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Principles and functions of pericentromeric satellite DNA clustering 
into chromocenters 
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A B S T R A C T   

Simple non-coding tandem repeats known as satellite DNA are observed widely across eukaryotes. These repeats 
occupy vast regions at the centromere and pericentromere of chromosomes but their contribution to cellular 
function has remained incompletely understood. Here, we review the literature on pericentromeric satellite DNA 
and discuss its organization and functions across eukaryotic species. We specifically focus on chromocenters, 
DNA-dense nuclear foci that contain clustered pericentromeric satellite DNA repeats from multiple chromo-
somes. We first discuss chromocenter formation and the roles that epigenetic modifications, satellite DNA 
transcripts and sequence-specific satellite DNA-binding play in this process. We then review the newly emerging 
functions of chromocenters in genome encapsulation, the maintenance of cell fate and speciation. We specifically 
highlight how the rapid divergence of satellite DNA repeats impacts reproductive isolation between closely 
related species. Together, we underline the importance of this so-called ‘junk DNA’ in fundamental biological 
processes.   

1. Introduction 

Satellite DNA are simple non-coding tandem repeats that are wide-
spread and abundant in eukaryotic organisms [1]. They are primarily 
present as vast tracts (105 – 107 bp) at the centromeric and pericentro-
meric (flanking the centromere) heterochromatin of eukaryotic chro-
mosomes. Although centromeres are specified through deposition of the 
centromeric histone [2], the underlying centromeric satellite DNA are 
also thought to play a role in centromere identity [3,4]. For example, 
evolutionarily new centromeres (ENCs) and neocentromeres can lack 
repetitive sequences but still retain the ability to form kinetochores 
[5–7]. However, the instability of ENCs and neocentromeres [8,9] 
together with the observation that ENCs ‘mature’ by acquiring satellite 
DNA [10] suggests that these repeats are important components of 
eukaryotic centromeres. In contrast to centromeric satellite DNA, the 
function (s) of pericentromeric satellite DNA repeats has remained 
mysterious, even though they far surpass centromeric satellite DNA in 
abundance. In fact, these sequences are often dismissed as ‘junk DNA’ 
[11] or ‘selfish parasitic DNA’ [12]. However, the widespread occur-
rence of pericentromeric satellite DNA in eukaryotes suggests that they 
may serve critical functions that justify their large burden on the cell. 

Interestingly, cytological studies have identified that both types of 
satellite DNA are frequently clustered within nuclei [13–20]. Specif-
ically, pericentromeric satellite DNA from multiple chromosomes are 
clustered into prominent DNA-dense nuclear foci known as chromo-
centers [18,19]. Much like for pericentromeric satellite DNA, a concrete 
biological role for chromocenters has remained elusive. Here, we review 
the current knowledge on pericentromeric satellite DNA and chromo-
centers. We focus on recent advances on the mechanisms of pericen-
tromeric satellite DNA clustering into chromocenters and discuss the 
roles of epigenetic modifications, satellite DNA transcripts and satellite 
DNA-binding proteins. We also highlight newly discovered functions of 
pericentromeric satellite DNA that illuminate this underappreciated 
constituent of eukaryotic genomes. 

2. Heterochromatin 

The nuclear DNA of eukaryotic organisms is packaged into a nucle-
oprotein complex known as ‘chromatin’. Pioneering work by Emil Heitz 
identified two classes of chromatin, euchromatin and heterochromatin, 
based on their differential staining with carmine acetic acid during 
interphase and mitosis in moss cells [21]. In particular, he used the term 
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‘heterochromatin’ to represent parts of a chromosome that remained 
intensely stained i.e., condensed, even during interphase. Subsequent 
research over the past 100 years has identified the structural and func-
tional characteristics of both classes of chromatin. As a result, the mo-
lecular mechanisms that mediate the establishment and regulation of 
euchromatin and heterochromatin have been characterized in fine detail 
[22]. Euchromatin refers to gene-rich regions on chromosomes that 
exhibit epigenetic modifications associated with transcriptional activa-
tion. In contrast, the gene-poor heterochromatin is often highly 
condensed throughout all phases of the cell cycle and exhibits epigenetic 
modifications that are associated with DNA compaction and transcrip-
tional inactivation. Heterochromatin can be further sub-categorized into 
constitutive and facultative heterochromatin [22,23]. Facultative het-
erochromatin refers to locus and cell-type specific heterochromatin, e.g. 
the inactive X chromosome in female mammals. On the other hand, 
constitutive heterochromatin remains consistently condensed and 
transcriptionally inactive across different cell types and tissue and is 
primarily comprised of repetitive sequences such as satellite DNA, 
telomeres and transposable elements. Importantly, the organization of 
the genome into a transcriptionally active compartment (euchromatin) 
and a dense, insert compartment (heterochromatin) is considered to be 
essential for cell function [23,24]. 

3. A brief history of satellite DNA 

The development of DNA density gradient centrifugation [25] and 
the measurement of DNA reassociation kinetics [26,27] in the mid-20th 
century led to the surprising discovery that substantial fractions of 
eukaryotic genomes were comprised of highly repetitive sequences. The 
centrifugation of DNA through a dense salt gradient separates DNA 
molecules of different composition. When density gradient centrifuga-
tion was performed on DNA from a variety of eukaryotic species 
including mouse, guinea pig and crabs, it revealed the presence of 
‘satellite’ bands, which sedimented at different densities compared to 
the rest of the genome [28–31]. The DNA molecules contained in these 
‘satellite’ bands tended to be AT-rich [30,31] and re-associated with 
much faster kinetics in comparison to the bulk of genomic DNA [32,33] 
since they were repetitive and thus able to find a hybridization partner 
more frequently. These sequences were collectively termed as ‘satellite 
DNA’. Decades of subsequent studies have informed us that satellite 
DNA are tandem repeats that are present as vast tracts (105 – 107 bp) on 
eukaryotic chromosomes [32,34,35]. 

At the same time, the organization of satellite DNA within the nu-
cleus was still enigmatic. The first glimpse into the cellular and chro-
mosomal location of these repetitive sequences was obtained when 
satellite DNA was found to be associated with purified nucleoli, likely 
due to the proximity of satellite DNA and the nucleolus organizing rDNA 
repeats on chromosomes [36]. Subsequent experiments also indicated 
that satellite DNA repeats were highly abundant in heterochromatin 
fractions from mouse, guinea pig and other mammals [37–39]. How-
ever, the development of in situ hybridization [40,41] was required to 
unambiguously map the chromosomal locations of these satellite DNA 
repeats [18,19]. Indeed, in situ hybridization experiments demonstrated 
for the first time that mouse satellite DNA repeats were present near the 
centromeres of metaphase chromosomes. Intriguingly, the same exper-
iments revealed that satellite DNA repeats were present in a few 
DNA-dense foci called chromocenters in interphase nuclei. 

4. Chromocenters 

The term ‘chromocenter’ (chromocentri) was originally used by the 
Italian botanist Pasquale Baccarini and referred to dark stained foci in 
plant nuclei, which were distinct from nucleoli [42]. It was subsequently 
noted that chromocenters were largely made up of the heterochromatic 
regions of chromosomes and often located near nucleoli [21,43]. While 
satellite DNA repeats are nearly ubiquitous in metazoan chromosomes, 

chromocenters are most prominently visible in the nuclei of plants, ro-
dents and insects, where they stain intensely with DNA dyes. Pioneering 
cytological studies using light and electron microscopy in these species 
have made foundational contributions to our understanding of peri-
centromeric satellite DNA organization and chromocenter positioning 
within nuclei [36,44–46]. For example, an analysis of chromocenter 
spatial positioning in six different mouse cell types revealed that chro-
mocenters are largely present at the nuclear periphery or adjacent to the 
nucleolus [47]. Notably, only 0.3 – 6% of chromocenters did not adopt 
these stereotypic nuclear positions in the cell types tested. Thus, the 
majority of chromocenters are observed either at the nuclear envelope 
or adjacent to nucleoli. Interestingly, the number of chromocenters per 
nucleus varied between different mouse cell types. For example, lym-
phocytes contained the fewest chromocenters per nucleus, while fibro-
blasts contained the most. The potential functional significance of the 
number of chromocenters per nucleus will be discussed subsequently. 

Following the recent advances in the field [48–50] we propose a 
more current definition of chromocenters as DNA-dense nuclear or-
ganelles that contain pericentromeric satellite DNA from multiple 
chromosomes (Fig. 1A). Apart from the DNA repeats, chromocenters can 
also contain satellite RNA [51,52], while sequence-specific DNA-bind-
ing proteins [50,53] play a critical role in binding and clustering repeats 
from multiple chromosomes (Fig. 1A). In eukaryotic nuclei with a 
‘conventional’ organization, chromocenters are either associated with 
the nuclear envelope or nucleoli or both (Fig. 1B, middle). 

In the section below, we highlight the roles played by heterochro-
matin modifications, satellite DNA transcription and sequence-specific 
satellite DNA-binding proteins in mediating chromocenter formation. 
Following that, we discuss current studies, which examine the material 
properties of chromocenters and suggest that the phenomenon of phase 
separation plays an important role in satellite DNA clustering into 
chromocenters. Finally, we review studies that provide a framework to 
understand the biological function of chromocenters. 

5. Factors influencing chromocenter formation 

The spatial organization of nuclear compartments has been hy-
pothesized to rely on homotypic interactions between similar sequences, 
as well as the association of DNA with nuclear scaffolds such as the 
nuclear envelope (NE) and nucleoli [54–61]. However, the precise 
mechanisms have remained unclear and the relative contributions of 
chromatin-chromatin interactions and chromatin-scaffold interactions 
have been difficult to disentangle. Recently, Solovei, Mirny, Fudenberg 
and colleagues addressed nuclear compartmentalization in rod photo-
receptor nuclei, where chromatin-scaffold interactions are largely ab-
sent [62]. These nuclei exhibit a unique ‘inverted’ organization and 
typically contain a single large chromocenter in the nuclear interior 
(Fig. 1B, left) [63]. Using polymer simulations and modulating inter-
action strengths within and between three chromatin types (euchro-
matin, facultative heterochromatin and pericentromeric 
heterochromatin), they were able to reproduce the ‘inverted’ spatial 
organization of rod nuclei. Strikingly, their results showed that in-
teractions within pericentromeric heterochromatin (satellite DNA) 
played a dominant role in bringing about the stereotypic inverted nu-
clear organization, while interactions involving euchromatin were 
dispensable [62]. Moreover, the addition of interactions between peri-
centromeric heterochromatin and the nuclear envelope in the same 
simulations was sufficient to reproduce conventional nuclear organiza-
tion, while the separation of euchromatin and heterochromatin into 
distinct nuclear compartments was still maintained. These data strongly 
suggest that interactions within pericentromeric heterochromatin i.e. 
satellite DNA clustering into chromocenters and interactions between 
chromocenters and the NE/nucleoli are the cornerstones of nuclear 
spatial organization in eukaryotes. 

In this section, we will summarize our current understanding on the 
factors that drive satellite DNA clustering into chromocenters, including 
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epigenetic modifications on heterochromatin, transcription of satellite 
DNA repeats and sequence-specific satellite DNA-binding proteins. 

5.1. Recognition of epigenetic modifications on satellite DNA 

5.1.1. H3K9 methylation and HP1 
Methylation of Histone H3 at K9 is a hallmark of constitutive het-

erochromatin [64]. Several studies have pointed to the importance of 
this modification for various aspects of cellular function including 
genome stability, repeat repression and tethering constitutive hetero-
chromatin to the nuclear lamina [65–71]. Importantly, H3K9 methyl-
ation also plays an important role in chromocenter formation. In mice, 
three paralog pairs of H3 lysine methyltransferases (H3 KMTs) catalyse 
the methylation of K9 on histone H3 [72]. Specifically, Suv39h1/-
Suv39h2 establish H3K9 trimethylation at constitutive heterochromatin 
[73,74] while Setdb1/Setdb2 are required to repress transposons [75, 
76] and G9a/Glp mediate gene repression in euchromatin by estab-
lishing H3K9 dimethylation [77,78]. Interestingly, the six H3 KMTs 
display some level of redundancy with one another [79,80] and loss of 
both Suv39h enzymes does not have a strong effect the morphology of 
chromocenters. However, a recent study generated mouse embryonic 
fibroblasts where these KMTs were progressively deleted [72]. The au-
thors noted that cells lacking both Suv39h enzymes as well as Setdb1 lost 
visible DAPI-dense chromocenters around 40% of the time, in agreement 
with previous results [80]. Further deletion of all six KMTs led to an even 
stronger effect with 50–60% of cells exhibiting no chromocenters. Loss 
of H3K9 methylation was also associated with strong deformations in 
the nuclear lamina as well as micronuclei formation, both of which can 

arise from chromocenter and heterochromatin disruption [50,73,81]. 
Together, these data highlight the importance of H3K9me for pericen-
tromeric satellite DNA clustering into chromocenters. 

Epigenetic modifications on chromatin are usually recognized by 
proteins to elicit specific functional outcomes. A candidate chromo-
center forming protein is the heterochromatin-associated protein, HP1, 
which specifically recognizes trimethylated histone H3K9 [82–84]. 
Previous studies have shown that the HP1 chromodomain binds 
H3K9me [82,84] while its chromoshadow domain forms a dimer [85]. 
Simultaneous DNA-binding and dimerization facilitates HP1 oligomer-
ization, resulting in bridging of H3K9 methylated nucleosomes and 
compaction of constitutive heterochromatin [86,87]. However, 
although HP1 is enriched at constitutive heterochromatin in many 
eukaryotic species, it surprisingly does not play a strong role in pro-
moting the clustering of satellite DNA repeats into chromocenters. 
Reducing HP1’s association with satellite DNA, either through mutation 
of Suv39h enzymes [73] or expression of a dominant negative HP1 
truncation mutant lacking the chromodomain [88] did not affect chro-
mocenter morphology. Rather, acute HP1 depletion appears to decrease 
nuclear and mitotic chromosome rigidity [89], suggesting that HP1 af-
fects the stiffness of chromatin through nucleosome bridging. Intrigu-
ingly, these studies also suggest that the proteins which recognize 
H3K9me and mediate satellite DNA clustering into chromocenters are 
still undiscovered. 

5.1.2. Cytosine methylation and MeCP2 
Another set of potential chromocenter forming proteins are MeCP2 

and MBD2, methyl-CpG binding domain (MBD) proteins that bind 5- 

Fig. 1. Models of pericentromeric satellite DNA clustering 
into chromocenters. (A) A simplified model of how satellite 
DNA repeats (magenta ovals) on multiple chromosomes 
can be bound and clustered into a chromocenter (arrow-
head) by sequence-specific satellite DNA-binding proteins 
(magenta rectangles). (B) Pericentromeric satellite DNA 
organization in three major classes of eukaryotic nuclei. 
Pericentromeric satellite DNA (magenta), nucleoli (lilac) 
and the nuclear envelope (green) are depicted in the three 
classes of nuclei. (C) A theoretical model of how differen-
tial ‘wetting’ of pericentromeric satellite DNA (magenta) 
against nuclear scaffolds (flat surface) could affect organi-
zation within nuclei as depicted in panel B. (For interpre-
tation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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methyl cytosine and are enriched at chromocenters [90,91]. Notably, 
mutations in MeCP2 are associated with Rett syndrome, a common 
neurodevelopmental disorder [92,93]. The strongest evidence linking 
MeCP2 and MBD2 to chromocenter formation comes from experiments 
where both proteins were ectopically expressed in mouse myoblast 
culture cells, which resulted in fewer chromocenters (i.e. increase in 
satellite DNA clustering) [94]. The ability of MeCP2 to cluster satellite 
DNA relied solely on the methyl binding domain and was functional 
even in the absence of H3K9 methylation. In contrast, ectopic expression 
of HP1a or the centromeric protein CENPB in the same context did not 
alter satellite DNA clustering or chromocenter numbers per nucleus 
[94]. Live imaging in mouse cells also revealed multiple instances of 
chromocenter fusion during interphase upon MeCP2 overexpression. 
Moreover, in vitro experiments have shown that MeCP2 can intercon-
nect nucleosome arrays into oligomers, suggesting a possible mechanism 
for satellite DNA clustering [95]. At the same time, it should be noted 
that MeCP2-mutant mice did not exhibit any gross defects in chromo-
center formation [94]. It remains to be tested whether other MBD pro-
teins may function redundantly with MeCP2 to mediate chromocenter 
formation, in a similar manner to H3 KMTs. In addition, several obser-
vations suggest that other mechanisms may play a larger role in satellite 
DNA clustering into chromocenters: low levels of cytosine methylation 
in mice [96], the absence of cytosine methylation in Drosophila [97] and 
the weak correlation between cytosine methylation and chromocenter 
morphology in plants and mice [98,99]. 

5.2. Satellite DNA transcription 

Multiple studies have also identified that chromocenters are regu-
lated by satellite DNA transcripts. For example, a burst of satellite DNA 
transcription is essential for chromocenter establishment in the early 
mouse embryo soon after fertilization [52]. Blocking satellite DNA 
transcription in the early embryo by injecting LNA:DNA gapmers 
resulted in developmental arrest at the 2-cell stage prior to chromo-
center formation [52,100]. More recent work has identified that nascent 
satellite DNA transcripts remain associated with chromocenters and 
help recruit the Suv39h KMTs to satellite DNA [101–103]. These studies 
therefore link satellite DNA transcripts to the maintenance of H3K9 
methylation at chromocenters. These data are reminiscent of studies 
from plants, insects and fungi, where pericentric transcripts are pro-
cessed into small RNAs and mediate heterochromatin formation and 
maintenance [22,104–106]. However, studies on satellite RNA regula-
tion of mouse chromocenters paint a subtly different picture. Here, 
nascent satellite DNA transcripts are thought to hybridize with the 
associated DNA repeat and the resulting satellite RNA:DNA hybrid 
serves as a scaffold for binding proteins [101]. Moreover, the satellite 
DNA transcripts are decorated with the m6A RNA modification, which is 
thought to play a role in RNA:DNA hybrid formation and the retention of 
RNA on heterochromatin [107]. Despite the presence of satellite RNA: 
DNA hybrids at chromocenters, blocking their transcription in cultured 
mouse cells does not strongly affect satellite DNA clustering [108]. On 
the other hand, increasing satellite DNA transcription by 
gRNA-targeting of dCas9-VPR in mouse cells [109] resulted in the loss of 
satellite DNA clustering. However, the dramatic breakdown of chro-
mocenters observed in this study is unlikely to depend solely on satellite 
DNA transcription; a previous study has demonstrated that upregulation 
of satellite DNA transcripts (as a result of transcriptional repressor 
depletion) did not affect chromocenters to the same degree [110]. 
Rather, work from Erdel, Rippe and colleagues suggests that satellite 
DNA transcription and eviction of other resident satellite 
DNA-associated proteins by dCas9-VPR may function cooperatively to 
inhibit chromocenter formation [109]. 

5.3. Sequence-specific satellite DNA-binding proteins 

The studies described above characterize epigenetic mechanisms 

that mediate pericentromeric satellite DNA clustering into chromocen-
ters. However, these epigenetic modifications (H3K9me, cytosine 
methylation) are also observed in other chromosomal locations, outside 
of pericentromeric heterochromatin. Therefore, how pericentromeric 
satellite DNA repeats are selectively incorporated into chromocenters 
has remained incompletely understood. We propose that this gap in our 
knowledge can be filled by sequence-specific satellite DNA-binding 
proteins, an overlooked class of chromocenter-forming proteins. Two 
proteins, mammalian HMGA1 (formerly HMG-1/Y) and D1 in Drosophila 
were initially identified as abundant non-histone chromosomal proteins 
[111–114]. D1 was demonstrated to strongly associate with two abun-
dant AT-rich satellite DNA (the 359 bp repeat and the 5 bp AATAT 
repeat) in Drosophila [112,115–117], while HMGA1 was shown to bind 
three sites on the 172 bp α-satellite of the African green monkey [111] 
and the pericentromeric mouse major satellite[118]. Subsequently, the 
proliferation disruptor (Prod) protein from Drosophila was identified to 
specifically bind the abundant 10 bp AATAACATAG repeat [119]. What 
distinguishes HMGA1, D1 and Prod from other 
heterochromatin-associated proteins is that all three proteins have been 
demonstrated to cluster satellite DNA into chromocenters [50,53]. 
While HMGA1 has also been associated with several other cellular 
functions [120,121], we will focus here on the studies of HMGA1, D1 
and Prod that highlight their importance in chromocenter function. 

Both HMGA1 (3 AT-hooks) and D1 (11 AT-hooks) contain multiple 
DNA-binding motifs known as AT-hooks. AT-hooks are short arginine- 
and proline-rich sequences that bind the minor groove of AT-rich DNA in 
a sequence-specific manner and likely recognize specific secondary 
structures [122,123]. Footprinting assays of HMGA1 binding sites on the 
α-satellite and SV40 DNA demonstrated that the HMGA1 AT-hooks bind 
runs of 5–6 A/T base pairs [111,124]. On the α-satellite, HMGA1 binds 
three distinct sites, which could theoretically be brought into proximity 
when the 172 bp satellite DNA monomer is wrapped around the 
nucleosome [111]. This binding pattern has been proposed to facilitate 
the regular positioning of nucleosomes at satellite DNA repeats. Inter-
estingly, multiple studies of Drosophila constitutive heterochromatin 
have observed regularly spaced nucleosomes [66,125,126]. 

Strikingly, electron microscopy of linearized plasmid DNA contain-
ing the mouse pericentromeric major satellite DNA incubated with pu-
rified HMGA1 suggested that HMGA1 could effectively crosslink distinct 
DNA strands [127]. Moreover, all three HMGA1 AT-hooks were required 
for effective crosslinking, suggesting that a single HMGA1 molecule may 
contact more than one DNA strand through its multivalent DNA-binding 
motifs. Subsequently, studies in cultured cells have shown that depletion 
of HMGA1 in multiple mouse cell lines disrupted chromocenters [50, 
128]. Specifically, 30–40% of HMGA1 depleted cells contained nuclei 
with dispersed thread-like satellite DNA and disrupted chromocenters 
[50]. Taken together, these data suggest that mouse major satellite DNA 
repeats are clustered into chromocenters through the partially redun-
dant functions of HMGA1, proteins that binds methylated H3K9, and 
MeCP2 (which contains 2 AT-hook motifs and binds methylated cyto-
sines adjacent to A/T sequences) [129,130]. Consistently, HMGA1 re-
mains localized to satellite DNA in the few H3K9 methylation deficient 
cells with intact chromocenters [72]. 

Studies have also revealed that loss-of-function mutations of the 
Drosophila D1 and Prod satellite DNA-binding proteins result in dis-
rupted chromocenters [50,53]. Importantly, these studies showed that 
D1 and Prod were sufficient to cluster pericentromeric satellite DNA. 
First, tethering D1 to 10 kb LacO arrays (present in genomic loci that are 
distant from pericentromeric heterochromatin) resulted in the recruit-
ment of these LacO arrays to Drosophila chromocenters [50]. Second, 
ectopic expression of Prod in Drosophila spermatocytes, where the 
cognate AATAACATAG loci are spatially separated, was sufficient to link 
the AATAACATAG loci across the nucleus through satellite 
DNA-containing proteinaceous threads [53]. Third, Drosophila D1 
strikingly localized to chromocenters when expressed in mouse cells, 
despite nearly 600 million years of evolution separating these organisms 
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[50]. In mouse cells, increased expression of D1 resulted in fewer and 
larger chromocenters per nucleus, suggesting that D1 can effectively 
cluster satellite DNA from multiple chromosomes, even in a foreign 
context. 

Taken together, these studies highlight the ability of sequence- 
specific DNA-binding proteins to bind pericentromeric satellite DNA 
from multiple chromosomes and cluster them into chromocenters 
(Fig. 1A). 

6. The material properties of chromocenters and 
heterochromatin 

Eukaryotic cells are characterized by the compartmentalization of 
various biological processes into organelles [131]. While some organ-
elles, such as the nucleus and mitochondria, are enclosed by membranes, 
other cellular components such as P-granules, nucleoli and balbiani 
bodies, exhibit organelle-like compartmentalization without enclosing 
membranes [131,132]. The compartmentalization of these 
membrane-less organelles is thought to rely on the process of 
liquid-liquid phase separation (LLPS). During LLPS, biomolecules like 
DNA or proteins in solution thermodynamically disfavour interactions 
with the solvent upon reaching a concentration threshold (Csat) [133]. A 
further increase in the concentration of the molecule then results in a 
separation of the solution into distinct liquid phases [133,134], visually 
reminiscent of oil droplets in a bowl of soup. The ‘dense’ phase where 
the protein or nucleic acid is concentrated is frequently referred to as a 
biomolecular condensate. LLPS is influenced by multiple features, 
including intrinsically disordered regions (IDRs) on proteins, the ca-
pacity for multivalent interactions (protein-protein or protein-nucleic 
acid) and the cellular environment (pH, temperature) [132,135]. 

6.1. Phase separation of chromocenters 

6.1.1. Chromocenters as a liquid droplet 
Accumulating evidence suggests that LLPS plays a role in the 

compartmentalization of chromocenters, which also lack enclosing 
membranes. As often observed with other phase separated organelles, 
chromocenters frequently fuse with one other [63,94]. Chromocenter 
fusion occurs naturally during terminal differentiation of multiple cell 
types, as well as under exogenous conditions such as overexpression of 
MeCP2 and D1 [50,94]. Moreover, chromocenter fusion intermediates 
often resemble the ‘hourglass’ shape typified by liquid-like droplets. In 
addition, chromocenter-associated proteins exhibit many of the char-
acteristics that are required for LLPS. First, they typically possess the 
ability to bind multiple strands of DNA through multivalent 
DNA-binding domains [111,112,129,136]. Second, they contain 
intrinsically disordered regions, which can promote LLPS [137,138]. 
Consistently, chromocenter-associated proteins form liquid-like droplets 
in vitro, either alone [137,139,140] or in complex with DNA [141–143]. 
Third, fluorescence recovery after photobleaching (FRAP) experiments 
show that some of these proteins exhibit dynamic binding to the chro-
matin substrate in vivo [143–145]. Such rapid molecular exchanges are 
frequently observed in liquid-like compartments. Fourth, Drosophila 
chromocenters (marked by HP1) exhibit liquid-like properties during 
heterochromatin establishment in early embryonic cycles [139]. 
Together, these characteristics favour LLPS as an organizing principle 
for chromocenters. Moreover, the liquid-like properties of chromocen-
ters likely play a significant role in the diversity of heterochromatin 
spatial organization across cells and tissues. 

6.1.2. Chromocenters as a chromatin globule 
Interestingly, a recent study challenges the idea that chromocenters 

possess liquid-like properties. Using HP1 as a candidate phase separating 
protein, Erdel, Rippe and colleagues have proposed that mouse chro-
mocenters may exist as a chromatin globule rather than a liquid droplet 
[109]. In their model, they suggest that chromatin bridging and not 

interactions between intrinsically disordered regions is largely respon-
sible for chromocenter formation. They propose a ‘chromatin globule’ 
model, which predicts that the size of chromocenters is kept constant, 
even in response to changes in protein concentration. This marks a key 
difference from a condensate that forms via LLPS, where the size of a 
droplet will immediately react to changes in concentration. Consis-
tently, they observed that changes in HP1 concentration did not alter 
chromocenter size or number, which has also been observed in previous 
studies [73,94]. In principle, both the ‘chromatin globule’ model and the 
‘liquid droplet’ model are compatible with the large-scale re-organiza-
tion and fusions of chromocenters that occur during terminal differen-
tiation, even though the kinetics of chromocenter fusions are likely to be 
different in these two cases. However, it should be noted that the above 
study dissects the material properties of chromocenters in relation to 
HP1 protein levels. We suggest that it would also be important to analyse 
chromocenter material properties in cultured mouse cells when 
over-expressing proteins that have been previously demonstrated to 
elicit changes in chromocenter size and number [50,94]. One possibility 
is that that chromocenters may exist stably as chromatin globules with 
transient switches to a droplet-like state during fusion and large-scale 
re-organization. 

6.1.3. Solid-like or liquid-like heterochromatin? 
The precise material properties of heterochromatin in cells are also 

presently debated. Prior in vitro analyses have shown that chromatin 
can form reversible condensates by altering salt concentrations [146, 
147]. These in vitro chromatin condensates are considered to have un-
dergone a liquid-solid phase separation (LSPS). A recent paper by 
Hendzel, Hansen and colleagues suggests that chromatin, and specif-
ically chromocenter-associated heterochromatin, exhibits solid-like 
properties in vitro and in vivo [148]. Relying largely on FRAP experi-
ments, they observed that native chromatin preparations and in vitro 
assembled nucleosome arrays show very limited molecular exchange 
and solid-like properties. Remarkably, the solid-like chromatin state was 
also observed at mouse chromocenters in vivo and co-existed with the 
more rapidly exchanging heterochromatin proteins, HP1 and KMT5C 
[148]. In contrast, work from Rosen and colleagues (and subsequently 
verified by Hendzel, Hansen and colleagues) reported that in vitro 
assembled nucleosome arrays can exhibit liquid-like properties under 
specific conditions [148,149]. Briefly, the liquid-like properties of these 
nucleosome arrays arise when histone tail-DNA interactions are weak-
ened, thereby allowing increased molecular exchange. Rosen and col-
leagues also observed that spacing nucleosomes with gaps of 
10 n + 5-bp promoted phase separation, while the addition of the linker 
histone H1 increased droplet density but slowed down dynamics (less 
liquid-like droplets) [149]. Interestingly, HMGA1 has been demon-
strated to evict Histone H1 from AT-rich regions of the genome [150] 
and has also been proposed to position nucleosomes on satellite DNA 
repeats. As such, HMGA1 may promote liquid-like properties locally 
when bound to satellite DNA-containing chromatin. 

6.2. A model for the absence of chromocenters in certain cells 

Phase separation may also provide an explanation for the absence of 
visible chromocenters in certain organisms (Fig. 1B, right). For instance, 
human cells exhibit almost no DAPI-dense nuclear foci even though a 
substantial portion of the human genome consists of AT-rich satellite 
DNA repeats [20,151,152]. We propose that this paradox can be 
explained when considering chromocenters as a liquid-like droplets with 
different wetting properties in different cell types. Wetting refers to the 
ability of a liquid to spread over a solid surface; cohesive forces within 
the liquid limit wetting, while adhesive forces between the liquid and 
the solid surface promote wetting (Fig. 1C). We propose that satellite 
DNA-binding proteins and other chromocenter-associated proteins 
represent the ‘cohesive’ forces within chromocenters, while interactions 
between satellite DNA-containing heterochromatin and nuclear 
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scaffolds such as the nuclear envelope (NE) or nucleolus represent the 
‘adhesive’ forces. A balance between the cohesive and adhesive forces 
can be found in chromocenter-containing cells with a ‘conventional’ 
nuclear organization (Fig. 1B, middle). When the cohesive forces pre-
dominate, an ‘inverted’ nuclear organization is expected and can be 
observed in cells such as mouse rod photoreceptors, which do not ex-
press the heterochromatin-NE tethering proteins, LBR and Lamin A 
(Fig. 1B, left) [63,153]. On the other end of the spectrum, we propose 
that dominant adhesive forces in human cells i.e. extensive interactions 
between satellite DNA-containing heterochromatin and nuclear scaf-
folds, should lead to few, if any, visible chromocenters (Fig. 1B, right). 
One prediction from our hypothesis is that a change in the balance of 
these adhesive and cohesive forces in human cells could lead to 
DAPI-dense nuclear foci. An instance of this may be occurring in se-
nescent human cells, which can exhibit dramatic DAPI-dense sen-
escence-associated heterochromatic foci (SAHF) [154]. Consistent with 
our idea, senescent human cells decrease Lamin B expression (decreased 
adhesion) [155–157], while concurrently increasing levels of 
SAHF-associated HMGA1 (increased cohesion) [154]. While our model 
requires further investigation, it predicts that human nuclei may still 
contain clustered satellite DNA, but just not as DNA-dense chromocen-
ters. Rather, clustered pericentromeric repeats may be spread out over 
the surface of nuclear scaffolds like the NE and the nucleolus. In 
accordance with this notion, a previous study has shown that human 
cells exhibit higher-order folding of pericentromeric satellite DNA re-
peats [158]. Importantly, the potential clustering of human chromo-
somes through pericentromeric satellite DNA may still facilitate the 
important biological functions attributed to chromocenters. 

7. Biological functions of chromocenters 

Satellite DNA repeats can comprise between 5% and 50% of 
eukaryotic genomes and organisms must utilize a significant fraction of 
their biosynthetic capacity to replicate and segregate these supposedly 
non-functional repeats [1]. We think that it is unlikely that organisms 
carry a tremendous amount of satellite DNA that is either passive or 
detrimental to their existence. Rather, we find it more likely that these 
repeats have been co-opted to perform important cellular functions. 
Consistent with this possibility, the presence of identical repeats across 
the genome could function to structure or physically link different 
chromosomes through a specialized protein machinery. Based on this 
reasoning, researchers have proposed a variety of roles for satellite DNA 
repeats [159,160]. In this section, we will summarize functions of per-
icentromeric satellite DNA that are linked to their ability to cluster into 
chromocenters, specifically genome encapsulation and regulation of 
gene expression and cell fate. 

7.1. The role of chromocenters in genome encapsulation 

The presence of a single nucleus encapsulating the entire genome is a 
defining feature of eukaryotes. However, eukaryotic genomes are typi-
cally split into multiple chromosomes, which poses a significant logis-
tical challenge to genome encapsulation. Moreover, genome 
encapsulation must be maintained throughout the cell cycle, especially 
during cell division, when the nucleus is typically broken down in the 
mother cell and re-assembled in the daughter cells. Multiple studies have 
identified a variety of mechanisms that ensure genome encapsulation 
during and following mitosis [161–165]. A failure to correctly encap-
sulate the genome often results in the formation of micronuclei, chro-
mosomes or chromosomal fragments that are isolated from the primary 
nucleus [166,167]. Micronuclei are particularly deleterious for genomic 
stability and cell viability and their presence is often associated with 
disease states [168]. 

Interestingly, recent work has identified a novel function for chro-
mocenters and pericentromeric satellite DNA in ensuring genome 
encapsulation during interphase [50,53]. These studies used depletion 

of sequence-specific satellite DNA-binding proteins to elicit targeted 
disruption of chromocenters in both Drosophila tissues and mouse cells. 
Mutation of the D1 and Prod satellite DNA-binding proteins in 
Drosophila, which cluster the AATAT and AATAACATAG satellite DNA 
repeats respectively, and depletion of HMGA1 in cultured mouse cells, 
resulted in a significant increase of cells containing micronuclei. 
Notably, these MN were not associated with mitotic errors. Rather, live 
imaging revealed that these MN formed during interphase by budding 
out of the primary nucleus. In addition, the MN largely contained the 
satellite DNA repeats whose clustering was disrupted. For instance, 
~80% of micronuclei in prod mutant tissues contained the AATAACA-
TAG repeat [53]. Together, these studies suggest that chromocenters 
and pericentromeric satellite DNA physically link the entire chromo-
some complement and maintain the genome in a single nucleus. When 
chromocenters are disrupted, de-clustered chromosomes can bud out of 
the interphase nucleus forming micronuclei and triggering DNA damage 
and cell death [50,53]. 

Most eukaryotic genomes (with the notable exception of mouse) 
contain multiple unique pericentromeric satellite DNA repeats. For 
example, the Drosophila melanogaster genome contains at least 19 unique 
satellite DNA repeats, which are non-uniformly distributed across the 
chromosomes [169–172]. This is exemplified by the AATAT repeat, 
which is present abundantly on the 4th and Y chromosome, at lower 
levels on the 3rd and X chromosome and completely absent on the 2nd 
chromosome. Similarly, the AATAACATAG repeat is only present on the 
2nd and 3rd chromosomes. Within the D. melanogaster nucleus, the 
AATAT-binding protein D1 and the AATAACATAG-binding protein Prod 
form multiple foci rather than a single chromocenter [53]. This raises 
the question of how multiple satellite DNA repeats and their cognate 
binding proteins promote the encapsulation of the entire genome into a 
single nucleus. In Drosophila, this could be facilitated by the association 
of D1 and Prod within the broader (HP1-positive) heterochromatin 
compartment. Surprisingly, this association does not seem to result from 
direct protein-protein interactions [53]. Rather, we propose that the 
D1-Prod associations can be mediated by the physical proximity of re-
peats bound by both proteins. For example, the D. melanogaster 3rd 
chromosome contains both the AATAT and the AATAACATAG repeats 
and could function as a platform to bring both D1-containing and 
Prod-containing chromocenters into association. This can be illustrated 
in a simplified model of three chromosomes, where two satellite 
DNA-repeats are non-uniformly distributed (Fig. 2A). In this model, the 
presence of more than one repeat on a chromosome (arrowhead) allows 
it to cluster with the other two chromosomes, which each contain a 
single unique satellite DNA repeat. If this model is correct, chromosomes 
carrying more than one type of satellite DNA repeat, as is often observed 
in eukaryotes [160], could function as platforms to link multiple chro-
mosomes. Such a process occurring simultaneously on multiple chro-
mosomes could effectively network the entire chromosome 
complement, thus promoting the maintenance of the genome in a single 
nucleus. 

One of the most interesting questions that remains to be addressed is 
how de-clustered chromosomes ‘bud’ out of the interphase nucleus to 
form MN. Recurrent breaches of the nuclear envelope (NE) that are 
observed following chromocenter disruption highlight one possible 
route out of the nucleus for de-clustered chromosomes [50]. However, 
the relationship between chromocenters and nuclear integrity still re-
mains poorly understood. Excitingly, recent work has highlighted an 
important role for heterochromatin in nuclear integrity [173]. These 
studies have demonstrated that chromatin as well as the nuclear lamina 
play complementary roles in promoting the mechanical rigidity of nuclei 
[81]. 

While the nuclear lamina functions primarily in resisting large 
deforming forces on the nucleus, chromatin primarily responds to small 
deforming forces [174]. Consistently, increasing heterochromatin levels 
(enhanced chromatin compaction) led to nuclear stiffening and 
improved resistance to small deformations [175]. Moreover, increased 
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heterochromatin levels can also rescue nuclear morphology in a cell line 
that models the Hutchinson-Gilford progeria syndrome, a disease asso-
ciated with Lamin A mutation [175]. Thus, Stephens and colleagues 
propose that chromatin is the main structural element of the nucleo-
plasm, while the lamin network at the nuclear periphery acts as a 
“flexible yet strong bag” that is influenced by the chromatin [175]. In 
this context, it is important to note that heterochromatin-associated 
proteins and heterochromatin-NE association can have striking effects 
on chromatin organization [62], thereby affecting the structural and 
mechanical properties of the nucleus. Further work is thus required to 
better understand whether chromocenter disruption alters nuclear ri-
gidity and how the de-clustering of chromosomes may contribute to the 
observed loss of nuclear integrity. 

7.2. Chromocenters, gene expression and cell fate 

Even though the total satellite DNA content per cell remains the same 
throughout an organism, different cell types can contain vastly different 
numbers of chromocenter per nucleus. Interestingly, multiple studies 
have suggested that changes in the number of chromocenters per nu-
cleus is associated with changes in cell fate. Variation in the number of 
chromocenters per nucleus was first reported in the brains of mice, 
guinea pigs and hamsters where specific postmitotic neuronal cell types 
exhibited fewer, but larger, chromocenters than other cells [46,176, 
177]. These initial observations were followed up in Purkinje cells, 
which exhibited a strong reduction in the number of chromocenters 
during early mouse postnatal development [13]. While ~8 chromo-
centers per nucleus are observed at P0, this number is reduced by the 

first week of postnatal development to ~5 per nucleus, with one or two 
large chromocenters positioned around a central nucleolus. By the sec-
ond and third week of post-natal development, an increase in the 
number of chromocenters per nucleus is observed with these smaller 
chromocenters redistributed to the nuclear periphery. Interestingly, this 
reorganization of chromocenters between the first and third postnatal 
week is associated with the growth of Purkinje cell dendrite trees, syn-
apse formation and terminal differentiation [13]. Another more recent 
example linking chromocenters to cell fate can be found in olfactory 
sensory neurons (OSNs) [178]. Each of these cells expresses a single 
olfactory receptor (OR) from a choice of ~2800 ORs. In the mouse 
genome, these 2800 ORs are present in 92 gene clusters that are 
enriched for AT-rich DNA. Using a panOR FISH probe, Lomvardas and 
colleagues demonstrated that all inactive ORs are located in ~5 clusters 
around a central chromocenter with the important exception of the 
single active OR, which is present in the nuclear interior [178]. Ectopic 
expression of the NE-tethering Lamin B receptor (LBR) in OSNs resulted 
in recruitment of satellite DNA to the nuclear periphery as well as 
chromocenter dispersal [178]. These changes in satellite DNA organi-
zation led to perturbed OR clustering and the loss of cell-specific OR 
expression in OSNs. In addition, a decrease in the number of chromo-
center per nucleus has also been observed during the transition of mouse 
myoblasts into terminally differentiated myotubes [94] as well as during 
terminal differentiation in other cell lineages and species [179–183]. 
Together, these studies suggest that changes in satellite DNA organiza-
tion can influence terminal differentiation and the maintenance of cell 
fate. 

In general, the changes in satellite DNA organization are thought to 

Fig. 2. Models of chromocenter formation from multiple 
pericentromeric satellite DNA repeats. (A) A simplified 
model of how a chromosome carrying two satellite DNA 
repeats (arrowhead, different repeats are represented by 
magenta ovals and green ovals) can link two other chro-
mosomes carrying unique satellite DNA repeats through 
the action of cognate satellite DNA-binding proteins 
(magenta and green rectangles) (B) A model of how co- 
evolved repeats (orange ovals, blue ovals) and binding 
proteins (dark orange rectangles, dark blue rectangles) can 
facilitate clustering of specific chromosomes into chromo-
centers and promote recognition of ‘self’ DNA. (For inter-
pretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)   
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influence differentiation and cell fate through gene regulation. This was 
first shown in studies on the Ikaros proteins, which are sequence-specific 
transcription factors that have a profound effect on lymphoid develop-
ment [184]. Interestingly, Ikaros proteins were found to localize to 
chromocenters and were frequently associated with repressed but not 
with actively expressed gene loci [185–187]. Further experiments 
showed that the recruitment of genes to chromocenters by Ikaros and 
their subsequent repression likely results in a lymphocyte-specific gene 
expression program [186]. This raises the question as to how specific 
genes or loci are recruited to chromocenters. One possible mechanism 
may involve short tracts of repetitive DNA, sometimes referred to as 
microsatellites, that are interspersed on the euchromatic arms of 
eukaryotic chromosomes [188,189]. It is conceivable that these micro-
satellite loci engage in homotypic interactions with identical repeats at 
chromocenters, thereby influencing the expression of 
microsatellite-proximal genes. An example of this phenomenon is 
observed in the bwD Drosophila strain, in which a large tract of the 
AAGAG pericentromeric satellite DNA repeat is translocated to 
euchromatin, in proximity to the eye pigment gene brown. Here, 
homotypic interactions between the bw-proximal AAGAG repeats and 
pericentromeric AAGAG repeats result in the long-range looping of the 
bw gene to the chromocenter, where it is strongly repressed [190]. This 
results in reduced eye pigment (only ~5% of the eye cells are pig-
mented) in bwD flies [191]. What remains to be determined is how many 
copies of a repeat are required to mediate such long-range interactions 
between microsatellite loci in euchromatin and the chromocenter. 
Moreover, the proteins that directly mediate homotypic interactions 
between euchromatic satellite DNA repeats and the chromocenter are 
yet to be conclusively identified, although some candidate proteins have 
been proposed [192]. Further studies are also required to conclusively 
address how the number of chromocenters per nucleus affects 
cell-specific gene expression program, differentiation and cell fate. 

A unique role for changes in satellite DNA organization, independent 
of gene expression regulation, is observed in the rod photoreceptor cells 
of nocturnal mammals [63]. In these cells, nuclei adopt an ‘inverted’ 
heterochromatin organization (Fig. 1B, left) where a singular massive 
chromocenter is surrounded by concentric shells of facultative hetero-
chromatin and euchromatin. The inversion of rod photoreceptor nuclei 
occurs during the course of postnatal development; rod nuclei at P0 
exhibit a conventional organization (chromocenters tethered at the 
nucleolus and nuclear envelope) while rod nuclei from 9 months old 
mice exhibit a completely inverted organization. Further experiments 
showed that the inverted organization relies upon the loss of expression 
of the NE-tethering genes, LBR and Lamin A/C in rod nuclei [153]. 
Indeed, the simultaneous loss of LBR and Lamin A/C resulted in the 
ectopic formation of inverted nuclei in all differentiated cell types of 
newborn mice [153]. Surprisingly, the inverted nuclear organization in 
rod cells is not thought to affect gene expression. Rather, the central 
concentration of heterochromatin in rod nuclei is thought to improve 
the transmission of light to the light-sensing region of the retina, thereby 
aiding the vision of nocturnal animals [63]. 

8. Satellite DNA divergence and reproductive isolation between 
species 

The biological species concept (BSC) defines species as groups of 
interbreeding populations that are reproductively isolated from other 
such groups [193]. A central principle of the BSC is reproductive 
isolation, which essentially means that the progeny of two different 
species (hybrids) are sterile, inviable or both, and consequently a genetic 
dead end. It has been of considerable interest to biologists to better 
understand how speciation occurs and how incipient species are 
reproductively isolated from one another. Attention has naturally turned 
towards genetic differences between closely related species, which 
might hold clues into how changes in biological processes lead to 
reproductive isolation between organisms. 

Satellite DNA are some of the most rapidly evolving sequences in 
eukaryotic genomes [194]. Indeed, their tandem repetitive structure on 
chromosomes hinders accurate DNA replication and recombination, 
leading to a higher-than-normal mutation rate. Consistently, closely 
related species exhibit dramatic variations in their satellite DNA con-
tent, which can be observed as changes in copy number, changes in 
chromosomal location and changes in the underlying sequence [170, 
172,195]. The striking nature of these changes has led to many pro-
posals that satellite DNA divergence plays a role in reproductive isola-
tion between species [159,160,196–198]. 

Henikoff and colleagues proposed the centromere drive hypothesis, 
suggesting that centromeres with an altered satellite DNA content can 
affect progression through male and female meiosis [197,199]. While 
larger centromeres with increased satellite DNA copy number can bias 
their transmission into the oocyte during asymmetric female meiosis, 
centromeric imbalances can also result in meiotic defects and sterility 
during the symmetric male meiosis. As a result, centromeric histones 
co-evolve with the variant centromeres in order to maintain overall 
fitness of the species [197]. In this manner, centromeric satellite DNA 
repeats and associated proteins are engaged in persistent co-evolution. 
One unintended consequence of centromere drive is that isolated pop-
ulations of the same species can experience different trajectories of 
centromere repeat/centromere protein co-evolution. Thus, these two 
populations may evolve incompatibilities in their chromosome segre-
gation machinery leading to their reproductive isolation and speciation 
[197]. As such, chromosome segregation defects have been proposed to 
cause hybrid incompatibility [200–203] and hybrid incompatibility-like 
phenomena [204–207] in many species. 

In contrast to centromeric satellite DNA, the consequences of peri-
centromeric satellite DNA divergence have been relatively poorly 
studied. The main reason is that a framework to understand pericen-
tromeric satellite DNA function has been largely missing. Based on 
recent advances in our knowledge on pericentromeric satellite DNA and 
chromocenter function, we will highlight three notable cases where 
divergent pericentromeric satellite DNA sequences lead to deleterious 
outcomes in hybrids. All three cases are from Drosophila species where 
the divergent pericentromeric satellite DNA repeats between species are 
comprehensively mapped [172,208]. 

8.1. Hybrid embryonic lethality and the pericentromeric 359 bp satellite 
DNA 

The first case focuses on crosses between D. simulans females and 
D. melanogaster males, species which diverged ~2–3 million years ago 
[209]. Here, the F1 male hybrids are viable while the F1 female hybrids 
are embryonic lethal [210]. Female embryonic lethality occurs around 
cycle 9/10 post fertilization, due to chromosome segregation defects of 
the D. melanogaster X chromosome (which is not present in male hybrids) 
[117]. Specifically, the ~11 Mb 359 bp satellite on the D. melanogaster X 
chromosome forms anaphase bridges during cell division, resulting in 
mitotic failure and embryonic lethality. Consistently, female hybrid 
embryonic lethality is rescued by the Zhr1 allele, which contains a 
deletion of the 359 bp satellite DNA on the D. melanogaster X chromo-
some [211,212]. It is important to note that the 359 bp repeat is present 
in a smaller tract on the 3rd chromosome in addition to the ~11 Mb 
tract on the X chromosome [172]. Despite this, the 3rd chromosome 
359 bp locus does not form anaphase bridges during female hybrid 
lethality [117]. Consistently, previous results have suggested that the 
size of the 359 bp tract on the D. melanogaster X chromosome does not 
cause lethality [213]. While the precise cause remains unidentified, fe-
male hybrid lethality is co-incident with zygotic genome activation, 
heterochromatin modifications at satellite DNA repeats and chromo-
center assembly. Thus, it seems more likely that some aspect of gene 
expression, heterochromatin formation and/or chromocenter regulation 
is impaired specifically near the X chromosome 359 bp locus, leading to 
mitotic failure and embryonic lethality. 
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8.2. Hybrid male sterility and OdsH 

The second case focuses on crosses between D. simulans and 
D. mauritiana, species which diverged ~250,000 years ago [209]. Here, 
F1 females are viable and fertile while F1 males are sterile. While many 
loci are thought to mediate hybrid sterility between these two species 
[214], introgression experiments isolated one such hybrid sterility fac-
tor, a rapidly evolving DNA-binding protein OdsH from D. mauritiana 
(OdsHmau) [215]. More recent work suggests that OdsHmau elicits male 
sterility by aberrantly binding the satellite DNA-rich D. simulans Y 
chromosome [216]. This is in contrast to OdsHsim, which typically only 
binds the D. simulans X chromosome and 4th chromosome. Moreover, 
the binding of OdsHmau on Ysim resulted in a striking decondensation of 
the bound chromosome [216]. What remains incompletely understood 
is how OdsHmau-dependent chromosome decondensation could lead to 
hybrid male sterility. One answer could be based on the important role 
for chromosome compaction during Drosophila male meiosis. Unlike 
Drosophila females where homologous chromosomes synapse prior to 
the first meiotic division, Drosophila male sequester their homologous 
chromosomes into chromosome territories before chromosome segre-
gation during meiosis I [217]. The formation of chromosome territories 
that contain the two homologous chromosomes requires breakdown of 
the chromocenter, which typically clusters heterologous chromosomes. 
Interestingly, a new study has highlighted an important role for chro-
mosome compaction by the condensin II complex during territory for-
mation [218]. Moreover, condensin II mutants are male sterile and 
exhibit heterologous chromosome attachments during meiosis I, which 
leads to aneuploidy [219]. As such, defects in chromosome condensa-
tion in D. simulans-D. mauritiana male hybrids, mediated by mis-
localization of OdsHmau may lead to ineffective chromocenter disruption 
during meiotic prophase I, aberrant chromosome associations and 
hybrid sterility. 

8.3. Chromocenter disruption and micronuclei in sterile and inviable 
hybrids 

The final case focuses on crosses between D. melanogaster females 
and males of the D. simulans complex (including D. simulans and 
D. mauritiana). Here, F1 female hybrids are sterile but viable while F1 
male hybrids are lethal [210]. While the hybrid incompatibility genes 
between these species have been previously mapped, their functions 
have been largely addressed at the pure species level [210,220–223]. As 
a result, the underlying cellular defects in the hybrid that cause lethality 
and sterility have remained poorly understood. Based on reports that 
chromocenter formation was important for genome encapsulation, a 
recent investigation examined whether chromocenters were properly 
formed in hybrids containing divergent pericentromeric satellite DNA 
repeats [224]. Strikingly, cells in the germline and somatic tissues that 
are responsible for hybrid sterility and lethality displayed significant 
chromocenter disruption with species-specific pericentromeric satellite 
DNA repeats not clustering with each other. Moreover, the chromo-
center disruption in hybrid cells was accompanied by micronuclei for-
mation, consistent with chromocenter studies performed in pure species. 
Thus, both sterile and lethal hybrids between these species exhibit a 
conserved cellular phenotype of chromocenter disruption and micro-
nuclei[224]. Notably, chromocenter disruption in the hybrid was 
dependent on the known hybrid incompatibility (HI) factors, Hmrmel 

and Lhrsim. Interestingly, these HI factors are DNA-binding proteins that 
are known to localize to centromeric and pericentromeric heterochro-
matin, as well as chromocenters in pure species [220,222,223,225]. 
While many functions have been proposed for these proteins, one 
intriguing study suggests that Hmr and Lhr may function to disengage 
sister chromatids during mitosis [220]. As a result, it has been proposed 
that Hmr/Lhr could aberrantly or precociously disassemble chromo-
centers in hybrid interphase cells, leading to micronuclei, cell death and 
hybrid incompatibility [224]. 

Although the function of chromocenters in genome encapsulation 
has only been tested in Drosophila and mouse, it should be noted that 
chromocenters are observed in a wide variety of eukaryotes suggesting 
that this function may be more widespread. Moreover, pericentromeric 
satellite DNA are highly divergent between closely related species across 
the eukaryotic domain [160] and could inhibit genome encapsulation in 
hybrids in a manner similar to what has been observed in Drosophila 
hybrids. Strikingly, studies have found that plant hybrids also fail to 
encapsulate their genomes, with species-specific chromosomes 
‘extruded’ from the interphase nucleus [226,227]. Thus, these data 
suggest a simple paradigm for pericentromeric satellite DNA and chro-
mocenter function within and across species. Within species, chromo-
somes containing identical repeats are clustered into an ensemble and 
encapsulated within a single nucleus (Fig. 2B). As a result, co-evolving 
pericentromeric satellite DNA repeats and cognate binding proteins 
function as a ‘self’ signal for the chromosomes of a species (Fig. 2B). In 
hybrids, divergent repeats and the resultant incompatibilities between 
chromocenter-associated proteins lead to impaired genome encapsula-
tion and cell death. Although many facets of pericentromeric satellite 
DNA and chromocenter regulation remain to be discovered in pure 
species and hybrids, we would like to emphasize the importance of these 
repeats in overcoming an inherent logistical challenge of eukaryotic 
organisms: preserving the entire chromosome complement in a single 
nucleus. 

9. Conclusions 

Satellite DNA repeats are largely unmapped in most modern genome 
assemblies and thus still belong to the so-called ‘dark genome’. In 
addition, their abundance and repetitive nature mean that conceptually 
straightforward loss-of-function experiments have been next-to impos-
sible. As a result, the very functionality of these repeats has been often 
called into question, even though organisms dedicate a significant 
fraction of their biosynthetic capacity to these repeats and faithfully 
propagate them, generation after generation. In this review, we have 
discussed how the clustering of pericentromeric satellite DNA into 
chromocenters plays a role in important processes such as genome 
encapsulation, gene expression regulation and speciation. In this sec-
tion, we would like to highlight two fascinating questions regarding 
satellite DNA that remain unaddressed. The first question relates to how 
satellite DNA copy number impacts its function. Specifically, we still do 
not understand how many repeats are required for a chromosome to 
cluster into chromocenters. However, we are encouraged by recent next- 
generation sequencing studies, which have quantified satellite DNA 
variation within and across species [169,195]. The recent 
telomere-to-telomere assemblies of the human genome are also a 
massive step forward in this regard [152]. Thus, we foresee that engi-
neered changes in satellite DNA copy number may become tenable in the 
near future allowing us to address this question. The second question 
relates to the processes that facilitate the oft-observed dramatic varia-
tions in satellite DNA content between closely related species. While 
researchers have suggested replication- and recombination-based 
mechanisms to account for changes in microsatellite loci [194], 
changes in the substantially larger centromeric and pericentromeric 
satellite DNA remain poorly accounted for. We propose that under-
standing the natural processes that promote satellite DNA variation 
within species has important implications for reproductive isolation and 
the origin of new species. 
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[71] B.D. Towbin, C. González-Aguilera, R. Sack, D. Gaidatzis, V. Kalck, P. Meister, 
P. Askjaer, S.M. Gasser, Step-wise methylation of histone H3K9 positions 
heterochromatin at the nuclear periphery, Cell 150 (2012) 934–947, https://doi. 
org/10.1016/j.cell.2012.06.051. 

[72] T. Montavon, N. Shukeir, G. Erikson, B. Engist, M. Onishi-Seebacher, D. Ryan, 
Y. Musa, G. Mittler, A.G. Meyer, C. Genoud, T. Jenuwein, Complete loss of H3K9 
methylation dissolves mouse heterochromatin organization, Nat. Commun. 12 
(2021) 4359, https://doi.org/10.1038/s41467-021-24532-8. 

[73] A.H. Peters, D. O’Carroll, H. Scherthan, K. Mechtler, S. Sauer, C. Schofer, 
K. Weipoltshammer, M. Pagani, M. Lachner, A. Kohlmaier, S. Opravil, M. Doyle, 
M. Sibilia, T. Jenuwein, Loss of the Suv39h histone methyltransferases impairs 
mammalian heterochromatin and genome stability, Cell 107 (2001) 323–337. 

[74] S. Rea, F. Eisenhaber, D. O’Carroll, B.D. Strahl, Z.-W. Sun, M. Schmid, S. Opravil, 
K. Mechtler, C.P. Ponting, C.D. Allis, T. Jenuwein, Regulation of chromatin 
structure by site-specific histone H3 methyltransferases, Nature 406 (2000) 
593–599, https://doi.org/10.1038/35020506. 

[75] T. Matsui, D. Leung, H. Miyashita, I.A. Maksakova, H. Miyachi, H. Kimura, 
M. Tachibana, M.C. Lorincz, Y. Shinkai, Proviral silencing in embryonic stem cells 
requires the histone methyltransferase ESET, Nature 464 (2010) 927–931, 
https://doi.org/10.1038/nature08858. 

[76] M.M. Karimi, P. Goyal, I.A. Maksakova, M. Bilenky, D. Leung, J.X. Tang, 
Y. Shinkai, D.L. Mager, S. Jones, M. Hirst, M.C. Lorincz, DNA methylation and 
SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, 
and chimeric transcripts in mESCs, Cell Stem Cell 8 (2011) 676–687, https://doi. 
org/10.1016/j.stem.2011.04.004. 

[77] M. Tachibana, K. Sugimoto, M. Nozaki, J. Ueda, T. Ohta, M. Ohki, M. Fukuda, 
N. Takeda, H. Niida, H. Kato, Y. Shinkai, G9a histone methyltransferase plays a 
dominant role in euchromatic histone H3 lysine 9 methylation and is essential for 

early embryogenesis, Genes Dev. 16 (2002) 1779–1791, https://doi.org/ 
10.1101/gad.989402. 

[78] M. Tachibana, J. Ueda, M. Fukuda, N. Takeda, T. Ohta, H. Iwanari, T. Sakihama, 
T. Kodama, T. Hamakubo, Y. Shinkai, Histone methyltransferases G9a and GLP 
form heteromeric complexes and are both crucial for methylation of euchromatin 
at H3-K9, Genes Dev. 19 (2005) 815–826, https://doi.org/10.1101/ 
gad.1284005. 

[79] L. Fritsch, P. Robin, J.R.R. Mathieu, M. Souidi, H. Hinaux, C. Rougeulle, A. Harel- 
Bellan, M. Ameyar-Zazoua, S. Ait-Si-Ali, A subset of the histone H3 Lysine 9 
methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric 
complex, Mol. Cell 37 (2010) 46–56, https://doi.org/10.1016/j. 
molcel.2009.12.017. 

[80] I. Pinheiro, R. Margueron, N. Shukeir, M. Eisold, C. Fritzsch, F.M. Richter, 
G. Mittler, C. Genoud, S. Goyama, M. Kurokawa, J. Son, D. Reinberg, M. Lachner, 
T. Jenuwein, Prdm3 and Prdm16 are H3K9me1 methyltransferases required for 
mammalian heterochromatin Integrity, Cell 150 (2012) 948–960, https://doi. 
org/10.1016/j.cell.2012.06.048. 

[81] A.D. Stephens, E.J. Banigan, J.F. Marko, Chromatin’s physical properties shape 
the nucleus and its functions, Curr. Opin. Cell Biol. 58 (2019) 76–84, https://doi. 
org/10.1016/j.ceb.2019.02.006. 

[82] A.J. Bannister, P. Zegerman, J.F. Partridge, E.A. Miska, J.O. Thomas, R. 
C. Allshire, T. Kouzarides, Selective recognition of methylated lysine 9 on histone 
H3 by the HP1 chromo domain, Nature 410 (2001) 120–124, https://doi.org/ 
10.1038/35065138. 

[83] M. Lachner, D. O’Carroll, S. Rea, K. Mechtler, T. Jenuwein, Methylation of 
histone H3 lysine 9 creates a binding site for HP1 proteins, Nature 410 (2001) 
116–120, https://doi.org/10.1038/35065132. 

[84] S.A. Jacobs, S.D. Taverna, Y. Zhang, S.D. Briggs, J. Li, J.C. Eissenberg, C.D. Allis, 
S. Khorasanizadeh, Specificity of the HP1 chromo domain for the methylated N- 
terminus of histone H3, EMBO J. 20 (2001) 5232–5241, https://doi.org/ 
10.1093/emboj/20.18.5232. 

[85] Q. Ye, I. Callebaut, A. Pezhman, J.-C. Courvalin, H.J. Worman, Domain-specific 
Interactions of human HP1-type chromodomain proteins and inner nuclear 
membrane protein LBR*, J. Biol. Chem. 272 (1997) 14983–14989, https://doi. 
org/10.1074/jbc.272.23.14983. 

[86] D. Canzio, E.Y. Chang, S. Shankar, K.M. Kuchenbecker, M.D. Simon, H. 
D. Madhani, G.J. Narlikar, B. Al-Sady, Chromodomain-mediated oligomerization 
of HP1 suggests a nucleosome-bridging mechanism for heterochromatin 
assembly, Mol. Cell 41 (2011) 67–81, https://doi.org/10.1016/j. 
molcel.2010.12.016. 

[87] D. Canzio, M. Liao, N. Naber, E. Pate, A. Larson, S. Wu, D.B. Marina, J.F. Garcia, 
H.D. Madhani, R. Cooke, P. Schuck, Y. Cheng, G.J. Narlikar, A conformational 
switch in HP1 releases auto-inhibition to drive heterochromatin assembly, Nature 
496 (2013) 377–381, https://doi.org/10.1038/nature12032. 

[88] J. Mateos-Langerak, M.C. Brink, M.S. Luijsterburg, I. van der Kraan, R. van Driel, 
P.J. Verschure, Pericentromeric heterochromatin domains are maintained 
without accumulation of HP1, MBoC 18 (2007) 1464–1471, https://doi.org/ 
10.1091/mbc.e06-01-0025. 

[89] A.R. Strom, R.J. Biggs, E.J. Banigan, X. Wang, K. Chiu, C. Herman, J. Collado, 
F. Yue, J.C.R. Politz, L.J. Tait, D. Scalzo, A. Telling, M. Groudine, C. 
P. Brangwynne, J.F. Marko, A.D. Stephens, HP1α is a chromatin crosslinker that 
controls nuclear and mitotic chromosome mechanics, ELife (2021), https://doi. 
org/10.7554/eLife.63972. 

[90] J.D. Lewis, R.R. Meehan, W.J. Henzel, I. Maurer-Fogy, P. Jeppesen, F. Klein, 
A. Bird, Purification, sequence, and cellular localization of a novel chromosomal 
protein that binds to methylated DNA, Cell 69 (1992) 905–914, https://doi.org/ 
10.1016/0092-8674(92)90610-o. 

[91] B. Hendrich, A. Bird, Identification and characterization of a family of 
mammalian methyl-CpG binding proteins, Mol. Cell Biol. 18 (1998) 6538–6547, 
https://doi.org/10.1128/MCB.18.11.6538. 

[92] R.E. Amir, I.B. Van den Veyver, M. Wan, C.Q. Tran, U. Francke, H.Y. Zoghbi, Rett 
syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG- 
binding protein 2, Nat. Genet 23 (1999) 185–188, https://doi.org/10.1038/ 
13810. 

[93] J. Guy, B. Hendrich, M. Holmes, J.E. Martin, A. Bird, A mouse Mecp2-null 
mutation causes neurological symptoms that mimic Rett syndrome, Nat. Genet 27 
(2001) 322–326, https://doi.org/10.1038/85899. 

[94] A. Brero, H.P. Easwaran, D. Nowak, I. Grunewald, T. Cremer, H. Leonhardt, M. 
C. Cardoso, Methyl CpG–binding proteins induce large-scale chromatin 
reorganization during terminal differentiation, J. Cell Biol. 169 (2005) 733–743, 
https://doi.org/10.1083/jcb.200502062. 

[95] P.T. Georgel, R.A. Horowitz-Scherer, N. Adkins, C.L. Woodcock, P.A. Wade, J. 
C. Hansen, Chromatin compaction by human MeCP2. Assembly of novel 
secondary chromatin structures in the absence of DNA methylation, J. Biol. 
Chem. 278 (2003) 32181–32188, https://doi.org/10.1074/jbc.M305308200. 

[96] S.A. Grimm, T. Shimbo, M. Takaku, J.W. Thomas, S. Auerbach, B.D. Bennett, J. 
R. Bucher, A.B. Burkholder, F. Day, Y. Du, C.G. Duncan, J.E. French, J.F. Foley, 
J. Li, B.A. Merrick, R.R. Tice, T. Wang, X. Xu, P.R. Bushel, D.C. Fargo, J. 
C. Mullikin, P.A. Wade, DNA methylation in mice is influenced by genetics as well 
as sex and life experience, Nat. Commun. 10 (2019) 305, https://doi.org/ 
10.1038/s41467-018-08067-z. 

[97] S. Takayama, J. Dhahbi, A. Roberts, G. Mao, S.-J. Heo, L. Pachter, D.I.K. Martin, 
D. Boffelli, Genome methylation in D. melanogaster is found at specific short 
motifs and is independent of DNMT2 activity, Genome Res. 24 (2014) 821–830, 
https://doi.org/10.1101/gr.162412.113. 
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