
There lies a behavior between rigid regularity and randomness based on pure
chance. It’s called a chaotic system, or chaos for short [5]. Chaos is all around us.
Our notions of physical motion or dynamic systems have encompassed the pre-
cise clock-like ticking of periodic systems and the vagaries of dice-throwing
chance, but have often been overlooked as a way to account for the more com-

monly observed chaotic behavior between these two
extremes. When we see irregularity we cling to random-
ness and disorder for explanations. Why should this be
so? Why is it that when the ubiquitous irregularity of
engineering, physical, biological, and other systems are
studied, it is assumed to be random and the whole vast
machinery of probability and statistics is applied? Rather
recently, however, we have begun to realize that the tools
of chaos theory can be applied toward the understand-

ing, manipulation, and control of a variety of systems, with many of the practi-
cal applications coming after 1990. To understand why this is true, one must
start with a working knowledge of how chaotic systems behave---profoundly,
but sometimes subtly different, from the behavior of random systems.    

As with many terms in science, there is no standard definition of chaos.
The typical features of chaos include: 

• Nonlinearity. If it is linear, it cannot be chaotic.
• Determinism. It has deterministic (rather than probabilistic) underlying rules

every future state of the system must follow.
• Sensitivity to initial conditions. Small changes in its initial state can lead to radi-

cally different behavior in its final state. This “butterfly effect” allows the pos-
sibility that even the slight perturbation of a butterfly flapping its wings can
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dramatically affect whether sunny or
cloudy skies will predominate days later.

• Sustained irregularity in the behavior of
the system. Hidden order including a
large or infinite number of unstable
periodic patterns (or motions). This
hidden order forms the infrastruture
of irregular chaotic systems---order in
disorder for short.

• Long-term prediction (but not control!)
is mostly impossible due to sensitivity to
initial conditions, which can be known
only to a finite degree of precision.

A simple example of a chaotic system in
computer science is a pseudo-random
number generator. The underlying rule in
this case is a simple deterministic formula
(e.g., xn+1= cxn modm). However, the
resulting solutions, such as the pseudo-ran-
dom numbers are very irregular and
unpredictable (the more unpredictable,
the closer to random). We also note that a
small change in the initial condition (seed)
can yield a significantly different sequence
of random numbers. These pseudo-ran-
dom number generators are chaotic but
also periodic with certain periods. Such
generators viewed carefully yield the hid-
den order characteristic of chaos. (For
more on fundamentals, see [1, 2, 14]).

While this random number generator
is an artificial chaotic system, there are
numerous chaotic systems in nature.
While engineers typically shun chaos and
irregularity, nature may indeed treasure
and exploit it. For example, normal brain
activity may be chaotic, and pathological
order may indeed be the cause of such diseases as
epilepsy. It has been speculated that too much peri-
odicity in heart rates might indicate disease. Perhaps
the chaotic characteristics of the human body are bet-
ter adapted to its chaotic environment. It is even sus-
pected that biological systems exploit chaos to store,
encode, and decode information. 

Generally, the boundary between deterministic
chaos and probabilistic random systems may not
always be clear since seemingly random systems could
involve deterministic underlying rules yet to be found.
Nonlinear problems are very difficult to solve;  various
approximation techniques have been employed.
These techniques include linearization, which is a sim-
plification of the problem, and fuzzy theory, which
can be used as an approximation method.

Historically, the study of chaos started in mathe-
matics and physics. It then expanded into engineer-
ing, and more recently into information and social
sciences (see Table 1). For the past five years or so in
particular, there has been growing interest in com-
mercial and industrial applications of chaotic sys-

tems. One key element of this recent interest is the
power of easily accessible computer hardware for its
speed and memory capacity. Although the history of
chaotic systems research is not new, the computer
revolution gave life to their practical applications.
There are various types of potential commercial and
industrial applications, based on different aspects of
chaotic systems (see Tables 2 and 3). For simplicity,
we classify the application types into the categories
stabilization, synthesis, and analysis [11].

Stabilization and control. The extreme sensitivity
of chaotic systems to tiny perturbations can be manip-
ulated to stabilize or control the systems. The funda-
mental idea is that tiny perturbations can be
artificially incorporated either to keep a large system
stable (stabilization) or to direct a large chaotic sys-
tem into a desired state (control). For example,
although it is still problematic, small, carefully chosen
chaos control interventions might lead to more effi-
cient airplane wings, power delivery systems, turbines,
chemical reactions in industrial plants, implantable
defibrillators, brain pacemakers, conveyer belts, eco-
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King Oscar II of Sweden. Announced a 
prize for the first person who could solve 
the n-body problem to determine the orbits 
of n-celestial bodies and thus prove the 
stability of the solar system. As of 1995, no 
one has solved the problem. 

Henri Poincaré. Won first prize in King 
Oscar's contest by being closest to solve the 
n-body problem. Discovered that the orbit 
of three or more interacting celestial bodies 
can exhibit unstable and unpredictable 
behavior. Thus is chaos born (but not yet 
named!).

Edward Lorenz. Irregularity in a toy model 
of the weather displays first chaotic or 
strange attractor [9].

Tien-Yien Li and James A. Yorke. In paper 
“Period Three Implies Chaos,” introduced 
the term “Chaos Theory.”

Robert M. May. Application of the logistic 
equation to ecology, showing chaotic 
population behavior.

Ed Ott, Celso Grebogi and James Yorke. 
Beginning of chaos control theory. 

Lou Pecora. Synchronization of chaotic 
systems.

Mitchell Feigenbaum. Universal number 
associated with the way systems approach 
chaos.

Benoit Mandelbrot. Fractal geometry with 
application to computer graphics and 
image compression.

1890

1890

1963

1975

1976

1978

1980

1990

1990

Table 1.  Major Historical Developments in the Study of Chaos



nomic planning, and even computer networks.
Synthesis of chaotic systems. Artificially generated

chaotic systems may be applied to certain types of
problems to make the systems, whether chaotic or
nonchaotic, work better. The fundamental idea is that
regularity is not always the best, depending on the
type of problem. Artificially stimulated chaotic brain
waves may someday help inhibit epileptic seizures
[16]. We can synthetically generate chaotic output for
consumer products, such as air conditioners and fan
heaters, to make temperature changes feel more nat-

ural for human comfort. (See Aihara and
Katayama in this issue.) Whether the chaotic
output outperforms random output in these
consumer products has yet to be studied, but
it appears to be better than homeostasis in
certain applications. 

Two identical sequences of chaotic sig-
nals (called “synchronized”) can be used for
encryption by superposing a message on
one sequence. Only a person with the other
sequence can decode the message by sub-
tracting the chaotic masking component. In
communications, artificially generated
chaotic signals can follow a prescribed
sequence, thus enabling them to transmit
information. Artificially generated chaotic
fluctuations can be used to stimulate
trapped solutions so they escape from local
minima for optimization problems or for
learning, as in neural networks.

Analysis and prediction of chaotic systems.
How do you tell if a system is random or
chaotic? The study of chaos may lead to bet-
ter detection and prediction algorithms for
chaotic systems. Amazingly, the lack of long-
term predictability in chaotic systems does
not imply that short-term prediction is impos-
sible. In counterpoint to purely random sys-
tems, chaotic systems can be predicted for a
short interval into the future. For example,
many people believe that financial markets
may exhibit chaotic behavior. Obviously, if
the market were chaotic rather than random,
there would exist the possibility of reliably
predicting market behavior in the short term.
Therefore, the identification of chaos in sys-
tems can potentially, at least in the market,
lead to huge rewards.

Stabilization and Control of
Chaotic Systems 
As described earlier, the underlying principle
discussed here is to control or stabilize chaot-
ic systems by using their extreme sensitivities.

NASA satellite control. In 1978, a space-
craft called the International Sun-Earth
Explorer 3 (ISEE-3) was launched toward a
halo orbit around a Sun-Earth libration
point. In 1983, ISEE-3 was retargeted for an

interception with a comet a million miles away across
the solar system. NASA engineers performed this
orbital acrobatic feat by a combination of propulsive
maneuvers, lunar swingbys, and the effective use of
solar perturbations. Although the term “chaos con-
trol” did not exist at that time, this event demonstrat-
ed the idea. Through clever burns of fuel, the
engineers exploited the chaotic sensitivity to pertur-
bations exhibited by the three-body problem (shown
by Poincaré, see Table 1) to use small amounts of fuel
(all that was available) to nudge the spacecraft near
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Table 2.  Potential Application Types of Chaos

Encoding, decoding, and storage of 
information in chaotic systems, such as 
memory elements and circuits. Better 
performance of neural networks. Pattern 
recognition.

Contagious diseases, weather, economy.

Control

Synthesis

Synchronization

Information Processing

Short Term Prediction

Category Applications

Table 3.  Sample Potential Application Areas of Chaos

Category Applications

Switching of packets in computer networks. 
Encryption. Control of chaos in robotic 
systems.

Information compression and storage. 
Computer network design and 
management.

Cardiology, heart rhythm (EEG) analysis, 
prediction and control of irregular heart 
activity (chaos-aware defibrillator). 

Washing machines, dishwashers, air 
conditioners, heaters, mixers.

Engineering

Computers

Communications

Medicine and Biology

Management and Finance

Consumer Electronics

Potential control of epilepsy, improved 
dithering of systems, such as ring laser 
gyroscopes. Switching of packets in 
computer networks.

Secure communications, chaotic broad 
band radio, encryption.

Vibration control, stabilization of circuits, 
chemical reactions, turbines, power grids, 
lasers, fluidized beds, combustion, and 
many more.

Economic forecasting, restructuring, 
financial analysis, and market prediction 
and intervention.

First application of chaos is control of 
irregular behavior in devices and systems. 
List of applications is included in Table 3.
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the comet they wanted to investigate. If the system
had been nonchaotic, large perturbations, and con-
sequently large expenditures of fuel would have
made such a mission impossible [3, 17].

Multimode laser. The green problem consists of the
desire to have a cheap, stable laser capable of generat-
ing stable green laser light. The problem is that stable
green lasers, unlike stable infrared or red lasers, are
expensive to manufacture. One solution is to use fre-
quency-doubling crystals to convert cheap 1024- nm
laser light into cheap 512-nm laser light. Unfortunate-
ly, such crystals can induce chaotic fluctuations in the
intensity of the doubled light and thus limit its useful-
ness. Raj Roy, at Georgia Tech, applied a chaotic con-
troller developed by Earl Hunt at Ohio University to
this problem. Hunt devised an Analog Controller to
implement a chaos control technique that automati-
cally selects out and controls unstable periodic behav-
iors in chaotic diode resonator circuits through small
feedback signals by exploiting the extreme sensitivity
of the system. The chaos controller worked beautifully
in controlling the chaotic intensity
fluctuations in Roy’s solid-state laser
[15]. Control-of-chaos techniques
have since been successfully applied
to nuclear magnetic resonance laser
systems. 

Belousov-Zhabotinsky chemical
reaction. Chaos control was accepted
as a viable technique for lasers, cir-
cuits, and chemical systems, but the
consensus in 1992 was that chemical
reactions were too difficult to apply
chaos control. While the timid were
doubting, Kenneth Showalter and
associates promptly exhibited beauti-
ful control in a chaotic chemical
reaction: the Belousov-Zhabotinsky
chemical reaction [13]. Under con-
tinuous flow of chemicals into the
tank, the concentrations of the
chemicals exhibit steady-state, periodic, and chaotic
behavior. Small perturbations (applied according to
chaos control theory) in the rate at which the reac-
tant chemicals were fed into the tank converted
chaotic oscillations in the ion concentrations into
periodic behavior. Such chaos control of chemical
reactions can lead to improved efficiency in industri-
al plants, with potentially huge benefits.

Heart arrhythmias. When one thinks of possible can-
didates for chaos in biological systems, the irregular
beating of hearts in the form of arrhythmias and fibril-
lations comes to mind. A simple system that exhibits an
interesting irregular arrhythmia similar to that seen in
humans consists of a rabbit heart septum preparation
that is induced to beat chaotically through perfusion
with drugs (such as a fast-acting version of digitalis, an
overdose of which can cause arrhythmias). The chaotic
beating of the rabbit heart tissue was converted to peri-
odic beating through electrical stimuli applied at irreg-

ular timing dictated by chaos control [4]. This applica-
tion of chaos control has been patented by the inven-
tors and licensed by a major medical company. Human
trials are currently being performed.

Many efforts to control spatio-temporal complexi-
ty are being expended. The new Holy Grail of the
chaos community is to be able to understand, charac-
terize, and control such complexity in systems,
including chemical mixing, combustion, fibrillation
in hearts, and seizures in brain tissue (Figure 1). 

Synthesized Chaos: Control and Adaptation
The ability to control chaos provides at least one way
to exploit chaos for applications. It may now be
advantageous to violate one of the classic dogmas of
the applied scientist—linearity,—and design devices
using, rather than avoiding, nonlinearity and chaos.
Through the exploitation of chaos we may be able to
replace many linear systems that do one thing well
with fewer and more flexible nonlinear systems that
exploit chaos. Thus, someday we may be able to make

physical devices that mimic the flexibility of biologi-
cal systems and make ailing biological systems mimic
the regularity of physical devices. However, the
advantages of these nonlinear systems will have to
outweigh their increased complexity.

Biological neural networks. Brain slices taken from
the hippocampal regions of rats, be kept alive in a
dish, exhibit synchronous bursting neuronal behavior
that has been linked to epileptic seizures of a type
seen in human brains. Neurosurgeons and physicists
have managed to both control the chaotic irregularity
of such bursting behavior and, in a potentially more
useful treatment, make the irregularity more chaotic
through a technique termed antichaos control, which
essentially keeps the systems away from an undesired
periodicity [16]. While the efficacy of this method for
preventing or quenching seizures in humans has yet
to be tested, it shows much promise as a novel thera-
peutic technique for intervention in seizures.
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Figure 1. Coupled nonlinear
chaotic oscillators (256 x 256 array,
nearest neighbor coupling) demon-
strating spatial-temporal chaos.



Synchronized Chaos
Two identical chaotic systems started at nearly the same
initial conditions quickly become uncorrelated. It is
thus difficult to construct synchronized chaotic systems.

Lou Pecora and Tom Carroll, at the Naval
Research Lab, considered how two identical or
almost identical chaotic systems can be synchronized
[12]. They take a chaotic system and produce a sub-
system of the original by duplicating a part of the
original system. They then supply a signal from the
original to the subsystem. The original is unaware of
the duplicate subsystem, but the duplicate is being
driven by a signal from the original. Under certain
conditions this subsystem behaves chaotically but is in
complete synchronization with its counterparts in the
original system. What we have built is a new system
with more dynamical variables than the original,
which has a subsystem that always follows the original.
The overall behavior is chaotic, but the subsystem is
stable. Its stability guarantees that any noise or per-
turbations will be damped out and it will continue to

track the input signal, despite its complexity. 
Until this discovery, no one considered subsys-

tems of any system, chaotic or not, as potentially
separate systems with their own stability (or insta-
bility). Nor had anyone thought that a nonlinear
system would be stable when driven with a chaotic
signal. The trick is to find the subsystems stable to
the input chaotic signal. Note that systems that are
stable when driven by one type of signal may not be
stable under the influence of another type. The sta-
bility depends on the driving signals as well as on
the subsystem. Today, the stability can be estimated
if a good mathematical model is available, but find-
ing the stable subsystems of a general chaotic sys-
tem remains a difficult problem. Much work
remains to be done on this. 

On a practical level, the engineering aspects of
designing optimal synchronized chaotic systems are in
their infancy, but several electronic circuits have been
realized. The first synchronized chaos circuit was built
by Carroll, a collaborator of Pecora, in 1989. He took a
circuit that already showed chaotic behavior and built a
subcircuit that was stable to a chaotic signal coming in
from the original circuit. His final circuit had two parts,
in which voltages and currents fluctuated in a chaotic
fashion but whose voltages and currents were always in
step with each other. Carroll and Pecora were able to
build simple chaotic circuits that clearly demonstrated
this  synchronization of chaos. 

Encryption. Since the subsystem to be chaotically
synchronized could be located anywhere (in another
country, for example), it is possible to use the chaos
to communicate hidden messages. Simply take one of
the chaotic voltages from the original system, add
your information signal to it, and send it to a receiv-
er  synchronized with your circuit. The receiver can
strip away the chaos and recover the information.
Hopefully, anyone intercepting the signals will see
only a noisy, chaotic signal. This type of communica-
tion setup was built by Neff and Carroll [10].
Although secure communications using synchro-
nized chaos would probably have to be more sophis-
ticated than simply adding your signal to chaos to
hide it, these accomplishments represent the first
steps in using chaos in encryption.

Leon Chua and collaborators at the University of
California at Berkeley have built chaotic analog
phase-locked-loop synchronizing circuits. Lichten-
berg and Leiberman and their team at the same insti-
tute are using chaotic systems made from digital

phase-locked loops to test new secure communica-
tions. They have built the circuits and begun some
preliminary testing. Workers at Al Oppenheim’s Dig-
ital Signal Processing Group at the Massachusetts
Institute of Technology have constructed synchro-
nized chaotic systems with feedback mechanisms to
mix the chaos and information and extract it on the
receiving end. Their knowledge of signal processing
married with nonlinear/chaotic dynamics is yielding
new approaches to issues in communications. Others
are now duplicating these results and moving on to
more sophisticated approaches.

Chaos radio and locked loop. Pecora has contin-
ued to exploit synchronized chaotic systems by gen-
eralizing a well-known electronic idea. A
phase-locked-loop component in a circuit allows a
receiver to follow the change in frequency of an
incoming signal. This is the component that makes
FM radio work. A frequency is just a parameter in a
dynamic system (in this case a cyclic system). Pecora
is exploiting cascades of synchronized subsystems to
build chaotic systems that follow the change in a para-
meter of a transmitter analogous to the phase-locked
loop we could call a parameter-locked loop.

He starts with a chaotic system withat least two sta-
ble subsystems. The two subsystems are cascaded in
such a way that the first, which is missing the part of
the original system where the drive signal is pro-
duced, feeds the second, which has a duplicate of the
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can be applied toward the understanding,
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many of the practical applications coming after 1990.
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part of the original system where the synchronizing
drive signal is produced. Both subsystems will syn-
chronize so the second subsystem will duplicate the
incoming drive signal. This assumes  the parameters
in all systems are the same. Remember that parame-
ters are dynamic variables that usually don’t change
in time. However, they “turn a knob” and change a
parameter in the original system, causing both sub-
systems to go slightly out of synchronization with the
incoming signal. The detection of this effect allows
them to tune the parameters in the receiver corre-
sponding to the original system’s parameters so they
again get the same output from the second subsystem
as the input driving system. 

They were the first to build an actual operating cir-
cuit based on these ideas. It automatically followed the
variation of the transmitter’s parameters, proving  the
idea is robust and practical. This continual tuning of
the receiver’s parameters to keep things in synchro-
nization and follow the original system’s parameter
variations is the chaotic analog of the phase-locked
loop. It may also afford a way to send encrypted signals
and allow the transmission of information in terms of
parameter variations over broad band signals, which
are more resistant to noise and interference. Since it
allows a receiver to identify a hidden parameter in a
remote sending system, it may be useful in sending
identification signals of the friend-or-foe type.

Chaos in Communications
Researchers at the Army research labs have exploited
the control of chaos by using small perturbations to
make chaotic circuits follow prescribed symbol
sequences [6]. Hayes and collaborators state, “The
natural complexity thus provides a vehicle for infor-
mation transmission in the usual sense.” They exploit
a nonlinear electrical oscillator producing large-
amplitude chaotic signals. Their system produces a
seemingly random sequence of positive and negative
peaks; by assigning a positive peak a value of 1 and a
negative peak a value of 0, the signal yields a binary
sequence. Hayes’ group uses a chaos control method
to cause the signal to follow an orbit whose binary
sequence represents the information they wish to
encode. (For example, the letter “c,” whose alphabet-
ical position, 3, may be encoded as the binary 00011.)
The transmitted signal is then detected and decoded.
They even speculate that such control and sequences
may be a possible mechanism by which biological sys-
tems transmit information.

Analysis and Prediction of Chaotic Systems 
The basic idea is that a successful analysis of the
time series of a chaotic system allows prediction or
forecasting of the system’s behavior in the near
future. Such analysis is generally still very difficult,
however, and much more work may be needed for
massive applications. 

Chaos prediction contest. A recent contest was held
in which a portion of a chaotic laser time series of

1,000 data points was made public and a prize pre-
sented to the person who could most accurately pre-
dict the next 100 data points. Various methods,
including neural networks, were used, and the very
best did a nice job of prediction. Obviously, the rami-
fications of such prediction gives the identification of
systems as either random (unpredictable) or chaotic
(short term predictable) enormous importance.

Prediction and chaotic diseases. Prediction algo-
rithms have also been used to determine whether the
diseases have random (unpredictable) or chaotic
(short-term predictable) incidence. Although the
claims based on these algorithms are sometimes con-
troversial, due to a susceptibility to measurement
error, researchers using such techniques claim to
have identified measles as a chaotic disease but chick-
en pox as nonchaotic [18].

Other prediction problems. Other application
domains, many of which are speculative, include cardi-
ology, ecology, financial markets, economy, fluid flow,
weather, and climate (e.g., the El Nino oscillation).

Hybrid Systems 
Other areas of AI, such as (artificial) neural networks,
fuzzy logic, and genetic algorithms can be employed
together with chaotic systems (e.g., neural networks +
chaos, or neural networks + fuzzy + chaos.) Recently,
there have been extensive research works on these top-
ics whose introductions are beyond the scope of this
article. The fundamental concept of such hybrid sys-
tems is that the components complement each other’s
strengths, creating new approaches to solve problems.

Neural networks + chaos. Neural networks are
modeled on biological neural networks, or the
human brain, and learn by themselves from patterns.
This learning can then be applied to classification,
prediction, or control.

There has been a surge of activity in work on
neural network models that can behave as adaptive-
ly as biological systems. It is quite apparent that as
we seek to make computer systems and neural net-
works behave with the flexibility of biological sys-
tems (such as speech production, speech and
handwriting recognition, motor control), we must
deliver neural networks that are adaptive, and
chaotic behavior provides a rich library of behaviors
to aid such adaptation. Computer scientists have
started using neural network architectures and
learning algorithms using chaos and chaotic cir-
cuits for associative memory storage of analog pat-
terns and improvement of handwriting recognition
systems using chaotic neural networks. Novel com-
puting architectures have been constructed of
recurrently interconnected associative memory
modules using chaotic circuits. 

Architectural variations employ selective synchro-
nization of modules with chaotic behaviors that com-
municate through broad spectrum chaotic signals.
We can construct or train a neural network so that its
output exhibits a dynamic behavior of chaos [19].
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From an engineering point of view, such a chaotic
neural network may be applied for prediction and
control. From a scientific point of view, such a net-
work may lead to a better understanding of a biolog-
ical neural network where the normal brain exhibits
chaos. As discussed earlier, artificially generated
chaotic fluctuations can be used to escape from local
minima for certain types of neural networks. (See
Aihara and Katayama in this issue.)

Fuzzy logic + chaos. Fuzzy systems are suitable for
uncertain or approximate reasoning, especially for
the system with a rigorous mathematical model that is
difficult to derive. 

They also allow us to represent descriptive or qual-
itative expressions.

Fuzzy logic may be employed to describe a chaot-
ic dynamical system. Fuzzy logic can be useful for
complex dynamic system for which a common math-
ematic modeling does not work well. From the appli-
cation point of view, control is probably the most
promising domain of chaos-fuzzy hybrid systems
since it has been the most successful in both fuzzy
and chaotic systems.

Genetic algorithms + chaos. Genetic algorithms
are computer models based on genetics and evolu-
tion. Their basic idea is that the program works
toward finding better solutions to problems, just as
species evolve to better adapt to their environments.
Genetic algorithms may be particularly useful for
hard problems of optimization and machine learn-
ing. As is the case for the use of fuzzy logic, genetic
algorithms can be a useful tool to describe a complex
chaotic system where common mathematical model-
ing is difficult.

Other potential applications include the use of
chaos as a tool to enhance genetic algorithms. For
example, certain chaotic functions, rather than ran-
dom numbers, might be used in the processes of
crossover. This might alter the characteristics of
genetic algorithm solutions---hopefully toward
more desirable situations, such as avoiding prema-
ture convergence. This may be interpreted as the
use of artificially generated chaotic functions to
escape from local minima.

Chaos modeling of genetic algorithms can be
another example of the potential use of chaos as a
tool to analyze genetic algorithms. Genetic algo-
rithms, especially those that generate chaotic solu-
tions, may be analyzed by a chaos model. For
example, the changing behavior of a population over
generations can be visualized through computer
graphics similar to the Mandelbrot set [8].
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