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Abstract 

We consider the construction of neural network 
architectures for data on simplicial complexes. In 
studying maps on the chain complex of a sim-
plicial complex, we defne three desirable prop-
erties of a simplicial neural network architec-
ture: namely, permutation equivariance, orienta-
tion equivariance, and simplicial awareness. The 
frst two properties respectively account for the 
fact that the indexing and orientations of simplices 
in a simplicial complex are arbitrary. The last 
property requires the output of the neural network 
to depend on the entire simplicial complex and 
not on a subset of its dimensions. Based on these 
properties, we propose a simple convolutional ar-
chitecture, rooted in tools from algebraic topology, 
for the problem of trajectory prediction, and show 
that it obeys all three of these properties when 
an odd, nonlinear activation function is used. We 
then demonstrate the effectiveness of this archi-
tecture in extrapolating trajectories on synthetic 
and real datasets, with particular emphasis on the 
gains in generalizability to unseen trajectories. 

1. Introduction 
Graph neural networks have shown great promise in com-
bining the representational power of neural networks with 
the structure imparted by a graph. In essence, graph neural 
networks compute a sequence of node representations by 
aggregating information at each node from its neighbors and 
itself, then applying a nonlinear transformation. Using vari-
ations on this approach, many architectures have exhibited 
state-of-the-art performance in tasks including node clas-
sifcation (Veliˇ c et al., 2018), link prediction (Zhangckovi´ 
& Chen, 2018), and graph classifcation (Hamilton et al., 
2017). Indeed, the strength of graph neural networks lies 

*Equal contribution 1Department of Electrical and Computer 
Engineering, Rice University, Houston, Texas, USA. Correspon-
dence to: TMR <mitch@rice.edu>, NG <nkg2@rice.edu>, SS 
<segarra@rice.edu>. 

Proceedings of the 38 th International Conference on Machine 
Learning, PMLR 139, 2021. Copyright 2021 by the author(s). 

in their ability to incorporate arbitrary pairwise relational 
structures in their computations. 

However, not all data is adequately expressed in terms of 
pairwise relationships, nor is it strictly supported on the 
nodes of a graph. Interactions in a social network, for in-
stance, do not solely occur in a pairwise fashion but also 
among larger groups of people. This warrants a higher-order 
model in order to represent rich and complex datasets. One 
such higher-order model is the (abstract) simplicial complex, 
which describes relational structures that are closed under 
restriction: if three people are all friends together, then each 
pair of people in that group are also friends. We can under-
stand data supported on simplicial complexes using tools 
from algebraic topology (Hatcher, 2002; Carlsson, 2009; 
Ghrist, 2014); in particular, we can analyze data supported 
on the edges and higher-order structures using the spectrum 
of certain linear operators on the simplicial complex. This 
is analogous to the use of spectral graph theory (Chung, 
1997) to understand the smoothness of data supported on 
the nodes of a graph (Shuman et al., 2013). 

1.1. Contribution 

We study the extension of graph convolutional network ar-
chitectures to process data supported on simplicial com-
plexes. After establishing appropriate operators for such 
data in Section 3, our frst contribution is to defne in Sec-
tion 4 a notion of admissibility, in terms of three reasonable 
properties that we require of neural networks for simplicial 
complexes. We then focus on the problem of trajectory 
prediction over a simplicial complex, proposing a simple 
convolutional neural architecture in Section 5, which we de-
sign with admissibility in mind. In particular, we show that 
the activation functions of the proposed architecture must 
be odd and nonlinear in order to satisfy our requirements 
for admissibility. We empirically illustrate how admissibil-
ity yields better generalizability to unseen trajectories in 
Section 6. 

2. Related work 
2.1. Graph Neural Networks 

Graph neural networks extend the success of convolutional 
neural networks for Euclidean data to the graph domain, 
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adapting the weight-sharing of convolutional networks in a 
way that refects the underlying graph structure. Effectively, 
graph neural networks interleave nonlinear activation func-
tions with diffusion operators dictated by the graph structure, 
such as the adjacency or Laplacian matrices. Bruna et al. 
(2014) developed graph neural networks in the Laplacian 
spectral domain, which was further simplifed by Deffer-
rard et al. (2016), who expressed the diffusion operator at 
each layer as a low-order Chebyshev polynomial in order 
to improve scalability. Kipf & Welling (2017) reduced this 
further, employing a frst-order diffusion operator at each 
layer expressed in terms of the graph Laplacian. We refer 
the reader to Wu et al. (2020) for a survey of graph neural 
network architectures and applications. 

2.2. Signal Processing on Simplicial Complexes 

Aiming to extend the feld of signal processing on 
graphs (Shuman et al., 2013), recent works have used 
tools from algebraic topology to understand data supported 
on simplicial complexes. Rooted in discrete calculus on 
graphs, and in particular combinatorial Hodge theory (Jiang 
et al., 2011; Lim, 2020), recent works have considered the 
use of the Hodge Laplacian for the analysis of fows on 
graphs (Schaub & Segarra, 2018; Barbarossa et al., 2018; 
Barbarossa & Sardellitti, 2020a;b). This line of research 
was distinct from existing developments in graph signal pro-
cessing, in that it handled fows defned with respect to an 
arbitrary orientation assigned to each edge, much like the 
analysis of current in an electrical circuit. One application 
of this perspective was studied by Jia et al. (2019), where 
the problem of fow interpolation was cast as an optimiza-
tion problem, minimizing the quadratic form of the Hodge 
Laplacian subject to observation constraints. 

2.3. Simplicial Neural Networks 

The frst application of discrete Hodge theory to the design 
of neural networks was proposed by Roddenberry & Segarra 
(2019). This work analyzed edge-fow data, focusing on the 
problems of fow interpolation and source localization on 
simplicial complexes, while drawing attention to the value of 
permutation and orientation equivariance. Since then, other 
works (Ebli et al., 2020; Bunch et al., 2020) have also relied 
on discrete Hodge theory to propose convolutional neural 
architectures for data supported on simplicial complexes. 
However, these works do not address important notions of 
orientation, which we discuss in Section 4. Instead of solely 
proposing a specifc neural architecture, our current work 
develops a principled framework to construct generalizable 
simplicial neural network architectures, proposes a simple 
architecture following those principles, and illustrates its 
advantages compared with competing approaches. 

3. Background 
3.1. Simplicial Complexes 

An abstract simplicial complex is a set X of fnite subsets 
of another set V that is closed under restriction, i.e. for all 
σ ∈ X , if σ0 ⊆ σ, we have σ0 ∈ X . Each such element 
of X is called a simplex: in particular, if |σ| = k + 1, we 
call σ a k-simplex. For a k-simplex σ, its faces are all of 
the (k − 1)-simplices that are also subsets of σ, while its 
cofaces are all (k + 1)-simplices that have σ as a face. 

Grounding these defnitions in our intuition for graphs, we 
refer to the elements of V as nodes, or equivalently the 
0-simplices of X . We refer to the 1-simplices of X as 
edges, and the 2-simplices as triangles, corresponding to 
“flled-in triangles” in a departure from classical graphs. 
The edges, then, are faces of the triangles, with the nodes 
being faces of the edges. We refer to higher-order simplices 
by their order: k-simplices. For convenience, we use the 
notation Xk to refer to the collection of k-simplices of X , 
e.g., X0 = V . The dimension of a simplicial complex X is 
the maximal k such that Xk is nonempty. The k-skeleton of a Sksimplicial complex is the union X`. We will later fnd `=0 
it convenient to refer to the neighborhood of a node i: for a 
simplicial complex X , denote by N (i) the set of all j ∈ X0 

such that {i, j} ∈ X1, i.e., the set of nodes connected to i 
by an edge. Or, using our defned terminology for simplicial 
complexes, the neighborhood of a node i consists of the 
faces of the cofaces of i, excluding i itself. 

We arbitrarily endow each simplex of X with an orientation. 
An orientation can be thought of as a chosen ordering of 
the constituent elements of a simplex, modulo even permu-
tations. That is, for a k-simplex σ = {i0, i1 . . . , ik} ⊆ V , 
an orientation of σ would be [i0, i1, . . . , ik]. Performing an 
even permutation of this (e.g., [i1, i2, i0, . . . , ik]) leads to an 
equivalent orientation. For convenience, we label the nodes 
with the non-negative integers, and let the chosen orienta-
tions of all simplices be given by the ordering induced by 
the node labels. 

3.2. Boundary Operators and Hodge Laplacians 

Denote by Ck the vector space with the oriented k-simplices 
of X as a canonical orthonormal basis, defned over the feld 
of real numbers. We defne notions of matrix multiplication 
and linear operators, e.g., diagonal matrices and permuta-
tion matrices, with respect to this basis. Each element of 
Ck is called a k-chain and is subject to all the properties 
of a vector. In particular, multiplying a k-chain by +1 is 
idempotent, while multiplication by −1 reverses its orienta-
tion (by reversing the orientations of its basis vectors). For 
instance, let [i0, i1] ∈ C1. We then have [i0, i1] = −[i1, i0]. 
Using this basis of oriented simplices, we endow the vector 
spaces Ck with the usual properties of fnite-dimensional 
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real vector spaces such as inner products and linear maps 
expressed as real matrices. 

A particular set of linear maps between chains is the set 
of boundary operators1 {∂k}Kk=1, where K is the highest 
order of any simplex in X . For an oriented k-simplex σ = 
[i0, i1, . . . , ik], the boundary operator ∂k : Ck → Ck−1 is 
defned as 

kX 
∂kσ = (−1)j [i0, . . . , ij−1, ij+1, . . . , ik]. (1) 

j=0 

That is, the boundary operator takes an ordered, alternating 
sum of the faces that form the boundary of σ. The col-
lection of these vector spaces coupled with the boundary 
maps forms what is known as a chain complex. Indeed, 
to represent a simplicial complex it is suffcient to use its 
boundary maps. An important result in algebraic topology 
relates these boundary operators to each other. 

Lemma 1. The boundary operator squared is null. That is, 
for all k, ∂k−1 ◦ ∂k = 0. 

Additionally, the boundary operator induces a co-boundary 
operator, which is the adjoint of ∂, i.e. ∂k 

> . Based on 
the boundary and coboundary operators, we defne the kth 

Hodge Laplacian as 

Δk = ∂k 
>∂k + ∂k+1∂

> (2)k+1. 

Since the linear map ∂1 can be represented via the signed 
node-edge incidence matrix, one can check that Δ0 recovers 
the graph Laplacian (see supplementary material for details). 
More generally, Δk : Ck → Ck is a linear operator on the 
space of k-chains for each k. The Hodge Decomposition al-
lows us to view the vector space Ck in terms of the boundary 
maps and the Hodge Laplacian. 

Theorem 1 (Hodge Decomposition). For a simplicial com-
plex X with boundary maps ∂ = {∂k}K we have that k=1 

Ck = im(∂k+1) ⊕ im(∂k 
>) ⊕ ker(Δk) (3) 

for all k, where ⊕ represents the (orthogonal) direct sum. 

This result is particularly pleasing, as it gives us a convenient 
representation of a k-chain in terms of the “upper” and 
“lower” incidence structures of the simplices on which it is 
supported, as defned by its boundary operators. Moreover, 
we have that dim ker(Δk) = βk, where βk is the kth Betti 
number, which counts the number of “k-dimensional holes” 
in X (Carlsson, 2009). 

Of particular interest in this work is the Hodge Decompo-
sition of the space C1, which models “fows” on simplicial 
complexes, as studied in detail by Schaub et al. (2020). In-
deed, 1-chains on a simplicial complex are a natural way to 

1We ignore the boundary operator ∂0, which maps C0 → {0}. 

discretize a continuous vector feld (Barbarossa & Sardellitti, 
2020b), or to model the fow of traffc in a road network (Jia 
et al., 2019; Roddenberry & Segarra, 2019). That is, we con-
sider the decomposition C1 = im(∂2) ⊕ im(∂1 

>) ⊕ ker(Δ1). 

First, we note that im(∂2) corresponds to 1-chains that are 
curly with respect to the triangles in a simplicial complex: 
that is, such 1-chains consist of fows around the boundary 
of triangles. 

Next, we observe that im(∂1 
>) corresponds to 1-chains in-

duced by node gradients. Precisely, 1-chains in the im-
age of ∂> are determined by a set of scalar values on the1 
nodes, whose local differences dictate the coeffcients of 
the 1-chain, analogously to vector felds in Euclidean space 
induced by the gradient of a scalar feld. 

Finally, the subspace of C1 determined by ker(Δ1) consists 
of 1-chains that are neither curly nor gradient: we call such 
chains harmonic. Harmonic chains are 1-chains with the 
property that the sum of the coeffcients around any triangle 
is zero, while the sum of the fow coeffcients incident to 
any node is also zero. This subspace is of particular interest, 
since it captures a natural notion of a smooth, conservative 
fow, as leveraged by Ghosh et al. (2018); Jia et al. (2019); 
Schaub & Segarra (2018); Schaub et al. (2020); Barbarossa 
et al. (2018); Barbarossa & Sardellitti (2020a). We refer 
the reader to these works for more in-depth discussion of 
modeling fows with 1-chains and the relevant applications 
of discrete Hodge theory, as well as to the supplementary 
material for a more in-depth discussion of Theorem 1. 

4. Admissible Neural Architectures 
We defne three desirable properties of a graph neural net-
work acting on chains supported by a simplicial complex. 
These properties will be later leveraged to construct our 
proposed architecture for the task of trajectory prediction. 
Throughout, let SCNW,∂ : Cj → C` denote a neural net-
work architecture acting on input data cj ∈ Cj and whose 
output is a chain of possibly different order, where the neu-
ral network is parameterized by a collection of weights W 
and boundary operators ∂. 

4.1. Permutation Equivariance 

When representing graphs and related structures with ma-
trices, a key property is permutation equivariance. For 
instance, if we take a graph with adjacency matrix A, then 
multiplying A from both sides by a permutation matrix, i.e. 
PAP>, corresponds to relabeling the nodes in the original 
graph. In this way, A and PAP> are alternative matrix 
representations of the same graph. Therefore, in order to 
ensure that an operation does not depend on the specifc (ar-
bitrary) node labeling, this operation must be impervious to 
the application of a permutation matrix. More formally, and 
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for simplicial complexes in general, we defne permutation 
equivariance as follows. 
Property 1 (Permutation Equivariance). Let X be a sim-
plicial complex with boundary maps ∂ = {∂k}K Letk=1. 
P = {Pk}K be a collection of permutation matricesk=0 
matching the dimensions of {Ck}Kk=0, i.e. Pk ∈ R|Xk |×|Xk |, 
and defne [P∂]k := Pk−1∂kP

> 
k . We say that SCN satis-

fes permutation equivariance if for any such P , we have 
that 

SCNW,∂ (cj ) = P`SCNW,P∂ (Pj cj ). (4) 

The above expression guarantees that if we relabel the sim-
plicial complex and apply a neural network, the output is a 
relabeled version of the output that we would have obtained 
by applying the neural network prior to relabeling. 

4.2. Orientation Equivariance 

In defning the boundary operators ∂, we choose an orienta-
tion for each simplex in X . The choice of this boundary is 
arbitrary, and only serves to meaningfully represent bound-
ary operations and useful signals on simplicial complexes. 
Similar to the arbitrary choice of ordering in the matrix rep-
resentation motivating permutation equivariance, we also 
require an architecture to be insensitive to the chosen orien-
tations. Recalling that reversing the orientation of a k-chain 
is equivalent to multiplying it by −1, we defne orientation 
equivariance as follows. 
Property 2 (Orientation Equivariance). Let X be a sim-
plicial complex with boundary maps ∂ = {∂k}K Letk=1. 
D = {Dk}K be a collection of diagonal matrices with k=0 
values taking ±1 with the condition that D0 = I, and match-
ing the dimensions of {Ck}Kk=0, i.e. Dk ∈ R|Xk |×|Xk |, and 
defne [D∂]k := Dk−1∂kDk. We say that SCN satisfes 
orientation equivariance if for any given X , D, W, cj , we 
have that 

SCNW,∂ (cj ) = D`SCNW,D∂ (Dj cj ). (5) 

The intuition in (5) is analogous to that in (4), but focuses on 
changes in orientation as opposed to relabeling. Also, notice 
that orientation is only defned for simplices of order at least 
1, i.e., edges and higher. This is due to the simple fact that 
the nodes of a simplicial complex naturally do not have an 
orientation: there is only one permutation of a singleton set. 
For this reason, we require D0 = I in Property 2. 

4.3. Simplicial Awareness 

The notions of permutation and orientation equivariance are 
fairly intuitive, corresponding to very common constructs in 
the analysis of graph-structured data, as well as graph neural 
networks in particular. However, the higher-order structures 
in simplicial complexes motivate architectures for data sup-
ported on simplices of different order, and regularized by 

hierarchically organized structure. To this end, we defne the 
notion of simplicial awareness, which enforces dependence 
of an architecture’s output on all of the boundary operators. 

Property 3 (Simplicial Awareness). Let SCNW,∂ : Cj → 
C` and select some integer k > 0 such that k 6= j and k 6= `. 
Suppose there exists simplicial complexes X and X 0 such 
that X0 = X 0 = V, Xj = Xj 

0 , X` = X 0 , Xk 6= Xk 
0 . Denote0 ` 

the respective boundary operators of X and X 0 by ∂ and ∂0 . 
If there exists cj ∈ Cj and weight parameters W where 

SCNW,∂ (cj ) 6= SCNW,∂0 (cj ), (6) 

we say that SCN satisfes simplicial awareness of order k. 
Moreover, for the set of simplicial complexes of dimension 
at most K, if the above is satisfed for all k ≤ K, then we 
simply say that SCN satisfes simplicial awareness. 

Put simply, simplicial awareness of order k indicates that 
an architecture is not independent of the k-simplices in 
the underlying simplicial complex. For example, consider 
a simplicial complex X composed of nodes, edges, and 
triangles, and SCNW,∂ : C0 → C0. One can envision 
SCNW,∂ in the form of a standard graph neural network 
by ignoring the triangles, but this would violate simplicial 
awareness of order 2. 

4.4. Admissibility 

We defne a notion of admissibility that we use to guide our 
design of neural networks acting on chain complexes. 

Defnition 1. An architecture is admissible if it satisfes 
permutation equivariance, orientation equivariance, and sim-
plicial awareness. 

We defne admissibility largely as a suggestion: of course, 
neural network architectures need not satisfy these three 
properties. However, much like the permutation equivari-
ance of graph convolutional networks, enforcing the corre-
sponding symmetries in a simplicial neural network ensures 
that the design is not subject to the user’s choice of permu-
tation. Enforcing the property of permutation equivariance 
enables graph neural networks trained on small graphs to 
generalize well to larger graphs, since it is not dependent on 
a set of hand-selected node labels (Hamilton, 2020). Indeed, 
by enforcing meaningful symmetries under group actions in 
a domain, neural architectures learn more effcient, general-
izable representations (Cohen & Welling, 2016). 

For the purposes of a simplicial complex, the same logic 
applies: the neural architecture itself should refect the sym-
metries and invariances of the underlying domain, in order 
to promote generalization to unseen structures in a way that 
is not subject to design by the user. The motivation for this 
in the setting of simplicial complexes is highlighted by the 
property of orientation equivariance: since the orientation of 
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Figure 1. A single layer of SCoNe, with additional intermediate 
representations d ` 

0 ∈ C0, d1 
` ∈ C1, d2 

` ∈ C2 included, to empha-
size the structure of each SCoNe layer as computing over all levels 
of the simplicial complex. 

simplices is arbitrary, we do not want to train an architecture 
that is dependent on the chosen orientation of the training 
data, since there is little hope of it working well on unseen 
structures without careful user-selected orientations. 

Finally, simplicial awareness enforces a minimum represen-
tational capacity: if a neural architecture is incapable of 
incorporating information from certain structural features 
of the simplicial complex, one can construct vastly differ-
ent datasets with the exact same output, e.g., a simplicial 
complex that is triangle-dense, compared to its 1-skeleton. 

5. Trajectory Prediction with SCoNe 
We consider the task of trajectory prediction (Benson et al., 
2016; Wu et al., 2017; Cordonnier & Loukas, 2019) for 
agents traveling over a simplicial complex. A trajectory 
over a simplicial complex X with nodes V is a sequence 
[i0, i1, . . . , im−1] of elements of V , such that ij is adjacent 
to ij+1 for all 0 ≤ j < m − 1. As pointed out by Ghosh 
et al. (2018) and Schaub et al. (2020), such trajectories are 
naturally modeled through the lens of the Hodge Laplacian. 
In particular, a trajectory viewed as an oriented 1-chain (a 
linear combination of the edges of a simplicial complex) is 
often harmonic, i.e., conservative and curl-free. This aligns 
with intuition: a natural walk in space will typically not 
backtrack on itself nor loop around points locally, and must 
exit most points it enters. 

The trajectory prediction task considers as input a trajec-
tory [i0, i1, . . . , im−1] and asks what node im will be. For 
simplicity, we do not consider the setting where a trajectory 
terminates, i.e. im = im−1. 

To this end, we present a neural network architecture called 
SCoNe (Simplicial Complex Net) for trajectory prediction 
on simplicial complexes of dimension 2. We specify SCoNe 
as a map from C1 to N (im−1) in Algorithm 1, inspired by 
the structure of graph convolutional networks (Bruna et al., 
2014; Defferrard et al., 2016; Kipf & Welling, 2017). 

Algorithm 1 SCoNe for Trajectory Prediction 
1: Input: partial trajectory [i0, i1, . . . , im−1] 
2: Parameters: 

boundary operators {∂k}2 
k=0 

number of layers L 
hidden dimensions {F`}L+1, F0 = 1`=0 = FL+1 

weight matrices {{W ` ∈ RF`×F`+1 }L }2 
k `=0 k=0 

activation function φ 
0 03: Initialize: c1 ∈ C1, c = 0.1 

4: for j = 0 to m − 2 do 
0 05: c1 ← c1 + [ij , ij+1] 

6: end for 
7: for ` = 0 to L − 1 do 

`+1 ` ` `8: c ← φ(∂2∂2 
>c1W2 

` + c1W1 
` + ∂1 

>∂1c1W0 
` )1 

9: end for 
L+1 L10: c ← ∂1c1 W

L 
0 0 

L+111: z ← softmax({[c ]j : j ∈ N (im−1)})0 

12: Return: bim ← arg maxj zj 

5.1. Representation of Trajectories as 1-Chains 

In order to leverage the properties of boundary operators 
and Hodge Laplacians of simplicial complexes, the input to 
SCoNe needs to be a 1-chain. In particular, we lift the se-
quence of nodes [i0, i1, . . . , im−1] to a sequence of oriented 
edges [[i0, i1], [i1, i2], . . . , [im−2, im−1]]. Then, we “col-
lapse” the sequential structure by summing each edge in the 
sequence, thus yielding a 1-chain, since each oriented edge 
is itself a 1-chain in the vector space C1. Due to trajectories 
consisting of sequences of adjacent nodes, the sequential 
information is mostly captured by this representation in C1. 

5.2. An Admissible Architecture for 1-Chains 

Given the representation of a trajectory as a 1-chain, we 
now aim to predict the next step in the trajectory prediction 
task. This consists of a map from C1 → C1, followed by a 
mapping to C0, and then a decision step dependent on the 
neighborhood of the node im−1. 

We begin by decomposing each layer of SCoNe into two 
`+1 `steps. First, we compute c from c1 as1 

`+1 ` ` ` c ← φ(∂2∂2 
> c1W2 

` + c1W1 
` + ∂1 

>∂1c1W0 
` ), (7)1 

where φ is an activation function, typically applied “ele-
mentwise” in the chosen oriented basis for C1: we visu-
alize this computation in Fig. 1. We have abused nota-

`tion here to allow each intermediate representation c1 to 
consist of multiple 1-chains, which are mixed via linear 
operations from the right via the matrices Wk

` . After L 
such layers, we apply the boundary map ∂1, yielding a 

L+1 L0-chain c = ∂1c1 W0 
L . Then, a distribution over the0 

candidate nodes is computed via the softmax operator ap-
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plied to the restriction of c to the nodes in the neighbor-0 
hood of the terminal node N (im−1). Using sparse matrix-

That is, the output of SCoNe does not depend on ∂2, and 
thus fails to fulfll simplicial awareness of order 2. However, 

vector multiplication routines, the `th layer of SCoNe can if φ is nonlinear, Lemma 1 does not come in to effect, since 
be evaluated using O(|X1|F`F`+1 + |X2| min{F`, F`+1}) 
operations, so that the entire architecture has a runtimePL−1 

∂1 ◦ φ ◦ ∂2 6= 0, allowing for simplicial awareness. 

of O( (|X1|F`F`+1 + |X2| min{F`, F`+1})). 2 More-`=0 
over, the architecture of SCoNe is localized, in the sense 
that it computes information based only on an L-hop (sim-

A detailed proof can be found in the supplementary ma-
terials. Proposition 1 reveals the required properties of φ 

plicial) neighborhood of the terminal node, making this for SCoNe to be admissible. In particular, we propose the 
architecture able to work on large simplicial complexes by 
only operating on a localized region of interest. 

Having defned SCoNe, we establish conditions under 

use of the hyperbolic tangent activation function tanh, ap-
plied to each coeffcient (in the standard basis of oriented 

` 1-simplices) of the intermediate chains c1; see Fig. 1. The 

which the portion of this architecture that maps C1 → C0 is 
admissible.3 

fact that nonlinearities are necessary to incorporate higher-
order information is in line with results in Neuhäuser et al. 

Proposition 1. Assume that the activation function φ is 
(2020a;b), where it is shown that understanding consensus 
dynamics on higher-order networks must consider nonlinear 

continuous and applied elementwise. SCoNe (Algorithm 1) behavior, lest the system be equivalently modeled as a linear 
is admissible only if φ is an odd, nonlinear function. process on a rescaled pairwise network. Existing works in 

the development of simplicial neural networks have not dis-
Proof (Sketch). The proof of permutation equivariance for cussed the necessity of having odd and nonlinear activation 
elementwise activation functions is directly analogous to 
the proof for graph neural networks, so we leave the details 

functions in convolutional architectures. In particular, Ebli 
et al. (2020); Bunch et al. (2020) propose similar convolu-

to the supplementary materials. tional architectures and use ReLU activation functions. We 

For continuous elementwise activation functions, we now discuss the conditions under which these architectures can 

consider the conditions for SCoNe to satisfy orientation be made admissible in the supplementary material. 

equivariance. Since changes in orientation for a basis of C1 

can be expressed as a sequence of orientation changes for 6. Experiments 
individual edges, it is suffcient to study such “single-edge” 

0transformations. For some 1 ≤ j ≤ m, let e = −ej be the j 
6.1. Methods 

reversal of the oriented edge ej . Orientation equivariance In evaluating our proposed architecture for trajectory pre-
for elementwise activation functions can then be written as 

0 0 

diction, we consider SCoNe with 3 layers, where each layer 
has F` = 16 hidden features. By default, we use the tanh 

φ(hc1, ej i) = φ(−hc1, e j i) = −φ(hc1, e j i). (8) activation function, but we also use ReLU and sigmoid ac-

This condition holds for all inputs if and only if φ is an odd 
function. Under these conditions, SCoNe is the composition 
of orientation equivariant functions, and is thus orientation 

tivations to compare. In training SCoNe, we minimize the 
cross-entropy between the softmax output z and the ground 
truth fnal nodes in each batch of training samples.4 

equivariant itself. Seeing how SCoNe consists of a map C1 → C1 followed by 

Finally, we consider simplicial awareness of order 2. Sup-
pose φ is an odd, linear function: it is suffcient to as-

an application of the boundary operator and a softmax func-
tion for node selection, we compare SCoNe to methods that 

0sume that φ is the identity map. Let a 1-chain c1 ∈ C1 be employ other natural maps C1 → C1, followed by the same 

given arbitrarily. By Theorem 1, there exists w ∈ C0, x ∈ 
0ker(Δ1) ⊆ C1, y ∈ C2 such that c = ∂> 

1 w + x + ∂2y. 

selection procedure for picking a successor node. In partic-
ular, we consider the map that projects the input chain onto 

1 
Some simple algebra, coupled with Lemma 1, shows that the kernel of the Hodge Laplacian ker(Δ1), as well as one 

when φ is the identity map, the 0-chain at the output of 
SCoNe is given by 

that projects the input chain onto the kernel of the bound-
ary map ker(∂1). The frst approach refects the hypothesis 

� �LL+1 c Id + ∂1∂
> w. (9)0 = ∂1 1 

2Depending on the density of edges and triangles in X , this 
can be improved in practice. We leave details to the supplementary 
materials. 

that the harmonic subspace ker(Δ1) [cf. Theorem 1] is a 
natural representation for trajectories (Ghosh et al., 2018; 
Schaub et al., 2020), and the second approach does the same 
while ignoring the triangular structure of the simplicial com-
plex. We also compare to previously proposed neural net-

3Since the fnal output is not a 0-chain, but an element of 
X0, admissibility of this map implies permutation and orientation 
invariance for the entire architecture, rather than equivariance. 

4Specifc hyperparameters and implementation details can be 
found in the supplementary material. Code available at https: 
//github.com/nglaze00/SCoNe_GCN. 

L+1 

https://github.com/nglaze00/SCoNe_GCN
https://github.com/nglaze00/SCoNe_GCN
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Table 1. Test accuracies for trajectory prediction task. (a) Synthetic dataset with randomly oriented edges, comparing Markov chain, 
RNN, harmonic projection methods, SCoNe, SCNN (Ebli et al., 2020), and S2CCNN (Bunch et al., 2020). (b) Synthetic dataset with 
manually oriented edges, compared across different activation functions for SCoNe. (c) Test accuracies for Ocean Drifters and Berlin 
trajectory datasets. 

(a) 

MARKOV RNN ker(Δ1) SCoNe SCNN S2CCNN 

OCEAN 0.45 0.44 0.45 0.50 0.18 0.38 
BERLIN 0.76 0.79 0.50 0.92 0.85 0.88 

tanh ReLU sigm. Id. 

STD. 0.65 0.65 0.66 0.27 
REV. 0.63 0.24 0.10 0.31 

MARKOV RNN ker(Δ1) ker(∂1) SCoNe 
tanh 

SCoNe 
tanh, NO TRI. 

SCoNe SCoNe SCoNe SCNN S2CCNN 
ReLU sigm. Id 

STD. 0.70 0.73 0.55 0.32 0.69 0.55 0.64 0.59 0.31 0.64 0.62 
REV. 0.24 0.01 0.58 0.21 0.59 0.49 0.57 0.57 0.33 0.48 0.47 
TRA. – – 0.58 0.40 0.61 0.58 0.56 0.53 0.44 0.42 0.57 

(b) (c) 

(a) (b) 

(c) 

Figure 2. Complexes used for evaluating SCoNe, with sample 
trajectories from each dataset. (a) Synthetic example, where 400 
random points in the unit square have been triangulated, followed 
by the removal of points from two regions. This yields a simplicial 
complex where dim ker(Δ1) = 2. (b) Ocean drifters example, 
where the large hole (Madagascar) yields dim ker(Δ1) = 1. (c) 
Berlin map example, where each darkly shaded region is an ob-
stacle, yielding a hole in the underlying cubical complex. Figure 
from (Sturtevant, 2012). 

works for simplicial data: SCNN (Ebli et al., 2020), and 
S2CCNN (Bunch et al., 2020), using leaky ReLU or ReLU 
nonlinearities as done by the respective authors. 

As a baseline, we consider two methods rooted in learning 
specifc sequences, rather than a general rule parameterized 
by operators underpinning the supporting domain. First, we 

evaluate a simple Markov chain approach where, at each 
node, we choose its successor based on the empirically most 
likely successor in the training set. Second, we apply the 
RNN model of Wu et al. (2017), with the adjustment of 
not including geometric coordinates, since we consider tra-
jectories over abstract simplicial complexes, not assuming 
any geometric structure underlying it. We emphasize that 
these methods are both incapable of generalizing to unseen 
structures, since they depend on learning decision rules for 
each node based on training. 

6.2. Synthetic Dataset 

Dataset. Following the example of Schaub et al. (2020), 
we generate a simplicial complex by drawing 400 points 
uniformly at random in the unit square, and then apply-
ing a Delaunay triangulation to obtain a mesh, after which 
we remove all nodes and edges in two regions, pictured 
in Fig. 2(a). Then, to generate a set of trajectories, we 
choose a random starting point in the lower-left corner, con-
nect it via shortest path to a random point in the upper-left, 
center, or lower-right region, which we then connect via 
shortest path to a random point in the upper-right corner. 
Some examples of such trajectories are shown in Fig. 2(a). 
We generate 1000 such trajectories for our experiment, using 
800 of them for training and 200 for testing. 

Performance. To start, we evaluate the performance of all 
methods on the standard train/test split. As shown in Ta-
ble 1(a), the RNN model performs the best, since the volume 
of training examples allows for the model to easily learn 
commonly taken paths, thus leading to good performance 
on the test set. Compared to this, the kernel projection meth-
ods do worse on the test set, but do far better than random 
guessing. This is due to the natural interpretation of trajecto-
ries as being characterized by the harmonic subspace of the 
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Hodge Laplacian (Ghosh et al., 2018; Schaub et al., 2020). 
Moreover, projecting onto the kernel of the Hodge Lapla-
cian ker(Δ1) signifcantly outperforms only projecting onto 
the kernel of the boundary map ker(∂1). This indicates that 
incorporating information from X2 (triangles) is important 
for this problem, since it allows the harmonic subspace to 
capture more interesting homological structure. 

Finally, we evaluate SCoNe using different nonlinear acti-
vation functions and incorporation of simplicial information. 
When using tanh activation functions, it is clear that in-
cluding the triangles in the model improves performance, 
in line with what we observed for the kernel projection 
methods. Moreover, we see that using the tanh activation 
function over the sigmoid or ReLU activation functions also 
improves performance, presumably due to the fact that tanh 
is odd, as required for admissibility in Proposition 1. Simi-
larly, although the identity (Id.) activation function is odd, it 
is linear, and thus does not satisfy Proposition 1. This leads 
to poor performance in all experiments. We also observe 
that SCoNe tends to outperform the SCNN and S2CCNN 
models, perhaps due to the extra regularization imposed by 
admissibility. 

Testing Generalization. We demonstrate the generalization 
properties of SCoNe in two ways, with the common feature 
of manipulating the training and test sets in order for them 
to have a mismatch in their characteristics. 

First, we evaluate these methods on a “reversed” test set. 
That is, we keep the training set the same as before, but 
reverse the direction of the trajectories in the test set. There-
fore, a method that is overly dependent on “memorizing” a 
particular direction for the trajectories will be expected to 
fare poorly, while methods that leverage more fundamental 
features relating to the homology of the simplicial com-
plex are expected to perform better. Based on the results 
in Table 1(a), we see two things: including triangles in the 
architecture improves performance, and admissible methods 
outperform inadmissible methods. In particular, SCoNe 
using tanh activation and incorporating triangles performs 
similarly to the projection onto ker(Δ1), and both of these 
methods outperform competing approaches. 

Second, we evaluate how well SCoNe generalizes to tra-
jectories over unseen simplicial structures. To do this, we 
restrict the training set to trajectories running along the 
upper-left region of X , and similarly restrict the testing set 
to trajectories spanning the lower-right region of X . Al-
though in this case SCoNe is still being applied to the same 
simplicial complex that it was trained on, the locality of 
the architecture means that the testing set is essentially an 
unseen structure. We see again in Table 1(a) that SCoNe 
with tanh activation outperforms sigmoid and ReLU acti-
vations, illustrating the utility of admissibility for designing 
architectures that generalize well. Note that the Markov 

chain and the RNN cannot be tested on unseen data. 

Finally, to demonstrate the sensitivity of architectures that 
are not orientation equivariant, we repeat these experiments 
on the same dataset, except with edge orientations selected 
carefully in order to refect the general direction of the train-
ing set. That is, using the geometric position of the nodes in 
Fig. 2(a), we label each node based on the sum of its x and 
y coordinates, and then orient each edge to be increasing 
with respect to the ordering of the nodes. This yields a set 
of oriented edges that “point” from the lower-left of the 
simplicial complex to the upper-right. Since the training 
set consists of trajectories that also follow this direction, 
the coeffcients in the representation of each trajectory as a 
vector in C1 will be overwhelmingly non-negative. 

By manipulating the edge orientation in this way, we have 
artifcially introduced a rule that would work well for the 
training set, but violates orientation equivariance. Since ar-
chitectures that violate orientation equivariance are capable 
of learning such rules, we see in Table 1(b) that the ReLU 
and sigmoidal architectures perform similarly to the admis-
sible tanh architecture when the test set matches this rule, 
with the sigmoidal architecture performing marginally better 
than the others. However, as soon as the data does not fol-
low this rule, as in the “reversed” case, the non-admissible 
architectures markedly fail, with the sigmoidal and ReLU 
activations not satisfying orientation equivariance, and the 
identity activation not satisfying simplicial awareness. 

6.3. Real Data 

Datasets. We consider the trajectory prediction problem for 
the Global Drifter Program dataset, localized around Mada-
gascar.5 This dataset consists of buoys whose coordinates 
are logged every 12 hours. We tile the ocean around Mada-
gascar with hexagons and consider the trajectory of buoys 
based on their presence in hexagonal tiles at each logged 
moment in time, following the methodology of Schaub et al. 
(2020). Treating each tile as a node, drawing an edge be-
tween adjacent tiles, and flling in all such planar triangles 
yields a natural simplicial structure, as pictured in Fig. 2(b). 
Indeed, the homology of the complex shows a large hole, 
corresponding to the island of Madagascar. 

Additionally, we consider a map of a section of 
Berlin (Sturtevant, 2012), where each point on a grid is 
designated impassible or passible based on the presence of 
an obstacle, as pictured in Fig. 2(c). For a set of trajectories, 
we consider a set of 1000 shortest paths between random 
pairs of points in the largest connected components, divided 
into an 80/20 train/test split. Since the geometry of this 
map is given as a grid, it is naturally modeled as a cubical 

5Data available from NOAA/AOML at http://www.aoml. 
noaa.gov/envids/gld/ and as supplementary material. 

http://www.aoml.noaa.gov/envids/gld/
http://www.aoml.noaa.gov/envids/gld/
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complex, rather than a simplicial complex. The boundary 
operators in this setting are quite similar to the simplicial 
case, highlighting the fexibility of our proposed architecture 
for more general chain complexes. We discuss the details of 
this in the supplemental material. 

Results. Across the competing methods, SCoNe yields the 
best trajectory prediction, as shown in Table 1(c). Indeed, 
by using admissibility as a guiding principle in designing 
architectures that respect the symmetries of the underlying 
chain complex, as well as ensuring complete integration of 
the simplicial structure, we achieve greater prediction accu-
racy than other methods. Interestingly, we again outperform 
the method of projecting onto ker(Δ1), which is itself an 
admissible approach, suggesting that there is utility in the 
regularization imposed by the successive local aggregations 
of SCoNe, and in appropriate weighting of the different 
components of the Hodge Laplacian. 

7. Conclusion 
A core component of graph neural networks is their equiv-
ariance to permutations of the nodes of the graph on which 
they act. Designing architectures that respect properties 
such as this enables the design of systems that transfer and 
scale well. By considering additional symmetries (orien-
tation equivariance) and truly accounting for higher-order 
structures (simplicial awareness), we construct principled, 
generalizable neural networks for data supported on simpli-
cial complexes. 
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