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Abstract In the past few years there has been a lot of research on the
application of swarm intelligence to the problem of adaptive routing in
telecommunications networks. A large number of algorithms have been pro-
posed for different types of networks, including wired networks and wireless
ad hoc networks. In this paper we give an overview of this research area. We
address both the principles underlying the research and the practical appli-
cations that have been proposed. We start by giving a detailed description
of the challenges in this problem domain, and we investigate how swarm in-
telligence can be used to address them. We identify typical building blocks
of swarm intelligence systems and we show how they are used to solve rout-
ing problems. Then, we present Ant Colony Routing, a general framework
in which most swarm intelligence routing algorithms can be placed. After
that, we give an extensive overview of existing algorithms, discussing for
each of them their contributions and their relative place in this research
area. We conclude with an overview of future research directions that we
consider important for the further development of this field.

1 Introduction

Swarm intelligence (SI) deals with collective behaviors that result from the
local interactions of individual components with each other and with their
environment [10]. On the one hand, this includes the study of collective
behaviors in nature, such as nest building, foraging, and item sorting in
insect societies, and swarming, flocking, herding, and schooling behaviors
in vertebrates. On the other hand, from an engineering point of view, it
refers to the bottom-up design of distributed systems that display forms
of useful and/or interesting behavior at the global level as a result of the
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actions of a number of units interacting with one another and with their
environment at the local level. In this paper, we refer to the latter also as
SI design.

In recent years, SI design has been applied to a wide variety of prob-
lems in combinatorial and continuous optimization, telecommunications,
robotics, etc., often with excellent results (e.g., see [10, 28, 35, 37, 39, 41]
for extensive literature reviews). Two of the most popular and successful
examples of the SI approach are Ant Colony Optimization (ACO) [35–37]
and Particle Swarm Optimization (PSO) [59–61]. ACO takes inspiration
from the pheromone-mediated ability of ant colonies to find shortest paths
between their nest and sources of food [35,47] to define a metaheuristic for
combinatorial optimization based on the use of ant-like agents and stigmer-
gic communication of artificial pheromone information. PSO translates the
flocking behavior of birds into a framework based on information-sharing
particle-like agents to find extremal points in optimization problems.

In this paper, we focus on the application of SI design to one particular
class of optimization problems, namely adaptive routing in telecommuni-
cations networks. Routing is the task of directing flows or units of data
from their source to their destination while optimizing one or more crite-
ria. Examples of optimization criteria are the average or maximum delay
experienced by data packets or the variability in delay. An adaptive routing
algorithm is one that modifies its routing solution online, in order to account
for changes in the network, such as variations in the data traffic load or in
the network topology. The typical structure and functioning of telecommu-
nications networks – in which the global routing strategy is the collective
result of decentralized decisions made by individual nodes based on local
observations – maps surprisingly well to the typical distributed approach
advocated in the SI paradigm. Consequently, a lot of successful adaptive
routing algorithms have been developed based on SI ideas. Our aim here
is to discuss the relationships between SI design and the design of network
routing algorithms, and to provide an overview of the theory and practice
in this field. Since the large majority of existing SI routing algorithms refers
to the ACO framework, we mainly focus on this class of implementations of
the SI paradigm. Nevertheless, we also describe other SI approaches, such
as, for example, bee-inspired algorithms [43,44].

The rest of this paper is organized as follows. First, in Section 2, we ex-
plain the problem of routing in telecommunications networks. In particular,
we discuss typical challenges that are present in different types of networks,
and describe traditional approaches to routing. Next, in Section 3, we hold
a high level discussion about the application of SI to routing. Then, in Sec-
tion 4, we discuss AntNet, a prototypical example of a SI algorithm for
routing in wired networks, and we derive from it a basic recipe for the
construction of SI routing algorithms. Subsequently, in Section 5, we look
at this recipe from a different point of view, and present the general Ant
Colony Routing framework. This will provide the reader with a deeper in-
sight into the basic workings of the approach and open the door for new
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applications of these ideas. After that, we give an overview of existing SI
algorithms for routing. In Section 6, we discuss algorithms for wired net-
works, and in Section 7, we discuss algorithms for wireless networks. Finally,
in Section 8, we conclude the paper discussing future developments that we
consider important for this field.

2 Routing in telecommunications networks

A telecommunications network can be seen as a graph G = (N,E), whereby
the nodes N represent routers or end user devices in the network, and
the edges E represent the communication links that are available between
them [22,104]. Links can be directed or undirected and can be heterogeneous
in terms of physical implementation (wired or wireless), transmission capac-
ity, propagation time, reliability, etc. Data load is injected into the network
concurrently at source nodes, and needs to be forwarded to assigned desti-
nation nodes. The task of a routing algorithm is to find paths through the
network graph that connect source and destination nodes, while optimizing
predefined criteria and possibly satisfying certain constraints. Routing path
information is commonly stored at the nodes in so-called routing tables. The
best solution for the routing problem can vary, when there are changes to
the network graph, such as, for example, the appearance or disappearance
of links or nodes, or when there are variations in the network data load. A
routing algorithm can either choose to ignore this variability and calculate
one set of routes that will be used without change, in which case we speak
of static routing, or it can choose to adapt and update its routes while the
network is in use, in which case we speak of dynamic or adaptive routing.
Most existing routing algorithms are at least to some degree adaptive, and
in what follows we will focus on this class of algorithms.

The problem of adaptive routing is most naturally solved with a dis-
tributed approach. This is because centralized approaches have, in general,
inherent limitations in terms of scalability and fault-tolerance. Moreover,
in most existing networks nowadays, nodes have at least some capabilities
for both network monitoring and data processing, so that the network can
form a distributed monitoring and computing system. In this system, nodes
locally monitor the network status, exchange this information with their
neighbors, and autonomously calculate the routing tables to be used to
forward data.

A wide range of different routing algorithms exist in the literature. They
can be classified according to several criteria. One criterion concerns whether
data need to be routed to a single destination (unicast), a group of destina-
tions (multicast), or all nodes in the network (broadcast). Here we mainly
restrict the discussion to unicast routing, which is the most widely employed
in practice. Another important criterion concerns the nature of the technol-
ogy that is used to create the network. Especially the distinction between
the use of wired and wireless links to connect the nodes is relevant. Wired
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links usually have high capacity, are point-to-point or point-to-multipoint,
and are quite reliable. Changes in the network are the result of variations
in traffic patterns, and of removal, addition, or failure of network resources,
which, however, happen at a much lower rate than the changes at the level of
traffic patterns. Wireless links usually have lower capacity than wired links,
offer less reliable data transport (i.e., link failures can be quite frequent),
and need some arbitration mechanism to control the access to the shared
wireless medium. Moreover, they can easily be reconfigured to connect to
different nodes. In particular, wireless links can be effectively used to con-
nect mobile users. Because of all these characteristics, networks containing
wireless links can present a high rate of change both in terms of topology
and traffic patterns.

In what follows, we give a short introduction to routing in both wired
and wireless networks. Concurrently, we explain some terms that will be
used in the rest of this paper, namely proactive versus reactive routing, and
top-down versus bottom-up design of routing algorithms. The former terms
represent a common way to classify routing algorithms, especially in the area
of wireless networks (see [90]). The latter terms refer to a classical distinction
in the approach to designing distributed systems (see, for example, [24]).

2.1 Routing in wired networks: top-down approaches

Wired networks implement the core structure of the current Internet, from
wide-area backbone networks to metropolitan networks and local-area net-
works. Routing algorithms in wired networks must deal with potentially
very large networks and with continual changes in traffic patterns. Moreover,
they must guarantee rapid adaptation in the case of topological variations,
which, however, occur relatively infrequently.

Adaptive routing algorithms for wired networks are traditionally de-
veloped using a top-down approach, where a well-known exact centralized
algorithm for route calculation is adjusted to work in an adaptive, decen-
tralized way. An exemplary instance of the top-down approach is the class of
link-state routing protocols, which includes the widely used Internet routing
protocol OSPF [74]. Under link-state routing, each node locally monitors
the status of the links to all of its neighbors. Periodically, it constructs a
message containing this local view, and floods it to all other nodes in the
network. A node receiving this message combines it with similar messages
received from all other nodes, in order to obtain a complete view of the
network. This view is locally used to derive a weighted graph representa-
tion of the entire network and to calculate all the necessary routes using
Dijkstra’s shortest path algorithm [81]. This way, each node can perform
routing based on a complete overview of the system, like a central rout-
ing computer would do. A different example of the top-down approach is
the class of distance-vector routing protocols, to which the Internet proto-
col RIP [69] belongs. Distance-vector routing is based on the distributed
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Bellman-Ford algorithm [8]. This algorithm implements a distributed ver-
sion of dynamic programming, which is a general solution method for op-
timization problems [7]. The basic idea behind dynamic programming is
to recursively split a problem into subproblems, and to use the solutions to
these subproblems to construct an optimal solution for the original problem.
Distance-vector routing implements dynamic programming in a distributed
and asynchronous way. Nodes incrementally calculate estimates for the cost
of the route to each possible destination based on estimates provided by
neighboring nodes. Periodically, each node sends its estimates out to its
neighbors, so that these can update their own estimates again. This itera-
tive process of reciprocal updating allows all nodes in the network together
to eventually converge to a correct set of cost estimates for all possible
routes.

Both link-state and distance-vector implementations in wired networks
are based on a proactive approach: each node periodically transmits its
routing information to its neighbors and this information is used to maintain
routing information for each possible destination node in the network at all
times.

The top-down approach to the design of routing algorithms can naturally
lead to the development of algorithms that are highly efficient and that are
amenable to theoretical analysis. However, it also makes the system less
robust to failures and prone to temporary inconsistencies across the network,
as each node depends for its routing information on the correct functioning
of all other nodes. Furthermore, it can lead to algorithms that are slow to
adapt, since nodes have limited possibilities to take individual actions in
response to events; instead local changes need to be propagated through
the whole network. Finally, theoretical results for the original centralized
algorithm of reference are usually hard to export to the distributed version.
This is because these results are based on specific assumptions (e.g., link
costs do not vary) that usually only hold when the network dynamics are
stationary and known, which is not usually the case during the normal
course of operations in modern real-world networks.

2.2 Routing in wireless networks: top-down and bottom-up approaches

In recent years, there has been an increasing interest in wireless networks,
fueled by the growing availability of a variety of portable devices sup-
porting a wide range of different wireless technologies. Examples of wire-
less networks of particular scientific interest are mobile ad hoc networks
(MANETs) [90], wireless mesh networks (WMNs) [1] and wireless sensor
networks (WSNs) [2]. MANETs are characterized by the fact that all nodes
can be mobile. Because of this, the topology of MANETs can continuously
change. No fixed networking infrastructure is available, so that data packets
must be routed in a multi-hop fashion from node to node, with all nodes
acting as peers. Routing algorithms for MANETs need to be highly adaptive
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and scalable. Moreover, they need to be robust to node and communication
failures. Finally, they need to work in an efficient way, since mobile devices
communicating through wireless connections often have limited resources
to rely on, be it in terms of bandwidth, battery power, etc. WMNs are net-
works with a hybrid architecture: a subset of special nodes, possibly static,
form an infrastructure, while the other nodes behave like in a MANET,
except that for communications they can take advantage of the presence of
the infrastructure nodes. Routing in WMNs usually relies on the same algo-
rithms that are developed for MANETs. Finally, WSNs are special instances
of MANETs, in which each node has on-board sensors whose sampled data
need to be transported over the network to dedicated sink nodes, where they
can be processed. WSNs come with their own specific challenges. Compared
to MANETs, they are often much larger, so that scalability of the routing
algorithms is more important. Their nodes tend to have less resources, espe-
cially in terms of battery power, stressing the need for efficiency. In terms of
data traffic, they are usually based on a data-centric rather than an address-
based model for data forwarding, which creates very specific traffic patterns
(usually in the form of directed and reversed multi-cast trees). Mobility is
less of an issue in WSNs, as nodes are normally static. Topology changes
result in the first place from failures of the devices, variations over time
in radio connectivity, and the fact that new sensor devices may be added.
Hereafter we do not discuss WSN routing in detail, but we limit ourselves
to routing in MANETs, that are a more general and traditional model of
networks. The reader can consult [38] for an extensive discussion on WSNs
in relationship to SI and other self-organizing approaches.

There have been some attempts to follow the top-down approach in wire-
less networks by adapting traditional routing algorithms for wired networks
to work also in these dynamic and unstable environments. Notable exam-
ples are the Destination-Sequenced Distance-Vector (DSDV) protocol [82]
and Optimized Link-State Routing (OLSR) [23], which implement, respec-
tively, the distance-vector and the link-state paradigms. These are proactive
algorithms. While this way of proceeding is well justified in wired networks,
which provide high-bandwidth, good link reliability and topological stabil-
ity, it might result hard to realize efficiently in wireless networks. This is
particularly true as the network gets larger and more dynamic in terms of
node mobility and data traffic patterns [14]. There is therefore an increas-
ing interest in a different class of algorithms, called reactive algorithms, in
which routing information is gathered and maintained only between pairs
of nodes that are the source and destination of data packets. Examples of
this class are AODV [83] and DYMO [21]. In these algorithms, the search
for routing information is triggered by source nodes that have packets to
send to unknown destinations. They flood a route request message over the
network, and in case this message reaches the destination, a route reply
message is sent back to set up a route. This route is then used for message
forwarding until it breaks due to changes in the network. After that, the
same procedures is repeated.
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Reactive routing algorithm depart fundamentally from the top-down
approach to the design of routing algorithms described earlier. There is
no attempt to build a distributed algorithm that solves the global routing
problem. Each node in the network is given the tools to act individually,
and the total routing solution that is found results from these individual
actions. We can refer to this as a bottom-up approach to the design of routing
algorithms.

3 Swarm intelligence and its application to routing: a general

discussion

In Section 1, we pointed out that the SI approach for control and optimiza-
tion of distributed systems grew from the practice of designing systems and
algorithms taking inspiration from the behavior of animal societies, and in
particular of social insects. The rationale behind this lies in the observation
that these systems, as well as other biological systems and mechanisms, have
a distributed and modular organization that matches the structure of many
problems arising in several domains of scientific and technological inter-
est. Moreover, they show a number of properties, such as self-organization,
adaptivity, scalability, and robustness, that are highly desirable in modern
large-scale artificial systems. The interested reader can find a number of
examples of animal society and other biological system behaviors that have
been studied and adapted to give rise to SI frameworks and algorithms
in [4, 10,28,34,35,37,44,60,86].

In more general terms, the application of the SI paradigm consists in
the bottom-up design of systems that mirror the organizational characteris-
tics of the original natural systems of inspiration and aim at obtaining the
mentioned set of properties. In the following we first give an informal defini-
tion of what SI design means by identifying the architectural and functional
building blocks of a generic system designed according to the SI paradigm.
To better illustrate the relative role and use of the different building blocks
we will also continually refer to their counterpart in some natural system
that has provided the basic inspiration. Then, we discuss what it means
to apply this approach to the problem of adaptive routing in networking,
and finally we also advocate a more pragmatic characterization of SI design,
based on the investigation of common practice in the literature.

3.1 The general principles of SI design

From an architectural point of view, a SI system is a composite system made
up of a (possibly large) number of partially or totally autonomous units.
These units possess some basic processing and interaction capabilities, and
we therefore refer to them as agents. Examples are the artificial ants used
in ACO, which are derived from ants in ant colonies, or the particles used
in PSO, which are modeled after birds’ behavior. There is usually a certain
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level of redundancy among the agents, so that the system behavior can be
robust with respect to decreases and increases in the number of agents.

The agents are expected to have minimal skills to solve the task at hand,
and interact with each other using relatively simple protocols. Moreover,
they are situated entities that only perceive, act, and communicate within
a small portion of the environment in which they live (e.g., ants communi-
cate in an indirect way by locally laying and reacting to pheromones). The
behavior of the SI system as a whole is the synergistic result of the combi-
nation of the actions of these individual agents and their interactions with
each other and with their environment. No centralized controller is strictly
required. Through interactions and communications the agent system is able
to self-coordinate and/or self-organize.

A key characteristic is the fact that the expected system level behavior
transcends the limited capabilities of the composing agents. In this con-
text, the term emergent behavior is often used, as a complex behavior of the
system emerges from the combination and non-linear superposition of sim-
pler behaviors of the agents. This means that the system’s components, the
agents, can be relatively simple and computationally light, if this reduction
in individual complexity and effectiveness in task solving is counterbalanced
by the use of a relatively large population of agents and by the implemen-
tation of effective means and protocols for interaction and communication.
A good example is the earlier mentioned behavior of ant colonies, where
the simple pheromone laying and following behavior of the ants allows the
colony as a whole to solve a shortest path problem that is far beyond the
capabilities of each individual ant.

Finally, another important aspect in SI design is the use of stochasticity.
In the example of the ant colonies, ants have a certain preference for going to
areas of higher pheromone intensity, but this is by no means a deterministic
choice: some ants can still end up on paths that carry less pheromone.
Stochastic decision making stimulates exploration, and allows the system to
overcome limitations due to the partial and noisy view of the environment
that is available to each of the individual, situated agents.

3.2 Principles and properties of SI for network routing

Based on the above definition of SI and the derived properties of SI systems,
we can get a general idea of what it means to apply SI to the problem of
adaptive routing in telecommunications networks. In essence, the SI way
of proceeding emphasizes a bottom-up modular design that relies on self-
organization, redundancy and stochasticity in order to obtain the desired
global response of the system.

This is in contrast with classical top-down approaches to the design of
routing algorithms (see section 2), which start from a centralized solution
in which all the units have global knowledge and then decentralize it. In a
sense, while top-down approaches require the explicit definition of a strategy
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which guarantees the solution of the problem at hand, SI approaches only
require the definition of the characteristics and interaction rules of simple
controllers that can collectively produce the desired solution.

This inverse problem faced by SI design is not easier than the direct
problem solved by top-down approaches. In fact, it is often difficult to get
a theoretical insight into the dynamics of a SI system and to predict all of
its possible behaviors.

However, compared to top-down strategies, a SI strategy is expected to
have some important advantages. A first of these is adaptivity. Thanks to the
stochastic decision making used by the multiple agents working in parallel,
the system provides continuous exploration and diversity, which allows it to
be adaptive to changes in its environment. A second advantage is robustness
with respect to individual agent errors, agent losses, communication errors,
or other system failures. This is due to the redundancy among the multiple
agents in the system. A third advantage is scalability with respect to problem
size and/or system size. The main ingredients that allow scalability are the
intrinsic redundancy and parallelism in the system, as well as the use of
simple interaction protocols. Finally, SI systems are usually easily portable
across different problem scenarios. This is a result of the above-mentioned
properties of adaptivity, robustness and scalability.

All these advantages make SI design interesting for modern networks
such as the wireless ad hoc networks described in Section 2, for which the
design of well performing top-down approaches has proved to be challenging.

3.3 A specific and pragmatic characterization of SI for network routing

The discussion held so far has given us general insight into the application
of SI to routing in telecommunications networks. However, it has remained
quite broad and has not produced any concrete guidelines for the develop-
ment of new SI routing algorithms or even for the classification of algorithms
as being SI or not. This is on the one hand because its starting point, the
basic definition of SI, is rather open and subjective: it just states that the
developer should take inspiration from swarm behavior in nature. On the
other hand, the properties that can be derived from this definition, such
as a bottom-up, modular design, and the use of stochasticity and redun-
dancy, are in general useful in telecommunications networks, and especially
in highly distributed and dynamic ones such as wireless ad hoc networks (see
Section 2), and are therefore also present in many non-SI routing algorithms
(e.g., in the mentioned case of reactive algorithms for MANETs).

For these reasons, it is interesting to consider the field also from a dif-
ferent, more pragmatic point of view, in which we derive a more concrete
definition of SI routing based on the common practice in the literature.
The next two sections are dedicated to this. First, in Section 4, we describe
AntNet [29], a routing algorithm for wired networks based on ACO. AntNet
was one of the first SI routing algorithms to be developed, and many other
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SI routing algorithms follow a design that is at least to some extent similar
to AntNet. Based on the description of this algorithm and of similarities
found in other algorithms, we derive some basic guidelines for the devel-
opment of SI routing algorithms. After that, in Section 5, we describe Ant
Colony Routing. This is a general framework for the design of ACO and SI
routing algorithms. It describes SI routing from a perspective that is com-
plementary to the one that is commonly followed in the field, and therefore
allows us to get different insights which can in turn indicate directions for
new research.

4 AntNet: lessons taken from a prototypical example of SI

routing

AntNet [29] is a SI routing algorithm for packet switched IP networks. It
was, together with Ant Based Control (ABC) [95], one of the first rout-
ing algorithms that followed the SI approach, and many of its mechanisms
have been adopted later by other algorithms. AntNet takes its inspiration
from the shortest path behavior of ant colonies and from the related ACO
framework for optimization. The task of finding the shortest path between a
nest and a food source is mapped onto the task of finding the shortest path
between source and destination nodes in the network. The agents solving
this task are artificial ants that travel to assigned destinations. Each node
in the network maintains a probabilistic routing table, which plays the role
of artificial pheromone: ants are stochastically forwarded through the net-
work using the information in these routing tables, and the tables are in
turn updated using feedback from the ants about the quality of the paths
they have followed. Here, we first give a brief description of the algorithm
as a prototypical example of what SI routing algorithms look like. Then, we
use this example to derive some basic principles that are present in most SI
routing algorithms.

4.1 The AntNet routing algorithm

In AntNet, every node in the network keeps two data structures: a routing
table and a traffic statistics table. The routing table is also referred to as
pheromone table. It contains for every destination a vector with one entry
per outgoing link. The entry T d

ij of node i’s pheromone table Ti contains the

pheromone value τd
ij , which is a real number indicating the relative goodness

of taking outgoing link j on the way to destination d. The traffic statistics
table contains general statistics about the paths to each destination, such as
the average expected end-to-end delay, its expected variance, and the best
end-to-end delay observed over a certain period.

Each node s in the network sends out small control packets (called for-
ward ants) at regular intervals, to randomly chosen destinations. They are
the agents of the SI system. Their task is to find a path to their destination
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d and evaluate it. The route chosen by an ant is the result of stochas-
tic routing decisions taken at every hop. In each intermediate node i, the
ant chooses a next hop according to a probabilistic rule. The probability
of each next hop j is proportional to a weighted sum of the pheromone
value τd

ij and a heuristic value ηij , where the latter is based on the queue
length for j in i. By taking probabilistic routing decisions based on artificial
pheromone, the behavior of the artificial ants is similar to that of real ants,
which move preferentially in the direction of high pheromone intensities.
Moreover, this introduces in the SI system the stochasticity that is needed
to provide adaptivity. The heuristic value allows for adaptations based on
local traffic variations.

While traveling to d, the forward ant records the delays it experiences.
Once it reaches d, it becomes a backward ant, which returns to the source
node s tracing back the path followed by the forward ant. At each node
i along this path, the backward ant updates the entries in i’s tables for
destination d. First, the estimates in the traffic statistics table are updated
using the trip time t experienced by the ant. Then the pheromone entry τd

ij

is updated, with j being the neighbor over which the backward ant arrived
in i. To this end, a reinforcement value r is first calculated, which reflects
how good t is compared to the information about previous trip times that
is stored in the statistics table. Then, τd

ij is updated with r using a moving
average. The same process is repeated for all visited nodes in the path from
i to d. For detailed formulas, we refer the interested reader to [28, 29]. The
fact that ants update pheromone values in order to guide subsequent ants
towards good solutions mimics closely the shortest path behavior of ants in
nature.

Data packets are routed in a similar way as forward ants, choosing a
next hop stochastically at every hop and using probabilities that depend on
pheromone values. Stochastic data forwarding provides load balancing on
a per packet basis. Pheromone values are raised to a power higher than 1,
in order to increase the probability of taking paths with higher pheromone
values. This way, data are only routed over the best paths and are not used
for exploration like the ants.

In extensive simulation studies [28, 29] AntNet was compared to tradi-
tional routing algorithms, as well as to other adaptive algorithms, such as
Q-routing (see [12]). It was shown to give superior performance in a wide
range of different test scenarios. AntNet was also tested in real networks,
showing good performance [108,116].

4.2 General SI routing principles derived from AntNet

The description of AntNet has given us a concrete example of the SI ap-
proach to routing. Starting from this example, we now extract some general
principles that are present in most SI routing algorithms in the literature.
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Repeated path sampling. Routing information is gathered through the re-
peated sampling of full paths. This is quite different from traditional
approaches to routing, such as the distance vector approach, where rout-
ing information is derived from estimates provided by neighboring nodes,
or the link state approach, where routing information is calculated based
on update messages received from all other nodes in the network. The
use of multiple ant samples gives robustness to the system. This is be-
cause the ants, as agents of the SI system, are mutually redundant: each
ant is individually unimportant and its loss can be tolerated. Also, the
fact that ants always sample full paths between source and destination
nodes improves robustness. This is because this way all routing informa-
tion is based on real experiences, rather than on estimates or updates
provided by other nodes. This avoids the creation of errors due to the
use of outdated information received from other nodes, and avoids that
errors that exist in one node are spread over the network when other
nodes base their routing information on it. On the other hand, in case of
stationary networks, where adaptivity is not necessary, this mechanism
might result to be less effective than those based on global information
sharing, such as link-state and distance-vector approaches.

Stochastic pheromone-based decisions. Ants choose a path to sample by con-
structing it hop by hop in a stochastic way using pheromone informa-
tion. The use of stochastic decisions allows the exploration of multiple
paths. This makes the algorithm adaptive to changes in the network
environment. Moreover, it leads to the availability of multiple paths for
data routing, each with an associated goodness value (see below). The
use of pheromone in the path construction process allows to build on
experiences gathered by previous ants. The updating and following of
pheromone is the protocol by which the ant agents communicate in an
indirect way. This way of communicating by locally changing and sens-
ing the environment is generally called stigmergy [48, 106]. The use of
stochastic decisions might result in loops. However, precisely because of
the use of stochasticity, these are expected to be short-lived [17].

Multiple data paths. The presence of probabilistic pheromone tables auto-
matically makes multiple paths available, which can be used both to
optimize data forwarding and as backup paths in case of failures. By for-
warding data probabilistically, the data load is spread over the available
paths on a per packet basis. This allows the routing algorithm to make
better use of available network resources and obtain better throughput.
The use of pheromone in this process ensures that data is focused on
the best paths. If pheromone is always kept up-to-date, by using suf-
ficient ants, data load balancing automatically follows the changes in
the network. An important aspect in the stochastic forwarding of data
is that it uses a different formula than the ants, focusing more on the
best pheromone. This way, ants are more explorative, while data packets
concentrate on exploiting the routing information provided by the ants.
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Using separate mechanisms for exploration and exploitation allows to
build a flexible system.

5 Ant Colony Routing: a general template for the practical

design of SI routing algorithms

Ant Colony Routing (ACR) [28] is an attempt to provide a general frame-
work for SI routing based on the ant colony metaphor. It considers the ideas
presented in Section 4 from a different point of view, which provides new
insights into the possibilities of these routing strategies.

ACR considers the network as being populated by three different types
of agents. These include node manager agents, of which there is one in
each node, controlling the node’s routing activities, active perception agents,
which correspond to the ants used in AntNet, traveling through the network
and making observations, and effector agents, which are similar to the ants,
but are meant to execute certain actions in the network rather than just ob-
serve it. The node managers are situated at a higher hierarchical level than
the other types of agents. They are static agents that control the pheromone
tables and other internal data at the nodes. While the pheromone tables con-
tain pheromone values reflecting the relative goodness of particular routing
decisions, the remaining data contain information about other properties
of the network that is useful for the solution of the routing problem at
hand. Based on all this information, the node managers maintain a stochas-
tic policy for routing. Their goal is to learn a good policy by adapting the
pheromone values and other data to the current state of the network. To
find out about the state of the network, they can either make passive ob-
servations, by looking at the network situation in their local environment
(e.g., the amount of data passing through the node, the average transmission
delay to reach its neighbors, etc.), or active observations, which give infor-
mation about remote parts of the network. Active observations are done via
active perception agents: the node managers generate such agents when-
ever needed. Active perception agents are similar to the ants in AntNet,
with the difference that they carry parameters. These parameters control
their behavior, such as, for example, how strong their preference for high
pheromone values is, or the extent to which their routing decisions are based
on heuristics such as local traffic variations. This means that node managers
can control the way active perception agents are processed at other nodes
in the network by setting proper parameter values at generation time. In
this way, node managers generate active perception agents with the charac-
teristics that they need. Finally, node managers can also generate effector
agents. Effector agents are similar to active perception agents, with the dif-
ference that they travel through the network not to make an observation,
but to execute some action. For example, they can reserve, or free, certain
resources, such as bandwidth.

It is clear that ACR views SI routing from a different angle than we have
done so far. In this new view, the active components in the SI system are
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not so much the ants, but rather the static managers in the nodes. They
act as a society of learning agents, that essentially solve a reinforcement
learning [101] problem: they jointly learn a policy based on information
about the status of the network, which can be considered a feedback signal
about their actions. The ants are a tool in this learning process, used by the
managers to get the observations they need. At this point, there is no reason
why ants should be generated periodically and towards random destinations,
as done in AntNet. The managers can be quite flexible in their use of ants.
For example, they could send ants to a specific destination in response to
a certain event such as the start of a new session or the failure of a link
in the network, or they could increase the ant generation rate when they
sense that there is a change in the network status and they want to find
out more about it. Moreover, by varying ant parameters, the manager can
create heterogeneous ants with different behaviors. Ants can, for example,
be made more or less exploratory, they can measure different properties of
the network, and so on. Or, they can be created to perform actions in the
network, in which case we speak of effector agents. All this leads to a high
level of diversity in the society of mobile agents living in the network. Such
diversity is important for multi-agent systems operating in a non-stationary
environment, as it improves robustness, adaptivity and task distribution.
Finally, we point out that the way the node managers use the gathered
information to learn their policy can take different forms. For example,
the AntNet-SELA algorithm [32], which adapts AntNet for QoS routing,
presents an approach where the node managers are stochastic estimator
learning automata (SELA) [107]. In general, models for the design of the
learning process can be derived from the field of reinforcement learning [101].
One example could be policy search learning [84], which has been applied to
network routing [85]. More in general, the application of learning schemes to
network control is receiving increasing attention, in particular in the context
of the autonomic networks [62] and cognitive networks [45,68] paradigms.

6 SI implementations for routing in wired networks

Here, we give an overview of SI implementations for routing in wired net-
works. Routing in wireless ad hoc networks will be treated in the next
section. We try to be as complete as possible, but due to the large amount
of work that has been presented in this area, we cannot possibly be exhaus-
tive. In what follows, we make a distinction between connection-oriented
networks, connectionless networks providing best effort services, and con-
nectionless networks offering QoS.

In connection-oriented networks, prior to the first packet sending, a
path connection (virtual circuit) must be established between the session
end-points and maintained for the duration of the session. This can be a
dedicated physical connection or a logical one, shared among different data
sessions. The task of the routing system is to find and use full end-to-end
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paths. Typical measures of performance in this case are the session accep-
tance ratio, the delivered throughput, and statistics of the packet latencies
such as the average end-to-end delay. The latter two performance metrics
are reference metrics for almost any network, since they summarize two ba-
sic aspects related to the quantity and the quality of the service a network
can deliver. In connectionless (datagram) networks, packets are sent in the
network without requiring the creation of an end-to-end connection, phys-
ical or virtual. Each relay node deals with the packet independently of the
other nodes and makes use of packet header information to decide how to
route the packet. Each packet can be sent over a different path. This can be
done according to a best effort scheme, in which there is no implemented
system to control the quality of the data delivery, or according to a QoS
scheme, in which certain (hard or soft) guarantees are given regarding the
characteristics of the data transport (e.g., in terms of maximum delay or
available bandwidth). The AntNet algorithm described in Section 4.1 was
developed for connectionless best effort networks.

6.1 Connection-oriented networks

The first SI routing algorithm was Ant-Based Control (ABC) [95], devel-
oped in 1996 for circuit-switched telephone networks. As in AntNet, each
node s in a network running ABC periodically sends out ants to randomly
chosen destinations. Each ant has an associated age, which is increased at
each visited node, proportionally to the node’s current load. While travel-
ing from its source s to its destination d, the ant updates the pheromone
for the path backward to s, based on its age. This is a fundamental dif-
ference with AntNet: ants update pheromone for the path leading to their
source while going forward, and no backward ants are used. This approach
assumes that path costs, in this case the load (i.e., the number of occupied
circuits) on the visited nodes, are symmetric. Other important differences
with AntNet are that no path statistics are used to evaluate path quality
measurements reported by ants, and that no local heuristic is used to help
guide the ants. Finally, in ABC, data packets are not routed directly ac-
cording to the pheromone. This is due to the circuit-switching. Call setup
messages are sent out, which follow pheromone and set up circuits; data
packets are then forwarded over these circuits. The call setup messages are
not routed probabilistically, but follow the best pheromone deterministi-
cally. ABC was tested in simulation on a model of the British Telecom
network and was shown to give superior performance compared to other
approaches [95].

A number of papers propose adaptations and extensions of ABC. The
algorithm proposed in [11] combines ABC with a mechanism from dynamic
programming, and allows ants to update pheromone not only towards their
source node, but also towards intermediate nodes on their path. In [94], the
authors extend ABC with probabilistic routing of call setups and the use
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of anti-pheromone, which allows ants to decrease pheromone in some cases,
instead of increasing it.

In [112] Routing By Ants (RBA) is proposed. It addresses the construc-
tion of virtual circuits. RBA has similarities with both ABC and AntNet.
An interesting difference with these two algorithms is the fact that the pa-
rameters which define how routing decisions are derived from pheromone
values are carried by the ants, so that they can be different for each ant.
This is in accordance with the general ACR framework of Section 5. The pa-
rameters are assigned to ants in their source node and are calculated using
a genetic algorithm. Some improvements to this algorithm were proposed
in [100].

Anti-pheromone and multiple colonies are used in the Multiple Ant
Colony Optimization (MACO) algorithm for routing and load balancing [98].
An ant is expected to select paths marked by high values of pheromone of
the type laid by the colony it belongs to, and get repulsed by routes marked
by high values of pheromone laid by ants of other colonies. This mechanism
is expected to favor the establishment of multiple disjoint paths.

A different approach is taken in the CE-ants [114], inspired by the cross-
entropy (CE) metaheuristic for combinatorial optimization [91]. The CE
method is based on the repeated sampling of paths and on the consequent
adaptive adjustment of a parameter, that biases path sampling, to minimize
the cross-entropy between the used generation probabilities and the optimal
importance sampling probabilities. In practice, many CE algorithms have
strong similarities with ACO algorithms. The same is true for CE-ants: the
general architecture is quite similar to AntNet. The main difference lies
in the formulas used for pheromone updating, which bear the signature of
the CE method. CE-ants has been applied to a variety of routing related
problems, in both connection-oriented and connectionless networks, such as
the problem of finding protection cycles [115], and the problem of finding
primary and backup paths [113].

The work described in [77] and other papers by the same authors ad-
dresses the problem of setting up a primary path between a source and a
destination and one or more disjoint backup paths. The authors specifically
consider the case of wavelength-division multiplexing (WDM) networks. The
wavelength assignment for the routing paths is realized in a dynamic on-
demand fashion. A similar problem is tackled in [109] using multiple types
of ants. Ants cooperate with those of the same type and are in competition
with those of different types. In this way the paths found by ants of different
types will likely be mutually disjoint and can be used for backup purposes.
The first to address the problem of routing and wavelength assignment in
WDM networks using a SI approach were the authors of [76], who also were
the first to introduce the idea of multiple ant types and the related notion
of attraction/repulsion.
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6.2 Connectionless networks providing best-effort services

SI routing algorithms for connectionless networks are in the first place based
on AntNet (see Subsection 4.1). AntNet-FA [30] is an adaptation of AntNet.
It contains an improvement in the behavior of the forward ants: AntNet-FA’s
forward ants do not use the same queues as data packets, but instead take
high priority queues. The trip times experienced by the ants are therefore
no longer representative for the end-to-end delay of data packets; the delays
for data packets are instead calculated by the backward ants as the sum
of local estimates maintained in each of the intermediate nodes. The main
advantage is that, in this way, ants travel faster, and therefore updates are
more timely.

Other papers propose further improvements over AntNet. In [33] and [78]
some mechanisms to enhance the exploratory behavior of AntNet are pre-
sented. In [5], the authors propose other improvements such as the possibil-
ity to explicitly take link and node failures into account, and a better ini-
tialization of the pheromone tables. In [58], adaptive-SDR is proposed. The
main difference with AntNet is that the network is divided into clusters,
and a distinction is made between inter-cluster routing and intra-cluster
routing. This improves scalability, since routing tables do not have to main-
tain entries for all possible destinations. Scalability issues of AntNet were
also investigated in [19]. Finally, in [117], the authors present Adaptive
Swarm-based Routing (ASR). Differences with AntNet include the use of
a momentum term in pheromone updating, and the fact a node receiving
a backward ant updates its pheromone matrix not only for the destination
node of the ant, but for each node between itself and the destination node
on the path of the backward ant.

The Ants Routing algorithm [99] builds on ABC, and makes use of the
same mechanism of updating pheromone toward the source while traveling.
It is meant for networks with frequent topology changes, for example due to
node and link failures. The main difference with respect to ABC is the use
of so-called uniform ants. These are different from regular ants in the sense
that they do not have a specific destination and do not follow pheromone.
Instead, they wander through the network choosing each next hop according
to a uniform distribution, until they reach a maximum time-to-live, after
which they are discarded. The use of uniform ants improves exploration,
which is important when one wants to keep up with frequent changes. A
disadvantage is that the uniform ants can lead to inefficiencies, due to the
overhead they cause and the suboptimal paths they follow. The authors
of [89] describe ABC-backward, which combines ABC with elements from
AntNet, such as the use of backward ants and the use of the ants’ trip time
for pheromone updating.

In [52], the Co-operative Asymmetric Forward (CAF) mechanism is pro-
posed. It shows how forward ants can update routing information about the
path to their source without sending a backward ant and without assuming
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symmetric path costs. The main advantage is that the overhead created by
backward ants is avoided.

In [25] the authors present an AntNet-like algorithm for routing in the
specific and relatively novel domain of networks-on-chip (NoC). These are
sub-micron scale networks that connect the elements on an integrated cir-
cuit. The implementation is an adaptation of AntNet to the constraints
imposed by NoCs. The algorithm shows superior performance compared to
other routing models in terms of ability to effectively balance the load, while
minimizing energy consumption and the heating of the integrated circuits.

A number of other algorithms use biological metaphors that are different
from the ant foraging behavior, but nevertheless follow a similar approach
to routing as described in the general ACR template. The BeeHive algo-
rithm [111] is inspired by the foraging behavior of honey bees. Similar to
AntNet, it gathers routing information using path probing packets (called
bee agents here), and it builds stochastic routing tables for data forward-
ing. Different from ants in AntNet, bees are deterministically flooded (with
a maximum number of hops) instead of unicast along a probabilistically cho-
sen path to a specific destination. Also different from AntNet, the network
is divided into regions, so that not all destinations need to be put in the
routing table of each node and better scalability can be provided. The basic
algorithm and its multiple derivations have been extensively tested both in
simulation and in real networks [43]. The GA-agents algorithm [65] is based
on the use of a distributed genetic algorithm (GA). Each node maintains a
GA population, in which each individual represents a path in the network.
Paths are encoded as a sequence of turns. Individuals are evaluated by let-
ting them probe the path they represent. This way, they are similar to the
ants in AntNet. Typical GA operations such as mutation and selection are
executed to find the best paths.

6.3 Networks offering QoS

In QoS networks, data of different sessions are treated in different ways,
in order to provide each session with the specific level of service it needs
from the network. Such levels of service can be expressed in terms of various
measures, such as end-to-end delay, variation in delay (jitter), bandwidth,
etc. When routing is used as a tool in this process, we speak of QoS routing.
The algorithms presented in Subsection 6.1 could be used to provide some
form of QoS, since they rely on connection-oriented communications. Here
we discuss algorithms that were specifically designed to provide QoS.

A first example of a SI-based algorithm for QoS routing is the earlier
mentioned AntNet+SELA [32], which deals with QoS routing in (connection-
oriented) ATM networks. The algorithm integrates AntNet with SELA, a
framework for QoS provisioning in ATM networks that uses static reinforce-
ment learning agents to derive routing and application admission strategies.
The original SELA uses a link state approach to gather routing informa-
tion. AntNet+SELA, instead, uses ant based probing. An interesting feature
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of AntNet+SELA is that nodes have the possibility to reactively send out
extra ants in order to search specific information that they need.

A number of other adaptations of SI for QoS routing have been proposed.
Most of these aim to provide hard QoS guarantees, following the IntServ
approach [13], in which virtual circuits are set up and resources are reserved
for sessions needing certain levels of service. This is the case for Agent-
based Routing System (ARS), proposed in [79], and for Q-Colony, proposed
in [102, 103], which makes use of multi-pheromone tables, with each table
addressing a single QoS constraint. Other approaches combine SI with a
soft approach to QoS, where no hard guarantees for the required levels of
service are given. This is the case for Q-Colony, that can be adapted to deal
with both hard and soft constraints, for the algorithm proposed in [72] and
for AntNet-QoS, presented in [18]. The latter proposes an integration of
AntNet with the DiffServ framework for QoS [63], in which levels of service
are provided by assigning data sessions to certain service classes.

7 SI implementations for routing in wireless ad hoc networks

In this section, we describe SI algorithms for routing in wireless ad hoc
networks. Due to the intrinsic dynamic nature of these networks, a large
number of SI routing implementations have been proposed in recent years,
precisely to exploit the characteristics of adaptivity and robustness of such
algorithms. In the following, we briefly discuss some among the most re-
markable implementations. We focus our discussion mainly on routing in
MANETs, since these networks are the most general network model in
the class of wireless ad hoc networks. Other types of wireless networks,
such as sensor, satellite, and vehicular networks, present very application-
specific characteristics and constraints (e.g., see the description of sensor
networks in Subsection 2.2). A proper discussion of routing for those net-
works would require the discussion of application-specific topics that are
outside the scope of this general overview. The interested reader can refer,
for instance, to [26, 46, 97] for SI implementations for satellite networks,
to [16,75,80,92,93] for sensor networks, and to [54] for vehicular networks.

As previously mentioned, an important issue in this field is the distinc-
tion between proactive and reactive algorithms: proactive algorithms try to
maintain up-to-date routing information between all pairs of nodes in the
network at all times, while reactive algorithms only gather information for
nodes that are currently involved in a data communication session [90]. Re-
active algorithms are more efficient and are preferred when the network is
large or highly dynamic [14]. In what follows, we first discuss proactive SI
routing algorithms, and then reactive and hybrid ones (which contain both
reactive and proactive elements). Finally, we describe SI algorithms for QoS
routing in wireless ad hoc networks.
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7.1 Proactive SI routing algorithms

A number of algorithms apply the architecture of known SI routing algo-
rithms for wired networks directly to ad hoc networks. This leads to proac-
tive algorithms, in which all nodes send ants to all possible destinations.
A first example is the Accelerated Ants Routing algorithm [71], which is
derived from Ants Routing ( [99]; see also Section 6.2). It contains small
adaptations to this algorithm, such as the no-return rule (which simply
states that ants cannot pick their previous hop as next hop, so that sim-
ple loops are avoided), and is shown in simulation to perform better than
AntNet in MANETs. The ABC-AdHoc algorithm [105] on the other hand
is based both on ABC and AntNet. While it uses forward ants that update
pheromone for the path to their source, as is done in ABC, it uses formulas
of AntNet to calculate pheromone updates and to make probabilistic rout-
ing decisions. In a simulation with rather limited mobility, the ABC-AdHoc
algorithm was shown to perform better than AntNet. The W AntNet al-
gorithm [27] is directly derived from AntNet with the addition of periodic
beacon messages for neighbor discovery and for keeping the routing tables
locally up-to-date. Simulation results show that, for increasing node mobil-
ity, performance degrades with respect to AODV and DSR, and the number
of looping packets increases.

Other algorithms use elements of SI in a different way, which is however
still proactive. The authors of [73] propose to use a set of mobile agents that
are quite independent of network nodes or data sessions: these agents are
generated at network setup time, and they stay around indefinitely. They
perform a continuous random walk through the network, keeping a history
of the last N nodes they have visited. At each new node they arrive, paths
are extracted from their history list in order to update routing informa-
tion. In [15], the authors propose an algorithm that combines ants with
geographic routing. In geographic routing, nodes are able to figure out their
own geographic location (e.g., through use of the GPS system [53]), and
data forwarding is based on the relative location of the destination and the
next hops. An important issue is how a node can get to know the location
of other nodes. In the proposed approach, nodes use ants, sent to randomly
chosen destinations, to inform other nodes about their location. The Mobile
Ants-Based Routing Protocol (MABR) [51] was designed for large scale ad
hoc networks. This algorithm divides the network area in rectangular zones,
corresponding to geographical areas. All nodes of a zone together make up
a logical router. Long distance routing is done between logical routers, with
the aid of location information. Ants are used at this level, to proactively
update routing tables between logical routers. In simulation, MABR com-
pared favorably to Terminodes routing [9], a different algorithm for large
ad hoc networks. In AntHocGeo [64] the authors propose a modification of
AntHocNet (see next section) which implements the concept of geographi-
cal localization of knowledge. The environment is partitioned in cells, such
that a routing path is first considered at the cell level rather than at the
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node level. A mechanism is introduced to optimize the exchange of routing
information among the location-aware nodes while they move from one cell
to the other. The algorithm shows an improvement of performance with re-
spect to AntHocNet in simulation experiments and in tests using a network
of wirelessly connected mobile robots.

7.2 Reactive and hybrid SI routing algorithms

The problem with proactive approaches to routing in ad hoc networks is
their limited efficiency. In the case of the SI routing algorithms described
above, the continuous sending of ant agents between all possible pairs of
source and destination nodes can easily saturate the limited bandwidth re-
sources of the network. A solution to this problem is to use SI routing
mechanisms reactively, focusing effort on those node pairs between which
communication is going on. This is well illustrated in [6]. In this work, the
authors first propose an algorithm that is very similar to AntNet. In sim-
ulation tests, the algorithm was found to perform worse than AODV, an
important reference algorithm in the field, due to inefficient route discovery
and large amounts of overhead. Then, the authors propose a new algorithm,
called Probabilistic Emergent Routing Algorithm (PERA). This is a purely
reactive algorithm: forward ants are only sent out at the start of a communi-
cation session, or when all existing routing information is out of date. They
are flooded through the network towards the destination. For every copy of
the forward ant that reaches the destination, a backward ant is sent to the
source, so that multiple paths are created at route setup time. In simula-
tion studies, PERA is found to have a performance that is comparable to
AODV. On the downside, it must be noted that the algorithm is not very
different from traditional reactive routing algorithms, such as AODV itself.
This is on the one hand because, in the efforts to improve efficiency, a lot
of the original SI routing mechanisms have been dropped, and on the other
hand because some basic elements, such as a bottom up approach and the
use of end-to-end path sampling, are generally useful in dynamic networks
and have therefore been widely adopted in ad hoc network routing protocols
such as AODV.

The approach of building a reactive kind of ACO routing algorithm has
been followed by several other researchers in the field. Ant-Colony-Based
Routing Algorithm (ARA) [50] is quite similar to PERA. One important
difference is that also data packets update pheromone, so that paths which
are in use are also reinforced while the data session is going on. This is
equivalent to repeated path sampling. In simulation, ARA was found to
perform better than AODV. In [20] ARA is enhanced with a timeout to
resend forward ants to face ant losses during path discovery, and with a
memory buffer to hold packets waiting for a path following a path failure.
Also the Termite algorithm [88] follows a reactive approach. An important
difference with ARA and PERA is that forward ants are not flooded, but
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follow a random walk. Moreover, backward ants do not necessarily follow the
exact same path of the forward ant back to the source, but are themselves
routed stochastically (this can be an advantage if unidirectional links are
present). Like in ARA, pheromone updating is also done by data packets.
Termite was shown to perform better than AODV for varying values of node
speed. Ad hoc Networking with Swarm Intelligence (ANSI) [87] is another
algorithm that follows the same approach. It only uses ants at route setup
time. A mechanism using forward and backward ants is applied, and like
in Termite and ARA, data packets also deposit pheromone, in order to
reinforce the paths they use. Data are routed deterministically over the best
paths. ANSI evaluates paths based on the congestion rates of nodes along
the path. ANSI was shown to perform better than AODV in simulation.

The BeeAdHoc [43, 110] algorithm, from the same authors of BeeHive,
is based on the foraging bees metaphor, and adopts a different approach,
based on the use of four different types of agents. Scout agents are reactively
broadcast using an increasing time-to-live heuristic in order to progressively
enlarge the flooding area. When a good path is found, this is held by a dif-
ferent agent and made available at the nodes for data packets, that are
source-routed. In this way multiple paths can be used and no routing de-
cision is taken at the intermediate nodes. BeeAdHoc is explicitly aimed at
minimizing end-to-end delay and energy consumption. In a set of extensive
simulation and real world experiments, BeeAdHoc has shown performance
superior to AODV and DSR.

A few algorithms mix the purely reactive approach to routing with some
proactive elements, so that they can be labeled hybrid. A first example is
the Emergent Ad Hoc Routing Algorithm (EARA) [67]. Like the algorithms
discussed above, it uses ants to set up paths at the start of a communica-
tion session. However, it does not stop there, and keeps on sending ants to
the destination for as long as the session is active. New paths are detected
using ants that do random walks through the network. A very similar ap-
proach is followed in Ant Routing Algorithm for Mobile Ad hoc networks
(ARAMA) [55], that also makes use of pheromone evaporation, composite
pheromone metrics, and so-called negative backward ants: when a forward
ant incurs in a loop or expires its time-to-live, a backward ant is generated
to decrease the pheromone along the path. In AntHocNet [31, 40], the up-
dating of pheromone and the discovery of new paths is not only executed
by ants, but is also guided by a secondary process that follows the dynamic
programming scheme commonly used in traditional, top-down approaches
to routing in wired networks (see Section 2). AntHocNet was shown to out-
perform AODV and other state-of-the-art algorithms in a wide range of
different open space and urban scenarios. In [57], a mechanism is added
to AntHocNet in order to favor the establishment of node-disjoint multiple
paths. A little improvement in performance has been observed in a set of
experiments with 30 personal digital assistants (PDAs). Finally, we mention
a slightly different approach presented in [70], which combines AODV and
ants. The algorithm uses the basic AODV approach to gather routing infor-
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mation for ongoing communication sessions, while ants performing random
walks through the network independently of communication sessions, source
or destination nodes, update existing routing tables based on the history of
the nodes they have visited. This algorithm was shown to outperform both
AODV and Ants Routing.

7.3 SI for QoS routing in wireless ad hoc networks

A few SI routing algorithms for QoS routing in MANETs have also been
proposed. Ant-based Distributed Routing Algorithm (ADRA) [119] follows
a reactive approach, similar to the PERA algorithm described above. A dif-
ference is that, in order to support QoS, nodes check resource availability
before they forward an ant, so that paths are only set up when their QoS
requirements can be met. In case available resources change and an existing
path can no longer rely on the necessary resources, nodes send so-called anti-
ants to erase the path and inform downstream nodes that they need to find
a new path. In simulations, ADRA was found to outperform the DSR rout-
ing algorithm [56], especially in more dynamic scenarios. Ant colony based
Multi-path QoS-aware Routing (AMQR) [66] uses ants to set up multiple,
link disjoint paths. The source node stores information about the paths fol-
lowed by different ants, and combines it to construct a topology database
for the network. Based on this database, it calculates n different link disjoint
paths, and it sends data packets over these different paths. Pheromone is up-
dated by the data packets. The use of a topological database is an approach
that is different from most other SI routing algorithms, but can also be
found in the AntNet+SELA algorithm for QoS routing in wired networks.
It allows the source node to have better control over the paths that are set
up. In simulation tests, AMQR was shown to outperform ADRA and DSR,
especially in low mobility scenarios. EARA-QoS [67] is derived from the
previously mentioned EARA and makes use of cross-layer multiple-criteria
metrics to offer DiffServ routing. EARA-QoS includes in the probabilistic
rule two different heuristics based on MAC-layer measures for delay and
congestion and adopts a mechanism based on sequence numbers to pro-
vide multiple loop-free paths. The algorithm is a hybrid one, combining
on-demand path finding with periodic ant generation for path maintenance.
Simulation results show that EARA-QoS can provide good performance and
can outperform AODV. In [3] the authors propose Swarm-based Distance
Vector Routing (SDVR), a straightforward on-demand implementation of
an AntNet scheme that uses multiple pheromone tables, one for each dif-
ferent QoS parameter, and combines them at decision time. A pheromone
evaporation mechanism is used to reduce the attractiveness of old paths.
In a number of simulation experiments, which do not involve strict QoS
requirements, SDVR systematically outperforms AODV in small networks.
Finally, in [118] a PSO-based approach is adopted to effectively search the
path space in the case of multiple QoS metrics including power consump-
tion.
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8 Conclusions and future perspectives

The control and management of modern computer networks, which are
increasingly large, dynamic, and heterogeneous, requires the development
of novel algorithms and protocols that are fully distributed, adaptive, ro-
bust, scalable, and can let the network behave as an autonomous and self-
organizing system. These properties are the typical fingerprints of well-
engineered swarm intelligence systems. In the past 10 years, this fact has
led a number of researchers from all over the world to apply the principles
of SI to design novel algorithms for network control, and in particular, for
adaptive routing, which is at the very core of the reliable and effective func-
tioning of any telecommunication network. In this paper we have reviewed
a number of these applications of the SI paradigm, considering routing al-
gorithms for wired and wireless networks, best-effort and quality-of-service
networks. At the same time, and precisely starting from the practice of al-
gorithm implementations, we laid down the general principles underlying
the application of the ideas of SI to the design of routing algorithms.

In the first part of the paper we have discussed what SI is, or, more
precisely, what the notion of SI is as it is perceived in the community of its
practitioners. We have framed SI as a distributed bottom-up approach that
emphasizes locality of interactions and self-organization, possibly by mirror-
ing the organizational characteristics of the original natural systems of inspi-
ration, such as ant or bee colonies. We pointed out that this characterization
of SI is nevertheless too general, such that in the case of telecommunication
networks, it can encompass a large number of algorithms that have not been
developed with an explicit reference to SI. This is the case of many routing
algorithms for mobile ad hoc networks developed from the networking com-
munity. Therefore, we started from the common core characteristics of the
implementations to derive a set of design principles that can be identified as
the true fingerprints of SI for routing, and that can be used in practice for
future algorithm implementations. As a matter of fact, the large majority of
the implementations are based on the Ant Colony Optimization framework.
Consequently, the principles that we have identified closely reflect this fact.
Moreover, using these principles as building blocks, we went further, and we
defined Ant Colony Routing (ACR), which is a general framework for the
design of ACO and SI routing algorithms. ACR describes SI routing from a
perspective that is complementary to the one that is commonly followed in
the field, emphasizing the aspects of distributed and cooperative reinforce-
ment learning, and active and passive information sampling. The network
nodes are seen as reinforcement learning agents that adaptively learn about
network status through passive monitoring of their local traffic and connec-
tion topology, and active gathering of non-local information through, for
instance, the generation of ant-like agents.

Analyzing the performance delivered by the reviewed routing algorithms,
we can safely state that the application of the SI paradigm has so far
been particularly successful. A significant number of SI routing algorithms
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robustly outperform state-of-the-art algorithms for the domain. However,
there is still work to do to reach excellence and to face the challenges pre-
sented by current and future networks.

First, the number of real-world implementations of the proposed algo-
rithms is still too limited. It is not a trivial task to effectively port a SI
algorithm from simulation to real devices. For instance, the probabilistic
and multi-path aspects are an issue both at the level of kernel implemen-
tation and for what concerns the effective tracking and reordering of data
packets. Some algorithms such as AntNet and some bee-inspired algorithms
have been implemented on physical networks [43, 108, 116], showing good
performance. However, the next step should consist of the development of
a more systematic policy of physical implementations, in order to, on the
one hand, fully test and adapt the algorithms to physical-world constraints,
and, on the other hand, favor the actual deployment of SI-based routing in
real-world networks used for practical purposes.

Second, starting from the ideas behind the ACR model, it is necessary
to make a cross-over with the machine learning domain in order to empower
the basic building blocks of a SI architecture with the abilities to coopera-
tively learn in a fast and efficient way about network changes. Due to the
very dynamic nature of modern networks, novel and effective algorithms
are required to learn about the current network and user context, adapt
decision policies to it, self-tune internal parameters, and self-heal the net-
work after failures. This is the approach advocated in the recent views of
autonomic communications [62] and cognitive networks [45, 68]. We believe
that a cross-over between SI and reinforcement learning as outlined in the
definition of ACR is the way to go to achieve these objectives and to bring
a fundamental contribution to the autonomic management and control of
the networks of the future.

Finally, there are a few other domains of research that are closely related
to SI. It is important to compare the different approaches and promote cross-
fertilization of techniques. Of particular interest in this respect is the case
of gossip/epidemics algorithms [42]. These algorithms, derived from models
of spreading of epidemics and of information gossiping in human networks,
have a clear link with swarm intelligence. In fact, they are a bottom-up
approach based on the metaphor of a biological network and they rely on
purely local information exchanges and self-organized behaviors. Because
the study of gossip algorithms is a well consolidated and continuously grow-
ing domain of research in networking, we have decided not to discuss gossip
routing in this paper. On the other hand, gossip-based techniques can be
fruitfully integrated into a SI architecture (examples of this way of pro-
ceeding can be found in [49, 96]). In particular, we see gossip peer-to-peer
information exchanges between neighbor nodes as complementary to the
typical path sampling of ACO and SI routing. For instance, we can envis-
age the use of gossip techniques for the cooperative information exchange
and coordination among the node managers of an ACR algorithm.
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48. P. P. Grassé. La reconstruction du nid et les coordinations interindividuelles
chez bellicositermes natalensis et cubitermes sp. La théorie de la stigmergie:
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