matrix gradient together
with some considerations concerning computational complexity of function and gradient eval-
uation can be found in Appendix 7.2.

With regard to the last step of the above scheme we like to stress that the choice of a
suitable density threshold η should usually be driven by application specific constraints. In
applications where no additional data have to be projected after training there is actually
no need to specify that parameter at all. In other applications a close inspection of the
latent density after training may for example suggest to adjust η according to the 90 percent
contour of the density in order to reduce the influence of outliers on the boundaries of the
final UKR-manifold. Therefore the above choice should only provide a default value which
just ensures that all reconstructions of the training data are part of the manifold.
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3 Feature Space UKR

As another convenient feature of the UKR approach the corresponding function model (2)
also suggests to generalize unsupervised learning of nonlinear functions, beyond conventional
finite-dimensional data spaces, to general Hilbert spaces, implied by the associated inner
product of a given Mercer or positive definite kernel. In order to apply the kernel trick [12] to
UKR learning we first have to write our algorithm in a form solely based on inner products
of the data. The reconstruction error (8) therefore can be written as

R(X) =
1

N
‖Y − YB(X)‖2

F =
1

N
‖YB̄‖2

F =
1

N
tr(B̄TYTYB̄) =

1

N
tr(B̄TGB̄), (11)

where B̄ ≡ I − B(X) and G ≡ YTY is the Gram matrix of the data with entries gij =
〈yi,yj〉. Replacing the inner product 〈·, ·〉 with a kernel function k(·, ·) yields an implicit
mapping Φ(·) from data space into some feature space F with the property 〈Φ(yi),Φ(yj)〉 =
k(yi,yj). Note that the kernels applicable here belong to a different class of functions than
the kernels used for the UKR basis functions, which have been derived from kernel density
estimators3. UKR as a translation invariant algorithm works not only with the commonly
used positive definite or Mercer kernels, but also with the larger class of conditionally positive

definite kernels [12].
Computation of the feature space error only requires to compute the Gram matrix of

the transformed data matrix, i.e. the matrix of all inner products between feature vectors,
and therefore, only the corresponding kernel matrix K(Y) with elements kij = k(yi,yj) is
required. Consequently, also the partial derivatives may solely be computed in terms of inner
products, i.e. by using the kernel matrix:

∂R(X)

∂xij

=
1

N

∂

∂xij

tr(B̄TK(Y)B̄) = −
2

N
tr

(

B̄TK(Y)
∂B

∂xij

)

, (12)

where the matrix ∂B/∂xij contains all partial derivatives ∂br(xs;X)/∂xij of the basis func-
tions. By using the above formalism, UKR-functions may be fitted in feature spaces in the
same way as in usual data spaces. For complexity control of the feature space variant the pre-
vious cross-validation scheme based on (10) applies in the same way as in the corresponding
data space formulation. For very high-dimensional data spaces R

d it may also make sense to
consider the feature space formulation (using the standard dot product as a kernel) in order
to reduce computational cost. For that purpose one can precalculate the Gram matrix of the
data in order to avoid direct evaluation of the UKR-function Yb(·;X), which scales linearly
with d.

A minor drawback of the feature space variant remains: Because the UKR-function in a
kernel feature space takes the form

f(x;X) =
∑

j

Φ(yj)bj(x;X), (13)

in general the points of the UKR-manifold in feature space cannot be given explicitly. Al-
though several methods that can map feature space vectors back to data space have recently

3Therefore, a different notation is used for both kinds of kernels: k(v,v′) for the not necessarily translation
invariant Mercer kernels, K(v − v

′) for the density kernels.
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been proposed (see [22] and [23], for example), in the general case where an exact pre-image
does not exist these methods can only yield an approximation.

Fortunately, in applications where only dot products between (13) and other feature
space elements are needed, an explicit computation of the mapping is not necessary. Here
one may compute a linear combination of dot products, instead of a dot product with a linear
combination:

〈Φ(y), f(x;X)〉 =

〈

Φ(y),
∑

j

Φ(yj)bj(x;X)

〉

=
∑

j

〈Φ(y), Φ(yj)〉 bj(x;X)

=
∑

j

k(y,yj)bj(x;X). (14)

This can for instance be utilized to visualize the classification boundary of a kernel-based
support vector machine. In that case the additional kernel parameters may be selected in a
supervised manner. But also in a completely unsupervised setting feature space UKR may
be useful, and in the following we propose a special kernel for realization of an alternative
metrics.

If the Euclidean norm does not provide an adequate distance metrics for the data at
hand, it can be beneficial to measure L1-distances instead. UKR is explicitly based on the
Euclidean norm, but by means of the kernel trick one can nonetheless effectively work with
distances based on the L1-norm. Defining a kernel function

k(y,y′) =
1

2
(‖y‖1 + ‖y′‖1 − ‖y − y′‖1) (15)

yields a positive definite kernel matrix K(Y) = (k(yi,yj)) and thus implies existence of a
mapping Φ(y) into some feature space F (see Appendix 7.3 for a derivation). The Euclidean
distance between two feature space images can be expressed by

‖Φ(y) − Φ(y′)‖2
2 = 〈Φ(y) − Φ(y′), Φ(y) − Φ(y′)〉

= k(y,y) − 2k(y,y′) + k(y′,y′)

= ‖y − y′‖1 . (16)

In that way the derivation of the above L1-kernel corresponds to the definition of kernels on
the basis of loss functions [24].

4 Experiments

We applied UKR on synthetic and real-world datasets in order to illustrate the proposed
learning scheme of section 2.3 on practical examples. As indicated in 2.3, the proposed UKR
optimization scheme can easily incorporate spectral embedding methods for initialization of
the UKR parameters. For the exemplary results presented here, we utilized the Locally Linear
Embedding algorithm [18]. In addition, we used an efficient shortcut for finding optimal
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scalings that are necessary to turn the normalized eigenvector solutions into good UKR
model initializations: We found that for this purpose good initial scalings can be obtained
from kernel bandwidth selection methods for density estimation. In our experiments we
utilized likelihood cross-validation (LCV, see e.g. [25]) to select suitable bandwidths, i.e. to
adjust the initial scale of the latent coordinates. Subsequent optimization of the scale of
the latent variables with the objective to minimize the CV-error (10) was performed by a
direct search algorithm [26] which may easily be replaced by more sophisticated methods for
unconstrained nonlinear optimization.

4.1 “Noisy Spiral” data

To demonstrate the complete UKR learning scheme on a non-trivial toy example we fitted
an UKR curve to a sample (N = 300) of the “noisy spiral” distribution depicted in figure
1. The data was created by adding Gaussian noise of standard deviation σ = 0.05 in both
dimensions to a sample of a spiral with two whorls, its radius ranging from 0.2 to 1.2.

For initialization (cf. step 1 in section 2.3) we applied the LLE algorithm based on K
nearest neighbors. In this experiment, we varied K from 4 to 14 neighbors, giving rise to 11
different candidate sets of latent coordinates. As a twelfth candidate, we used a PCA solution.
For each candidate, the optimal scaling was determined as described above, according to step
2 of our optimization scheme.

Fig. 1 shows the resulting initializations and their corresponding CV-errors (10). For
each of the twelve cases we have visualized the initial UKR-manifold by evaluating the UKR
function (2) on 1000 regularly spaced points between the smallest and the largest latent
coordinate.

As described in step 3 of section 2.3, we selected the candidate model with the lowest
CV-error, which in this case was the scaled LLE solution of neighborhood size K = 10. For
the fine tuning (step 5) of the UKR model, we further minimized the CV-error (10), this
time varying not only the scale, but the whole set of latent parameters. For this task, we
used the RPROP algorithm [27].

Fig. 2 shows how the UKR model is affected by the final gradient-based optimization.
Note that the CV-error as well as the visualized manifold practically remains almost un-
changed between 500 and 1000 RPROP steps.

From the UKR curves in Fig. 2 the reader might argue that the method already tends to
over-fitting in this example. This is actually not the case as can be seen from estimation of the
expected reconstruction error for the different stages of the optimization. For that purpose
we projected 3000 test data points sampled from the same “noisy spiral” distribution onto the
UKR manifold in the different stages. For these projections we initialized the minimization
problem

x̂ = arg min
x

‖y − f(x;X)‖ s.t. p(x) ≥ ηK(0) (17)

with the “nearest reconstruction” among the training data. That is, we chose that xi among
the 300 latent locations as an initial value which yields the nearest point on the manifold
with respect to the given test point. The optimization itself was carried out by the RPROP
algorithm in combination with a barrier function to realize the constraint. The density
threshold η used to restrict the latent domain was selected by the heuristics described by

11



K=4: Rcv=0.4343 K=5: Rcv=0.2223 K=6: Rcv=0.6240 K=7: Rcv=0.0137

K=8: Rcv=0.0045 K=9: Rcv=0.0865 K=10: Rcv=0.0043 K=11: Rcv=0.0230

K=12: Rcv=0.0857 K=13: Rcv=0.0910 K=14: Rcv=0.3331 PCA: Rcv=0.2606

Figure 1: Fitting UKR curves to a “noisy spiral” sample; Below each plot, the size of the LLE
neighborhood (K) is given, as well as the CV-error after initialization. The plot in the lower
right corner shows the manifold retrieved by PCA initialization. The black curve depicts the UKR
manifold whereas the sample data is shown as dark gray dots. The initial solution (as given by LLE
or PCA) is plotted in light gray. Here we just connected the data points in the order LLE/PCA
places them in latent space, which corresponds to an infinite scale of the latent variable. Note that
the visually best solutions (K = 8, 10) correspond to the smallest CV-errors.

step 6 in section 2.3. Table 1 shows the resulting errors for the different stages and clearly
shows that both training (CV) and test error are decreasing for the more complex curves.
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Init.: Rcv=0.0043 200 steps: Rcv=0.0019 500 steps: Rcv=0.0018 1000 steps: Rcv=0.0018

Figure 2: Gradient-based optimization of the UKR curve on “noisy spiral” sample; The shape of
the UKR manifold and the corresponding CV-error is depicted after initialization based on the best
scaled LLE solution (K=10) as well as after 200, 500 and 1000 RPROP steps.

No. of steps initialization 200 500 1000

CV-error 0.00429 0.00189 0.00182 0.00178

Proj. error 0.00287 0.00244 0.00237 0.00232

Table 1: Mean error for projecting 3000 test points onto the “noisy spiral” UKR manifold

4.2 Handwritten Digits

We applied UKR to the problem of learning suitable manifold representations for handwritten
digit data. In this experiment we used the USPS digits dataset (see e.g. [12]), which contains
a total of 7291 grayscale images of size 16x16 divided into 10 classes. For visualization
purposes, we fitted a 2-D manifold to the USPS subset representing the digit “2”, which left
us at 731 data vectors with 256 dimensions.

To demonstrate UKR’s flexibility with respect to the choice of the latent kernel functions
and to show how a finite support kernel can improve computational efficiency, we performed
this experiment with both the Gaussian kernel and the Quartic kernel. The latter corresponds
(up to some constant scaling) to the square of the multivariate Epanechnikov kernel [15],
which due to squaring becomes differentiable:

KQ(xr − xs) ∝ [1 − ‖xr − xs‖
2]2+. (18)

The resulting sparse structure of B(X) can lead to a significant performance gain with respect
to evaluation of the error function and its gradient and is therefore particularly useful in
combination with large datasets (see Appendix 7.2).

For fitting the model, we followed the parameter optimization scheme described in section
2.3. That is, we first calculated the PCA solution and several LLE solutions for a broad range
of neighborhood sizes (K = 2, 3, . . . , 21). Next, as in our “noisy spiral” experiment, we opti-
mized the scale of these initialization candidates by first performing LCV-based bandwidth
selection and then applying a direct search method for fine tuning.

As before, in order to select the best candidate among our set of scaled LLE and PCA
solutions, we calculated the CV-error (10) for each candidate. Fig. 3 shows these errors for
both the Quartic and the Gaussian kernels. Note that both error curves are close and that
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the corresponding UKR models share the LLE solution with K = 12 nearest neighbors as
the best initialization candidate (of course, each uses its own scale).
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Figure 3: CV-errors for the different LLE and PCA solutions

As a last training step, we performed 500 RPROP steps minimizing the CV-error (10).
At this stage, the error dropped from 83.53 to 50.90 for the Gaussian-based UKR model and
from 83.62 to 51.52 for the model using the Quartic kernel in latent space.

Fig. 4(a,b) shows the resulting latent coordinates and the corresponding density. To
create Fig. 4(c,d), we sampled the latent space on a regular grid and evaluated the regression
function (2) as well as the latent density on every node. We displayed the grayscale images
corresponding to the UKR function value and additionally scaled their intensity by the latent
density at the specific grid coordinates.

Note that it is possible to assign meaning to the axes in the sampled manifold plots: From
left to right, the digits loose their lower left bow and look more and more like a “Z”. From
top to bottom, the digits get thinner and flatter.

While fitting UKR models with both the Gaussian and the Quartic kernel led to similar
results with respect to CV-errors and visualization, the difference in terms of CPU time is
remarkable. We measured the time needed to perform 500 RPROP steps on a Linux PC with
a Pentium IV processor running at 1.8 GHz and 1 GB RAM. Since the number of dimensions
(256) is nearly half as big as the number of data (731), we performed this test using both
normal data space UKR and feature space UKR with the trivial dot product kernel (cf.
Appendix 7.2). The resulting CPU times (averaged across two very close test runs) can be
found in Table 2.

Method \ Kernel Gaussian Quartic

Data Space UKR 753 s 30 s

Feature Space UKR 1085 s 25 s

Table 2: CPU time for 500 RPROP steps on the digit “2” dataset
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(a) Latent coord. and density (Gaussian kernel) (b) Latent coord. and density (Quartic kernel)

(c) Sampled manifold (Gaussian kernel) (d) Sampled manifold (Quartic kernel)

Figure 4: Latent coordinates, densities and sampled manifolds of both the Gaussian and Quartic
kernel based UKR model

4.3 ”Oil Flow” Data

For our third experiment we used the “oil flow” data set [7], which has also been used in [5].
The data set consists of 12-dimensional (labelled) observations, each taking on one of three
possible labels that indicate different geometric configurations inside an oil pipeline. It is
subdivided into a training set, a validation set and a test set containing 1000 examples each.

Since the data set is fairly clustered (see Fig. 5(a)), LLE performs poorly. For LLE to
return reasonable results, one has to make sure that the neighborhood graph associated with
respect to a neighborhood value K is connected. For the “oil flow” dataset this is the case
for K ≥ 46. Within neighborhoods of that size the real local properties of the data are
mostly hidden, so one would hardly expect to retrieve a good mapping. As a result, all LLE
solutions that we tested (we used K = 46, 51, 56 . . . 101) led to substantially larger CV-errors
(10) than a PCA solution.

We therefore chose the PCA solution as an initialization. According to step 4 of the
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optimization scheme (section 2.3), we used a homotopy based approach for optimization in
order to avoid poor local minima. Starting from the PCA solution scaled down to a total
variance of 0.01, we carried out 7 homotopy steps corresponding to density constraints with
η = 0.5, 0.25, 0.1, 0.05, 0.025, 0.01, 0.005. For each homotopy step, we performed 100 RPROP
steps in combination with a barrier function to realize the constraints. After the homotopy
steps, we performed further 300 RPROP steps minimizing the unconstrained CV-error (10).
Note that the model selection problem is again tackled solely by minimization of the UKR
CV-error. Although the η-values may affect which local minimum is found, they have no (at
least no conceptual) influence on the model complexity.

In this experiment, we again used both the Gaussian kernel and the Quartic kernel in
latent space, but here we present only the results of our Gaussian-based UKR model, since
it led to slightly better results in terms of the final CV-error. Note that the gain in efficiency
we get by using the Quartic kernel is not that big for the homotopy-based training anyway.
This is due to the fact that in early homotopy steps the density constraint prevents a high
sparseness of the matrix of basis functions B(X).

To demonstrate UKR’s ability to work with a different metrics, we fitted another manifold
to the training set: In addition to the above data space UKR we now performed feature space
UKR using the L1-kernel (15) proposed in section 3. In this case, we replaced PCA by Kernel
PCA (KPCA) for initialization.

In a follow-up experiment, we exploited the manifold structure by mapping the “oil flow”
test set onto the trained manifolds. Here, we followed the strategy already described in our
“noisy spiral” experiment. That is, we constrained the latent domain according to our density
threshold heuristics and again performed the test set projections by the RPROP algorithm
in combination with a barrier function.

As an objective measure for the preservation of structure that the different methods give
rise to, we then considered classification performance in the latent space, now using the labels
of the data. For this end we used a kernel density classifier (KDC), as suggested by UKR’s
built in latent space density model. For each test case projection we measured the class
specific densities and assigned the test case to the class with the highest density. Table 3
shows the resulting error rates in comparison with the rates obtained by applying the kernel
density classifier on the PCA and the KPCA solution. For these solutions we determined
suitable kernel bandwidths using LCV. For comparison, we also included the rates obtained
by using nearest neighbor (NN) classification in the 2D latent space.

Method \ Kernel L2 L1

UKR + KDC 0.9% 0.6%

UKR + NN 1.2% 0.9%

PCA/KPCA + KDC 12.0% 16.6%

PCA/KPCA + NN 15.2% 17.7%

Table 3: Comparison of classification performance (error rate) on the “oil flow” test data.
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(a) PCA (L2) (b) KPCA (L1)

(c) UKR (L2) (d) UKR (L1)

(e) Class borders & test data proj. (L2) (f) Class borders & test data proj. (L1)

Figure 5: Latent coordinates of “oil flow” dataset retrieved by (K)PCA and (feature space) UKR.
(e) and (f) show the resulting latent densities, the class borders based on kernel density classifiers
as well as the test data projections.
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Figures 5(a-d) show the PCA resp. Kernel PCA as well as the UKR solutions for the
latent variables. The data points are depicted by different symbols corresponding to their
class membership. Note that UKR separates the classes much better than (K)PCA and that
the different metrics have an effect on which classes are contiguous. Figures 5(e,f) show the
total density, the class borders and the density threshold contour p(x) = ηK(0) as well as
the test data projections depicted by their corresponding class symbols.

5 Discussion

Considering recent spectral embedding methods for nonlinear dimensionality reduction [18,
19, 20] one may raise the question whether algorithms for learning of principal surfaces
are actually necessary in order to derive a suitable low-dimensional representation for high-
dimensional data. As compared with classical methods for nonlinear dimensionality reduc-
tion, which rely on local minimization of highly nonconvex objective functions (see e.g. [28]),
spectral methods provide a favourable scheme for global optimization, based on computation
of some N -dimensional eigenvectors. Unfortunately, for nonlinear dimensionality reduction
these methods require the specification of some essential complexity parameter, which usually
adjusts the effective size of a data space neighborhood. Although the resulting representa-
tions are rather sensitive with respect to this complexity parameter, no common rule is known
how to adjust this parameter. Consequently, all available implementations lack an automatic
neighborhood selection procedure and therefore the user is restricted to the unsatisfactory
practice of adjusting this parameter “by eye”.

Another shortcoming of the above spectral methods concerns the projection of new data
which is impossible due to the lack of an explicit manifold model which would make it possible
to measure the distance of data points with respect to the low-dimensional surface. For the
same reason it is not possible to sample the manifold, i.e. to compute the data space images
of latent points.

Although Kernel PCA [29] has not been proposed for learning of descriptive low-dimen-
sional representations [5], in comparison with the above spectral methods for nonlinear di-
mensionality reduction, a linear manifold in feature space provides an explicit manifold rep-
resentation in this case. Therefore the projection indices, i.e. the latent coordinates of new
data points can be computed with ease, but again, it is not generally possible to sample the
manifold due to the lack of an exact mapping from latent space to data space. This short-
coming is also faced with feature space UKR and has been discussed in section 3. Although
the feature space distance with respect to the linear manifold can be measured, it is not
clear whether it can be used for model selection with regard to the kernel parameters. To
our knowledge, in practice no unsupervised model selection has been performed for Kernel
PCA so far. The close relations between the above spectral methods and Kernel PCA have
recently been indicated in [30].

Summarizing, we argue that spectral methods for nonlinear dimensionality reduction do
not provide a general alternative to learning of principal surfaces. Due to the lack of an
explicit data space representation of the manifold, as compared with principal surfaces, the
application scope of these methods is restricted. In addition, these methods do not provide
solutions to the inherent model selection problem which requires to adjust the complexity of
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the underlying mapping to latent space. However, regarding the inherent parameter initial-
ization problem of principal surfaces, as shown in section 4, spectral embedding methods in
combination with UKR can provide a valuable alternative to classical initializations based
on linear PCA.

6 Conclusion

Unsupervised Kernel Regression (UKR) has been proposed as an alternative approach to
learning of principal surfaces which remedies some of the inherent difficulties of previous
approaches within that field. As compared with previous approaches to principal surfaces,
UKR offers a practical way to cope with the model selection problem, since it allows for
leave-one-out cross-validation without any additional computational cost. Thereby, the UKR
parametrization obviates the necessity of an a priori specification of a set of basis functions
which has to cover the latent space in a suitable way. Therefore, also higher-dimensional
latent spaces can easily be realized, provided there are enough data. Although previous
approaches to principal surfaces always assumed very simple topologies of the manifold, the
variability of UKR consequently meets the requirements of a good approximation of a general
data space distribution.

Regarding optimization issues, it is straightforward to initialize UKR parameters by
means of nonlinear spectral methods. The incorporation of an initial set of latent coor-
dinates is easily possible, because the latent points themselves are the only parameters of
the UKR model. In this way, UKR can even be used to select the best initial set of la-
tent coordinates among several candidate sets which may arise from different choices for the
hyperparameter of the utilized spectral method.

Finally, UKR offers a new perspective on principal surfaces to cope with non-Euclidean
data spaces. By means of the kernel trick principal surfaces may now be fitted in general
feature spaces according to a given kernel for computing the corresponding inner product.
In that way UKR allows us to utilize string-, tree- or even specialized engineering kernels for
nonlinear projection of text documents, genomic sequences and other data which are difficult
to represent within traditional vector spaces.

7 Appendix

7.1 Spatial extension of UKR-manifold

To generalize our argument from section 2 to the case q > 1, we have to show that the
manifold’s area or volume is bounded. For this end, recall that an infinitesimal volume
element dx1dx2 . . . dxq at a point x in latent space transforms into a hyperparallelepiped at
f(x;X) in data space, spanned by the vectors J1dx1,J2dx2 . . .Jqdxq. Here, Ji denotes the
i-th column of the Jacobian of f(x;X). Since the volume of a hyperparallelepiped is less or
equal to the volume of a hyperrectangle of corresponding side lengths, and since the norm
of each Ji is less or equal to the largest singular value (and thus, the matrix norm) of the
complete Jacobian Jf , the volume of our infinitesimal hyperparallelepiped is bounded by
‖Jf‖

q
2dx1dx2 . . . dxq.
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We can use this inequality to estimate the complete manifold’s volume V by integration
over the latent domain:

V ≤

∫

X

‖Jf (x;X)‖q
2dx1dx2 . . . dxq ≤ ‖Y‖q

2

∫

X

‖Jb(x;X)‖q
2dx1dx2 . . . dxq. (19)

The components of Jb(x;X), the Jacobian of b(x;X), are given by

(Jb)ij =
∇jK(x − xi)

Np(x)
−

K(x − xi)∇jp(x)

Np2(x)
(20)

and are finite for continuously differentiable kernels and non-vanishing density. Thus, the
matrix norm ‖Jb(·)‖2 ≤ ‖Jb(·)‖F is bounded. For compact support X , this implies that the
manifold’s volume (or area for q = 2) is bounded, too.

7.2 UKR Gradient

With the matrix B of basis function activations according to the elements

brs =
K(xr − xs)

∑N
t=1 K(xt − xs)

(21)

the partial derivatives of the UKR reconstruction error (8) w.r.t. the latent variable param-
eters have the general form

∂R(X)

∂xij

=
1

N

∑

r,s

∂tr([B − I]TYTY[B − I])

∂brs

·
∂brs

∂xij

=
2

N

∑

r,s

mrs
∂brs

∂xij

(22)

with elements mrs of matrix M ≡ YTY[B−I] where the Gram matrix YTY may be replaced
by a general kernel matrix K(Y) (see 3).

In order to give a more specific form of the partial derivatives (22) one has to make
a choice concerning the kernel functions in latent space (which have been derived from a
specific kernel density estimator). An important class of kernels, which will be considered in
the following, arises from functions of the squared Euclidean norm:

K(xr − xs) = f(‖xr − xs‖
2
2) (23)

with partial derivatives given by

∂K(xr − xs)

∂xij

= 2f ′(‖xr − xs‖
2
2)(xir − xis)(δrj − δsj). (24)

Defining matrix P with elements

prs =
−2f ′(‖xr − xs‖

2
2)

∑N
t=1 K(xt − xs)

(25)
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the partial derivatives of the basis function responses can be written

∂brs

∂xij

= prs[δrjxis − δrjxir − δsjxis + δsjxir]

−brs

[

δsj

∑

t

pts(xit − xis) − pjs(xij − xis)

]

. (26)

Insertion of the partial derivatives into (22) and rearranging the terms yields

∂R(X)

∂xij

=
2

N

∑

r

(xir − xij)(qjr + qrj), (27)

where we used the elements

qjr = pjrmjr − pjr

∑

s

msrbsr (28)

of an N × N -matrix Q. Using the Schur product A = B ∗ C with aij = bijcij and 1 as a
vector of N ones, (27) and (28) can be written in matrix form as

Q = P ∗ [M − 11T (M ∗ B)] (29)

∇XR =
2

N
X

{

Q + QT − diag(1T [Q + QT ])
}

. (30)

In this paper we consider Gaussian and Quartic kernels given by

KG(xr − xs) ∝ exp(−
1

2
‖xr − xs‖

2
2) (31)

KQ(xr − xs) ∝ [1 − ‖xr − xs‖
2
2]

2
+, (32)

which imply specific realizations of the P-matrix:

pgauss
rs =

KG(xr − xs)
∑

t KG(xt − xs)
(33)

pquart
rs = 4 ·

√

KQ(xr − xs)
∑

t KQ(xt − xs)
. (34)

Note, that for Gaussian Kernels P equals the matrix of basis function responses B.
As already mentioned in section 2.2, the CV-error (10) can be calculated by a slight

modification of the matrix of basis functions. This also applies to computing the gradient,
where all occurences of both K(0) and f ′(0) have to be replaced by zeros.

Most of the computational effort to perform a single gradient evaluation goes into cal-
culating the matrix M = YTY[B − I] or, in case of feature space UKR, M = K(Y)[B − I].
When using a latent kernel of infinite support (e.g. the Gaussian kernel), this operation has
complexity O(dN2) for using the d×N data matrix or O(N3) in case of feature space UKR.
For 2d > N , it is therefore cheaper to perform feature space UKR with the precalculated
kernel (feature) matrix K(Y) = Y

T
Y.
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If a latent kernel of finite support is utilized (e.g. the Quartic kernel), the resulting
matrices B and P are sparse. This can be directly exploited to speed up the calculation
of M by using sparse BLAS routines. Because the matrix M only appears within Schur
products together with sparse matrices (29), as a second speed-up possibility M does not
even have to be computed completely. For a d × N data matrix, computing the necessary
elements of M is only of complexity O(dNnz) where Nnz is the number of non-zero elements
in B.

Since feature space UKR does not involve an intermediate multiplication with the data
matrix Y, it profits even more from B’s sparseness. Here, the computational complexity is
O(

∑

i(n
i
nz)

2) where ni
nz is the number of non-zero elements in the i-th column of B. For this

reason, fitting of Quartic-based UKR models can be accelerated by using trivial dot product
feature space UKR already for values of d substantially smaller than N

2
.

7.3 Positive definiteness of L1-kernel

In section 3 we introduced a kernel function that maps input space L1-distances to L2-
distances in feature space.

To show that the kernel we used is indeed positive definite (pd), and thus a mapping Φ(·)
exists, we rely on theorems stated in [12]. First, it is known that k2(y,y′) = −‖y − y′‖β

2 is
conditionally positive definite (cpd) for all values 0 ≤ β ≤ 2. Now, considering the special
case of 1-D data and β = 1, one gets k1(y, y′) = −|y − y′| as a cpd kernel. A sum of cpd
kernels is again cpd, so k1(y,y′) = −‖y − y′‖1 =

∑

i −|yi − y′
i| is cpd. Finally, one can

construct a pd kernel k(·, ·) from a cpd kernel k̃(·, ·) in the following way :

k(y,y′) =
1

2

(

k̃(y,y′) − k̃(y,y0) − k̃(y0,y
′) + k̃(y0,y0)

)

.

Setting y0 = 0 and k̃ = k1 immediately yields that k(y,y′) = 1
2
(‖y‖1 + ‖y′‖1 − ‖y − y′‖1)

is positive definite. As mentioned before UKR also works with cpd kernels, so the last step
was not really necessary.
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