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Abstract 

The notion of generalization ability can be defined precisely as the pre

diction risk, the expected performance of an estimator in predicting new 
observations. In this paper, we propose the prediction risk as a measure 
of the generalization ability of multi-layer perceptron networks and use it 
to select an optimal network architecture from a set of possible architec
tures. We also propose a heuristic search strategy to explore the space of 
possible architectures. The prediction risk is estimated from the available 
data; here we estimate the prediction risk by v-fold cross-validation and 

by asymptotic approximations of generalized cross-validation or Akaike's 
final prediction error. We apply the technique to the problem of predicting 

corporate bond ratings. This problem is very attractive as a case study, 
since it is characterized by the limited availability of the data and by the 
lack of a complete a priori model which could be used to impose a structure 
to the network architecture. 

1 Generalization and Prediction Risk 

The notion of generalization ability can be defined precisely as the prediction risk, 

the expected performance of an estimator is predicting new observations. Consider 

a set of observations D = {(Xj, tj); j = 1 ... N} that are assumed to be generated 
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as 

( 1) 

where J.l(x) is an unknown function, the inputs Xj are drawn independently with 
an unknown stationary probability density function p(x), the fj are independent 

random variables with zero mean (l = 0) and variance (j~, and the tj are the 
observed target values. 

The learning or regression problem is to find an estimate jt)..(x; D) of J.l(x) given 
the data set D from a class of predictors or models J.l)..(x) indexed by 'x. In general, 
,x E A = (5, A, W), where 5 C X denotes a chosen subset of the set of available 
input variables X, A is a selected architecture within a class of model architectures 
A, and Ware the adjustable parameters (weights) of architecture A. 

The prediction risk P(,x) is defined as the expected performance on future data and 
can be approximated by the expected performance on a finite test set: 

(2) 

where (xi, ti) are new observations that were not used in constructing jt)..(x). In 

what follows, we shall use P(,x) as a measure of the generalization ability of a model. 
See [4] and [6] for more detailed presentations. 

2 Estimates of Prediction Risk 

Since we cannot directly calculate the prediction risk P).., we have to estimate it 
from the available data D. The standard method based on test-set validation is 
not advisable when the data set is small. In this paper we consider such a case; 
the prediction of corporate bond ratings from a database of only 196 firms. Cross
validation (CV) is a sample re-use method for estimating prediction risk; it makes 
maximally efficient use of the available data. Other methods are the generalized 
cross-validation (GCV) and the final prediction error (FPE) criteria, which combine 
the average training squared error ME with a measure of the model complexity. 
These will be discussed in the next sections. 

2.1 Cross Validation 

Cross-Validation is a method that makes minimal assumptions on the statistics of 
the data. The idea of cross validation can be traced back to Mosteller and Tukey [7]. 
For reviews, see Stone [8, 9], Geisser [5] and Eubank [4]. 

Let jt)..(j)(x) be a predictor trained using all observations except (Xj, tj) such that 

jt )..(j) (x) minimizes 

ME j = (N ~ 1) L (tk - jt)..(j)(Xk») 2 

k~j 

Then, an estimator for the prediction risk P(-X) is the cross validation average 
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squared error 
N 

CV(,x) = ~ E (tj - flA(j)(Xj)) 2 

N j=l 
(3) 

This form of CV(,x) is known as leave-one-out cross-validation. 

However, CV(,x) in (3) is expensive to compute for neural network models; it in
volves constructing N networks, each trained with N - 1 patterns . For the work 
described in this paper we therefore use a variation of the method, v-fold cross

validation, that was introduced by Geisser [5] and Wahba et al [12]. Instead of 
leaving out only one observation for the computation of the sum in (3) we delete 
larger subsets of D. 

Let the data D be divided into v randomly selected disjoint subsets Pj of roughly 

equal size: Uj=lPj = D and Vi i= j, Pi n Pj = 0. Let N j denote the number of 

observations in subset Pj. Let flA(Pj) (x) be an estimator trained on all data except 

for (x, t) E Pj. Then, the cross-validation average squared error for subset j is 
defined as 

CVPj('x) = ~. E (tk - flA(Pj)(Xk)) 2 
, 

3 (Xk,tk)ePj 

and 
1 

CVp(,x) = ; L CVPj('x). (4) 
j 

Typical choices for v are 5 and 10. Note that leave-one-out CV is obtained in the 

limit v = N. 

2.2 Generalized Cross-Validation and Final Prediction Error 

For linear models, two useful criteria for selecting a model architecture are general
ized cross-validation (CCV) (Wahba [11]) and Akaike's final prediction error (FPE) 

([1]): 

GCV('x) = ASE('x) 1 2 

(I-¥) 
( I+~) FPE('x) = ASE('x) 1- ~ . 

S(A) denotes the number of weights of model'x. See [4] for a tutorial treatment. 

Note that although they are slightly different for small sample sizes, they are asymp
totically equivalent for large N: 

p(,x) - ASE('x) (1 + 2S~)) ~ GCV('x) ~ FPE('x) (5) 

We shall use this asymptotic estimate for the prediction risk in our analysis of the 
bond rating models. 

It has been shown by Moody [6] that FPE and therefore p(,x) is an unbiased estimate 
of the prediction risk for the neural network models considered here provided that 

(1) the noise fj in the observed targets tj is independent and identically distributed, 
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(2) weight decay is not used, and (3) the resulting model is unbiased. (In practice, 
however, essentially all neural network fits to data will be biased (see Moody [6]).) 
FPE is a special case of Barron's PSE [2] and Moody's GPE [6]. Although FPE 

and P{A.) are unbiased only under the above assumptions, they are much cheaper 
to compute than GVp since no retraining is tequired. 

3 A Case Study: Prediction of Corporate Bond Ratings 

A bond is a debt security which constitutes a promise by the issuing firm to pay a 
given rate of interest on the original issue price and to redeem the bond at face value 
at maturity. Bonds are rated according to the default risk of the issuing firm by 

independent rating agencies such as Standard & Poors (S&P) and Moody's Investor 
Service. The firm is in default if it is not able make the promised interest payments. 

Representation of S&P Bond Ratings 

Table 1: Key to S&P bond ratings. We only used the range from 'AAA' or 'very low default risk' to 
'CCC' meaning 'very high default risk'. (Note that AAA- is a not a standard category; its inclusion was 

suggested to us by a Wall Street analyst.) Bonds with rating BBB- or better are "investment grade" 
while "junk bonds" have ratings BB+ or below. For our output representation, we assigned an integer 
number to each rating as shown . 

S&P and Moody's determine the rating from various financial variables and possibly 
other information, but the exact set of variables is unknown. It is commonly believed 
that the rating is at least to some degree judged on the basis of subjective factors 
and on variables not directly related to a particular firm. In addition, the method 
used for assigning the rating based on the input variables is unknown. The problem 

we are considering here is to predict the S&P rating of a bond based on fundamental 
financial information about the issuer which is publicly available. Since the rating 
agencies update their bond ratings infrequently, there is considerable value to being 
able to anticipate rating changes before they are announced. A predictive model 
which maps fundamental financial factors onto an estimated rating can accomplish 
this. 

The input data for our model consists of 10 financial ratios reflecting the fundamen
tal characteristics of the firms. The database was prepared for us by analysts at a 
major financial institution. Since we did not attempt to include all information in 
the input variables that could possibly be related to a firms bond rating (e.g. all 

fundamental or technical financial factors, or qualitative information such as quality 
of management), we can only attempt to approximate the S&P rating. 

3.1 A Linear Bond Rating Predictor 

For comparison with the neural network models, we computed a standard linear 
regression model. All input variables were used to predict the rating which is 
represented by a number in [0,1]. The rating varies continuously from one category 
to the next higher or next lower one and this "smoothness" is captured in the single 
output representation and should make the task easier. To interpret the network 
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Figure 1: Cross validation error CVp (>.) and Pp..) versus number of hidden units . 

response, the output was rescaled from [0,1] to [2 , 19] and rounded to the nearest 

integer; 19 corresponds to a rating of 'AAA' and 2 to 'eee' and below (see Table 1). 
The input variables were normalized to the interval [0,1] since the original financial 
ratios differed widely in magnitude. The model predicted the rating of 21.4 % of 
the firms correctly, for 37.2 % the error was one notch and for 21.9 % two notches 
(thus predicting 80.5 % of the data within two notches from the correct target). 

The RMS training error was 1.93 and the estimate of the prediction risk P == 2.038. 

3.2 Beyond Linear Regression: Prediction by Two Layer Perceptrons 

The class of models we are considering as predictors are two-layer perceptron net

works with h input variables, H>. internal units and a single output unit having 
the form 

H>. I>. 

p>.(x) = f( Vo + L Va g(WaO + L Wa{3 X(3)) . (6) 
a=l {3=1 

The hidden units have a sigmoidal transfer function while our single output unit 
uses a piecewise linear function. 

3.3 Heuristic Search over the Space of Percept ron Architectures 

Our proposed heuristic search algorithm over the space of perceptron architectures 
is as follows. First, we select the optimal number of internal units from a sequence 
of fully connected networks with increasing number of hidden units. Then, using the 
optimal fully connected network, we prune weights and input variables in parallel 
resulting in two separately pruned networks. Lastly, the methods were combined 
and the resulting networks is retrained to yield the final model 

3.3.1 Selecting the Number of Hidden Units 

We initially trained fully connected networks with all 10 available inputs variables 

but with the number of hidden units H>. varying from 2 to 11. Five-fold cross-
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Training Error 

3 Hidden Units 

IE.,,..,,./, I firms % 

0 67 34.2 

1 84 42.9 

2 34 17.3 

>2 11 5 .6 

number of weights 

standard deviation 

mean absolute deviation 

training errOr 

cum. % 

34.2 

77 .1 

94.4 

100.0 

37 

1.206 

0.898 

1.320 

Cross Validation Error 

3 Hidden Units 

.IE....n.otc.b.l firms 1'0 cum.1! 
0 54 28.6 28.6 

1 77 38.8 67.3 

2 35 17.3 84.7 

>2 30 15.3 100.0 

number of weights 37 

standard deviation 1.630 

mean absolute deviation 1.148 

cross validation error 1.807 

Table 2: Results for the network with 3 hidden units. The standard deviation and the mean absolute 
deviation are computed after rescaling the output of the network to [2,19] and rounding to the nearest 
integer (notches) . The RMS training error is computed using the rescaled output of the network before 
rounding. The table also describes the predictive ability of the network by a histogram; the error column 
gives the number of rating categories the network was off from the correct target. The network with 
3 hidden units significantly outperformed the linear regression model. On the right Cross Validation 
results for the network with 3 hidden units are shown. In order to predict the rating for a firm, we 
choose among the networks trained for the cross-validation procedure the one that was not trained using 
the subset the firm belongs to. Thus the results concerning the predictive ability of the model reflect the 
expected performance of the model trained on all the data with new data in the cross-validation-sense. 

validation and P(>\) were used to select the number of hidden units. We compute 
CVp(A) according to equation (4); the data set was partitioned into v = 5 subsets. 

We also computed P(A) according to equation (5). The results of the two methods 
are consistent, having a common minimum for H>.. = 3 internal units (see figure 1). 

Table 2 (left ) shows the results for the network with H)" = 3 trained on the entire 
data set. A more accurate description of the performance of the model is shown in 
table 2( right) were the predictive ability is calculated from the hold-out sets of the 
cross-validation procedure. 

3.3.2 Pruning of Input Variables via Sensitivity Analysis 

Next, we attempted to further reduce the number of weights of the network by 
eliminating some of the input variables. To test which inputs are most significant 
for determining the network output, we perform a sensitivity analysis. We define 
the "Sensitivity" of the network model to variable (3 as: 

1 N 

Sf3 = N L AS'E(x{3) - AS'E(xf3) 
j=l 

with 
1 N 

x{3 = N LX{3j 
j=l 

Here, x{3j is the 13th input variable of the ph exemplar. S{3 measures the effect on 

the training AS'E of replacing the 13th input xf3 by its average x{3. Replacement of a 
variable by its average value reIl!0ves its influence on the network output. Again we 

use 5-fold cross-validation and P to estimate the prediction risk P>... We constructed 
a sequence of models by deleting an increasin~ number of input variables in order 

of increasing S{3. For each model, CVp and P was computed, figure 2 shows the 
results. A minimum was attained for the model with 1>.. = 8 input variables (2 
inputs were removed). This reduces the number of weights by 2H)" = 6. 
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Figure 2: peA) for the sensitivity analysis and OBD. In both cases, the Cross validation error CVp(A) 
has a minimum for the same A. 

3.3.3 Weight Pruning via "Optimal Brain Damage" 

Optimal Brain Damage (OBD) was introduced by Le Cun at al [3] as a method 
to reduce the number of weights in a neural network to avoid overfitting. OBD is 
designed to select those weights in the network whose removal will have a small 
effect on the training ME. Assuming that the original network was too large, 
removing these weights and retraining the now smaller network should improve 
the generalization performance. The method approximates ME at a minimum in 
weight space by a diagonal quadratic expansion. The saliency 

1 {PME 2 
Si = - 2 w· 

2 ow. I 
I 

computed after training has stopped is a measure (in the diagonal approximation) 
for the change of ME when weight Wi is removed from the network. 

CVp and P were computed to select the optimal model. We find that CVp and P 
are minimized when 9 weights are deleted from the network using all input variables. 
However, some overlap exists when compared to the sensitivity analysis described 

above: 5 of the deleted weights would also have been removed by the sensitivity 
method. 

Table 3 show the overall performance of our model when the two techniques were 
combined to yield the final architecture. This architecture is obtained by deleting 
the union of the sets of weights that were deleted using weight and input pruning 
separately. Note the improvement in estimated prediction performance (CV error) 
in table 3 relative to 2. 

4 Summary 

Our example shows that (1) nonlinear network models can out-perform linear re
gression models, and (2) substantial benefits in performance can be obtained by the 
use of principled architecture selection methods. The resulting structured networks 
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Training Error, 3 Hidden Units Cross Validation Error, 3 Hidden Units 

2 Inputs and 9 Connections Removed 2 Inputs and 9 Connections Removed 

IEnatt'Ohl firms % cum . % IEnotchl firms % cum . % 

0 69 35.2 35.2 0 58 29.6 29.6 

1 81 41.3 76.5 1 76 38.8 68.4 

2 32 16 .3 92 .8 2 37 18.9 87 .2 

>2 14 7.2 100.0 >2 26 12.8 100.0 

number of weights 27 number of weights 27 

standard deviation 1.208 standard deviation 1.546 

mean absolute deviation 0.882 mean absolute deviation 1.117 

training error 1.356 cross validation error 1.697 

Table 3: Results for the network with 3 hidden units with both, sensitivity analysis and OBD applied . 
Note the improvement in CV error performance of relative to Table 2. 

are optimized with respect to the task at hand, even though it may not be possible 
to design them based on a priori knowledge. 

Estimates of the prediction risk offer a sound basis for assessing the performance 
of the model on new data and can be used as a tool for principled architecture 
selection. Cross-validation, GCV and FPE provide computationally feasible means 
of estimating the prediction risk. These estimates of prediction risk provide very 
effective criteria for selecting the number of internal units and performing sensitivity 
analysis and OBD. 
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