
Leonardo da Vinci’s collection of drawings entitled 
Studies of the Human Body and Principles of Anatomy 
started a renaissance in studying human anatomy and 
pathology that led to a better understanding of the 
mechanics, proportions and functions of the human 
body. Today, we live in an era when biological sciences 
are marked by the same exploratory drive, but this time 
it is at an invisible, molecular level. The accumulation 
of enormous quantities of molecular data has led to 
the emergence of ‘systems biology’ — a branch of sci-
ence that discovers the principles that underlie the basic 
functional properties of living organisms, starting from 
interactions between macromolecules1–4. Integrative 
genomics is based on the fundamental principle that any 
biological mechanism builds upon multiple molecular 
phenomena, and only through the understanding of the 
interplay within and between different layers of genomic 
structures can one attempt to fully understand pheno-
typic traits. Therefore, principles of integrative genomics 
are based on the study of molecular events at different 
levels and on the attempt to integrate their effects in a 
functional or causal framework. Although perhaps less 
aesthetically pleasing than the drawings of Leonardo da 
Vinci, the new visualization tools based on mathemati-
cal models can present the ‘digital universe of informa-
tion’ in a form that is of use for the treatment of a cancer 
patient5 and for revealing the existence and principles 
of molecular interactions that govern fundamental  
biological mechanisms6.

Cancer is currently one of the most well-characterized 
pathological systems at the molecular level. Most  
(if not all) cancers involve genetic aberrations in the 
germ line and/or at the somatic level. By producing a 
complete catalogue of inherited and acquired muta-
tions, with functional consequences of each mutation 
with respect to tumour type, it is hoped that one can, 
for example, assess the metastatic potential of a tumour 
and suggest the most promising treatment7,8. Although 
data are rapidly accumulating from various cancer- 
profiling projects, interpreting these data is not easy. 
The development and progression of a tumour is 
a dynamic biological and evolutionary process. It 
involves composite organ systems, with genomes 
shaped by gene aberrations, epigenetic changes, the 
cellular biological context, characteristics that are spe-
cific to the individual patient, and environmental influ-
ences9,10. Sophisticated statistical and mathematical 
techniques have been developed for the analysis, inter-
pretation and validation of biological data, and novel 
computational techniques and tools are continuously 
emerging. In principle, mathematical modelling of pat-
tern formation — using methods from interacting par-
ticle systems, system dynamics and hierarchical models 
— can be used to study tumour formation and growth. 
In practice, statistics and information theory constitute 
essential methodologies in the analysis of biological 
data sets. These methodologies are the subject of this 
Review. We discuss the different computational models 
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Abstract | Combined analyses of molecular data, such as DNA copy-number alteration, 

mRNA and protein expression, point to biological functions and molecular pathways 

being deregulated in multiple cancers. Genomic, metabolomic and clinical data from 

various solid cancers and model systems are emerging and can be used to identify novel 

patient subgroups for tailored therapy and monitoring. The integrative genomics 

methodologies that are used to interpret these data require expertise in different 

disciplines, such as biology, medicine, mathematics, statistics and bioinformatics, and 

they can seem daunting. The objectives, methods and computational tools of integrative 

genomics that are available to date are reviewed here, as is their implementation in 

cancer research.
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that are being used to assess these data and how these 
models have been applied to better understand cancer 
development, progression and treatment response.

Multi-dimensional molecular data sources

Continuous improvements in the rate, accuracy and reso-
lution of ‘omics’ data and biochemical features that can be 
observed in a tumour or a patient have set the stage for 
the integration of many sources of information, includ-
ing data from epidemiological studies, clinical studies and 
genomic and metabolomic profiling (see FIG. 1, which uses 
breast cancer as an example). Much of these data are being 
housed in different databases. For example, more than 
1.5 million individual mutations in 25,606 genes in almost 
950,000 samples have been described in the Catalogue 
of Somatic Mutations in Cancer (COSMIC) database11. 
Compiling these types of databases is a primary goal of 
several consortia, such as the Cancer Genome Project12, 
the International Cancer Genome Consortium (ICGC)13 
and The Cancer Genome Atlas (TCGA)14. Project Achilles 
aims to identify genetic vulnerabilities across large num-
bers of cancer cell lines by systematic loss-of-function 
studies9, and the ENCyclopedia Of DNA Elements 
(ENCODE)15 investigates structural and regulatory units 
in the human genome. Genome-wide association stud-
ies (GWAS) have identified numerous loci that are linked 
to cancer susceptibility, but the mechanism by which 
variations at these loci influence susceptibility remains 
unknown. Understanding how and why these variants 
influence subtype-specific cancer risk contributes to our 
understanding of cancer aetiology. For example, many 
recent studies emphasize that the genetic architecture of 
breast cancer is context specific, and integrated analysis 
of gene expression and chromatin remodelling in nor-
mal and tumour tissues will be required to explain the 
mechanisms of risk alleles16. In a network-based strategy,  

linking GWAS hits with transcription factors that are 
known to function as master regulators, Fletcher et al.17 
found that the risk associated with altered fibroblast growth 
factor receptor 2 (FGFR2) signalling is due to altered 
activity of the oestrogen receptor-α (ERα)-associated  
transcriptional network.

Various molecular markers, which have been identi-
fied at DNA, mRNA, microRNA (miRNA) and protein 
levels, have been used to develop profiles that are asso-
ciated with taxonomy, tumour aggressiveness, response 
to therapy and patient outcome18,19. In addition, complex 
biological features at the cellular level, such as histopatho-
logical and radiological images, which were traditionally 
evaluated and scored visually by a trained expert, are now 
subjected to computational quantification20,21. However, 
small or no overlaps between predictive profiles from 
different sources persist because of the low statistical 
power of these studies and the different clinical strata 
used in each study, among other differences. Pooling data 
sets, combining profiles at various levels and analysing 
the data in a compendium — such as the GeneSapiens 
database22, the Integrative Multi-Species Prediction 
(IMP) server23, Search-Based Exploration of Expression 
Compendium (SEEK), ProfileChazer24,25 Oncomine26, 
Rembrandt27 and similar tools — can lead to more reli-
able molecular signatures and thereby more specific diag-
nosis and treatment of cancer patients. The joint analysis 
of multiple data domains, each of which reflect various 
dimensions of a biological function, has the potential to 
generate explanatory power that cannot be obtained with 
one data type alone.

In order to access these data and to carry out some of 
the integrative analyses detailed below, storage and com-
puting platforms such as the Bionimbus, Bioconductor28, 
CytoScape29,30, IntOGen31, OncoDrive32 and Synapse 
(see Further information) have been designed to ena-
ble scientists to exchange data sets, algorithms and 
mathematical models of cancer. Recently, the idea of 
sharing and interactive collaboration towards solving a 
certain biological problem was taken forward by Sage 
Bionetworks in the competition-based crowdsourcing 
Dialogue for Reverse Engineering Assessments and 
Methods (DREAM) breast cancer prognosis challenge 
(BCC)33, indicating the need for databases that enable 
joint analysis and data exchange between researchers.

Bioinformatics tools for integrative analyses

In the context of this Review, integrative statistical ana lysis 
refers to the analysis of at least two different types of omics 
data34. The analysis can be restricted to molecular data 
(such as in expression quantitative trait loci (eQTL) stud-
ies, in which the relation between germ line variation and 
gene expression is investigated35,36) or it can involve clini-
cal outcomes (for example, survival, stage and treatment 
response) or intermediate phenotypes and biomarkers. It 
is useful to distinguish three broad objectives of integra-
tive analysis, which can be addressed by different statisti-
cal tools. The first objective is to understand molecular 
behaviours, mechanisms and relationships between and 
within the different types of molecular structures, includ-
ing associations between these and various phenotypes, 

Information theory

A branch of applied 

mathematics that quantifies 

the value of information in data.

Bioconductor

A free, open-source and 

open-development software 

project for the analysis of 

high-throughput genomic data. 

Based on the statistical 

programming language R, the 

project was started in 2001 

and now contains more than 

750 packages to carry out 

data handling, visualization and 

analysis.

Expression quantitative 

trait loci

(eQTL). Genomic loci that 

regulate expression levels of 

mRNAs or proteins.

Key points

•	Genomic,	metabolomic	and	clinical	data	on	a	range	of	solid	cancers	and	model	
systems	are	emerging	and	can	be	used	to	identify	novel	patient	subgroups	for	tailored	
therapy	and	monitoring.

•	Molecular	markers	identified	at	the	DNA,	mRNA,	microRNA	and	protein	levels	have	
been	used	to	develop	profiles	associated	with	taxonomy,	tumour	aggressiveness,	
response	to	therapy	and	patient	outcome.

•	The	information	content	is	higher	in	integrated	analysis	than	in	any	of	the	molecular	
levels	studied	separately,	and	a	large	number	of	statistical	methods	for	the	integration	
of	‘omics’	data	have	emerged.

•	The	access	to	large	data	sets	that	have	been	made	available	by	the	International	
Cancer	Genome	Consortium	(ICGC)	and	The	Cancer	Genome	Atlas	(TCGA)	has	made	
it	possible	to	compare	the	performance	of	some	of	the	statistical	methods	of	omic	
data	integration	on	the	same	data set.

•	These	recent	developments	will	fundamentally	alter	the	way	that	we	statistically	
model	and	evaluate	treatment	strategies,	from	identifying	patient	groups	that	
respond	to	treatment	above	random,	to	identifying	pathways	and	biological	entities	
that	are	druggable	and	altered	above random.

•	A	shift	from	large	randomized	clinical	trials	towards	treatment	modalities	that	are	
tailored	for	stratified	patient	groups,	down	to	N-of-1	trials,	in	which	a	single	patient	
constitutes	the	entire	trial,	will	require	new	statistical	methods.

•	Outsourcing	data	and	searching	for	solutions	in	open	competition	will	allow	new	
ideas	to	instantly	emerge	to	‘embrace	the	complexity’	that	is	associated	with	the	
exponentially	increasing	amounts	of	data and	find	new	ways	of	shared	analysis.
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In statistics, over-fitting occurs 
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describes random noise 

instead of the underlying 
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such as clinical outcomes, pathways, interactions, ‘hot-spot’ 
DNA mutations and mutations in genes that drive can-
cer development. The second objective is to understand 
the taxonomy of diseases, thereby classifying individuals  
(or samples) into latent classes of disease subtype; and 
the third objective is to predict an outcome or phenotype 
(such as survival or efficacy of therapy) for prospective 
patients. Some statistical methods are specialized to one 
type of question, and others can be used for several. These 
statistical methods are classified into broad groups (sum-
marized in TABLE 1). Some of the tools, such as enrich-
ment analysis, were originally designed to reveal features 
of genes and pathways, whereas others, such as integra-
tive clustering, were designed to reveal features of patient 
subgroups; however, most of the tools discussed below 
can be applied to both, including integrative graphical 
models, which can be used to identify aberrant pathways 
and patient subgroups. The statistical methods discussed 
in this Review can be classified as unsupervised or super-
vised (for example, according to whether one proceeds in 
an exploratory manner or applies clinical labels to indi-
vidual cases). Some methods use cross-validation or other 
model selection approaches to estimate the over-fitting in 
the training set.

Sequential analysis: combining several distinct omics 

levels of evidence. This approach allows the confirma-
tion or refinement of findings based on one data type, 
with additional analyses of further omics data obtained 
from the same set of samples. In this case, at least two 
types of omics data are analysed — for example, copy-
number alterations (CNAs) and gene expression level 
data. To integrate two different levels of omics data from 
the same set of breast cancer samples, Chin et al.37 iden-
tified genes whose expression levels were significantly 
deregulated by CNAs, as well as genes that are associated 
with metastasis and reduced survival. Lando et al.38 used 
CNAs integrated with gene expression and gene ontology 
to identify genes representing five biological processes 
associated with poor outcome in cervical cancer after 
chemotherapy and radiotherapy. Moreover, Beroukhim 
et al.39 combined data from 3,131 cancer specimens, 
which represented 26 different histological types of can-
cer, and identified 158 regions with focal CNAs that were 
significantly altered across all samples. Interestingly, 122 
of these CNAs did not harbour a known cancer gene. 
Each of these papers used the approach in which an 
analysis of each data set is made independently of the 
others and produces a list of interesting entities, which 

Figure 1 | The systems biology of breast cancer. Exploring the systems biology of breast cancer and strategies to 

investigate multi-dimensional interactions by integration of data from various sources at the indicated levels. ctDNA, 

circulating tumour DNA; GEMMs, genetically engineered mouse models; HR-MAS MR, high-resolution magic angle 

spinning magnetic resonance; IHC, immunohistochemisty; LC–MS, liquid chromatography–mass spectrometry; miRNA, 

microRNA; MRI, magnetic resonance imaging; MRS, magnetic resonance spectroscopy; ncRNA, non-coding RNA; RPPA, 

reverse phase protein array. Mammography image courtesy of M. M. Holmen of Oslo University Hospital, Oslo, Norway.
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Table 1 | Tools and algorithms for the detection of activated and altered pathways

Method Summary Refs

Sequential analysis

MCD Identification of subsets of genes that are affected on multiple levels 
by some condition

44,132

CNAmet Identification of genes that show simultaneous methylation, copy 
number and expression alterations

45

iPAC Integration of copy number and gene expression to detect genes and 
associated pathways or processes that are influenced in trans by copy 
number

42

Consensus clustering Starting from multiple clusterings (each can represent a data type), 
obtaining a single integrated cluster assignment

133–136

CHESS Determining the effect of copy number on gene expression 137

Latent variable

iCluster Starting from multiple data types, obtaining a single integrated 
cluster assignment

48,49,138

PSDF Integrating copy number and gene expression data to discover 
prognostic patient subtypes

50

IntegrOmics Identification of relationships between two ‘omics’ data sets 72

Penalized likelihood

Lasso Identification of omics features with predictive ability for a given 
response (such as survival), using all data as covariates or using some 
data to decide the penalty of others

52–54

Elastic Net Identification of omics features with predictive ability for a given 
response (such as survival), using all data as covariates or using some 
data to decide the penalty of others

55

PLRS Studying relationships between copy number and mRNA expression; 
detection of copy number-induced sample subgroup-specific effects

139

Camelot Outputs a linear regression model that uses genotype and expression 
to predict phenotype; powered by regularized linear regression

140

Lol (Lots of Lasso) Integration of copy number and gene expression to detect in-cis and 
in-trans regulation of gene expression

141

Gene set analysis

GeneXPress Extraction of modules and characterization of gene expression 
profiles in tumours as a combination of activated and deactivated 
modules

56

GSEA Gene set annotation of differentially expressed genes 59,142,143

MAPPFinder Gene ontology term annotation of differentially expressed genes 64, 67,144

SPIA Pathway annotation of differentially expressed genes 65,145,146

Pathologist A consistency score and an activity score is calculated for each 
pathway

66

KOBAS Pathway and disease annotation of gene sets 147,148

SubpathwayMiner Pathway annotation of gene sets 149,150

MGSA Identification of active gene sets 82

Pair-wise correlation

WGCNA Finding modules of highly correlated genes using eigengene network 
methodology

73

Oncodrive-CIS Ranking genes according to the effect of copy number on gene 
expression

151

Network-based analysis

jActiveModules Identification of expression-activated sub-networks 78,152,153

GiGA Identification of the gene subgraphs showing the most significant 
gene expression pattern

79
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T-test statistic

T-tests are used to determine 

whether the mean of a 

continuous variable is different 

in two groups of individuals. It 

is based on a quantity called a 

t-test statistic, which is 

computed from the data and 

reflects the signal-to-noise 

ratio.

are then linked to each other. For example, differentially 
expressed genes in one list are compared with each other 
and then with different CNAs that have been matched 
to the closest gene in a second list. Usually, the lists are 
intersected to find the genes that are confirmed in the 
analysis of each data type40. Comparing ranks of each 
gene in each list leads to measures of concurrence. If 
each entity in each list has a value (for example, a t-test 

statistic) then these values are combined. Although each 
list often contains significantly selected entities after 
multiple testing corrections, it is not obvious how to 
assign a P value to the intersection. Permutation test-
ing of each individual analysis before intersection could, 
in principle, be used. One such flow chart-based data 
integration framework is Anduril, in which the ultimate 
goal is to elucidate the impact of various omics data on 
patient survival41. Occasionally, the various analyses 
are not performed in parallel but as a sequence of fil-
tering steps, each functioning on a single data type. In 
this approach, the order of the filtering steps matters. 
In the in-trans Process Associated and Cis-correlated 
(iPAC) algorithm42, which was designed to detect can-
cer drivers, whole-genome gene expression measure-
ments are correlated with segmented copy-number data 
to obtain a list of genes with strong in-cis correlation. 
Using each of these in turn as a pivot, all other genes 
in the genome are ranked according to their correlation 
to the pivot, and enrichment of gene ontology terms 
for genes at the top of the ranked list is investigated. 
As a result, iPAC identifies CNAs with a phenotypic 
effect in the sense that they have an impact on expres-
sion in cis, as well as on processes in trans. In another 
study that used data from sarcomas, Chibon et al.43 

derived a gene signature, known as Complexity INdex in 
SARComas (CINSARC), by combining known genes of 
importance with genes whose expression correlated to 
CNAs and were members of over-represented pathways, 
including those that effect chromosomal instability or 
histological grade. Interestingly, CINSARC predicted 
the likelihood of metastasis development (a surrogate for 
survival) in patients with sarcomas and also in patients 
with gastrointestinal stromal tumours (GISTs), breast 
cancer and lymphoma, which points to the ability of 
integrative approaches to identify universal features  
of aggressive cancer.

Several methods regard the expression level of any 
transcript as a function of copy number and DNA methy-
lation. An example is a tool called Multiple Concerted 
Disruption (MCD), which aims to integrate DNA copy 
number and methylation to explain variation in mRNA 
expression data in cis44. The MCD method searches for 
deviation from the normal at several levels: a differential 
expression, a change in gene copy number or a change 
in the degree of DNA methylation44 (hypomethylation 
or hypermethylation). The procedure involves several 
sequential steps and can be carried out either per sam-
ple or across a set of samples. By sequentially examining 
more genomic dimensions at the DNA level (that is, copy 
number, allelic status and DNA methylation) one can 
explain a higher proportion of the observed changes in 
gene expression. Notably, this varies to a great degree 
from sample to sample, which indicates intrinsically dis-
tinct mechanisms leading to deregulation44. The MCD 
method was followed by a similar method45 (Copy 
Number Alteration and methylation (CNAmet)), which 
was implemented in open-source R28,46.

Method Summary Refs

Network based analysis (cont.)

PARADIGM Prediction of the degree to which the activities of a pathway are 
altered in an individual

86,87,125

PathExpress Determining if there is enrichment of genes around each enzyme, on 
the basis of gene–metabolic relations in KEGG

154

AMBIENT Discovery of metabolic sub-networks that are significantly changed 
by some condition

155

Bayesian

CONNEXIC Integration of copy-number variation and gene expression to identify 
driving cancer mutations and the processes that they influence

91

COALESCE Using gene expression and DNA sequence data as inputs, this 
method produces putative co-regulated modules as outputs

68

MDI Identify groups of genes that tend to be allocated to the same 
components in multiple data sets or molecular levels

156

Other

RegMOD Identification of active modules or dysfunctional pathways 61

AMBIENT, Active Modules for BIpartitE NeTworks; CHESS, CgHExpreSS; CNAmet, Copy Number Alteration and methylation; 
COALESCE, Combinatorial ALgorithm for Expression and Sequence-based Cluster Extraction; CONNEXIC, COpy Number and 
EXpression In Cancer; GiGA, Graph-based iterative Group Analysis; GSEA, gene set enrichment analysis; iPAC, in-trans Process 
Associated and Cis-correlated; KEGG, Kyoto Encyclopedia of Genes and Genomes; KOBAS, KEGG Orthology Based Annotation 
System; MAPPFinder, MicroArray Pathway Profile Finder; MCD, Multiple Concerted Disruption; MDI Multiple Dataset Integration; 
MGSA, Model-based Gene Set Analysis; PARADIGM, PAthway Recognition Algorithm using Data Integration on Genomic Models; 
PLRS, Piecewise Linear Regression Splines; PSDF, Patient-Specific Data Fusion; RegMOD, Regression MODel with diffusion kernel; 
SPIA, Signalling Pathway Impact Analysis; WGCNA, weighted gene correlation network analysis.

Table 1 (cont.) | Tools and algorithms for the detection of activated and altered pathways
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Expectation-maximization 

algorithm

(EM algorithm). An iterative 

algorithm for the estimation of 

parameters in statistical 

models depending on 

unobserved variables. A 

limitation with EM is that it 

requires specification of initial 

values for the iteration, and the 

estimated parameters may 

depend on these.

Lasso

A shrinkage and variable 

selection method for linear 

regression, used in particular 

when there are many 

covariates (for example, genes).

Latent variable analysis: using common factor labels 

derived from multiple omics levels. Unsupervised 
clustering of omics data can be used to partition indi-
viduals or samples into subgroups of potential clinical 
relevance47. In the iCluster package48, for example, the 
clustering of individual samples is carried out by apply-
ing metrics (or noise structures) that are specific to 
each data type but using common latent labels among  
all data types, employing an expectation-maximization 

algorithm (EM algorithm). This method can be extended 
to supervised clustering when the data are continu-
ous, such as for expression data or CNAs49, and it can 
accommodate any number of data types. The number 
of clusters is difficult to determine and is estimated by 
cross-validation methods. Using iCluster, Curtis et al.49 
found that genome variation influenced gene expres-
sion and identified putative cancer genes, and it defined 
novel subgroups of patients with breast cancer who had 
distinct outcomes48. Furthermore, trans-acting aber-
rant DNA hot-spots that modulated subtype-specific 
gene networks were shown. A further development has 
been suggested by Yuan et al.50. Their Patient-Specific 
Data Fusion (PSDF) algorithm exploits the fact that the 
data to be integrated in individual samples might seem 
to be contradictory within the data pool; for example,  
a high copy number of a gene could be associated with a 
high expression of the same gene in cis in most, but 
not all, samples. Such a contradiction can be seen as a 
measurement error or biological variation due to the cell 
composition of a biopsy or patient characteristics. PSDF 
estimates a latent variable per patient, which helps to 
exclude (or minimize) contradictory samples. This idea 
could potentially be used beyond clustering, for other 
tasks of integrative analysis.

Penalized likelihood analysis: using regularization 

to handle high-dimensional multi-omics data. The 
aim of integrative regression is to determine the genes  
(or entities) — using at least two different omics data 
types — that allow the best prediction of the outcome. 
Since the number of covariates mostly supersedes the 
number of samples, some form of variable selection or 
penalized regression is necessary51. When sparsity can be 
assumed (that is, when only a few entities are expected 
to actually be relevant for the outcome), Lasso52,53 is a 
very useful penalization method, as it carries out vari-
able selection. Cross-validation is used to determine 
an optimal level of penalization, which influences the 
sparsity of the solution. A straightforward way to use 
Lasso with two different data types is to use all data as 
covariates54 (after appropriate standardization): in this 
case, the algorithm chooses the optimal set of predic-
tors from either omics source. Adaptive Lasso works in 
two steps and, like Elastic Net55, is more parsimonious 
than Lasso. A different analysis is known as Weighted 
Lasso, in which the Lasso uses only one covariate type 
(such as the mRNA expression level) while the other 
covariate modifies the penalization so that genes are 
individually penalized. For example, the penalization of 
a gene expression can depend on the correlation between 
the CNA and the outcome, so genes with an important 

CNA will be penalized less in the expression analysis38. 
Regression-based integration is mostly in cis, but it can 
easily be extended to more data types.

Gene set analysis: discovering novel or using known 

groups of related molecules. One of the earliest reported 
examples of an integrative approach for gene expression 
data was the use of GeneXPress to identify modules of 
genes that affect the activity of a tumour56. Segal et al.56 
analysed data from 22 cancer types and found that dis-
tinct shared modules of gene activity, which probably 
represented common tumour progression mechanisms, 
characterized distinct tumour types. A different strat-
egy involves initially defining a collection of gene sets  
(for example, gene ontology terms or pathways). This 
step typically involves the use of publically available data-
bases that collect extensive annotation and knowledge  
(for example, Kyoto Encyclopedia of Genes and Genomes 
(KEGG), Reactome and WikiPathways57; see Further 
information). A score is calculated for each gene58  
(for example, a P value that reflects the degree of differ-
ential expression), and all gene sets that are ‘enriched’ or 
over-represented with high or low scores are identified. 
The scores can also be binary (0 or 1), thereby indicat-
ing, for example, membership in a group of differentially 
expressed genes. By combining gene ontology, gene 
expression and clinical data, Subramanian et al.59 used 
gene set enrichment analysis (GSEA) to identify genes 
consistently associated with poor outcome in two inde-
pendent cohorts of patients with lung cancer. Information 
based on known protein–protein interactions has been 
used to identify gene modules expressed in non-malignant 
bystander cells60, associated with metastatic disease61 or 
associated with aggressive disease in lymphoma60–63,157. 
Several alternative ways of scoring the abnormal presence 
of specific pathways have also emerged, including Gene 
Microarray Pathway Profiler (also known as MicroArray 
Pathway Profile Finder (MAPPFinder))64. These methods 
describe the functional profile of a list of genes/proteins 
by comparing with known (a priori) interactions, scor-
ing the over-representation of a given pathway, ignoring 
any knowledge about the network structure. Other tools, 
such as Signalling Pathway Impact Analysis (SPIA)65 and 
Pathologist66, exploit pathway topology by taking into 
account the position of a gene in a pathway. SPIA uses 
the number of neighbours for every gene (the ‘degree’), 
so that a gene with a higher degree is more likely to have a 
master role than a more isolated gene and is then favoured 
in the analysis of the original data67. Pathologist assumes 
that every gene is either active or inactive in a network, 
and this method models this as a mixture of two gamma 
distributions, using the EM algorithm to compute both a 
gene activity score and an overall pathway score68,69.

Pairwise correlation analysis: inferring molecular net-

work interactions from strengths of associations. In this 
type of analysis, for each pair of co-measured omics data, 
a correlation matrix is estimated70, with P values that are 
corrected for multiple testing and that therefore reflect 
the strength of association. This approach includes asso-
ciations in trans. The structure in the matrix can be used 
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Maximum entropy 

techniques

An alternative to maximum 

likelihood, maximum entropy 

techniques are a way to 

estimate models from data, by 

finding the most random 

probability distribution that fits 

the data.

Simulated annealing

A global optimization algorithm 

that seeks a good 

approximation to the point of 

absolute maximum of a 

function.

Greedy search algorithms

In optimization, a greedy 

algorithm is an iterative 

algorithm that takes an optimal 

(or semi-optimal) choice at 

every step, in the hope of 

obtaining the global solution at 

convergence. These algorithms 

do not generally result in 

optimal solutions and are used 

when the determination of a 

global solution would require 

an unacceptable amount of 

computing time.

Bayesian approach

An approach to statistics that 

involves starting from our 

current (a priori) level of 

knowledge, collecting data and 

then using both to infer our 

(a posteriori) knowledge. 

Bayesian inference allows the 

incorporation of additional 

external knowledge into the 

estimation process.

Latent variables

In statistics, latent variables (as 

opposed to observable data) 

are not measured but must be 

estimated from data, similar to 

parameters. However, contrary 

to parameters, latent variables 

are random and have a 

distribution. Latent models are 

inherently Bayesian.

to identify master regulators71. Correlation analysis does 
not directly facilitate the study of how entities (such as 
expression levels and CNAs) regulate outcomes of inter-
est, but highly correlated entries can be used in further 
studies, such as in canonical correlation analysis72. There 
are multiple ways to extend the correlation analysis to 
more than two data types. For example, weighted gene 
co-expression network analysis describes the correla-
tion patterns among genes across microarray samples. 
Weighted gene correlation network analysis (WGCNA) 
is a method for finding clusters (or modules) of highly 
correlated genes using matrix calculus73. Correlation net-
works facilitate network-based gene screening methods 
that can be used to identify candidate biomarkers or ther-
apeutic targets. In order to identify higher order inter-
actions, for example those in which highly co operative 
processes involve many subunits of a protein, depend-
ence among multiple variables can be established using 
maximum entropy techniques74 or information theory 
approaches. These methods are distinct from correlation 
methods and in some ways might be more powerful75.

Network analysis: using molecular network interactions 

to identify active or aberrant subgraphs. Networks are 
a representation of how genes or other entities collabo-
rate in certain biological systems76,77. A graph ‘sums up’ 
these effects over time, and two genes will be linked 
by an edge if they seem to interact in a specific pro-
cess. Graphical algorithms that capture the interaction 
between differentially expressed genes by correlation 
include jActiveModules78 and Graph-based iterative 
Group Analysis79 (GiGA). jActiveModules integrates 
knowledge from protein–protein and protein–DNA 
interaction databases into mRNA expression data by 
assigning a Z-score for differentially expressed genes, 
and it searches for connected sub-networks by simulated 

annealing and greedy search algorithms60,80. Both simu-
lated annealing and greedy search identify differentially 
expressed sub-networks; in the first case, in an optimal 
but computationally very intensive way; in the second 
case, more rapidly but less accurately. GiGA also ranks 
genes on the basis of differential expression levels and 
searches for sub-networks. In 2011, Stingo et al.81 pro-
posed a Bayesian approach that selects both the actual 
pathways (out of a large set of possible ones) and the 
key genes that allow the best prediction of an outcome. 
Additional Bayesian methods to infer the functional 
content of a list are presented in REFS 82,83.

Statistical graphical models with feedbacks have been 
successful in summarizing data and representing path-
ways. The study of such networks can lead to an impor-
tant understanding of biological mechanisms84,85. A few, 
such as PAthway Recognition Algorithm using Data 
Integration on Genomic Models (PARADIGM), have 
been extended to integrative analysis86. Activity levels 
of each gene are considered as latent variables, which are 
estimated and then used in subsequent analyses. Given a 
set of genes of interest, the first step is to assemble from 
public databases (see Further information for examples) 
a large enough network of genes, with their activating 
and inhibitory interactions, and to transform this into a 

directed graph, for which the key biological assumptions 
are followed: that is, for each gene, CNA affects expres-
sion, which affects protein levels, which affect the latent 
protein activity. These activity nodes are then connected 
to other gene-specific nodes in ways that are predicted 
from existing knowledge. This graph represents the ‘nor-
mal’ or reference state. When data are attached to some 
of the nodes (for example, all expression levels and CNAs 
for a sample of individuals with a specific disease), a joint 
posterior distribution is then computed for all latent activ-
ity nodes, and this approach is called integrated pathway 
activities (IPAs). By comparing pre- and post-activity lev-
els, it is possible to obtain a quantitative description of the 
alteration that is induced by the disease, with respect to 
normality (or between different groups). In order to make 
the computations feasible, all measurements are catego-
rized in three discrete states (inhibited, normal and acti-
vated). Despite this, the computational burden is so large 
that the EM algorithm is locally applied in each node, and 
this leads to an approximation that reduces computational 
time. PARADIGM was tested using copy number and 
mRNA expression data86, as well as with the addition of 
methylation and miRNA expression data87. The method-
ology is, in principle, open to incorporate further levels 
of complexity, such as different progression levels (from 
normal tissue to pre-invasive and invasive cancer), that 
add an additional level to the analysis. An example from 
breast cancer that combined both different progression 
levels, as well as multiple levels of molecular data, clini-
cal data and pathway information, used the properties of 
PARADIGM to define groups of patients with distinct 
biological signatures and different prognoses87.

Bayesian analysis: imposing realistic assumptions to 

coherently integrate multiple omics data. Bayesian 
methods naturally facilitate the integration of biologi-
cal knowledge through the design of appropriate prior 
distributions. In a Bayesian multiple testing setup, 
one can use a second type of omic data (for example, 
CNAs) to modulate the a priori probability that each 
test for a first data set (for example, expression levels) 
is likely to be rejected88. Bayesian networks are not new, 
and they were used in the early 2000s to incorporate 
various data89. As is true for every statistical method, 
Bayesian analysis is based on assumptions (both prob-
abilities and prior assumptions) and models based on 
these have to be realistic and well designed so that 
they can be trusted. Usually, in a Bayesian setting, one 
carries out sensitivity analysis to assess informative 
prior assumptions, but, in most cases, prior assump-
tions are non-informative. Nevertheless, Bayesian 
approaches have a natural and important role in data 
integration, and they differ by the fact that prior dis-
tribution can represent knowledge, and conditional 
independence facilitates the integration of data in a 
coherent way. Bayesian variable selection has been suc-
cessfully applied to situations that comprise one data 
type90, but it could be extended to multiple data types 
using similar fundamental biological assumptions as 
in Huttenhower et al.69. Other computational frame-
works use integrative Bayesian approaches to identify 
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Support vector machines

In machine learning, support 

vector machines are supervised 

learning models that are used 

for classification and regression 

analysis.

candidate drivers from copy number and expression 
data (for example, COpy Number and EXpression 
In Cancer (CONNEXIC)91), in order to cluster sam-
ples, while simultaneously estimating the number of 
clusters50, or to perform regulatory module predic-
tions from co-expressed biclusters (Combinatorial 
ALgorithm for Expression and Sequence-based Cluster 
Extraction (COALESCE)68).

There are additional methods that do not naturally 
fit into the defined classifications above. Models that are 
based on ordinary differential equations can integrate 
various types of data but, as they model complex chemi-
cal reactions at a molecular level, they require a large 
number of input parameters that are usually unknown92. 
In some cases, support vector machines have been used 
to evaluate the active score of each gene and to identify 
nonlinear dependencies in active networks in a compu-
tationally efficient way (for example, Regression MODel 
with diffusion kernel (RegMOD)61).

The novel statistical and computational approaches 
described above are bringing us to a level at which we 
can analyse molecular data at all studied molecular 
levels (FIG. 1), in an integrated manner. For instance, 
by using the matrix of IPAs generated by PARADIGM, 
from the summarization of copy number, expres-
sion level and known interactions among the genes, 
one could identify a better prognostic signature than 
the one derived from expression clusters alone87 
(FIGS 2–5). By layering on CNAs and mutation data 
it has become possible to deduce how an individual 
tumour evolved93,94. Furthermore, Chari et al.44 showed 
that by examining samples using more genomic dimen-
sions, including copy number, allelic status and DNA 
methylation, they were able to explain a higher pro-
portion of the variation in gene expression compared 
with studying each genomic level separately, using only 
one genomic level. Remarkably, the proportion of vari-
ation in gene expression widely varied from patient to 
patient, which indicates different regulatory mecha-
nisms and complex individual gene–gene interactions 
in trans that are specific for every tumour. This inter-
individual variation might be a limiting factor in the 
identification of molecular markers that are associated 
with tumour aggressiveness, response to therapy and 
patient outcome.

Integrative analyses across tumour types

Over the past decade, the accumulation of high-
throughput molecular data from various cancer 
types has revealed an enormous range of alterations. 
Although subgroups of tumours with similarities 
in biological properties or clinical behaviour can be 
defined, the initial studies mainly analysed one type 
of molecular data at a time. The access to large data 
sets that have been made available by the ICGC and 
TCGA has made it possible to compare the perfor-
mance of some of the tools described above, on the 
same data set, as well as to compare the identified 
deregulated pathways between different cancer types. 
A pilot project from TCGA integrated DNA copy num-
ber, gene expression and DNA methylation, as well as 

nucleotide sequence aberrations from glioblastoma 
samples95. Enrichment analysis revealed new roles 
for known cancer genes, as well as network activity. 
Later, the same data set was interrogated by Anduril41 
and by PARADIGM86. Both approaches suggested that 
amplification of the epidermal growth factor receptor 
(EGFR) was important in glioblastoma. Anduril, which 
can make use of DNA methylation data, also indicated 
DNA hypomethylation as a significant change that was 
evident in glioblastoma.

Data from the first pan-cancer analyses aim to iden-
tify drivers of tumorigenesis that are common to multi-
ple tumour types96,97. For example, the aim of TCGA is 
to generate genomic data at all molecular layers in 10,000 
tumours from 20 tumour types and to make these data 
available for the community98. A recent endeavour to 
integrate somatic mutations, CNAs and DNA methyl-
ation was carried out in 3,299 tumours of 12 different 
cancer types96. After integration with mRNA expres-
sion, a total of 479 candidate functional alterations were 
predicted, including 116 copy-number gains, 151 copy-
number losses, 199 recurrently mutated genes and 13 
epigenetically silenced genes. A hierarchical stratifica-
tion was built using principles from network modular-
ity99. Interestingly, on the basis of these analyses, tumours 
seemed to be driven either by somatic mutations or by 
CNAs — a phenomenon that the authors named ‘the 
cancer genome hyperbola’, owing to the inverse relation-
ship between these events. However, some genes, such 
as TP53 and phosphatidylinositol-4,5-bisphosphate 
3-kinase, catalytic subunit-α (PIK3CA), can be subjected 
to both aberration modes, thereby leading to the deregu-
lation of common pathways such as p53-mediated apop-
tosis, PI3K–AKT signalling and cell cycle control.

Studying the relationship between the different 
genomic levels (FIGS 2–5) opens a debate over their 
explanatory weight and potential to discover drivers of 
cancer100. Ovaska et al.41 found unexpectedly poor con-
cordance between gene amplification, overexpression of 
the genes from the amplicons and survival in patients 
with glioblastoma. Akavia et al.91 showed that the expres-
sion of a driver (not its copy number per se) drives a 
pheno type. The authors draw our attention to the fact 
that many of the current studies attempt to identify driv-
ers only in genomic loci for which there is a good cor-
relation between copy number and mRNA expression. 
So far, many current approaches have been based on 
linear correlation analysis. On the basis of knowledge 
of the enzyme kinetics and gene regulation, we expect 
nonlinear dependencies to occur in addition to linear 
effects. We recently proposed a statistical approach to 
investigate linear and nonlinear dependencies between 
CNA and mRNA expression101.

Clinical application. The discussion above has 
addressed the problem of inferring biological net-
works of relevance for translation into the clinic, 
based on a simple map of genes, transcripts and pro-
teins. A paradigm shift is needed, from searching for 
single strong clinical markers to searching for a com-
bined effect of multiple markers, as, in general, genes  
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Figure 2 | Classifying breast cancer using unsupervised clustering. 

The first solid tumour to be profiled by expression arrays was 

carcinoma of the breast119. The most reproducible classification by 

mRNA expression is based on the biological entities referred to as the 

intrinsic subtypes — luminal A, luminal B, basal-like, human epidermal 

growth factor receptor 2 (HER2)-enriched and the normal-like 

groups120,121. In the past decade, several molecular studies to classify 

breast cancer have added one or two molecular levels — most 

frequently, DNA copy number42,49,122,123 and gene sequencing124. 

However, few of the studies have integrated more than two levels of 

information from the same patients87,125. In our laboratory, we have 

collected several layers of high-throughput molecular data from 

patients with breast cancer, including DNA methylation, DNA copy 

number alterations, mRNA expression and microRNA (miRNA) 

expression93,126–131. Clustering according to each molecular level 

reveals a variable number of clusters (part a). Kaplan–Meier plots are 

shown for each patient cluster within each molecular level (part b). 

Comparison of clusters on different molecular levels reveals that some 

breast cancer samples cluster together at all the molecular levels, 

while others cluster in different groups according to the particular 

molecular endpoint (part c). Figure parts a,b are reproduced, with 

permission, from REF. 87. Exp, expression; Meth, methylation.

R E V I E W S

NATURE REVIEWS | CANCER  VOLUME 14 | MAY 2014 | 307

© 2014 Macmillan Publishers Limited. All rights reserved



0

10

20

30

40

a  Class distribution of cluster

c  Heat map of IPL

PD
G

M
 1

PD
G

M
 2

PD
G

M
 3

PD
G

M
 4

PD
G

M
 5

0.0
0 20 40 60 80 100 120

0.2

0.4

0.6

0.8

1.0

P
ro

p
o

rt
io

n

b  Kaplan–Meier curve

PDGM 1

PDGM 2

PDGM 3

PDGM 4

PDGM 5

Time (months)

IL4 signalling

Thromboxane A2 signalling

IL23 signalling

IL12 signalling

TCR signalling

NFAT–calcineurin 
transcription

FOXM1 transcription

ERBB4

Endothelins
Angiopoietin receptor
TIE2-mediated signalling

Gene IPL

2.00
1.33
0.67
0.00
–0.67
–1.33
–2.00

and proteins function by interacting with DNA, RNA and 
proteins, and these interactions might be specific for 
a given disease subclass102. Many of the current tar-
geted therapies focus on proteins that are involved in 
cell signalling pathways, which form a complex cellu-
lar communication system that governs basic cellular 
functions103,104. Established examples of targeted cancer 
treatment include EGFR-mutated non-small-cell lung 
cancer that can be treated with tyrosine kinase inhibi-
tors (gefitinib or erlotinib)105,106, ERBB2 (also known as 
HER2)-directed therapy in breast cancer107,108, and mela-
nomas with BRAFV600E mutations that can be targeted  
with vemurafenib109.

A major challenge in drug development is to pre-
cisely define the subset of cancer patients that are 
likely to respond. Within each pathway, a range of 
drugs may be available, and the optimal target (and, 
hence, the optimal drug) will be determined by the 
rate-limiting protein and the individual perturbations 
in the pathway. In colorectal cancer, EGFR-directed 
therapy with monoclonal antibodies has proven to 
be effective110. However, in the presence of a down-
stream activating KRAS mutation, the inhibition 
of EGFR is ineffective111. It seems likely that similar 
mechanisms are present in cases with resistance to 
other cancer treatments (both targeted and more tra-
ditional chemotherapeutic agents). Iadevaia et al.112 
have proposed a computational procedure to generate 
experimentally testable intervention strategies for the 
optimal use of available drugs in a cocktail. They used 
reverse phase protein array to evaluate the changes in 
the phosphorylation status of proteins after stimula-
tion of the MDA-MB 231 breast cancer cell line with 
insulin-like growth factor, and they were able to con-
clude that the simultaneous inhibition of MAPK and 
PI3K–AKT pathways was sufficient to significantly 
halt cell proliferation112. Future methods will require 
adding methylation and expression data to such inte-
grative approaches. Introducing systematic clinical 
screenings for mutations that perturb these pathways 
is of great importance to identify the targets for tar-
geted therapies and the patients that will respond to 
each treatment.

Outcome prediction that is based on genomic data 
is another central area of genomic research, and it has 
proven to be promising in breast cancer. One of the 
crucial issues in retrospective studies is that treat-
ment selection is mostly based on the predicted risk 
of recurrence. Thus, treatment might be confounded 
by prognosis. This challenges the identification of pure 
prognostic markers, as the treatment interaction is not 
known. Even though the results from prospective vali-
dation trials, such as the Microarray In Node-negative 
and 1–3 positive lymph node Disease may Avoid 
Chemotherapy (MINDACT) trial and the Trial assign-
ing individualized options for treatment (TailorX), are 
still pending, prediction tools based on gene expression 
are included in some clinical guidelines113,114. Optimal 
strategies for risk prediction are, however, not settled 
and remain controversial. Crowdsourcing strategies 
for problem solving, which were previously success-
fully applied to biology in areas such as the prediction 
of protein folding and function115,116, have been applied 
to this problem. In the DREAM BCC competition33, 
participants competed to create an algorithm that could 
predict — more accurately than current benchmarks 
— the prognosis of patients with breast cancer from 
clinical information (age, tumour size and histological 
grade), genome-scale tumour mRNA expression data 
and DNA copy-number data from 1,980 patients33. 
Integration of data was encouraged, and more than 
1,400 models were submitted. The winners used a 
mathe matical approach that was based on co-expression 
gene networks associated with tumour phenotype and 

Figure 3 | Classifying breast cancer using PARADIGM. All multiple layers of 

high-throughput molecular data described in FIG. 2, including DNA methylation, DNA 

copy number alterations, mRNA expression, microRNA (miRNA) expression as well as 

TP53-mutation status, were subjected to integrated analysis using the PAthway 

Recognition Algorithm using Data Integration on Genomic Models (PARADIGM). This 

resulted in five clusters (part a) with survival differences (part b) and this was validated in 

multiple other datasets87. A heat map of integrated pathway levels (IPLs) is shown in part c. 

FOXM1, forkhead box M1; IL, interleukin: PDGM, PARADIGM cluster; TCR, T cell receptor; 

TIE2, tyrosine kinase, endothelial. Figure is reproduced, with permission, from REF. 87.
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functional characteristics to identify signature ‘attrac-
tor’ meta-genes, and this approach outperformed 
other models to predict outcome117,118. These examples 
support the notion that using the expertise of par-
ticipants outside of traditional biological disciplines 
could be a powerful way to accelerate the translation of  
biomedical science into the clinic.

Limitations of integrative analyses

Integrative analyses are likely to become ever more 
important as computational strategies and tools are 
further improved and multilevel omics data sets 
become more abundant. The quest to understand 
the interplay within and between different molecular 
levels in cancer is no longer beyond our reach. It is 

important, however, to be aware of the limitations of 
the current methodologies. From a statistical perspec-
tive, the most fundamental challenge in integrative 
analyses is dimensionality: taking more levels into 
account in the analysis tends to increase the dimen-
sionality of the problem. Adding more layers of data 
or increasing the resolution of measurements increases 
the dimension of unknown parameters, which are 
often difficult to estimate, thereby making the over-
all inference weaker. This might seem paradoxical, as 
the purpose of taking multiple levels into account is 
precisely the opposite — to use more observations to 
obtain a more accurate picture of the biological system 
under study. The way out of this apparent paradox is 
to realize that, first, one is able to infer more properties 
of a system with integrative approaches and, second, 
statistically efficient integrative methodologies can be 
constructed by actively using known properties of the 
relationships between the molecular levels. The second 
point ensures that additional variables in the analysis 
are not, in effect, increasing the degrees of freedom of 
the underlying model but rather lending information 
to existing variables. In addition, at every step, there 
will be checkpoints of compatibility of the data, such 
as normalization to the same scale, sample selection 
from representative cohorts, adequate correction for 
technical batch effects and use of different platforms. 
Although numerous methods and tools are introduced 
to address these obstacles, it is still, so far, the case that 
large-scale true integration is possible within only a 
few projects worldwide, which have sufficient funding 
that allows all analyses to be carried out simultaneously 
and on the entire data set. Intuitively, it seems that as 
a ‘gold standard’, integration attempts are best car-
ried out in supervised settings that are based on some 
priming biological knowledge or within the frame of  
defined biological hypotheses. Combining additional 
layers in unsupervised analyses might fail to contrib-
ute new information, as multiple use of the same data 
might artificially reduce variance or will increase the 
false discovery rate.

Conclusions

A more fundamental understanding of the biological 
dynamics of cancer will enable us to better identify 
risk factors, refine cancer diagnosis, predict therapeu-
tic effects and prognosis, and identify new targets for 
therapy. We are seeing a paradigm shift from large ran-
domized clinical trials towards treatment modalities 
that are tailored for stratified patient groups, down to 
N-of-1 trials, in which data from a single patient rep-
resents an entire trial. This will fundamentally alter the 
way that we statistically model and evaluate treatment 
strategies, from identifying patient groups that have a 
response to treatment that is above random to iden-
tifying pathways and biological entities that are drug-
gable and altered above random; and from evaluating 
the response in randomized arms, using the other arm 
as a control, to evaluating the response of experimen-
tal and control interventions in each individual, using 
the same individual as a control. The real challenge 

Figure 4 | Classifying breast cancer using clustering of clusters. Consensus clustering 

(or ‘cluster of clusters’) of 348 breast cancer cases, based on data from five different 

genomic and proteomic platforms. Consensus clustering analyses of the subtypes 

identifies four major groups; the blue and white heat map displays sample consensus  

(part a). A heatmap display of the subtypes defined independently by microRNAs 

(miRNAs), DNA methylation, copy number, PAM50 mRNA expression, and reverse phase 

protein array (RPPA) expression; the red bar indicates membership of a cluster type 

(part b). Associations with molecular and clinical features, with P values from a chi-squared 

test are shown in part c. CN, copy number; ER, oestrogen receptor; GATA3, GATA binding 

protein 3; HER2, human epidermal growth factor receptor 2; LumA, luminal A; LumB, 

luminal B; MAP2K4, mitogen-activated protein kinase kinase 4; MAP3K1, mitogen- 

activated protein kinase kinase kinase 1, E3 ubiquitin protein ligase; Methy, methylation; 

N, node status; NA, not available; PAM50, gene expression subtyping based on the PAM50 

gene signature; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit 

alpha; PR, progesterone receptor; T, tumour size; WT, wild type. Figure is reproduced, with 

permission, from REF. 125 © (2012) Macmillan Publishers Ltd. All rights reserved.
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would be to develop statistical models to identify 
crucial, rate-limiting molecular targets for inter-
vention, out of the wealth of information that next- 
generation sequencing uncovers, on the background 
of great redundancy of pathways and heterogeneity of 

Figure 5 | Classifying breast cancer using integrative clustering. Integrative clustering of 997 breast cancer cases 

from the METABRIC cohort, based on segmented copy number and gene expression for the top 1,000 cis-acting copy 

number-expression associations. Heatmap showing the product of scaled gene expression and copy number values for 

the selected features and for k = 10 clusters; columns represent breast cancer cases and rows represent features (part a). 

Kaplan–Meier plot of disease-specific survival (truncated at 15 years) for the integrative subgroups. For each cluster, the 

number of samples at risk is indicated as well as the total number of deaths in parentheses (part b). ER, oestrogen receptor; 

ER NEG, ER negative; ER POS, ER positive; GI, genomic instability based on the proportion of genome altered (black line) 

and jump measure (red line); grade, genomic grade; IntClust, groups found using integrative clustering with k = 10 

clusters; NPI, Nottingham prognostic index;  PAM50, gene expression subtyping based on the PAM50 gene signature. 

Figure is reproduced, with permission, from REF. 49 © (2012) Macmillan Publishers Ltd. All rights reserved.

tumours. As we are moving towards an era in which 
the amount of data produced every year is increas-
ing exponentially, the biomedical community needs 
to embrace this complexity and find new methods 
of shared analysis. We need to learn from physicists 
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Cancer Genome Project: www.sanger.ac.uk/genetics/CGP/

Catalogue of Somatic Mutations in Cancer (COSMIC) 

database: http://www.sanger.ac.uk/genetics/CGP/cosmic/

ENCyclopedia Of DNA Elements (ENCODE):  

http://genome.ucsc.edu/ENCODE/

International Cancer Genome Consortium (ICGC):  

www.icgc.org/

NCI/TCGA: http://cancergenome.nih.gov

The Cancer Genome Atlas (TCGA): www.cancergenome.nih.gov

Storage and compute spaces:

Bioconductor: http://www.bioconductor.org/

Bionimbus: http://www.bionimbus.org/

CytoScape: http://www.cytoscape.org/

Federation of SAGE: http://sagebase.org/

Synapse: https://synapse.prod.sagebase.org/

Protein–protein interactions:

HPRD: www.hprd.org/

Kyoto Encyclopedia of Genes and Genomes (KEGG):  

www.genome.jp/kegg

MIPS (Mammalian protein–protein interaction):  

http://mips.helmholtz-muenchen.de/proj/ppi/

PID Pathway Interaction Database (NCI): www.pid.nci.nih.gov

Reactome: www.reactome.org

WikiPathways: http://wikipathways.org/

Annotation, visualization and integrated discovery:

Biowaver: http://sonorus.princeton.edu/bioweaver/

DAVID: http://david.abcc.ncifcrf.gov

GOLEM: http://reducio.princeton.edu/GOLEM/

GRIFn: http://reducio.princeton.edu/GRIFn/

HEFalMp: http://hefalmp.princeton.edu/

Mefit: http://avis.princeton.edu/mefit

MsigDB Molecular Signatures Database:  

www.broadinstitute.org/gsea/msigdb/index.jsp

Oncomine: https://www.oncomine.org/resource/login.html

Rembrandt:  

http://cabig.cancer.gov/action/collaborations/rembrandt/

Search-Based Exploration of Expression Compendium 

(SEEK): http://seek.princeton.edu

Sleipnir: http://libsleipnir.bitbucket.org/

Summary of gene ontology tools:  

http://www.geneontology.org/GO.tools.microarray.shtml

Omics integration:

Combinatorial ALgorithm for Expression and Sequence-

based Cluster Extraction (COALESCE):  

http://reducio.princeton.edu/cm/coalesce

COpy Number and EXpression In Cancer (CONNEXIC): 

http://www.c2b2.columbia.edu/danapeerlab/html/software.html

DR-Integrator: http://pollacklab.stanford.edu/

IntOGen: http://bg.upf.edu/group/tools.php#intogen

Magellan: http://cabig.nci.nih.gov/

OncoDrive: http://bg.upf.edu/blog/tag/oncodrive/

PAthway Recognition Algorithm using Data Integration on 

Genomic Models (PARADIGM):  

http://sbenz.github.com/Paradigm
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