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PRINCIPLES AND PROCEDURES OF MULTIPLE MATRIX SAMPLING

David M. Shoemaker

Introduction

Multiple matrix sampling or, more popularly, item-examinee sampling,

is a psychometric procedure whose time has come. It is the Zeitgeist.

Descriptions of multiple matrix sampling procedures and explorations into

areas of application are scattered over a multitude of technical journals.

There is no single book or article which describes, studies, and unifies

all of this material. Yet there is a need for such a document both as a

reference source and as a textbook.

Although statisticians have dealt for several decades with incomplete

data problems in the design of experiments and data analysis, ehe psycho-

metrician responsible primarily for the derivation of statistical proce-

dures in mul'iple matrix sampling and the application of such procedures

to problems In psychology and education is Frederic M. Lord. Lord and

Novick discuss multiple matrix sampling in Chapter 11 in Statistical

theories of mental test scores but the chapter does not encompass the

degree of detail and depth of explanation required by the majority of

educational research practitioners who desire to implement this research

procedure in a particular investigation. This Technical Report has

been designed to remedy this situation.

Throughout this Report an attempt has been made to keep the practi-

tioner clearly in mind. The emphasis is on the why, when, and how to

use multiple matrix sampling. The topics covered range from an intro-

duction to multiple matrix sampling to the listing with expanded writeup

of the computer program used to analyze the data. All discussions and

guidelines contained in the mcograph reflect theoretical and empirical

results reported in the literal_ure as well as personal experiences of the

author in implementing multiple matrix sampling in a variety of applied

situations.



II

Characteristics, Advantages, And Applications

Of Multiple Matrix Sampling

The majority of contemporary psychometric procedures reflect stron-

gly the original impetus of the psychometric movement, that is, the

measurement of individual differences Historically, individual differ-

ences have been investigated, and app opriately so, using the matched-

items model in which a single set of est items is administered in a

btaudardized procedure to all, or a sample, of the examinee population

under consideration. One exemplar of such methodology is the anthropo-

metric laboratory of Sir Francis Galton established at the International

Health Exhibition in England in 1884. Galton measured individuals rang-

ing in age from five to eighty on such dimensions as standing height,

sitting height, arm span, weight, breathing capacity and strength of

pull "to supply information on the methods, practice, and uses of human

measurement." Understandably so and undoubtedly for lack of a reasonable

alternative, procedures appropriate for the assessment of individual

differences have been transferred completely to investigations concerned

primarily with the measurement of group differences. An example of a

research design emphasizing the assessment of group differences is found

in an investigation which contrasts treatment effects through adminis-

tering each treatment to a group of examinees selected randomly from the

examinee population. Given treatments A, B, and C, for example, the

researcher is interested primarily in the behavior of group A as contras-

ted with group B as contrasted with group C. Differences among individual

examinees are of little concern. The point to be made is simply this:

the methodology employed successfully in the assessment of individual

differences is neither the appropriate nor the most efficient methodology

for group assessment. Multiple matrix sampling or, more popularly,

item-examinee sampling, has been demonstrated theoretically and empir-

ically to be the appropriate procedure for group assessment and a proce-

dure superior to the matched-items model.

The matched-items model and the multiple matrix sampling model are

contrasted readily by considering the data base which would be generated

if the entire testable population og N examinees were administered the

complete set of K test items. Su

i

11 a data base is illustrated in

Figure 2.1 and the arrangement is r ferred to commonly as an item-

examinee matrix. Test items are sc red dichotomously frequently and

such is the case in Figure 2.1. For example, examinee 1 passed item 1,

failed item 2, passed items 3 and 4, and failed item 5. Within the
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Test Items

1 2 3 4 5 . . .
IC

1 0 1 1 0 .

0 1 1 1 1

1 0 1 1 0

0 0 0 0 1

Examinee Sample

Figure 2.1: Item-examinee matrix illustrating examinee-sampling.
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Test Items

1 2 3 4 5 . .

1 1 0 1 1 0 . .

2 0 1 1 1 1

3 1 0 1 1 0

4 0 0 0 0 1

a

Item-

examinee

sample 1

Item-

examinee

sample 3

Item-

examinee
sample 2

Figure 2.2: Item-examinee matrix illustrating multiple matrix sampling.
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framework of the item-examinee matrix, the matched-items model used in

the assessment of individual differences is referred to as the examinee-

sampling model because all test items are administered to a subgroup of

examinees selected at random from the population of N examinees. By

contrast, multiple matrix sampling involves the joint sampling of examinee

subgroups and item subtests as illustrated in Figure 2.2. Data from item-

examinee sample 1 were obtained by administering a set of items selected

at random from the population of K test items and administering these

and only these items to a subgroup of examinees selected randomly from

the population of N examinees. Replicating this procedure produces

item-examinee samples 2 and 3 and suggests, concomitantly, the derivation

of the expression "multiple matrix sampling." Statistics obtained from

examinee-sampling and from multiple matrix sampling are used to estimate

parameters of the N by K item-examinee matrix. It must be remembered,

however, that the N by K item-examinee matrix illustrated in Figures

2.1 and 2.2 is a hypothetical matrix the parameters of which are estimated

from the subset of data gathered in practice through examinee-sampling or

ImAtiple matrix sampling.

Advantages of Multiple Matrix Sampling

A concept important in discussing the advantages of multiple matrix

sampling and one mentioned frequently herein is the standard error of

estimate. Assume that two experimental procedures have been developed

for measuring weight and each procedure is used to obtain in a standard-

ized manner 1000 independent measurements of the weight of a given object.

Hypothetical measurements so acquired have been asseMbled into frequency

distributions and are given in Figure 2.3. The standard error of estimate

associated with procedure M is the standard deviation of the 1000 values

for the weight obtained using procedure M; the standard error of esti-

mating the weight for procedure E is determined identically. The

difference in standard errors of estimate depicted in Figure 2.3 illus-

trates an important advantage of multiple matrix sampling over examinee-

sampling in group assessment. Lord and Novick (1968) have demonstrated

algebraically that, when sUbtests are constructed by sampling items

without replacement from the K-item population, the standard error in

estimating the group mean test score using multiple matrix sampling is

less than the standard error obtained with examinee-sampling. Further-

more, the minimum standard error of estimate under multiple matrix

sampling is found by administering one item to each of K random samples

of examinees. A conclusion such as this is of major significance because

the parameter of primary importance in many investigations is the group

mean test score.

To clarify this point, consider how such a result could have been

determined empirically through post mortem item-examinee sampling. In

post mortem item-examinee sampling, an existing N by K item-examinee

data base is taken to be the population of scores and item scores from

item-examinee samples selected randomly from this base are used to

10
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Figre 2:3: Hypothetical distributions of weight measurements resulting

from 1000 replications of procedure M and 1000 replications

of procedure E.
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estimate parameters of interest. Although all examinees have responded

to all items, in post mortem item-examinee sampling,thc.: investigator

acts as if individual examinees had responded only to specific items.

The standard error of estimate under examinee-sampling could be approxi-

mated, for example, by selecting.at random 1000 examinee subgroups and

testing each subgroup over K items. Data from each examinee subgroup

provide an estimate of the mean score over N examinees and the standard

deviation calculated over these 1000 estimates is the standard error of

estimating the population mean under examinee-sampling. A single estimate

of the mean test score under multiple matrix sampling is obtained, for

example, by dividing randomly the set of K test items into t non-

overlapping subtests containing K/t items each and administering each

subtest to a subgroup of examinees selected at random from the population

of N-examinees. A single estimate of the population mean is obtained

by pooling the t estimates obtained from each item-examinee sample.

Replicating this procedure 1000 times provides 1000 pooled estimates of

the population mean test score and hence the standard error of estimate

associated with the particular item-examinee sampling plan used. (All

computational formulas used in multiple matrix sampling are explained in

detail in Chapter IV.)

The advantages of multiple matrix sampling have thus far been focused

on the standard error of estimating the mean test score. Important also

is the expected value or mean of the estimates of the population mean

test score over replications. In Figure 2.3, the standard error of proce-

dure M is less than the standard error of procedure E; however, on the

average, the values obtained using procedure E are more accurate than

those obtained using procedure M (assuming that the true weight is the

value on the abscissa indicated by the pointer). A consideration such as

this prompts an examination of the mean estimate of the population mean

test score obtained under multiple matrix sampling. The results of sev-

eral empirical investigations (Johnson & Lord, 1958; Lord, 1962; Plumlee,

1964; Stufflebeam & Cook, 1967; Shoemaker, 1970a, 1970b) using post mor-

tem item-examinee sampling support the conclusion that, on the average,

estimates of the mean test score are extremely accurate. (Results such

as these are to be expected since the mean of a random sample is always

an unbiased estimator of the population mean and estimates of the mean

test score obtained through multiple matrix sampling are no exception.)

Shoemaker (1970b) has demonstrated that this conclusion is appropriate,

additionally, for estimates of the population standard deviation.

In addition to the statistical advantages of multiple matrix sampling

in estimating group adhievement, there are other advantages of practical

import: (a) The testing time per examinee is reduced under multiple matrix

sampling. This is, indeed, an important consideration as the time neces-

sary for testing K items per examinee is frequently difficult or impos-

sible t, obtain. (b) Under multiple matrix sampling, the costs of scoring

each teAt are reduced. (c) Multiple matrix sampling as a procedure may

be accepted more readily in certain situations than the matched-items

design. In a company, for example, supervisors fearing that test results

may be used against their employees may be assured more convincingly if

12
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each employee takes only a part of a test and different employees take

different parts. '(d) Given a limited amount of available testing time

per examinee, performance on a larger number of test items can be approx-

imated through multiple matrix sampling than through a matched-items design.

(e) With multiple matrix sampling it is possible to estimate simultane-

ously parameters of several tests. To the examinee, the test so construc-

ted is merely another test; however, to the test constructor, the comnos-

ite is a collection of several tests each having parameters estimated

through multiple matrix sampling.

Limitations of Multiple Matrix Sampling

Although advantages of multiple matrix sampling are more numerous

than limitations, the latter do exist. Estimating parameters through

multiple matrix sampling assumes that the responses of an examinee to an

item sample are exactly those which would have been obtained had the

examinee responded to those items embedded in the K-item test. Although

the data available (Sirotnik, 1970; Shoemaker, 1970c) suggest that multiple

matrix sampling is relatively immune to a context effect, there is one

important exception: using multiple matrix sampling to estimate parameters

of speeded tests. In this case, an examinee's response is not indepen-

dent of the context of the test and multiple matrix sampling should not

be used.

An insidious variation of the context effect occurs when multiple

matrix sampling is used to estimate parameters for a test which is impos-

sible to administer in practice. For example, parameters of a 500-item

vocabulary test designed for grade one students could be estimated readily

through multiple matrix sampling by forming 25 subtests having 20 items

each with each subtest administered to one class of grade one students.

Although all students could respond appropriately to the 20-item test,

data from each subtest would be used to estimate the results which would

have been obtained had all grade one children taken the 500-item test.

The problem is that no individual grade one student could have tolerated

the 500-item test.

A potentially serious limitation of multiple matrix sampling is

found in the logistics involved in giving different tests to different

subgroups of examinees. If test items are administered individually,

problems are minimal. If, however, each item requires oral instructions

by the test administrator and different tests are to be distributed among

the examinees in the testing room, serious problems occur. In this sit-

uation, the examinees must be segregated and isolated according to

subtest before administering each test. If the instructions to each

item are written on the test booklet, administering different tests to

different examinees within the testing room is accomplished with rela-

tive ease.

13
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III

Procedural Guidelines in Multiple Matrix Sampling

Multiple matrix sampling as a procedure involves basically three

steps: (a) a K-item test is subdivided through random or stratified-

random sampling into subtests each having typically the same number of

items, (b) each subtest is administered to a group of examinees selected

randomly from the examinee population, and (c) test parameters are esti-

mated from subteSt results. Although the procedure is described easily,

implementing it produces many interesting questions. For example: How

many subtests should be formed? To how many examinees should each subtest

be administered? Is it more appropriate to administer a few subtests

containing a large number of items or a large number of subtests contain-

ing few items? These are only a few of the questions encountered fre-

quently when using multiple matrix sampling. Described herein are general

guidelines for answering these and other related questions.

Let t denote the number of subtests, k the number of items per

subtest and n the number of examinees to which each subtest is adminis-

tered. A specific sampling plan is denoted by (t/k/n). For example,

(2/25/60) , (10/5/60) and 10/20/30) are three sampling plans which could

be used to estimate the parameters of a 50-item test. With the first

plan, 2 subtests are formed containing 25 items each with each subtest

administered to 60 examinees; with the second plan, 10 tests with 5 items

each with each subtest administered to 60 examinees; and with the

third, 10 tests with 20 items each with each subtest administered to 30

examinees. The third plan introduces an important variable in multiple

matrix sampling, namely, the procedure used to sample items in construct-

ing subtests. With (2/25/60) and (10/5/60) subtests are formed by

sampling test items without replacement from the pool of 50 items. With

(10/20/30), items are sampled without replacement for a given subtest but

with replacement among subtests; consequently, an individual item will

often be included in more than one subtest, but no item will be included

twice in the same subtest. The rule is this: if the product tk is

less than or equal to K, the sampling of items for subtests is always

without replacement; when tk is greater than K, the sampling of items

is without replacement for each subtest and with replacement between

subtests. Selecting items for two subtests using the latter sampling

procedure is demonstrated easily with a deck of cards numbered consecu-

tively from 1 to K: (a) the deck of K cards is shuffled thoroughly,

(b) k cards are selected at random from the deck with the numbers on

the cards indicating those items to be included in subtest i (c) the k

cares are returned to the deck, (d) the card deck is reshuffled, and



(e) k cards are selected at random for subtest j. Although a multitude

of sampling plans are possible, it is generally the case that tk is

equal to or greater than K.

Although constructing subtests having overlapping item subsets is

desirable in that it increases the number of observations acquired by

the sampling plan (and, hence, decreases generally the standard error

of estimate associated with that sampling plan), it is of critical im-

portance that, when tk is greater than K, tk be an integer multiple

of K, and items are sampled randomly but subject to the restriction

that each item appear with equal frequency among subtests. With

(10/20/30), for example, the multiple is 4 and each of the 50 items

should appear in exactly 4 subtests. Any deviation from this procedure

results in a marked increase in the standard error of estimate.

An important characteristic of any sampling plan used in multiple

matrix sampling is the number of observations acquired by that plan.

Defining one observation as the score received by one examinee on one

item, the number of observations acquired by a sampling.plan is equal

to the product tkn. For example, 3000 observations are acquired by

(2/25/60) and by (10/5/60) while 6000 observations are acquired by

(10/20/30). The number of observations per sampling plan is an impor-

tant concept in multiple matrix sampling and one mentioned frequently

herein.

In multiple matrix sampling, a variety of sampling plans are

possible with the selection of a particular sampling plan being typically

the result of both practical and statistical considerations. Determining

the relative merits of individual sampling plans is accomplished readily

through a consideration of the standard error of estimate for each

parameter for each sampling plan. Shoemaker (1970a, 1970b, 1971a, 1971b)

has determined empirically, through post mortem item-examinee sampling,

standard errors of estimate for selected parameters as a function of

variations in (a) the number of observations acquired by the sampling

plan, (b) t, k, and n, (c) test reliability of the normative distribution

of test scores, (d) the variance of item difficulty indices, and (e)

degree of skewness in the normative test score distribution. The

following are general guidelines in multiple matrix sampling resulting

from these and other investigations (Shoemaker & Osburn, 1968; Osburn,

1969):

1. The number of observations acquired by the sampling plan is an

important variable. In general, as the number of observations

increases, the standard error of estimating parameters decreases.

(The major exception to this guideline occurs when guideline 4

is not followed.)

2. Increasing the number of examinees per subgroup is 1eas,-. effective

in reducing the standard error of estimate.
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3. For normal normative distributions, increases in the number of

items per subtest are most effective in reducing standard errors

of estimate; for negatively-skewed distributions, increases in

the number of subtests are most effective.

4. When tk is greater than K, tk should be an integer multiple

of K and items should be selected randomly but subject to the

restriction that among subtests each item appears with equal

frequency.

5. In general, fewer observations are required to estimate parameters

of a skewed normative distribution than of a normal normative

distribution.

6. If subtest items are being selected according to a stratified-

random sampling plan instead of a random sampling plan, items

should be stratified according to difficulty level and not

according to content.

7. As the reliability of the
normative distribution of test scores

increases, it becomes increasingly difficult to estimate parameters.

For this reason, it is true generally that a relatively large

number of observations is required by the sampling plan when

estimating parameters of a distribution having high reliability.

This is true also when the variance of item difficulty indices

is large.

8. If no information concerning the normative distribution of test

scores is available, select a sampling plan having the number of

subtests equal to the square root of the total number of test items

(rounded to the nearest integer) with each subtest having approx-

hmately the same number of test items.

Guidelines such as these are concerned primarily with relative

standard errors of estimate in multiple matrix sampling. Although Lord

and Novick (1968, equation 11.12.3) have determined algebraically the

standard error of estimating the mean proportion correct score in

multiple matrix sampling given nonoverlapping random samples of dichot-

omously-scored items drawn without replacement from the item population,

the standard error of estimate for any parameter using any and all

sampling plans may be determined easily and effectively through use

of the simulation model for multiple matrix sampling described in detail

in Chapter V.

Multiple Matrix Sampling Step by Step

Step 1; Construct or select the K-item test. If possible, assemble

the items into strata according to difficulty level.

Step 2: Determine the limitations and restrictions which must be

imposed upon the test administration procedure.

17
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Step 3: Select a sampling plan which is appropriate in view of

the known characteristics of the normative distribution, the restrictions

and limitations inherent in the test administration procedure, and

guidelines 1 through 8.

Step 4: Administer subtests to examinees in a standardized

procedure. Avoid confounding subtests with examinee subgroups, i.e.,

make every attempt to have examinee subgroups homogeneous.

Step 5: Compute estimates of parameters using equations 4.1, 4.2,

4.4, 4.5, 4.7 and 4.9 with the computer program given in Appendix A.

18
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IV

Computational Formulas in Multiple Matrix Sampling

Computational formulas used in multiple matrix sampling are applied

easily in practice and are detailed and sequenced appropriately in the

following application of the procedure. It should be noted initially

that all formulas assume uniform item scoring procedures; for example,

some items cannot be scored dichotomously and other trichotomously.

An Application of Multiple Matrix Sampling

A spelling program is being designed for kindergarten students and

the word and rule content of this program is to be related closely to the

reading program used by these students.
Before constructing such a program

it is necessary to determine the spelling proficiency of those students

who have used the reading program but have not had formal spelling instruc-

tion on the related words. Although there were 78 unique words introduced

in the particular reading program under consideration, technical consider-

ations dictated that only words having regular spellings be included in

the word population. As a result, the original word population was reduced

from 78 words to 50 words. The modified word population was then subdi-

vided through random sampling without replacement into 5 subtests contain-

ing 10 words each. (This is one of many procedures which could have been

used. Alternative procedures are discussed in detail in Chapter III.)

Three kindergarten classes were selected randomly from the pool of 9

classes. Students within each class were divided at random into 5 groups

and each group was assigned at random to one of the 5 subtests. Each test

was administered individually. All items were scored dichotomously (1 =

pass, 0 = fail) with the results of each subtest given in Tables 4.1

through 4.5.

Estimating Parameters From Subtest Results

In multiple matrix sampling, subtest results are of secondary

interest. Of chief concern is the estimation of parameters, that is,

the results which would have been obtained had all students been tested

over the entire set of 50 items comprising the word population. The

results of each subtest, hawever, can be used to provide estimates of

parameters of interest. For example, from subtest 1 it is possible to

20
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obtain an estimate of
several parameters, i.e., p (the population mean

test score), a (the standard deviation of test scores), 02 (the variance

of test scores), p3 (the third moment about the arithmetic mean), p4 (the

fourth moment about the arithmetic mean), a21 (the coefficient of relia-

bility), gl (the index of skewness), and g2 (the degree of kurtosis).

All of these parameters are
not independent, but each can be estimated

from the results of one subtest. In multiple matrix sampling, multiple

subtests are used and, hence, multiple estimates of each parameter are

obtained. A more accurate estimate of each parmneter is obtained by

combining or pooling the estimates obtained from each subtest.

Although it is possible to estimate several parameters, the majority

of investigations are interested primarily in estimating p, a2, and a21.

The appropriate formulas for estimating these parameters from subtest i

are

and,

where,

A 2
a. =
1

A

Pi

k.

- k3D v.)

ki(ki 1)(ni - 1)

A 2-1.L.

A

A
a 1 -
21 K - 1 a

n2

K = the total number of items in the population,

k. = the number of items in subtest
1

n. = the number of examinees receiving subtest

2 1

(4.1)

(4.2)

(4.3)
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Ti = the mean test score on subtest

ni

s2 = E (T - T 1)2/ni, the variance
of test scores on subtest

and

k
i

23 v = the sum of the k
i
item variances in subtest j.

If items are scored dichotomously, the variance

ofitemjisequaltop(1- pj.)where p is

the proportion of examinees answering item j

correctly.

The computational formula for as2 was derived from an associated

formula given by Sirotnik (1970) in which it was assumed that the number

of examinees and number of items in the population were both finite.

Formula 4.2 is based on the assumption Chat the number of examinees in

:Ale population is infinite and that the number of items in the popula-

tion is finite.

The restats of each subtest provide an estimate of u and a2 and

a pooled estimate of u and a2 is obtained by combining the t subtest

estimates using

and

where,

E o
i
ai

pooled
E o .

A 2
a
pooled

E o

Oi = nik

27

(4.4)

(4.5)

(4.6)
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the numbe-i;;--observations
obtained from subtest i. If the total number

of examinees Eni = N is less than 500 , ;2
ooled

should be multiplied
p

by (N - 1)/N. Pooled estimates of p and a2 for the word spelling project

are given in Table 4.6. The pooled estimate of the mean test score on

the 50-item test is 20.4287. On the basis of this result, the conclusion

was made that kindergarten students can spell correctly approximately

40 per cent of words having
regular spelling in the reading program with-

out having had any formal spelling instruction.

Although individual estimates of the reliability of the 50-item

test could have been obtained from each subtest and then combined into a

single estimate, a simpler procedure for estimating a21 is one using the

pooled estimates of p and a2. Specifically,

A
U
21 K - 1

[1

A2

Ppoo1ed

pooled

A 2
a
pooled

(4.7)

For the word spelling test a21 for the 50-item test was estimated from

4.7 to be .9479. The exact computations are given in Table 4.7 where

a21 is computed as an intermediate step in approximating the normative

test score distribution with a probability distribution.

Direct Calculation of SE(ipooled )

A more meaningful interpretation of Cipooled is
possible if SE(u

is known. Although SE(sCipooled) and SE( &pooled)
may be determined for all

sampling plans through use of the simulation model described in Chapter V,

Lord and Novick (1968, equation 11.12.3) have derived an equation for

determining the standard error of the mean proportion correct score given

(a) items are scored
dichotomously; (b) items are sampled randomly and

without replacement from the item population, and (c) examinees are sampled

randomly and without replaement from the examinee population. Restrictions

(b) and (c) produce item subsets and examinee subgroups which are nonover-

lapping, i.e., no item is found in more than one subtest and no examinee



-24-

Table 4.6

Pooled Estimates Of Parameters From Subtest Results

Subtest
Number of

Observations

A

a

1 180 18 10 17.7780 158.1778

2 140 14 10 26.4285 53.8430

3 130 13 10 23.4615 230.0509

4 130 13 10 24.6155 265.5789

5 120 12 10 9.5835 169.3378

700 70

(180)(17.7780) + (140)(26.4285) + + (120)(9.5835)A

4
pooled

= 20.4287

180 + 140 + + 120

A2 (180)(158.1778) + (140)(53.8430) + + (120)(169.3378)
a
poolea

-

180 + 140 + + 120

= 172.5178

N L 500

= 172.5178 [(70 - 1)170]

= 170.0533

25.
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is found in more than one subgroup. Equation 11.12.3 when modified to give

the standard error of the mean test score is

1 1
A

VAR( 1
pooled ) Etkni C(K - 1)(N -

2 r
El(

2
N a t(K - k)(n - 1) - kn(t

K a
2

I.(N - n)(k - 1) kn(t

A A

p(K - p) [(K k)(N - n) + kn(t

- 1))

- 1)j

- 1))]

+

+

,

(4.8)

where K refers to the total number of test items,

to the total number of examinees,

a2 to the population variance,

a2 to the variance of item difficulty indices, and

to the estimate of the population mean obtained

from multiple matrix sampling.

In practice, a2 and a2 are estimated; t, k, and n are parameters

A A

defining the sampling plan. Of course, SE(p
pooled

) = VAR(A
pooled

):

No equation is given by Lord and Novick for SE(a
pooled

) under multiple

matrix sampling.

Approximating the Normative Distribution

In addition to estimating individual parameters through multiple

matrix sampling, it is possible to estimate the entire normative frequency

distribution of test scores which would have been obtained by testing all

students on all 50 items. The negative hypergeometric distribution has

been shown by Keats and Lord (1962) to provide a reasonably good fit for

a wide variety of test score
distributions when the test score is the

number of correct responses. The negative hypergeometric distribution

is a function of the mean test score p, the variance of the test scores

a2and the total number of items in the test K. Lord (1962) and Shoemaker

(1970) have demonstrated-06st the negative hypergeometric distribution

30
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with parameters estimated by multiple matrix sampling can be used satis-

factorily to approximate normative
distributions of number correct test

scores. The formula for the negative hypergeometric distribution is

where,

noting that,

h(T) -
(-b)

T
T!

for T = 0, 1, 2, ... , K (4.9)

a = (-1 + 1A :1

21
YIpooled

A

b = -a - 1 + K/a
21

13E4

(a + b)r1(1

[K]
b = b(b - 1)(b - 2) .., (b - K + 1)

(a)T = a(a + 1)(a + 2) .. (a + T - 1)

(a)o = b
[0]

= 1

T! = T(T 1)(T - 2) ... (2)(1).

Using estimates of p and a
2 obtained from the word spelling

project, the calculations necessary
for approximating the normative
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distribution on the 50-item test with the negative hypergeometric distri-

bution are illustrated in Table 4.7 with complete
results given in Table

4.9. The computations involved in estimating p and a2 and approxi-

mating tile normative distribution by the negative hypergesmetric distri-

bution are more laborious than difficult. A computer program has been

developed which performs all the necessary computations and output for

the word spelling project is given in Tables 4.8 and 4.9. A detailed

writeup and listing of the computer program is given in Appendix A.

An examination of the estimates of parameters given in Table 4.8

suggests that individual subtests were not equally difficult, particularly

subtest 5. Although the words included in subtest 5 were selected randomly

from the 50-word population and administered to subgroups of examinees

selected at random from each class, the results merely confirm the well-

known fact that extreme cases do occur through random sampling. An obvious

advantage, then, of multiple matrix sampling over any individual item-

examinee sample is that the estimates obtained in the former case are

based on a composite and hence less subject to sampling extremities.

Stated more precisely, the standard error associated with the pooled

estimate of the mean test score is less than the standard error associated

with any of the estimates of the mean obtained from subtests. The results

for p and a given in Chapter V illustrate adequately the difference

in standard errors of estimate described here.

The relative frequencies given in Table 4.9 are actually the

individual probabilities associated with all possible test scores. For

example, the probability of an examinee spelling correctly 20 words out

of 50 is .023. An equally appropriate
interpretation is that 2.3 per

cent of the examinees in the population would spell correctly 20 words.

As should be the case, the relative frequencies in Table 4.9 sum to

unity. An estimate of the number of examinees receiving each test score

is obtained by multiplying the total number of examinees in the population

by the probability associated with each test score. For example, if there

were 1000 students in the population of kindergarteners, 23 students would

be expected to spell correctly 20 of the 50 words on the test.

Although equations 4.1 and 4.2 are appropriate for all item scoring

procedures, the negative hypergeometric
distribution is used only when

the test score is the number of cqrrect answers. This is, of course,

the case when items are scored 1 = pass and 0 = fail. When items are

not scored dichotomously, the normative frequency
distribution may be

approximated by a Pearson curve using the first moment about the origin

and the second, third and fourth moments about the mean. There are 12

curves in the family of Pearson curves and the procedure for selecting

the appropriate curve and making the necessary calculations to approx-

imate the normative distribution are
given by Elderton (1938, pp. 38-127)

and by Kendall (1952, pp. 137-145). Lord (1960) has suggested that a

Pearson Type I curve may be an appropriate selection. It should be men-

tioned, however, that such a procedure is not a casual undertaking. Before

such procedures can be used, computational formulas for estimating 113 and

1.14 must be derived. Guidelines for estimating these moments are given by

Hooke (1956).
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Table 4.7

Computations For Negative Hypergeametric Distribution

A
a
21

= (50/(50 - 1))(1 - (20.4286 - 20.4286
2
/50)/170.0552) = .9479

a = (-1 + 1/.9479)(20.4287) = 1.1226

b = -1.1226 - 1 + 50/.9479 = 50.6250

c

50.6250
[50]

50.6250(50.6250-1)(50.6250-2) ... (50.6250-49)

51.7476 I-50] 51.7476(51.7476-1)(51.7476-2) (51.7476-49)

- .0214

h(0)

h(1)

h(2)

=

=

=

(.0214)

(.0214)

(.0214)

(-J0) (1.1226)

- (.0214)

(.0214)

(.0214)

(1)(1)

- .0248

(-50.6250)
o

0!

(-50)1(1.1226)1

- .0214

(1)(1)

(-50)(1.1226)

(-50.6250)
1

1!

(-50)2(1.1226)2

- .0237
(-50.6250)(1)

(-50)(-49)(1.1226)(2.1226)

(-50.6250)
2

2! (-50.6250)(-49.6250)(2)
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Table 4.8

Estimates Of Parameters For Word Spelling Project

Sample

1

2

3

4

5

17.7777770

26.4285710

23.4615380

24.6153840

9.5833331

POOLED MEAN = 20.4285710

POOLED VARIANCE = 170.0552200

Estimate Of Parameter

Mean Variance

158.1844600

53.8461540

230.0498600

265.5769300

169.3392200
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Table 4.9

Estimated Relative Frequency Per Test Score On The 50-Item Test Using

The Negative Hypergeometric Distribution

Score
Relative

Frequency
Score

Relative

Frequency

0 .0213564

1 .0236785 26 .0216387

2 .0248133 27 .0211852

3 .0254953 28 .0207151

4 .0259319 29 .0202280

5 .0262115 30 .0197236

6 .0263806 31 .0192016

7 .0264667 32 .0186613

8 .0264872 33 .0181020

9 .0264544 34 .0175230

10 .0263766 35 .0169233

11 .0262602 36 .0163017

12 .0261101 37 .0156567

13 .0259298 38 .0149867

14 .0257223 39 .0142896

15 .0254900 40 .0135627

16 .0252347 41 .0128031

17 .0249578 42 .0120066

18 .0246608 43 .0111683

19 .0243444 44 .0102815

20 .0240095 45 .0093369

21 .0236568 46 .0083215

22 .0232868 4 7 .0072158

23 .0228997 48 .0059869

24 .0224960 49 .0045728

25 .0220756 50 .0028209
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Com utational Irre ularities

In estimating parameters
from subtests having a small number of

items and examinees, it happens frequently that ty2 is equal to zero

or is less than zero for one or more subtests. ',Although uninterpretable,

estimates such as tclese should not be discarded or set equal to zero in

computing 212 It must be remembered that results of any subtest

pooled

are relatively unimportant; what is important is the accuracy of the

pooled estimate of a? Any procedure which ignores part of the data

produces an estimate of a2 which is biased, i.e., it would not ap-

proach the true value even if the number of subtests was increased

indefinitely. Sirotnik (1970) has verified empirically this conclusion.



-32-

REFERENCES

Elderton, W. P. Frequency curves and correlation. Cambridge: University

Press, 1938.

Hooke, R. Some applications of bipolykays to the estimation of variance

components and their moments. Annals of Mathematical Statlaige,

1956, 27, 80-98.

Keats, J. A. 61iLord, F. M. A theoretical distribution for mental test

scores. Psychometrika, 1962, 27, 59-72.

Kendall, M. G. The advanced theor7 of statistics, Volume I (Fifth

Edition) New York: Hefner, 1952.

Lord, F. M. Use of true-score theory to predict moments of univariate

and bivariate observed-score distributions. Psychometrika, 1960,

25, 325-342.

Lord, F. M. Estimating norms by item sampling. Educational and

Psychological Measurement, 1962, 22, 259-267.

Lord, F. M. & Novick, M. R.
Statistical theories of mental test scores.

Reading, Mass.: Addison-Wesley, 1968.

Shoemaker, D. M. Allocation of items and examinees in estimating a norm

distribution by item-sampling. Journal of Educational Measurement,

1970, 7, 123-128.

Sirotnik, K. An analysis of variance framework for matrix sampling.

Educational and Psychological Measurement, 1970, 30, 891-908.



V

Computer Simulation of Multiple Matrix Sampling

In evaluating a particular sampling plan or contrasting the relative

merits of several plans used in multiple matrix sampling, statistics of

primary importance are the standard error of estimate and the mean estimate

i

for each parameter given that sampling plan. For example, if n investi-

gator were estimating parawners of a 50-item test using multi le matrix

sampling, one sampling plan might be (5/20/30); another, (10/1 /60). In

the first sampling plan, the 50-item test is subdivided through random

sampling without replacement within subtests and with replacement berween

subtests into 5 subtests containing 20 items each with each subtest admin-

istered to 30 examinees; in the second plan, similarly, 10 subtests con-

taining 10 items each with each subtest administered to 60 examinees.

The sampling plan selected will be used only once in an investigation;

yet, in --:electing the particular plan to be used, the investigator must

be ware of the standard error of estimate associated with each sampling

plan under consideration. Lord and Novick (1968, equation 11.12.3) have

derived algebraically the standard error of estimating the mean propor-

tiort correct score given nonoverlapping random samples of dichotomously-

scored items drawn without replacement from the item population. No

comparable equation is given by them for computing the standard error of

estimating the population standard deviation under multiple matrix sam-

pling. What is required, however, are equations for estimating standard

errors of estimate per parameter for all potentially useful sampling plans,

not just those plans involving nonoverlapping random samples of items

from the item population. The computational difficulties in such a task

are not minor; however, the results of such equations are approximated

readily and to any desired degrea of accuracy through the computer

simulation model described herein. The remaining sections of this chapter

are devoted to a detailed discussion of a simulation model for multiple

matrix sampling. The reader uninterested in such matters can bypass

safely this chapter without a loss of continuity. However, several of

the guidelines for multiple matrix sampling given in Chapter III are

based on results obtained through use of this model and, it must be

stressed, thatthe results obtained are only as good as the simulation

model used.
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Simulated Post Mortem Sampling

The algorithm used within the model is described most appropriately

as simulated post mortem multiple matrix sampling. In post mortem

sampling, item-examinee samples are taken from an N by K data base

obtained by testing N examinees over K items; in simulated post

mortem sampling, the N by K data base is computer-generated by a

simulation model. Generating data bases with prescribed parameters is

essential in investigating hypotheses in multiple matrix sampling be-

cause it is difficult, if not impossible, to locate existing data bases

having the necessary variation in test parameters. For example, if the

standard error of estimate were being investigated as a function of vari-

ation in item difficulty indices for a given test reliability and test

length, it would be difficult locating data bases with a2 = .00, .05,

and .08 all having (120 =
.80 and the same test length. Such a problem

is, however, handled easily with a simulation model. As an overview.,

the computer program generates a data base, selects multiple item-

examinee samples from this data base, performs all calculations necessary

for estimating parameters, and replicates this procedure as many times

as specified before computing the standard error of estimate and mean

estimate per parameter over replications. The computer program is re-

stricted to data bases having dichotomously-scored items and, in multiple

matrix sampling, to subtests having an equal number of items and examinees.

Generation of Data Bases

In simulating multiple matrix sampling, generation of the data base

is of primary importance. Although one procedure might be that of gener-

ating an N by K matrix and storing it in memory, a more appropriate

procedure is one in which the item scores on the K-item test are gener-

ated for one and only one individual at a time. All that is stored in

memory are the K item scores for one individual. The procedure, how-

ever, for generating item scores must be one such that, over any number

of hypothetical examinees generated, the items and test scores have

prescribed characteristics. In this procedure, the population of examinees

N is countably infinite. The test parameters subject to manipulation

within the program are: (a) K, the number of items in the item popula-

tion, (b) p, the mean test score over examinees, (c) a2, the variance of

test scores over examinees, (d) c420
the coefficient of reliability for

the K-item test, (e) ari, the variance of the item difficulty indices,

where, the difficulty index pi for item i is the proportion of examinees

answering correctly item i, and (f) the degree of skewness in the distri-

bution of test scores for examinees on the K-item test. In the computer

program, values for K, p and a2 must be specified by the user. The max-

imum value for K is 150; p is, therefore, restricted to values 0 < p < K.

If a
20

is specified, a2 is determined by the well-known relationship
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2
P

o2 - p, +77 + Ka2

K ' Troi

(5.1)

20 1K - 1 2
a _I

2
derived originally by Tucker (1949). If a is specified by the user, a20

is determined consequently. Such an arrangement has been incorporated

within the program to facilitate hypothesis testing where either a2 or

a20
is to be controlled across levels of K. Of course, is p/K is deter-

mined once p has been specified. The degree of skewness in the normative

distribution is simulated by using the lognormal or normal probability

distribution functions to generate test score distributions. The lognor-

mal distribution with two parameters is used to generate positively-skewed

test score distributions while the three parameter lognormal distribution

is used for negatively-skewed distributions. The lognormal distribution

is described in detail by Aitchison and Brown (1957) and a detailed expla-

nation of simulating stochastic variates with the lognormal distribution

is given by Naylor, Balintfy, Burdick and Chu (1966). The normal density

function is, of course, used to simulate normal test score distributions.

Density functions for the two and three parameter lognormal probability

distributions are, respectively,

A (TI p,p2) =

1 (In(T
2

)
1exp[ - ]

TaV2I1 202

.11,_ (T1 T'=K-Top,a
2
) = exg-

Tavn

for T = 0, 1, 2, ... , K.

(ln(T) - p32

For the normal distribution, the density function is

1

N(TIpi,a2) = exp [

LJ

(5.2)

(5.3)

(5.4)



-36-

The constants p and a2 in 5.4 are equal, respectively, to the desired

mean and variance in the normative distribution; however, in 5.2 and 5.3,

11 and a2 are a function of the desired mean and variance in the norma-

tive distribution. If the desired mean and variance of fhe normative

distribution are denoted, respectively, by a and 8, p and a2 in 5.2

and 5.3 are computed by

and

1n(f5
2

ALY

2
+ 1)

p, = 1n(01) -
(5.5)

2

a
2

1n (13

2
P2 + 1). (5.6)

The,appropriate derivations for 5.5 and 5.6 are given by Naylor, Balintfy,

Burdick and Chu (1966). If z is a random normal deviate N(0,1), test
"

scores T having lognormal distributions are generated by

T. = exp (t + az .) N (5.7)

for positively-skewed distrfbutions, and

T.=K-exp(i.ti-az.)1=1,2, , N (5.8)

for negatively-skewed distributions. For rwrmal distrfbutions,

T. = p, + crz .
1 1

i=1,2, , (5.9)

The T scores computed in 5.7, 5.8 and 5.9 will be continuous variables.

Because items are scored dichotomously, the T score must be rounded to

the nearest integer value. The midpoint of each score interval is taken

to be that point above which one-half of the area in that score interval

is found. This point is found by integrating via trapezoid rule the area

under the appropriate normal or lognormal curve. If the T score is

4 1
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equal to or greater than the midpoint, the score is rounded up; if not,

the score is rounded down.

Item scores are related to test scores. Specifically, if Xij is

_ _

the item score for examinee i on item j, E X
1-3

= T.. Also, p = T/K. If

a
2

is greater than zero, individual item difficulty indices are generated

by

p. = 4-a z , K (5.10)

P

where z
i

is a random normal deviate. When a
2 is not equal to zero, the

distribution of pi values will be approximately normal. IZ (112) is equal

to zero, pi = p for all values of i. With skewed distributions, a2 is

typically 0 < a
2 < .001 and, because of this, a

2 is set to zero for all

skewed distributions generated by the simulation model. After the item

difficulty indices have been generated within the program, deciding if an

examinee passes or fails each item is relatively simple. Item difficulty

indices are computed for all items generated. An examinee "passes" those

items which will bring the computed item difficulty indices most closely

to the desired item difficulty indices. For example, if the computed item

difficulty for item i were less than the desired item difficulty for item i,

examinee j would pass item i if the computed difficulty were equal to or

greater than the desired item difficulty, he "fails" item i. In the

program, the desired item difficulty indices are sorted in descending

order. If, in following the algorithm from die first through the Kth

item, E Xij :# 'F., the first T - E = d items not already passed by

examinee j are scored by the program as items answered correctly by him.

The validity of the simulation model is found in its ability to gener-

ate the desired data base. Two examples of data bases generated by the model

are given in Tables 5.1 and 5,2. Although the discrepancies in Table 5.2 are

minor, it should be noted that the magnitude of the discrepancies decreases

with increases in K.

Simulation of Multiple Matrix Sampling

Subtests are constructed within the program by sampling at random items

from the K-item population. For example, if K equals 50 and a (5/10/30)
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Table 5.1

Results Obtained From Simulation Model For 3000 Examinees When K = 20

With The Normative Distribution Distributed Normally

Parameter Input Output

K 20 20

P.
10.0000 10.0150

a
2 computed

a
20

.8000 .7999

-15

.5000 .5010

a
2 .0800 .0799

P

N 3000 3000

Item Difficulty Indices

Item Input Output

Obtained Frequency Dist.

Score Frequency

0 16

1 .987 .987 1 17

2 .901 .901 2 36

3 .857 .857 3 47

4 .782 .787 4 96

5 .750 .750 5 136

6 .737 .738 6 182

7 .702 .703 7 225

8 .634 .634 8 307

9 .565 .566 9 266

10 .518 .519 10 328

11 .458 .458 11 327

12 .442 .442 12 256

13 .430 .430 13 210

14 .374 .374 14 191

15 .275 .275 15 122

16 .208 .209 16 104

17 .139 .140 17 67

18 .113 .114 18 38

19 .112 .113 19 16

20 .026 .026 20 13

43



39-

Table 5.2

Results Obtained From Simulation Model For 3000 Examinees When K = 20

With The Normative Distribution Negatively-Skewed (Three Parameter

Lognormal Distribution)

Parameter Input Output

cr

2

a
2 0

a
2

20

17.5000

3000

.8000

. 8750

. 0000

20

17.6150

computed

.7570

.8810

3000

.0002

Item Difficulty Indices
Obtained Frequency Dist.

Item Input Output Score Frequency

16

1 .875 .930 1 3

2 .875 .908 2 2

3 .875 .888 3 5

4 .875 .8/6 4 4

5

6

.875

.875

1176

. 76

5

.6

3

3

7 .875 .876 7 6

8 .875 .876 8 7

9 .875 .876 9 8

le .875 .876 10 15

11 .875 .876 11 32

12 .875 .876 12 32

13 .875 .876 13 ,
43

14 .875 .876 14 84

15 .875 .876 15 135

16 .875 .876 16 200

17 .875 .876 17 352

18 .875 .876 18 670

19 .875 .875 19 885

20 .875 .875 20 495
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sampling plan were used, 5 subtests would be formed by sampling without

replacement from the 50-item pool 10 items for each subtest. If (10/10/30)

were used, 10 subtests would be formed containing 10 items each; however,

the sampling plan for items requires sampling without replacement for each

subtest but with replacement between subtests. In (10/10/30), several

items will be common to more than one subtest. Taking (10/10/30) as an

example, item scores on the K-item test would be generated by the program

for 300 examinees. For subtest 1, the data from the first 30 examinees

would be processed for only those_items included in subtest 1. An iden-

tical procedure is followed for subtest 2 through subtest 10. The compuk-

tations performed on each item-examinee sample are identical to those

outlined in Chapter IV. If the user opts r replications of a particular

sampling plan, r pooled estimates of each parameter will be produced and

the standard error of estimate per parameter with that sampling plan is

the standard deviation of the r pooled estimates for each parameter.

Sample output for the (10/15/30) plan with 5 replications is given on

page 42 through 49 for the normal normative distribution case.

Uses for the Simulation Model

It is anticipated that the computer program for simulating multiple

matrix sampling described herein, and listed with expanded writeup in

Appendix B, will facilitate readily a detailed examination of the relative

merits of one or more sampling plans in multiple matrix sampling. In

multiple matrix sampling questions asked frequently are "How do I do it?"

and "If I sample this way, how accurate will the estimates be?" Questions

such as these are answered easily through use of the simulation model.

The results obtained from the program are reasonable to the degree that

the normative distributions can be described adequately by the normal

and lognormal probability distributions. It is commonly known that achieve-

ment test scores are frequently normally distributed. However, the scores

on criterion-referenced tests, i.e., end-of-program tests, are frequently

markedly negatively-skewed and resemble closely e three parameter log-

normal distribution. It is anticipated that the simulation model will

prove to be an asset in test theory and test construction courses permit-

ting the student to have a working familiarity with sampling procedures

used in multiple matrix sampling.

4 5
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VI

Hypothesis Testing and Multiple Matrix Sampling

Parameters estimated thrnugh multiple matrix sampling are integrated

easily into a variety of hypothesis testing procedures. For example, one-

sample anci mo-sample t-tests can be performed readily with estimates of

p and a2 obtained by multiple matrix sampling. Specifically,

and

t
df=N -1

t
df=N

1
+N

2-2

A

P
pooled standard

^2

Ipooled
/N)2

A A

P
2

( - P
2
)

lpooled pooled

AI ^2
(N

1
-1)7

1
+(N -1)o.

pooled
2 2

pooled

N
1
+N

2
-2

1 1

N
1

N
2

(6.1)

(6.2)

The t-test for the_difference between two independent means given in

6.2 can be extended to completely randomized and factorial analysis of

variance designs where the dependent variable is a mean test score. Al-

though analysis of variance designs with mean scores as the dependent

variable are found intrequently in the literature, the frequently occuring

circumstances in which mean scores are preferable to raw scores in such

analyses are detailed most succinctly by Peckham, Glass and Hopkins (1969).
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Consider the design in which the relative merits of four experimental

training programs are being contrasted through end-of-program test scores

obtained from students participating in each procedure. Through an analy-

sis of pretest scores given to all students, ten classes have been selec-

ted for each training program such that, across training programs, the

four groups of 10 classes are approximately homogeneouri at the start of

instruction. The mean achievement test score for each class is estimated

easily through multiple matrix sampling. The statistical layout and

sources of variation are given in Table 6.1. If an additional variable,

such as school district, were added to the design, the statistical lay-

out and sources of variation are modified slightly as seen in Table 6,2.

After the measurement on the dependent variable is accomplished, compu-

tations in the analysis of variance proceec in the usual manner. The

novelty herein is in estimating the class mean test score through multiple

matrix sampling.

Testing homogeneity of variance hypotheses of the form al = =

= a2 is accomplished for two variances by

2
cr

1
pooled

F
(N

1
-1

'

N
2
-1)

A2
a
2
pooled

and for more than two variances by, for example,

F =
max

42
a
largest

42
a
smallest

(6.3)

(6.4)

Tables for the F
max

statistic have beer r^-1structed by Hartley and are

given in Winer (1962, p. 653). Another simple test for homogeneity of

variance eeveloped by Cochran which lends itself to multiple matrix

sampling is



/2
a
largest

c
A 2E

(6.5)

and the necessary tables for the C statistic are given in Winer (1962,

p. 654) . The procedures in 6.3, 6.4, and 6.5 are not the only tests

possible, but they are used frequently and illustrate the concept.

The normative distribution approximated by the negative hypergeo-

metric distribution with parameters estimated through multiptle matrix

sampling provides the basic data for several goodness-of-fit tests. For

example, the Kolmogorov-Smirnov one-sample test (Siegel, 1956, pp. 47-

52) provides a test of the hypothesis that the approximated distribution

of scores came from a population of scores having a specified theoreti2a1

distribution. The test involves specifying the cumulative frequency

distribution which would occur under the theoretical distribution and

comparing that with the approximated cumulative frequency distribution.

The cumulative frequency distribution is, of course, obtained readily

after the individual frequencies have been determined by multiplying

the number of examinees in the population by the relative frequency per

test score approximated by the negative hypergeometric distribution. A

simple extension of the Kolmogorov-Smirrov one-sample test is the

Koimogorov-Smirnov two-sample test (Siegel, 1956, pp. 127-136) which is

concerned with the agreement between two approximated frequency distri-

butions.

The tests of hypotheses mentioned herein do not constitute an ex-

haustive listing of statistical tests to which estimates of parameters

Obtained through multiple matrix sampling are applicable. The intent is

merely that of suggesting the applicability of a novel technique to tra-

ditional hypothesis testing procedures. It should be noted that the t-

tests given in 6.1 and 6.2 are to be considered conservative tests of the

hypotheses under consideration. The standard errors of estimate given

in the denominators are those for the matched-items design and there is

evidence (Osburn, 1967) suggesting that the corresponding standard errors

under multiple matrix sampling will be less. In the algebraic derivation

supporting this conclusion, Osburn was considering a form of multiple

matrix sampling in which k items were selected at random from the pop-

ulation of items for each examinee.
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Table 6.1

Statistical Layout For One-Way Analysis Of Variance Problem With The

Dependent Variable Being A Mean Achievement Test Score Estimated Through

Multiple Matrix Sampling

Program

1 2 3 4

A A A

21
P,
31

lpooled pooled pooled pooled
A

11
2

P,
12

P,22 P,32

pooled pooled pooled pooled

A /,

P,
10

P,
20

P,30 P40

pooled pooled pooled pooled

Source Of Variation Degrees Of Freedom

Programs

Classes Within Programs

Total

3

36

39
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Table 6.2

Statistical Layout For Factorial '(rido-Way) Analysis Of Variance Problem

With The Dependent Variable Being A. Mean Achievement Test Score Estimated

Through Multiple Matrix Sampling

District A

District B

Program

A A A A

P
1

P
11

P21 P
31

pooled pooled pooled pooled

A A A A

P
15 25

P35
5
pooled pooled

Ppooled
pooled

A A A

16 26
P
36Pc.

pooled pooled pooled pooled

A A A

P
10

P
20

P
30

P
40

pooled pooled pooled pooled

Source Of Variation Degrees Of Freedom

Programs

Districts

Programs x Districts

Classes Within Programs x Districts

Total

3

1

3

32

39
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VII

Unique ApplicatiOns of Multiple Matrix Sampling

Multiple matrix sampling has been used traditionally to estimate
parameters of standardized tests where the total ,test score is equal to
the sum of the item scores. For inVestigations focused primarily on
group assessment, multiple matrix sampling has been demonstrated empir-
ically to be an important and valuable procedure. Multiple matri*),c sam-
pling, however, is applicable to a broader range of research problems
than that suggested by the current literature. Four unique and important
applications of multiple matrix sampling are described in this chapter.
As is the case with most psychometric procedures and is certainly the
case with multiple matrix sampling, the range of applications is deter-
mined solely by the degree of inventiveness in the individual researcher.

Design of Experiments

In the evaluation of instructional programs, the pre-post paradigm
is used frequently and, as is traditionally the case, an indlvidual test
is administered to all examinees at both the start and end c instruction.
Given aq item population related to the instructional progn under eval-
uation,!a resedrch design such as this is improved easily w4 the addi-
tion of"multiple matrix sampling. In place of using the sa . test Ore
and post, random or stratified-random parallel tests are us I with para-
meters for both tests estimated through multiple matrix sam _ing. A
procedure such as this could be expanded further to include intermediate
testing using additional parallel tests. An example of a design such as
this and one demonstrating the

concomitant benefits is given by Osburn
and Shoemaker (1968). In the evaluation of instructional programs it
should be noted that a researdher is seldom interested in individual test
items, individual tests, or individual examinees but is interested pri-
marily in group behavior over time with regard to some specified item
populRtion. As such, multiple matrix sampling in conjunction with random
or stratified-random parallel tests is an ideal measurement procedure.

Estimation of Covariance and Correlation Matrices

Item and test covariance matrices (and, hence, cOrrelation matrices)
are estimated readily through multiple matrix sampling. A modified

-56-
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sampling plan is required such that all possible pairs of items or tests

are included in one or more subtests or subbatteries. For example, con-

sider estimating the elements in a covariance matrix for a 5-item test.

To compute the covariance of Item 1 with Item 4, there must be a sub-

group of examinees responding to both Item 1 and Item 4. If the examinee

subgroup is sampled randomly from the population of examinees, COV(1, 4)

computed over those examinees is an estimate of COV(1, 4) which would

have been obtained by testing all examinees over, both items. All remain-

ing entries in the covariance matrix are estimated identically. A test

covariance matrix is determined similarly with items being replaced by

tests. A procedure such as this sets the stage for multiple matrix

sampling playing an important role in a variety of multivariate procedures

as, for example, factor analysis. Although little has been done in this

area, some important preliminary research and a few of the relevant equa-

tions for estimating parameters have been reported by Lord (1960), RaY,

Hundleby and Goldstein (1962), Knapp (1968) and Timm (1970).

Questionnaires and Surveys

A perennial prpblem with questionnnaires and surveys is the disap-

pointingly low rate of completions or returns. Return rates of 20 to 30

per cent are not uncommon. Although examinees fail to return question-

naires for a multitude of reasons, one factor is undoubtedly fhe length

of the questionnaire and the time required to complete all questions.

If the measurement required is the proportion of examinees in each cate-

gory, results can be approximated through multiple matrix sampling by

administering questions selected randomly to a random sample of examinees.

For example, if an 8-page questionnaire were to be administered to all

elementary school teachers within a particular city, the questions con-

tained therein could be divided into 8 subquestionnaires (each of which

would require no more than the front of one piece of paper) with each

subquestionnaire administered to a random sample of teachers. The time

for completing each subquestionnaire is minimal and, as such, may increase

the rate of returns. The point to be made is simply this: a little data

from a large number of teachers is better than a lot of data from few

teachers. It must be remembered, however, that questions within question-

naires are interrelated frequently (If "No" on Question 13, go to Question

20.) and complications such as these must be incorporated in constructing

subquestionnaires.

Measurement in the Affective Domain.

It is frequently the case that an investigator is interested in

scaling the preferences or affect of a group of individuals for a par-

ticular set of objects. Although there are several procedures which could

be used, the method of paired-coMparisons is one encountered frequently

in the literature (e.g., Snider (1960) and Holliman (1970). In the
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method of paired-comparisons, all possible combinations of the objects

taking two at a time are presented individually and for each pair the

examinee is asked to indicate his preference. For ,2xamp1e, if 6 stimuli

were being scaled by the method of paired-comparisons, the test so con-

structed would contain 6(6-1)12 = 15 items, for 12 stimuli, 66 items.

After all pairs have been administered to all examinees, the preliminary

analysis of the data involves the computation of the F-matrix and subse-

quent P-matrix. The P-matrix is the base from which the scale values per

stimulus are computed and it is in estimating the values in the P-matrix

that an application of multiple matrix sampling is found. Relevant pre-

liminary research in this area has been reported by McCormick and Roberts

(1952), McCormick and Bachus (1952) and Bursack and Cook (1970). If the

s stimuli are numbered consecutively from 1 to s, the F-matrix is an

s by s matrix with entries denoting the frequency with which the col-

umn stimulus was judged more favorable than the row stimulus. An example

of an F-matrix and associated P-matrix are given in Table 7.1. Taviding

each entry in the F-matrix by the total number of examinees, which is in

this case equal to 17, produces the corresponding entry in the P-matrix

labeled appropriately as the proportion of examinees selecting the col-

umn stimulus over the row stimulus. In estimating the entries in the

P-matrix through multiple matrix sampling, paired-comparisons are selec-

ted at random from the pool of all possible pairs and administered to

samples of examinees selected randomly from the testable population.

Shoemaker (1971) using a post mortem item-examinee sampling design

has explored systematically the feasibility of using multiple matrix

sampling-to estimate scale values obtained by the method of paired-com-

parisons. The major conclusions reached in this investigation were that

(a) scale values can be approximated satisfactorily through multiple

matrix sampling, and (b) the similarity between the estimated scale values

and the normative scale values increases with increases in the number of

observations acquired by the sampling plan, with the converse true. The

specific procedure used to estimate the P-matrix from subtest results is

detailed in the following 5 steps. Each step is illustrated with results

from one replication of a (3/10/15) sampling plan. (In the Shoemaker

investigation, the data base consisted of responses made by 407 primary

grade students to a 15-item test designed to scale degree of affect to

6 stimuli.)

Step 1: Three subtests containing 10 items each are formed by sam-

pling items randomly and without replacement within subtests but with

replacement between s.Jbtests.

Subtest Items

1 8 14 11 9 6 2 3 12 15 10

2 14 6 3 12 4 1 2 11 13 10

3 14 13 2 9 6 11 4 15 3 12
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Step 2: Three sUbgroups of examinees containing 15 examinees each

are formed by sampling randomly and without 'replacement from the 407-

examinee population.

Subgroup Examinees

1 359 22 280 272 139 206 169 321 323 23 271 66 221 109 100

2 345 367 281 390 366 70 361 250 154 168 8 138 279 335 399

3 32 220 276 125 382 219 217 327 401 385 113 62 77 192 156

Step 3: Pairing sUbtest i with subgroup i, an f-matrix is formed

for each subtest using only the responses made by the corresponding

examinee subgroup on the items contained in that subtest. Each f-matrix

is constructed in conjunction with a link-matrix cOntaining the code

nuMbers of stimuli paired within each test item. For the

considered herein, the link-matrix was

Test Item Stimulus Pair

data base

01 1 2

02 4 3

03 5 6

04 2 6

05 1 3

06 4 5

07 2 3

08 1 5

09 4 6

10 1 4

11 2 5

12 3 6

13 3 5

14 1 6

15 2 4

The f-matrices for the 3 subtests used in (3/10/15) are

0 0 9 14

f -matrix 1 = 0 0

0 8 15

5 0

0

4

6 7 10 12

1 0 0 3 2

7 0 11 6 13



n

f -matrix 2 =

f -matrix 3 =

,

I-2

0

10

0

5

0

0

0

0

8
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13 0 5 0 10

0 0 11 4

0 4 6 2

0 11 11 0

4 9 4 1

11 13 0 14

0 0

0

0

9 014 718

0 6 6 4

6 9 13 11

1 9 2 3

7 11 4 12

Step 4: In pooling the f-matrices to obtain the P-matrix, an ac-

counting-matrix is required to distinguish between items omitted in the

construction of subtests and items to which all examinees in a particular

subgroup responded identically. For the f-matrices given in step 3, the

accounting-matrix is

accounting-matrix =

0 1

1 0

0 0

2 2

1 3

3 2

0 2 1 3

0 2 3 2

0 3 2 3

3 0 3 2

2 3 0 3

3 2 3 04

Off-diagonal zeros are of critical importance in pooling subtest results.

In each f-matrix, f(i,j) + f(j,i) = n for those stimulus pairs contained

within the subtest and f(j,i), for example, could be zero for two reasons:

(a) the item containing stimulus pair (i,j) was not included in the sub-

test, or (b) all examinees in that particular subgroup selected stimulus

i over stimulus j. This distinction must be maintained in pooling the

f-matrices to produce the P-matrix.

Step 5: The P-matrix is formed by pooling across corresponding entries

in ee f-matrices after each entry in the f-matrix has been divided by the

nur-Jer of examinees in the corresponding subgroup. The sum of proportions

is then divided by the corresponding number in the accounting-matrix. As

an example, consider computing the (1,6) and (5,1) entries in the P-matrix:

t3 6



P(1,6) =

P(5,1)
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8/15 + 10/15 + 7/15

= .556

3

1/15 + no data + no data

1

= .067

If the number of examinees per sUbgrcup is unequal, the proportions

are combined by a weighted arithmetic mean and the corresponding entry in

the accounting-matrix is equal.to the nuMber of examinees for which data

existed. Elements in the P-matrix are set equal to .5 if the correspond-

ing entry in the accounting-matrix is equal to zero. In this example,

the P-matrix is

P -matrix =

II

.500 .867 .500 .467 .933 .556

.133 .500 .500 .567 .889 .400

.500 .500 .500 .333 .400 .222 .

.533 .433 .667 .500 .800 .667

.067 .111 .600 .200 .500 .133

.444 .600 .778 .333 .867 .500

AMIN,

After the P-matrix has been formed, scale values per stimulus are

computed as if all examinees had responded to all items using computa-

tional procedures detailed in Edwards (1957). Using Thurstone's Model V

scaling procedure, the resultant scale values from the P-matrix given in

step 5 and those obtained from using all 407 examinees over all items

are

S
2

S
3

S
5

S
6

(3/10/15) .000 .442 .688 .172 1.184 .184

Norm(5) .000 .075 .638 .215 1.023 .193

6'1
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APPENDIX A

Listing And Expanded Writeup Of Computer Program For Estimating Test

Parameters Through Multiple Matrix Sampling And For Approximating Norma-

tive Distributions With The Negative Hypergeometric Distribution
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A Fortran IV Program For Estimating Test Parameters Through Multiple Matrix

Sampling And For Approximating A Normative Distribution Of Test Scores With

The Negative Hypergeometric Distribution

The negative hypergeometric distribution provides a reasonably good

fit for a variety of test score distributions when the test score is the

number of correct answers. The negative hypergeometric distribution is

a function of the mean test score, the variance of the test scores and

the total number of items in the test. The first two parameters may be

approximated efficiently by multiple matrix sampling. Furthermore, the

negative hypergeometric distribution with parameters estimated by multiple

matrix sampling can be used satisfactorily to approximate a normative

distribution of number correct test scores.

In multiple matrix sampling, a set of K test items is randomly div-

ided into subsets of items. Each subset of items is then randomly assign-

ed to a group of examinees. Although each examinee receives only a pro-

portion of the complete set of test items, the statistical model permits

one to estimate the mean and variance of the total test score distribution

for all examinees over the complete set of test items. Multiple matrix

sampling is an efficient procedure for appro- 'mating a normative distri-

bution when it is not possible or is economic-lly unfeasible to administer

the complete set of K items to all examinees in the testable population.

The Fortran IV programwhich approximates the normative distribution

with the negative hypergeometric distribution is relatively machine-

independent and has been implemented easily on an IBM 7040, IBM S360/50,

IBM S360/91 and a UNIVAC 1108. The program has been designed to approx-

imate test score distributions involving at maximum 500 items. However,

this restriction may be easily modified. The number of subtests and

number of examinees per sUbtest are limited only by the amount of computer

time available.

Organization Of Control Cards And Data Cards

columns .(all integers right-justified)

Card Set 1 (1 card)

Card Set 2 (1 card)

1-72 Alphanumeric title of project

1-5 Integer nuniber of examinee groups

6-10 Integer nuMber of itens in each

stibtest

11-15 Integer nubber of examinees per

subgroup

73
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columns (all integers right-justified)

Format Card Set

(k cards, optional)

Data Card Set

(k cards, optional)

51-55

Acceptable -Input.

Punch 00000 if there is only one for-

mat card by which all

item scores are to be

inputted

Punch 00001 if there is to be a dif-

ferent format card for

each item-examinee sam-
ple within a data set

Standard Fortran IV format punched

in columns 1-72 on each card and

enclosed in parentheses for inputting;

item scores for each examinee in each

item-examinee sample. The nuMber of

format cards may'not exceed 9 for

each item-examinee data set. The

first card after the format cards

must contain END OF FORMAT in col-

umns 1-13.

Example::: (5.X 25F1.0)-

END OF FORMAT

The responses of each examinee per

item-ex$Minee sao#1e i. be se-

quenced by examinee group and within

each groUp by examinee.

Data Structures

Flaw 1 Plan 2 Plan 3

Fortran Source Deck

Card Set l

Card Set 2

Fortran Source Deck

Card Set 1

Card Set 2

Format Card Set

Data Cards

Fortran Source Deck

Card Set 1

Card Set 2

Format Card Set L.

Data From SamplitE 1

Format Card SetZL
Data From Samlafe 2

Format Card Set It
Data From Semi t



Plan 4 Plan 5

Fortran Source Deck

Card Set 1

Card Set 2

Format Card Set

Card with no. of examinees

and items for subtest 1

Data from subtest 1

Card with no. of examinees

and items for subtest 2
Data from subtest 2

Card with no. of examinees
and items for subtest t

Data from subtest t

Fortran Source Deck

Card Set 1

Card Set 2
Format Card Set 1

Card with no. of examinees

and items for subtest 1

Data from subtest 1

Format Card Set 2

Card with no. of examinees

and items for subtest 2

Data from subtest 2

Format Card Set t

Card with no. of examinees

and items for subtest t
Data from subtest t

Plan 1: Mean and variance of test scores are inputted on card set 2.

No item scores are required.

Plan 2: Mean and variance of test scores are to be estimated from item-

examinee samples. All item scores in each item-examinee sample

are organized in the same manner on the data card and are to be

inputted with one format card.

Plan 3: Same as Plan 2 ,with exception that item scores for each item-

examinee sample are not organized on data cards in same manner.

Each sample requires an individual set of format cards describing

how item scores are organized for that particular sample.

Plan 4: Same as Plan 2 with exception that number of examinees and number

of items per subteSt are not constant across subtests. Same format

card is used for each data set.

Plan 5: Same as Plan 3 with exception that number of examinees and number

of items per subtest are not constant across subtests. In addition,

different format cards are used for each data set.
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APPROXIMATION OF REOUENCy DISTRIBUTION OF FEST SCORES

C BY NEGATIVE HYPRGEOMETRIC DISTRIBUTION

C REFERENCE

C LORD, F,M. AND NOVICK, M.R. STATISTICAL IHEURIES OF MENTAL TEST

SCORES. READING, MASS, AOUISUN-WESLEy,1968,CHAPTER

C DAVIL M. SHOEMAKER

NTS r. NOMBuR CF ITEMS PER SUHTEST
NTP = NUMBER OF ITEMS IN TEST ITEM POPULATION

NSM NUMBER OF SUBTESTS
NSS = NUMHER OF EXAMINEES PER SUBGROUP

NSP NUMBER OF EXAMINEES IN EXAMINEE POPULATION

/BAR = ESTIMATE OF MEAN TEST SCORE .

VAR = ESTIMATE OF TEST SCORE VARIANCE

".3***a*************************************************,*************

COMMON DUMMY(500),P(500)
DIMENSION TITLE(18)

INPUT PROBLEM PARAMETERS

1000 READ (5,1,END=5000) (TITLE(I),I=1,18),

1NSM,NIS,NSS,NTP,NSP,XBAR,VAH,NGPH,NFM1
WRITE (6,5) (IITLE(I),I=1,18)
IF ( IFIX(VAR*1000.) .NE. 0 ) wRITE (6,9) XHARIVAR

C ESTIMATE. MEAN AND.VAR1ANCE FROM.SUBTESTS.

IF (IFIXTVAR*1000,).EQ,0) CALL POOL(NSS,NrS,NSM,NTP,XBAR,VAR,NF
IF ( NSP E0. 0 ) NSP=10U0L.

WPIrE (6,10) NSP

COMPUTE PARAMETERS FOR NEGATIVE HYPERGEOMETRIC DISTRIBUTION

S=NTP
A21= (S/(S-1.))*(1,-XBAR*(S-XbAR)/(S*VAR))
IF ( A21 .GT. U. ) GO TO 40

wRITE (6,7) 421
GO TO 1000

40 CONTINUE
A=(-1.+1./A21)*XBAR
b=-A.1.+S/A21
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SLOG1=0.

S.LOG2=0.
C=A+9

CIO 50 I=1,NTP
SLUG1=SLOG1+ALOG10(84'1+1.)

50 SLOG2=SLOG2+ALOG10(C+I+1.)
C:10.**03LU(3A-SL002)
wRITE (6.3) A21,A,B4O

COMFUTE NEGATIVE HYPERCEOMETRIC VISTRIBUTION

N3=NTP+1
WRITE (6,4)

CK=0,
DO 100 I=1,N3

K=I-1
CALL NEGHGR (K,A,B,C,S,NSP,HX,HFX)
cK=CK+HX

1(I)=HX
WRITE (6,?) KIHX,HFX,OK

100 CONTINUE

C PLOT NEGATIVE HYPERGEOMETRIC VISTRI8UTION

IF ( NGPH .EO, 0 ) CALL PLOT (NTP)

GO TO 1000
5000 WRITE (6,6)

CALL EXIT

1 FORMAT (16A4/515,2V10.0,2I5)

2 FORMAT (110,3130.7)

3 FORMAT (/7H KR21 :412.3,6Xi3HA tF15.7/2.5X,3HB =F15.7/25X,3HC

4 FORMAT (////5X.15HSCORE,22X.4HH(X),26i,6HNaH(1),24X'.,6HCUM HX//)

5 FORMAT (1H1,16A4//)
7 FORMAT (43H KR21 NEGATIVE OR ZERO VATA SE1 A8ORTED,5X,6HKR21 =

1T10.4)
FORMAT (1H1',20X,19HALL INPUT PHOCESSV)

9 FORMAT (//7H X8AR =112,3//7H VAR =F12.3)

10 FORMAT (/4)(13HN =16)

END

17
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SUBROUTINE NFGHGR (K,A,B,C,S,NSU8,HX,HFX)

G NEGATIVE HYPERGEOMETRIC FUNCTION

iF ( K .Eu. 0 )
GO 10 15Q

SLUG1=0,

51.032=0.
SLOG3=0.
SLOU4=0.
00 100 I=liK
sL0G1=SLOC1+ALO(10(S-1+1.)
SLOO2=SL0G2+ALUG10(A+I-1.)
SLOG3=SLOG5+AL0G10(U-1+1.)

101) SLUG4=SLOu4AL0(110(FLUAT(1))
HX=C*10.**(SLOG1+SLOG2-SL0G3-SLO(i4)

125 HFX=HX*NSUB

RETURN

150 HX=C
Go TO 125
END

SUBROUTINE ROFMT(FmT)
0

C SUBROUTINE i-OR INPUTTING VARIABLE FORMAT

C INPUT STRUCTURE
FORMAT(ENCLOSED IN PARENTHESE) COL 1-72

CONTINUE UN CARD 2 IF NECESSARY
CONTINUE UN CARD 3 IF NECESSARY

FTC.
MAXIMUM NUMBER OF FORMAT CARDS IS 9

'END OF FORMAI' NECESSARY ... PUNCH IN COLUMNS

c
DIMENSION PMT(20())
DATA END/3HEND/
N=1
DO 100 I=1'10
M=N+17
READ (5,1) (FMI(J),J=N.M)
IF ( FMT(N) .E0. END ) RETURN

100 N=N+18
WRIIE (6,2)
STOP

1 FORMAT (18A4)
2 FORMAT (6/H *** EXCESSIVE NUMBER OF FORMAT CARDS)

END

78



SUBROUTINE POOL (NSUB,NITEMSINSAM,NTP,X6AR,VAR,NFMT)

iTiRMINATION OF POOLED ESTIMATE OF POPULATION MEAN TEST SCORE AND

4RLANCE

cOMMON P(5C0),X(50())
PiMH\ISION FMT(2U0)
IF ( NFMT E0. U ) CALL, RDFMT(FMT)

whITE (6,1)
N1EST=NSUB*NITMS
bEsTm=0.
SFSTV=U.
NSM=U

SWG1-11=0.

UO 1000 1=1,NSAM
IF ( NFMT .NE. (3 ) CALL RDFMT(FMT)

IF ( NTEST .ea. 0 ) HEAD (5,6) NSUH,NITEMS

5Y=U,

hu DO J=1,NIIEMS
r:,(J)=0.

rL 5uo
REAL) (5,Fmr) (X(K),K=1,NITO1S)

Y=U.
DO 510 K=1.NI1Emb

K):-.P(K)+X(K)

YITY+X(K)

SY=SY+Y
SYY=SYY+Y-IFY

XHR=SY/NSUB
VR=(SYY-tiY*SY/NSUB)/NSUB

f:0 52U J=1.NITEMS
PP=P(J)/NSI4
SPO=SpO+PP*(1.--PE)
NSII=NSm+Asua
wiHT.F4Suu*NITEMS
EsTm.r.NTP*)(8,R,J1:11EMS

LSIV7=cNSUtl*N3P:1-(NIP-I.)_+syR,.(.NTPIOJTTeMS).*SPG))1

1(NITEMS(NITEMrI.)-1N.S1JI31.1,,l)
SESTM=SPSTM*ESTMT
SESrV:7SES1 V4ESTV4WGHT
SwGHT=SwGHT+WGHT-
wRilE (6,2) I,EsTmtsTy

00 CONTINUE
XBAR=SESTM/SWCHT
VAR=SESTV/SW(4HI
Ir NSM .L1, 500 ) VAR=VAR*(NSM-1.)1NSM
WRITE (6,3) XBAR,VAR
RETURN
FaRMAT 1///24X4'21:171WIMATE QF PARMETEP///5 6.PISAMPE, 1-0)(,4HM,EAN

1,16)(415,MVAR4A.N:QE1JY1

FOKMAT
F0-101A7 (//14.f "P-POED OAR 2.047//18H POOLED VARIANCE -,F167j1!)

fORMA7 :(.215-)

fNU
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SUBROUTINE PLOT (NITEMS)
REAL N
COMMON N(500),P(500)
DIMENSION BGD(10)
DATA BCD/1HU,1H1,1H2,111j,1H4,11-15,11-16,1H7,1H8,1H9/
DATA BLK.DOT,XX/1H #1H..1HX/

LOCATE MAXIMUM VALUE

NNN=NITEMS+1
T=0.
DO 511 I=1.NNN
IF ( P(I) ,GT.
CONTINUE

FOR H(X)

( ) T=P(I)

DETERMINATION OF APPROPRIATE SCALE FACTOR VOR H(X) PLOT

J=0
D(1 60 I=1,6

j=r4lo,**K
IF ( J ,EO. 0 ) GO TO 60
J=K-1
WRITE (6.3) J
GO ro 70

60 CONTINUE

G SCALE H(X)

/0 DO 75 I=I.NNN
75 P(1)=P-(1)*10**..)

C LABEL ORDINATE

BEFORE PLOTTIN0

wRire (6.1.)

DO 500 I=1.100
500 N(I)=BLK

N(101)=BGD(2)
WRITE (6.2) (N(.1).J=1,101)
NN=.0

DO 550 I=1.10
LU 5/5 J=1,10

575 N(NN#J)=BCD(I)
NN=NN4-1.0

550 CONTINUE
N(1ia)=Bp01)
wilITE,.(042)

00 540 I-771,10T.1.0
DO:

599 N(4.4q0..=,a0,i(-J).

580 CONTINUE
. _
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N(101)=8CD(1)
wRITE (6,2) (N(J).J=1,101)
PO 595 1=1,101
N(I)=DOT
wr.,Ire (6.2) (N(J),J=1,101)

PLOT VALUES (7 SCALED H(X)

DO 100 I=1.NNN
n7=1-1

L=P(I)*1U0.4.1.5
DO 105 =1,101

105 N(J)=BLK
ro 110 J=1,1_

110 N(J).7.xX

DO 12U J=11,101,10
IF ( N(J) .E0. BLK ) N(J)=DOT

120 CGHTINUE
WRITE (6,4) K,(N(J),J=1,101)

100 CONTINUE

C END C) GRAPH

DO 900 I=1,t01
900 N(I)=DOT

WRITE (6,2) (N(J),J=1,101)
RETURN

1. FORMAT (1H1,50X,40HPROPORTION OF POPULATIUN RECEIVING S(;ORE//)

2 IORMAT (14X,101A1)
6 FORMAT (////5X,19HH(X) SCALED BY 10 E13.9H IN (RAPH//)

4 IORMAT (110,4)0101A1).
END
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Sample Output

Card 000000000111111111122222222223333333333444444444455555555556
column 1234567890123456789012345678901234567890123456/8901234567890

FIRST YEAR WORD SPELLING PROJeC1 SHOEMAKFR/OKADA

00005000000000 000050
(10X.10F1.0)
END oF FoRmAT
0001800010
01 1 1 1011111110
02 1 1 1111101011
03 1 1 1110100000
04 1 1 1110000000
05 1 1 0000000000
06 1 1 1101010001
07 2 1 1110101010
08 2 1 1100100000
09 2 1 0000011010
10 2 1 0100000000
11 2 1 1111101010
12 2 1 1001001000
13 3 1 0100100000
14 3 1 0111100010
15 3 1 0000000000
16 3 1 0000000000
17 3 1 1101001110
18 2 1 0000000000
0001400010
01 1 2 1111110011
02 1 2 1011100000
03 1 2 1100101000
04 1 2 1111110000
05 1 2 1011110010
06 1 2 1110110000
07 2 2 1010100000
08 2 2 1111110010
09 2 2 1101111010
10 2 2 1111110000
11 3 2 0001110000

12 3 2 1111111100
13 3 2 1101000000
14 3 2 0011110000

;S.

. 00000
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000000000111111111122222222223333333S334.44444444455555555556
123456789012345678901234567890123456789012345678901234567890

0001300010
01 1 3 1101111101
02 1 3 0101001000
03 1 3 1001011101
04 1 3 0010010000
05 1 3 1111111111
06 1 3 11011J-0100
07 2 3 0100000100

08 2 0111111110
09 2

.3

3 1000000000
10 2 3 1001000000
11 3 3 1111111100
12 3 3 1111000100
13 3 3 0000000000

0001300010
01 1 4 11010U1100
02 1 4 0010001000

03 1 4 1111u11011
04 1 4 1111111112
05 1 4 11110.11111

06 2 4 0111010000

07 2 4 1111011111
08 2 4 0000000000
09 2 4 0110001100
10 3 4 0011001000
11 3 4 1111001110
12 3 4 0011001000
13 3 4 0000000000
0003200010
01 1 5 1001001010
02 1 5 0000000000
03 1 5 1000000000
04 1 5 0000000000
05 2 5 0101111010
06 2 5 1110010100
07 2 5 0000000000
08 2 5 0000000000
09 3 5 1011111100
10 3 5 0000000000
11 3 5 0000000000
12 3 5 0000000000
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APPENDIX B

Computer Program For Simulating Multiple Matrix Sampling

84
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Computer Program For Simulating Multiple Matrix Sampling

The computer program for simulating multiple matrix sampling is de-

scribed in detail in Chapter V. A listing of the Fortran IV program is

given in this appendix for those readers who may want to implement the

model on the computer configuration available to them. The program given

herein was written originally for a UNIVAC 1108 and a modified version

has been implemented on an IBM S360/91. In modifying the program for the

5 360/91, the only Changes made were those involving the uniform (.00 to

.99) random nuMber generator RUNIF. On the 1108, RUNIF is initialized by

RINITL. Calling RINITL with BASE as the argument causes BASE to be used

as the starting value or seed in the algorithm used by RUNIF in generating

uniform random numbers. Because RINITL is specific to UNIVAC 1108, readers

should consult the local computing center staff to determine the subpro-

gram and calling procedures at that installation comparable to the RINITL/

RUNIF system. The conversion process was relatively simple for the S360/

91 and it is anticipated that such will be the case with other hardware

and software systems. Input values to the program are made,on one para-

meter card. The organization of the card is described at the beginning

of the program listing. Examples of parameter cards are found on page

97 of this appendix. Sample output from the program is given in Chapter

V.

8 5
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G

C*****************************************************************

C COMPuTER SIMULATION OF ITEM-EXAMINEE SAMPLING

C DAVID M, SHOEMAKER

C PARAMETER CARU (THERE IS JUST ONE)

COLUMNS (ALL INTEGERS RIGHT-JUSTP.-IED)

0

01-03 INTEGER NUMBER OF ITEMS IN TOTAL TEST

04-09 DESIRED MEAN TEST SCORE IN POPULATION
(MUST BE SPECIFIED, WITH DECIMAL POINT PUNCHED ON CARD)

IT

10-15 DESIRED VARIANCE OF TEST SCORES IN POPULATIUN

(WITH DECIMAL POINT PUNCHED ON CARD)

0 NOTE ... IF VARIANCE IS OMITTED, RELIABILITY MUST

BE SPECIFIED&

16-21 DESIRED VARIANCE OF ITEM DIFFICULTY INDICES OVER

0 POPULATION OF EXAMINEES. THE ITEM DIFFICULTY.

INDEX FOR ITEMHL-IS THE PROPORTION OF EXAMINEES

ANSWERING ITEM I CORRECTLY.
(MUST BE SPECIFIED WI-TH DECIMAL POINT PUNCHED ON CARD)

WITH SKEWED DISTRIBUTIONS, VARIANCE OF ITEM
DIFFICULTY INDICES IS ASSUMED TO BE EQUAL TO ZERO.

22-27 DESIRED RELIABILITY OF TEST SCORES IN POPULATION

(WITH DECI,MAL POINT PUNCHED ON CARD)

NOTE ... IF RELIABILITY S OMITTED, NARIANCE MUST

BE SPECIFIED.

28-31 INTEGER NUMBER OF SUBTESTS IN ITEM-EXAMINEE SAMPLING

32-35 INTEGER NUMBER OF ITEMS PER SUBTEST
(CONSTANT ACROSS SUUTESTS)

36-39 INTEGER NUMBER OF EXAMINEES PER SUBTEST

(CONSTANT ACROSS SUBTESTS)

40-43 INIEGER NUMEER.OF INDEPENDENT REPLICATIONS OF ITEM-

EXA-MINEE SAMPLING PLAN'

44 SAMPLING PLAN FOR ITEMS

9 = SAMPLING WITH REPLACEMENT
(USED WHEN TK IS GREATER THAN K)

1 = SAMPLI:Na WII-HOU1 REPLAUEMEPil

(USEij WHEN It LEs's fRAN OR EQUAL TU K)
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2 = SAMPLING WITHOUT REPLACEMENT BUT SUBJECT
TO RESTRICTION THAT ITEMS OCCUR WITH EQUAL
FREQUENCY AMONG SUBTESTS
(USED WHEN TK IS GREATER THAN K)

45 INTERMEDIATE PRINTOUT OPTION

0 = NU INTERMEDIATE PRINTOUT
r. INTERMEDIATE PRINTOUT WANTED

46 NEGATIVE HYPERGEOMETRIC DISTRIBUTION OPTION

U = NO NEG. HYPER. DIST. WANTED
1 = COMPUrE NEG. HYPER. DIST.

47 DEGREE OF SKEWNESS IN NORMATIVE DISTRIBUTION

1 = NORMALLY DISTRIBUTED
2 = POSITINELY SKEWED
3 = NEGATIVELY SKEWED

48-53 SEED FOR UNIFORM RANDOM NUMBER GENERATOR (ODD NUMBER)

5 GENERATE ITEM DIFFICULTY INDICES

0 = GENERA7E NEVITEM DIFFICULTY LNDICES

1 = USE ITEM DIFFICULTY INDICES GENERATED BY

PREVIOUS DATA CARDRESTRICTIONS

MAXIMUM NUMBF:R OF IlLmS IS. 150. (EASILY MODIFIED. HOWEVER)

ITEMS SCORED HIcH0TOMOUSLY

PROGRAM wILL PROCtSS REPEATED PARAMETER CARUS (NUMBER LIMITEU ONLY

irf AMOUNT 01 OoMpu1ER TIAE ALLOCATED)

*****4*************a***************************************************

REAL N.M,MPOP
COMMON N(15(;),m(150,LT(3000)
(AMMON /dLOCK1/ YRAR,YSD,MPOP,SROP.KPOP,NDISTOBASE.INTPRT
cUMMON /aLOCK2/ RNO(150)
COMMUN /BLOCK3/ P(150),U(150),NSUB

2000 READ (5.1.END=5000) KPOP,MPUP,VPOP,PVAR.A20.NI,IPT.N5PT,NREPS.

1
ISAmP,INTPRT.NHPER.NDIST,BASE,1SAVE

IF ( NDIS1 .0. 1 ) PVAR=0.
wRITE (6.2) BASE,MPOP,VPOP.KPOP,A20,PVAR.NT,IPT,NSPT NREPS,

1ISAMP,NHPER,NDIST,INTPRT

:
INITIALIZE RANDOM NUMBE.R GENERATQR (unquyE TU UCC)

CALL RINIrL(BASt) 7?%;



NSUB=0

C .CHECK ON PARAMETERS

IF ( ISAMP .NE. 1 ) (3O TO 30

IF ( NT*IPT (3I. KPOP ) GO TO 5!'

30 IF ( A20 .LT. O. .0R, A20 iGT. 1. ) GO TO 55

IF ( NDIS1 .GT. 3 .0R. NDIST .LT. 1 ) GO 10 55

IF (IFIX(A20*1000.).EO.0.AND.IFIX(VPOP*100.0.).EQ.0) GO TO 15

IF (IFIX(MPOP*1000.).GE.KPOP*1000) GO TO 55

IF ( PVAR .LT. .2 ) GO TO 70

55 WRITE (6.3)
Go TO 2000

C COMPUTE NECESSARY PARAMETERS

/0 TEP=MPOP*(KPOP-MPOP).KPOP*KPOP*PVAR
IF ( IFIX(VP.OP) .EO. 0 ) YPOP=TEMP/(KPOP-(KR0P-1.)*A20)
SPOP=SOR1(VPOP)
wRI1E (6,13) SPOP

C

IF ( ISAVE .E0. 1 ) Go TO 102

C

C GENERATE ITEM DIFFICULTY INDICES (PROPORTION OF EXAMINEES ANSWERING

C ITEM CORRECTLY)

IF (IFIX(IKPOP-MPOP)*1000.):EQ.0) GO TO 55

.D11000.
PBAR=.MPOP/KPOP
DO 173 I=1,KPbP

173 0(1)=0.
IF ( IFIX(PVAR*1000.) ,(3T. 0 ) GO TO 66

DO 65 I=14KPOP
65 P(I)=PBAR

GO TO 102
66 PSD=SORT(PVAR)

DO 100 IJ=1,100
DO 74 I=14KPOP
CALL RANUNU (Z)

0(1)=Z*PSO +PHAR
IF ( O(I) .LT. O. ) .0(0=0.

74 IF ( .0(1) .GT. 1. ) o(J)=1,

C DETERMINE INITIAL MEAN AND VARIANCE OF GENERATED ITEM DIFFICULTY

C INDICES

SP=D.
SPP=.0,

DOS1 I=.1,KPOP
PP=O(I)
sp=sP+PP
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hi SPP=SpP+Pp*pP
PVR:(SPP-SP*SP/KPOP)/KPOP
OvR=SORT(pVAR/HVR)

SCALE VARIANCE M ITPM DII-FICULTY INDICES TO STANDARD

SP=0,
SPP=0.
LO 82 I=1,KPOp

0( 1) ( )*CVR
II ( 0(1) .GT, 1. ) 1(I)=1,

pF=0(I)
SP=SP+PP

62 SPP=SPP+PP*PP
PVR=(SPP-SP*Sp/KPOP)/KPOP

L.

SCALE MEAN OF ITEM 011-FICULTY INDICES

D4=SP/Kp9P-PHAN
SP=U,
SPP=0,
DC d4 11,10-Yop
O(1)=0(1)04
IF ( O.(I) ,LT. U. ) ig(1)=0..

If ( 0()) .0. 1. ) C)(I)=1,

PP=9(I)
SP:7-7SP+Pp

($4 SPP=SPp4+P*Pp
PYR=CSPPfSP4SP/KPOP)/KPOP
PkR=7SP/KPUP
D2=A8S(PyAR-P00
P3=AB5(P_BA1--P8H)
I1.7..(D14.0005).*1000.

I2=(D2+,000)*1000,
I3=(03+.0005)*10.00.
IF ( 12 .LE. 5 AND. 13 ,Lg, 5 ) GO TO 106

IF ( 12 .OE. 11 ) GO TO 100

01=D2
DO 90 1=1.KPOP

vo 1-'(I)=0(1)

100 CONTINUE
103 DO 104 I=1,KPOP

104 P(1):o.(I)

NSTop:KP0P-1
DO 110 I=1,NSTOP

Do 110 J=JJ,KPOP
IF (1FIX(p(I)*100o.)GF, 1.1-1x(P(J)*04)0.) ) GO TO 1 0

TEMID=p(j)

P(J)=.13(i)

P(I)=TEMP
110 coNFINuE
102 IF ( 1NTPHT .F.y. 1 ) wRITg (6,4) (P.(1)11=1..KeOF)

COMPUTATION OF coNsTANTS FOR GE!;gR.A7ION OF LOGNORIIAL DISJRIEW

ysl.)=0.

I ION
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1r NDIST E.Q. 1 ) GO TO 111
IF ( NDIST .EO. 3 ) MPOP=KPOP-MPOP
YVAR=ALOG(VPOP/(MPOP*MPOp)+1,)
YBAR=ALO(i(MPOP)-YVAR/2.
YS1)=SORT(YVAR)

C COMPUTE ROUNU1NG VALUES FOR EACH TEST SCORE INTERVAL

111 IF ( ISAVE .E0. 0 ) CALL ROUND

C REPLICATION OP ITEM-EXAMINEE SAMPLING PARADIGM

SXM=0,

SXS=0.
SxXM=0.
$XXS=0.

DO /000 IJK=1,NREPS
CALL ALLOC (NT,IPT,4SAMP)
IF ( INTpRT ,E0. 0 ) GO TO 11.3

WRITE (6,5)
J=0-
N1=NT*IpT
DO 112 I=1,N1,IPT
KK=I+IPT-1

112 WRITE '(6,6) J,(LT(A),KFI,KK)

113 CALL POOL (NSPI,IRT,.NTO(BAH,XVAR)

XS0=0,
IF ( XVAR .GT. 0. ) X$D=SORT(XVAR)

IF ( INTPRT .E0. 1 ) WRITE (6,7) IJK,XBAR,XSD
SXM=SXM+XBAR
SXS=SXS+XSO
SXXM=SXXM+XBAR*XBAR
SXXS=SXXS+XSO*XSD

COMPUTATION. OF CONSTANTS FOR NEGATIVE HYPERGEOMETRIC DISTRIBUTION OPTIO

IF ( NHPER .E(. 0 ) GO 10 70.00

A21=(KPOP/(KPOP-1.))*(1.-XBAR.(KP0P-X8AR)/(KPOP-XVAR))
IF ( A21 .G1.. O. ) GO TU 120
WRITE (6,8) A21
GO 10 2000

120 A.=(+1./A211*XBAR
B=-A-1.4XPOP/A21
SLOG1=0.
SLOG2=0..
C'r.A+B

DO 140 I=1,KPQP
SLOG1=SLOG1+AtpGUp3.

14.0 SLOG2=SLOG2tA0)G1
C=1.8**(SL(JGLOG2)

GENERATION OF NEGATIVE HYP:046E011VRIC

WRITE (6,9)
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N3=KP0P+L
CK=0.
LO 160 17-1,N3
K=1-1
LALL NEGHUR(K,,A4,B, HX) ,

c,K=CK+HX

60 1,11L(6,10) KiHx,CK

000 CoNlENUE

COMFUIE ST4NO4RD ERRORS OF ESTIMATE oyER HEP.owrjoNs

HARS=SXS/NREPS
(iAkM=SXm/NRFPS
SES:SORT( ( SX xS-sXS*SXS/NREPS )/NREMS).

M=SuR T ( (SXXM-sXM*8XM/NREP'8)/NREPS)
kh I IL (6,11) UARM,SEM,PARS,'SES
Go TO 2000

EXIT GRACEFULLY,

>OOP
CALL E.)( I I

F,OR,N1AT ST AT EMEN, IS

1 .":)RMAT-.(13.:;AFJT.IAJ2-.)
P.Wq.r.01-2.HIRROBLEM-N-6..-p"."?,0,H

00-0,11kITEFis INO,UTTE.D//44,k,4H1EAN,

17X,E'8.3/./4HVARIANcE:,374/4X41:HK410X',I4//4'X,'811ALPHA
20,3X,

218.3//4)(.,6HV4R1-13,/.1.1M.,0":EM-EXAMIN,EESAMPLING
PLAN///

34x,2H41,5X,I4 -/./4)(',31-41PT/,4)(,T4/./HNSPT,3X,14//4X,5HNREPS.2X,

414////9H SWIT(HES41/4x.l.dHSAIIP.LING MLAN,8X,12//4X,23HNEGATIVE

5 HYPE1GEOmE1P)C43)(12/14X,22..HNORIOTT WISTRIHUTION,I6//4X,21HINIE

6RMEDIATF PRINTOUT,17//)
3 F(RMAT (20 .4*** ERROR ,ON

PARAMETER-.,CARD///12X,2HOH//29H NEE0 MORE

.114:.00N- .PAHAre...),-,.-H.-,,:.:_-L. :'.::(

4 FGRMAT'-(-/i/12,4I-1.- ITEMDIFFI:COOY,-.1NO-CES//(10F/.3))

5 1CRMAT (////8H,SU8IEST,X,5HITEMS//1)
6 FcIRMAT (1X,15,5X,26I4/J-1-1X,.:40T4)-i,

/
FC.RMAT (//16H REPLiCATION NO ,I5,5X,12HEST OF 0.-.ANd.-2,;31 26x,2011

1ESI.' OF S1ANOARO DEVIATibN,:r,10,1//)
. . -`

8 FGRMAT (43HkR21 NEGATI-VE'-UR-_,ZERO '...,PATA SET, Aq3ORTEI,D.,5X,..6i-MR21
,

. ,

1110.4)
9 FoRmAT (1///5)0,5H,SCOFiE,22k440,-;40HCO.-W(X)
10 FURNI,AT:(J1:02E.34,T) -',: ;,-'

/

11 1,PRIiAT,''04,#,VER,9,2-gkij ft CW FiXlifi 3' 12'

1 tv.E A N -0, V,E i..21-F;t,PSIFf,i:5,'.-77-7',OliptAN.VilcGEr-rstW)9 L

227 1-1,S-:' 0 FT;#Pat.:*: WJ,S4P '_ , blY k EP S ' 1

1-2 FO-Rt ,?2.61 0
i 3 , ',F0,1,t1,1,=,41 tn11 i2A1,r(%
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submourINL POOL (NsPI,IPI,NT0(8AR,xyAR)

C DETERMINATION OF POOLED ESTIMATE OF POPULATION MEAN TEST SCORL AND

C VARIANCE

REAL MPOP
COMMON E(150),X(150).LT(3000)
COMMON /1iLOCK1/ YEAR,YSD,MPOP.SPUP,KPOP/NDIST,BASE,IPRT
DIMENSION TEST(150)

IF ( IPRf ,EO, 1 ) WRITE (6,1)

SESTMAT0.

SESTV.=0.

NSM=0
uo 100 I=1,NT
SY=0,
sYY=0,

DO 508 K=1,IPT
5°8 P(K)=0,

IsTART=IPT*(1-1)+1
ISTOP=IPT*1
Do 500 j=1,NSPI
CALL DATA (TEST)
LL=0
DO 505 K=IsTARi,ISTOp
KK=LT(K)
LL=LL4.1

.505 X(LL):TEST(KK)

Y=0.
DO 510 K=1,IPT
T=X(K)
P(K)=PCK)+I

310 Y=Y+T
SY=SY+Y

500 SYY=SYY*Y*Y
XUR=SY/NSPT
VR=(SYY-SY*SY/NSPT)/NSPT
SPO=0,
DO 520 J=1.IPT
PP=P(J)/NSPT

520 SPQ=SPO4.1.31.,*(1...pp)

NSM=NSM+1
ESTM=KPOP*XOR/IPT
ESIV=(NSPT*KPOP*UKPOP 1.)!VR-,(KPOP-IPT)*SPO)1/(IPT*(IPT-1.

1(NSPT-1,))
SES1M=SESTM+EVM
SES1V=SESTV+ESTV
ESIS=0,

IF ( ESTV ,OT, 0, ) ESTS=SORT(ESTV)

H ( ESTV ,LT, 0. ) ESTS=-1,0SORT(A8S(ESTV))

IF ( IPRT ,EO. 1 ) WRITE (6s2) IsESTMIESIVrESTS

1000 CONTINUE
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XhAlizSES1M/NSM

$VAR:SESTV/NSm
NSPT*NSM

( M ,LT, 500 ) XVAR=XVAR41(M-1.)/M

PrTURN
OPMAT (///3bX,22H EST1MATb OF PARAMbTkH///5X,41-CSAMPLL,10k,

14HtikAN,10,8HVARIANCE1.12X,12HSTANDARD UEV//)

1:0141AT (110,3F20.7)

LND
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SUBROUTINE' DATA (X)

G GENERATION Uk ITEM SCORES AND TEST SCORE FUR HYPOTHETICAL EXAMINE.E

REAL MPUP
INTEGER TSCORF
COMMON /8LOCK1/ YHAHlYSUrMPOP,SPOP,KPOP,NDISI,BASE.INTPRT

COMMON /bLOCK2/ RN0(150)

CO1MON /OLOCK3/ P(150),G(150),NSU6

DIMENSION X(150)

GENEP AlE TOTAL TEST SCORE

NSUb=NSUB+1
CALL RANDNU (7)

OC 10 (215,220,220)o.NDIST

215 TEMP=Z*SPOP+MPOP
(;0 IC) 230

220 TEMP=EXP(Z*YSO+YEIAR)

230 IF ( TEMP 0, ) TEMP:0,

IF ( TEMP .GT. FLOAT(KPOP) ) TEMP=KPOP

KA=TEMP4-1.

IF ( AK .(I. KPUP ) KK=KPOP

TSCORE=TEMP4.(AK-RND(KK)).
IF ( TSO(JNE ,LT. 0 ) TSCORE=0

IF I(
TSCOHE ,G1. KPOP ) ISCORE:KPUP

IF ( NDIST .EO. 3 ) ISCURE=KPOPSCORE

C GENERATE ITEM SCONES OR XAMINEE

L,0 240 J=1.KP0P

240 X(J)=0.
IF ( TSCORE .EU. 0 ) GO TO 300

IF ( TSCORE KPOP ) GO TO 248

VO 242 J=1,KP0P
242 X(J)=1,

GO TO 300

248 KOUNT=0
DO 250 J=1,KPOP
IF ( IFIX(0(J)*1000.) .GT. IFIX(P(J)*1000.) ) GO TO 250

KOUNT=KOUN1 +1

TI ( KOUNT .GT. TSCORE ) GO TO 300

250 CONTINUE
no 260 J=1,KPOP
IF ( IFIX(X(J)) .EG. 1 ) GO TO 260

KOUNI=KOUNT+1
ir C KOUNT TSCORE ) GO TO 300

X(J)=1.

260 CONTINUE

300 DO 320 J=1KPOP
320 Q(J)=((.1(J)*(NSU81,),X(J))/NSUB

RETURN

LNLI
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SuUMUOINE NEGMGR (K.A03,C.HX)

13 NEGATIVE HYPEROGOmi.:TRIC I.'UNCTION

RFAL NIM,MPOP
COMMON N(150),M(150),LT(3000)
COMMON /8L0CK1/ YBAR,YSO,MPOP,SPOP,KPOP,NUIsf,BASE,INTPRI

IF ( K 0 ) GO TO 150

S=KPOP
SI OG1=0.

SLOG2=0,

SL0G3.10.

SLUG4=0.

l4-) 100 1:1,K

SL0G1=SL0G1+AL0010(S-14.1.)
:0,0G2=SLOG2ALOG10(A+1-1,)
St0G3=SLOG.54-ALOG10(B-I+1.)

100 SLOG4=SLOG4+ALOGi0(FLOAT(1))
hx=u*10.**(SLOG1+SLOG2-SLOG3-SLOG4)
RETURN

15u HX=C
RETURN
ENO



SUHROUT/Nb ALLOU (NTo/PT,ISAMP)

RANDOM ASSIGNMENT UF ITEMS TO SUSTESTS

REAL MPOP
LOMMON msoo),Lr(noo)
COMMON /8LOCK1/ YBARsYSD,MPOPPSPOP,KPOP,NDIST,BASE/INTPRT
DIMENSION L(150),KNTR(150)
CO 100 I=1,KPOP
KNTR(I)=0

100 L(I)=I

NN=NT*IPT

Jr ISAMP .E0. 2 ) GO TO 200

i30 K=U

DO 15U I=1,NN
165 R=RUNIF(OASE)

JJ=R*KPOP+1.
IF ( JJ .LT. 1 ) JJ=1

IF ( JJ .14T. KPUP ) JJ=KPOP

IF ( L(JJ) .GT. 0 ) GO TO 170

GO TO 165

170 LT(I)=L(JJ)
K=K+1
IF ( ISAMP .NE. 1 ) GO TO 180

L(JJ)=L(JJ)
GO TO 15U

180 IF ( K .LT. IPT ) GO TO 185

r\Lly

LW '184 11=1.KPUH

186 L(ii)=1A618:(L(11))

UU IO 15U

185 L(JJ)=L(JJ)
150 CONTINUE

RETURN

d00 NMULT=NN/KPOP
IF (IPIX((FLOAT(NN)/KPOP)*10.)1NE.IFIX(1LOAT(NMULT)*10.))

GOT0400

K=0

NST0P=NN.IPT
DO 300 I=10NSTUP

d10 R=RUNIF(BASE)
jj=R*KPOP+1.

IF ( JJ .LT. 1 ) JJ=1

IF ( JJ .GT. KPOP ) JJ=KPOP

iF ( L(JJ) .GT. 0 .AND. KNTR(JJ) .LT. NMULT ) GO TO 220

GO TO 210
220 LT(1)=L(JJ)

K=K+1
KNTR(JJ)=KNTR(JJ)+1
IF ( K .LT. IPI ) GO TU 25U

K=0



1::o 230 J=1,KpoP
L(J)=IABS(L(J))
co To 300
L(JJ)=-L(JJ)
CONTINUE
:JO 450 I=1,KpOP
IF ( KNTH(I) NMULT ) GU TO 350

NsTuP=NSTup+1
LT(NBTOP)=I
uONTINUE
RE1URN
ir ( NN .GT. KPUP ) ISAMP=0

IF NN .EG. KP(lP ) IBAMP=1

WRirE (6,1) IGAMP
.i(1 TO 13u
I-ORMAT (29H TK NOT INTEGER MULTIPLE OF K//30H ITEM-SAMPLING SWITCH

,
RtiSET T015//)

ENO

t, 97
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SUBHOUTINE. HANDND (X)

PPAL MPOP
COMMON /3L0CK1/ YBAH,YSO,MPUP,SPOP,KPUP,NOIST,BASE,INTPHT

DIMENSION C(290),C1(90),C2(65),C3(45),C4(60),C5(10)

LOUIVALENCE (ViAIL,C(200)),(C1(1),C(1)),(C2(1),C(91)),

1 (C3(1),C(176)),(C4(1),C(221)),(C5(1),C(261))
DATA Cl/

1

2 .6,,6,.6..8,.6..8,1..1.,1.5,0.,
3

4

5 .4,.4,.4,.4,.4,.4,.5,,50.5,,5,
6

7 .9,.9,4.9,1.,1..1.1,1.1.1.1.1.2,1.2,
8 1.2,1.3,1.3,1.4,1.4,1.5,1.6,1./,1.8,.0,
9

/

UATA C2/

1 1.3,1.3,1.3,1.3,1.3,1.3.1.4,1.4,1.6/1.6,
2 1.6,1.6,1.6,1.6,1.',1.7,1.7,1.8,1.9,1.9,

1.9,1.9,1.9,1.9,1.911.9,2.02.$2..2.,
4 2,,2.,2.,2.1,2.1.2.1,2.1,2.1,2.1,2.2.

5 2.2.2.2,2.2.2.3.2.3,2.3.2.4,2.4,2.5,2.6,
6 .7.1.1,1.30.4,1.,1.9,1.4,.9,.8.,.6,
7 .5,1,2,1.6,1.7,.3,1.5,2,.1.6,2.2,.2,
8 2.5,2.3,2.4,2.1,.1.2.7,0.,2.6,2.8,2.9,
9 .943216501, .946409288, .949496939,

.952576378, .955556/64 /

DATA C3/

1 .958489620, .961388536,
.964198279, .966788825, .969367756,

2 .971936598, .974474970, .976942627, .979212915, .981233554,

3 .983249373., .985020795, .984448314, .987806989, -.989110415,

4 .990207369, .991260517, .992236259, .993158205r .994021949,

5 .994845636, .995501310, .995869739, .996268373, .997300203,

6 .942278196, .9455/2077. .948551446, .951165313, .954986329,

7 .956691421, .960485017. .963804134, .966571775, .968916970,

8 .9712916/8, .974201251, .976132812, .978422883p .980579525,

9 .983005206, .9642240761 .966325151, .987141582, ..988632851 /

DATA C4/

1 .989490775, .990781611, .9917305984 .9930632864 '4993813410,

2 .99426254.64 .995110801v :.995805552, .996077666, 996413034.

3 .973,.996,.9924,920P.998,-.9824-.990.996,..9854.959,
4 .942,.994,.986,4985,.890,966-,..960,.983,.977,.643,
5 .973/.975,.974,.976,..75544970,.501..971,.968,.967.
6 12.5,6,2052333. 6.91865394 20.-4.9.-0325579,

7 4.6444448,6.4086308,10.1114111111,14.735714,
8 16.666666,7:5104139,5.5743498,5.2286616,25..,
9 5.9645244,4.3951201.4.9208132,3.9631766,33.333333

/

DATA C5/

1 3.442795'5,3.7/48644,3.6020289,4,1690656,50.,
2 3.1592514,100.,3.2956424,3.0324898,2.9143782

/

SON=1,
U=RUN1F(BASE)
IF ( U .5 ) SGN=..1.

U=RUN1F(_BASE.)

IV2=1000.*U



IV1r-IV2/10
vz100.*U-.1*FLOA1(IV2)

( U .(E. .79 ) GO TO 10

x=(((IV1+1)+V)*SGN
HEIURN

10 ( U .GE. .94-)-GO U) 20
x.m(C(IV2-7/0)+V)*SGN
kETURN.

20 I ( U .GE. VTAIL ) GO TO 30

J=1/0

( U .GE. C(J) ) GO TO 21

TV ( U .L1. C(J+30) ) GO TO, 23

U=RUNIF(BASE)
X=(C(J-30)+.1*U)*SGN
RErURN

2.5 u=kuNIF(6ASE)
vrHUNIF(JASE)
ulmAMIN1(u,V)
U2=AMAX1(U.V)
IF ( U2 .GE. 0,1+60) ) GO f0 25

x=(C(J-30)+.1*U1)*SGN
kcIURN

e:5 ts=-.5f(.1*U1-.1)4(2.*C(J-40)+,1*U1+.1)
If (

(EXP(14)-1.)*C(J+90)-U2+U1-) 23423.24

30 U1=RUNIF(t3ASE)
U2=HUNIF(RASE)
S=U1i*U1+02*U2
IF ( S .GL4 1. ) GO 10 30

T=SORT((9.-ALOG(S))/S)
IE ( .LE. 3. ) GO,TO 32

x=U1*T*SG,J
NTUHN

,.52 IF ( 02*1 .LT. 3. ) GO 10 30

)(=U2*T*SG
kFTURN
ENU
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4pEA=UELI4*((Y(1)+Y(101))/2.+AHEA)

FARIA=AkhA+ARtA

;10 16U J=1,1.1)0
h=J+1

ii

P=P+C(Y(J)+Y(K))*DLLTA/2,)/AHEA
( P .LI. .5 ) GO TO 160

kNO(I)=N+JaDELTA
10 101)

100 f.H:NrjNuE

tollb (6.5)
CALL tX IT

10d C6N1INUE
IC ( !PRI. .LO. U ) RETURN
WRITE (6,6) SAREA
w RITE (6.1)
Uo 2Uu I=1.KPOR
J=I-1

c:00 NkITE (6,2) J,HNU(1),I
kEtUriN
roRmAT (///22q .ROUNOING RULb SCOREI5X,5hROUNUs5X,5HSCO1*//)

flAIMAT (17X,I5,10.2,5X.15)
GRMA1 (3414 PROIJLEM IN ROUNU SUBR EXIT CALLED)

FORMAT (1X,I3,11F8.4)
roHMAT (/H AREA =115.7M

7 f'ORMAT (//23H UISTRI8UTION ORUINATES//

1 3X,1HN,3X,2H.0,6X,2H.1,6X,2H.2,6X,2H.3,6X02H,4,6X,H.5
26X.2H.6,6X,2H./,6X,2H,8,6X42H.'9,5X,3H1,0//)



E
x
a
m
p
l
e
s
 
O
f
 
P
a
r
a
m
e
t
e
r
 
C
a
r
d
s

C
a
rd

0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
8

c
o

lu
m

n
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
0
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
6
4
5
6
7
8
9
0
1
2
3
4
5
6
7
E

9
0

6
0

/
6
,
-

.
0
0

.
8
5

0
2

1
0

0
3
0

5
1
1
0
3

7
7
7
7

0

8
0

4
0
.

.
0
5

.
8
5

0
2

1
0

0
9
0

5
1
1
0
1

1
2
3
4

0

8
0

7
6
.

.
0
0

.
7
0

0
2

A
O

0
3
0

5
1
1
0
6

1
1
1
1

0

6
0

4
0
,

,
0
5

.
7
0

0
5

1
0

0
6
0

5
1
1
0
1

7
1
2
0

0

8
0

4
0
.

0
2

1
0

0
9
0

5
1
1
0
1

8
0
5
4

U

8
0

4
0
.

.
0
0

.
1
0

1
0

0
5

0
9
0

5
1
1
0
1

1
0
0
4

0

4
0

2
0
.

,
0
5

.
/
0

0
2

1
5

1
2
0

5
1
1
0
1

9
2
7
6

0

4
0
2
0

.
o
n

7
0

0
2

1
5

1
2
0

5
1
1
0
1

2
9
8
8

0


