AUTHOR TITLE

INSTITUTION
REPORT NO bureau no PUB DATE NOTE

EDRS PRICE DESCRIPTORS

IDENTIFIERS

Shoemaker, David M. Principles and Procedures of Multiple Matrix sampling. Sampling. Reyional Educational Lab. Inglewood, Calif.
SWRI-TR-34

$$
B R-6-2865
$$

Aug 71
102p.
MF-\$0. $65 \mathrm{HC}-\$ 6.58$
*Computer Programs; Hypothesis Testing; *Item Sampling; *Mathematical Models; *Psychometrics; *Statistical Analysis *Multiple Matrix Sampling

ABSTRACT

Multiple matrix sampling is a psychometric procedure in which a set of test items is subdivided randomly into subtests of items with each subtest administered to different subgroups of examinees selected at random from the examinee population. Although each examinee receives only a proportion of the complete set of items, the statistical model employed permits the researcher to estimate the mean, variance and frequency distribution of test scores which would have been obtained by testing all examinees on all items. contained herein is a detailed description of multiple matrix sampling. The topics covered range from an introductory discussion to the listing with expanded writeup of the computer program used to analyze the data. Throughout this Report an attempt has been made to keep the practitioner clearly in mind. (Author)

SOUTHWEST REGIONAL LABORATORY FOR EDIJCATIONAL RESEARCH \& DEVELOPMENT

ED057100

U.S. DEPARTMENT OF HEALTH.

EDUCATION \& WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSO'N OR ORGANIZATION ORIG INATING IT. POINTS OF VIEW OR OPIN IONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDU CATION POSITION OR POLICY.

10
7
0
0
8
0
0
410
Ric

SOUTHWEST REGIONAL LABORATORY TECHNICAL REPORT 34 AUGUST 1971

PRINCIPLES AND PROCEDURES OF MULTIPLE MATRIX SAMPLING
David M. Shoemaker

Abstract

Multiple matrix sampling is a psychometric procedure in which a set of test items is subdivided randomly into subtests of items with each subtest administered to different subgroups of examinees selected at random from the examinee population. Although each examinee rec vir only a proportion of the complete set of items, the statistical model employed permits the researcher to estimate the mean, variance and frequency distribution of test scores which would have been obtained by testing all examinees on all items. Contained herein is a detailed description of multiple matrix sampling. The topics covered range. from an introductory discussion to the listing with expanded writeup of the computer program used to analyze the data. Throughout this Report an attempt has been made to keep the practitioner clearly in mind.

Contents

Page
Acknowledgments iii
I. Introduction 1
II. Characteristics, Advantages, and Applications of Multiple Matrix Sampling 2
III. Procedural Guidelines in Multiple Matrix Sampling 10
IV. Computational Formulas in Multiple Matrix Sampling 15
V. Computer Simulation of Multiple Matrix Sampling 33
VI. Hypothesis Testing and Multiple Matrix Sampling 50
VII. Unique Applications of Multiple Matrix Sampling 56
Bibliography 64Appendices
A. Computer Program for Estimating Test Parameters Through Multiple Matrix Sampling 67
B. Computer Program for Simulating Multiple Matrix
Sampling 79

ACKNOWLEDGMENTS

I would like to thank Frederic M. Lord, Ilobart G. Osburn and Howard L. Sullivan for reading in detail all of the manuscript and contributing several improvements. Any blunders, inaccuracies, or awkward passages that remain cannot be laid at their doorsteps. Appreciated to no minor degree is the encouragement given me in this ondeavor by my good friend and colleague Masahito Okada. The Southwest Regional Laboratory for Educational Research and Development is to be thanked for the financial support given to several projects upon which portions of this report are based.

Principles and procedures of multiple matrix sampling

David M. Shoemaker

I

Introduction

Multiple matrix sampling or, more popularly, item-examinee sampling, is a psychometric procedure whose time has come. It is the Zeitgeist. Descriptions of multiple matrix sampling procedures and explorations into areas of application are scattered over a multitude of technical journals. There is no single book or article which describes, studies, and unifies all of this material. Yet there is a need for such a document both as a reference source and as a textbook.

Although statisticians have dealt for several decades with incomplete data problems in the design of experiments and data analysis, the psychometrician responsible primarily for the derivation of statistical procedures in mul'tple matrix sampling and the application of such procedures to problems in psychology and education is Frederic M. Lord. Lord and Novick discuss multiple matrix sampling in Chapter 11 in Statistical theories of mental test scores but the chapter does not encompass the degree of detail and depth of explanation required by the majority of educational research practitioners who desire to implement this research procedure in a particular investigation. This Technical Report has been designed to remedy this situation.

Throughout this Report an attempt has been made to keep the practitioner clearly in mind. The emphasis is on the why, when, and how to use multiple matrix sampling. The topics covered range from an introduction to multiple matrix sampling to the listing with expanded writeup of the computer program used to analyze the data. All discussions and guidelines contained in the mcoograph reflect theoretical and empirical results reported in the literacure as well as personal experiences of the author in implementing multiple matrix sampling in a variety of applied situations.

Characteristics, Advantages, And Applications

Of Multiple Matrix Sampling

The majority of contemporary psychometric procedures reflect strongly the original impetus of the psychometric movement, that is, the measurement of individual differences. Historically, individual differences have been investigated, and appropriately so, using the matcheditems model in which a single set of test items is administered in a standardized procedure to all, or a sample, of the examinee population under consideration. One exemplar of such methodology is the anthropometric laboratory of Sir Francis Galton established at the International Health Exhibition in England in 1884. Galton measured individuals ranging in age from five to eighty on such dimensions as standing height, sitting height, arm span, weight, breathing capacity and strength of pull "to supply information on the methods, practice, and uses of human measurement." Understandably so and undoubtedly for lack of a reasonable alternative, procedures appropriate for the assessment of individual differences have been transferred completely to investigations concerned primarily with the measurement of group differences. An example of a research design emphasizing the assessment of group differences is found in an investigation which contrasts treatment effects through administering each treatment to a group of examinees selected randomly from the examinee population. Given treatments A, B, and C, for example, the researcher is interested primarily in the behavior of group A as contrasted with group B as contrasted with group C. Differences among individual examinees are of little concern. The point to be made is simply this: the methodology employed successfully in the assessment of individual differences is neither the appropriate nor the most efficient methodology for group assessment. Multiple matrix sampling or, more popularly, item-examinee sampling, has been demonstrated theoretically and empirically to be the appropriate procedure for group assessment and a procedure superior to the matched-items model.

The matched-items model and the multiple matrix sampling model are contrasted readily by considering the data base which would be generated if the entire testable population of N examinees were administered the complete set of K test items. Such a data base is illustrated in Figure 2.1 and the arrangement is referred to commonly as an itemexaminee matrix. Test items are sc申red dichotomously frequently and such is the case in Figure 2.1. For example, examinee 1 passed item 1, failed item 2, passed items 3 and 4 , and failed item 5. Within the

12345 . .

Figure 2.1: Item-examinee matrix illustrating examinee-sampling.

Test Items
12345 ••
K

Figure 2.2: Item-examinee matrix illustrating multiple matrix sampling.

9

\because
framework of the item-examinee matrix, the matched-items model used in the assessment of individual differences is referred to as the examineesampling model because all test items are administered to a subgroup of examinees selected at random from the population of N examinees. By contrast, multiple matrix sampling involves the joint sampling of examinee subgroups and item subtests as illustrated in Figure 2.2. Data from itemexaminee sample 1 were obtained by administering a set of items selected at random from the population of K test items and administering these and only these items to a subgroup of examinees selected randomly from the population of N examinees. Replicating this procedure produces item-examinee samples 2 and 3 and suggests, concomitantly, the derivation of the expression "multiple matrix sampling." Statistics obtained from examinee-sampling and from multiple matrix sampling are used to estimate parameters of the N by K item-examinee matrix. It must be remembered, however, that the N by K item-examinee matrix illustrated in Figures 2.1 and 2.2 is a hypothetical matrix the parameters of which are estimated from the subset of data gathered in practice through examinee-sampling or miltiple matrix sampling.

Advantages of Multiple Matrix Sampling

A concept important in discussing the advantages of multiple matrix sampling and one mentioned frequently herein is the standard error of estimate. Assume that two experimental procedures have been developed for measuring weight and each procedure is used to obtain in a standardized manner 1000 independent measurements of the weight of a given object. Hypothetical measurements so acquired have been assembled into frequency distributions and are given in Figure 2.3. The standard error of estimate associated with procedure M is the standard deviation of the 1000 values for the weight obtained using procedure M; the standard error of estimating the weight for procedure E is determined identically. The difference in standard errors of estimate depicted in Figure 2.3 illustrates an important advantage of multiple matrix sampling over examineesampling in group assessment. Lord and Novick (1968) have demonstrated algebraically that, when subtests are constructed by sampling items without replacement from the K-item population, the standard error in estimating the group mean test score using multiple matrix sampling is less than the standard error obtained with examinee-sampling. Furthermore, the minimum standard error of estimate under multiple matrix sampling is found by administering one item to each of K random samples of examinees. A conclusion such as this is of major significance because the parameter of primary importance in many investigations is the group mean test score.

To clarify this point, consider how such a result could have been determined empirically through post mortem item-examinee sampling. In post mortem item-examinee sampling, an existing N by K item-examinee data base is taken to be the population of scores and item scores from item-examinee samples selected randomly from this base are used to

Figse 2.3: Hypothetical distributions of weight measurements resulting from 1000 replications of procedure M and 1000 replications of procedure E.

- 11

1
estimate parameters of interest. Although all examinees have responded to all items, in post mortem item-examinee sampling the investigator acts as if individual examinees had responded only to specific items. The standard error of estimate under examinee-sampling could be approximated, for example, by selecting at random 1000 examinee subgroups and testing each subgroup over K items. Data from each examinee subgroup provide an estimate of the mean score over N examinees and the standard deviation calculated over these 1000 estimates is the standard error of estimating the population mean under examinee-sampling. A single estimate of the mean test score under multiple matrix sampling is obtained, for example, by dividing randomly the set of K test items into t nonoverlapping subtests containing K / t items each and administering each subtest to a subgroup of examinees selected at random from the population of N examinees. A single estimate of the population mean is obtained by pooling the t estimates obtained from each item-examinee sample. Replicating this procedure 1000 times provides 1000 pooled estimates of the population mean test score and hence the standard error of estimate associated with the particular item-examinee sampling plan used. (All computational formulas used in multiple matrix sampling are explained in detail in Chapter IV.)

The advantages of multiple matrix sampling have thus far been focused on the standard error of estimating the mean test score. Important also is the expected value or mean of the estimates of the population mean test score over replications. In Figure 2.3, the standard error of procedure M is less than the standard error of procedure E; however, on the average, the values obtained using procedure E are more accurate than those obtained using procedure M (assuming that the true weight is the value on the abscissa indicated by the pointer). A consideration such as this prompts an examination of the mean estimate of the population mean test score obtained under multiple matrix sampling. The results of several empirical investigations (Johnson \& Lord, 1958; Lord, 1962; Plumlee, 1964; Stufflebeam \& Cook, 1967; Shoemaker, 1970a, 1970b) using post mortem item-examinee sampling support the conclusion that, on the average, estimates of the mean test score are extremely accurate. (Results such as these are to be expected since the mean of a random sample is always an unbiased estimator of the population mean and estimates of the mean test score obtained through multiple matrix sampling are no exception.) Shoemaker (1970b) has demonstrated that this conclusion is appropriate, additionally, for estimates of the population standard deviation.

In addition to the statistical advantages of multiple matrix sampling in estimating group achievement, there are other advantages of practical import: (a) The testing time per examinee is reduced under multiple matix sampling. This is, indeed, an important consideration as the time necessary for testing K items per examinee is frequently difficult or impos.. sible tio obtaia. (b) Under multiple matrix sampling, the costs of scoring each teist are reduced. (c) Multiple matrix sampling as a procedure may be accepted more readily in certain situations than the matched-items design. In a company, for example, supervisors fearing that test results may be used against their employees may be assured more convincingly if
each employee takes only a part of a test and different employees take different parts. (d) Given a limited amount. of available testing time per examinee, performance on a larger number of test items can be approximated through multiple matrix sampling than through a matched-items design. (e) With multiple matrix sampling it is possible to estimate simultaneously parameters of several tests. To the examinee, the test so constructed is merely another test; however, to the test constructor, the comnosite is a collection of several tests each having parameters estimated through multiple matrix sampling.

Limitations of Multiple Matrix Sampling

Although advantages of multiple matrix sampling are more numerous than limitations, the latter do exist. Estimating parameters through multiple matrix sampling assumes that the responses of an examinee to an item sample are exactly those which would have been obtained had the examinee responded to those items embedded in the $\mathrm{K}-\mathrm{i}$ tem test. Although the data available (Sirotnik, 1970; Shoemaker, 1970c) suggest that multiple matrix sampling is relatively immune to a context effect, there is one important exception: using multiple matrix sampling to estimate parameters of speeded tests. In this case, an examinee's response is not independent of the context of the test and multiple matrix sampling should not be used.

An insidious variation of the context effect occurs when multiple matrix sampling is used to estimate parameters for a test which is impossible to administer in practice. For example, parameters of a 500-item vocabulary test designed for grade one students could be estimated readily through multiple matrix sampling by forming 25 subtests having 20 items each with each subtest administered to one class of grade one students. Although all students could respond appropriately to the 20 -item test, data from each subtest would be used to estimate the results which would have been obtained had all grade one children taken the 500-item test. The problem is that no individual grade one student could have tolerated the 500-item test.

A potentially serious limitation of multiple matrix sampling is found in the logistics involved in giving different tests to different subgroups of examinees. If test items are administered individually, problems are minimal. If, however, each item requires oral instructions by the test administrator and different tests are to be distributed among the examinees in the testing room, serious problems occur. In this situation, the examinees must be segregated and isolated according to subtest before administering each test. If the instructions to each item are written on the test booklet, administering different tests to different examinees within the testing room is accomplished with relative ease.

REFERENCES

Cook, D. L. \& Stufflebeam, D. L. Estimating test norms from variable size item and examinee samples. Educational and Psychological Measurement, 1967, 27, 601-610.

Johnson, M. C. \& Lord, F. M. An empirical study of the stability of a group mean in relation to the distribution of test items among pupils. Educational and Psychological Measurement, 1958, 18, 325-329.

Lord, F. M. Estimating norms by item sampling. Educational and Psychological Meas urement, $1962,22,259-267$.

Lord, F. M. \& Novick, M. R. Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley, 1968.

Plumlee, L. B. Estimating means and standard deviations from partial data -- an empirical check on Lord's item sampling technique. Educational and Psychological Measurement, 1964, 24, 623-630.

Sirotnik, K. An investigation of the context effect in matrix sampling. Journal of Educational Measurement, 1970, 7, 199-207.

Shoemaker, D. M. Allocation of items and examinees in estimating a norm distribution by item-sampling. Journal of Educational Measurement, 1970, 7, 123-128. (a)

Shoemaker, D. M. Item-examinee sampling procedures and associated standard errors in estimating test parameters. Journal of Educational Measurement, 1970, 7, 255-262. (b)

Shoemaker, D. M.' Test statistics as a function of item arrangement. Journal of Experimental Education, 1970, 39, 85-88. (c)

III

Procedural Guidelines in Multiple Matrix Sampling

Multiple matrix sampling as a procedure involves basically three steps: (a) a K-item test is subdivided through random or stratifiedrandom sampling into subtests each having typically the same number of items, (b) each subtest is administered to a group of examinees selected randomly from the examinee population, and (c) test parameters are estimated from subtest results. Although the procedure is described easily, implementing it produces many interesting questions. For example: How many subtests should be formed? To how many examinees should each subtest be administered? Is it more appropriate to administer a few subtests containing a large number of items or a large number of subtests containing few items? These are only a few of the questions encountered frequently when using multiple matrix sampling. Described herein are general guidelines for answering these and other related questions.

Let t denote the number of subtests, k the number of items per subtest and n the number of examinees to which each subtest is administered. A specific sampling plan is denoted by ($t / \mathrm{k} / \mathrm{n}$). For example, $(2 / 25 / 60)$, ($10 / 5 / 60$) and $10 / 20 / 30$) are three sampling plans which could te used to estimate the parameters of a 50 -item test. With the first plan, 2 subtests are formed containing 25 items each with each subtest administered to 60 examinees; with the second plan, 10 tests with 5 items each with each subtest administered to 60 examinees; and with the third, 10 tests with 20 items each with each subtest administered to 30 examinees. The third plan introduces an important variable in multiple matrix sampling, namely, the procedure used to sample items in constructing subtests. With $(2 / 25 / 60)$ and $(10 / 5 / 60)$ subtests are formed by sampling test items without replacement from the pool of 50 items. With ($10 / 20 / 30$), items are sampled without replacement for a given subtest but with replacement among subtests; consequently, an individual item will often be included in more than one subtest, but no item will be included twice in the same subtest. The rule is this: if the product tk is less than or equal to K, the sampling of items for subtests is always without replacement; when th is greater than K, the sampling of items is without replacement for each subtest and with replacement between subtests. Selecting items for two subtests using the latter sampling procedure is demonstrated easily with a deck of cards numbered consecutively from 1 to K : (a) the deck of K cards is shuffled thoroughly, (b) k cards are selected at random from the deck with the numbers on the cards indicating those items to be included in subtest i, (c) the k caris are returned to the deck, (d) the card deck is reshuffled, and
(e) k cards are selected at random for subtest j. Although a multitude of sampling plans are posaible, it is generally the case that tk is equal to or greater than K.

Although constructing subtests having overlapping item subsets is desirable in that it increases the number of observations acquired by the sampling plan (and, hence, decreases generally the standard error of estimate associated with that sampling plan), it is of critical importance that, when th is greater than K, tk be an integer multiple of K, and items are sampled randomly but subject to the restriction that each item appear with equal frequency among subtests. With ($10 / 20 / 30$), for example, the multiple is 4 and each of the 50 items should appear in exactly 4 subtests. Any deviation from this procedure results in a marked increase in the standard error of estimate.

An important characteristic of any sampling plan used in multiple matrix sampling is the number of observations acquired by that plan. Defining one observation as the score received by one examinee on one item, the number of observations acquired by a sampling. plan is equal to the product tkn. For example, 3000 observations are acquired by ; $(2 / 25 / 60)$ and by ($10 / 5 / 60$) while 6000 observations are acquired by ($10 / 20 / 30$) . The number of observations per sampling $p l a n$ is an important concept in multiple matrix sampling and one mentioned frequently herein.

In multiple matrix sampling, a variety of sampling plans are possible with the selection of a particular sampling plan being typically the result of both practical and statistical considerations. Determining the relative merits of individual sampling plans is accomplished readily through a consideration of the standard error of estimate for each parameter for each sampling plan. Shoemaker (1970a, 1970b, 1971a, 1971b) has determined empirically, through post mortem item-examinee sampling, standard errors of estimate for selected parameters as a function of variations in (a) the number of observations acquired by the sampling plan, (b) t, k, and n, (c) test reliability of the normative distribution of test scores, (d) the variance of item difficulty indices, and (e) degree of skewness in the normative test score distribution. The following are general guidelines in multiple matrix sampling resulting from these and other investigations (Shoemaker \& Osburn, 1968; Osburn, 1969) :

1. The number of observations acquired by the sampling plan is an important variable. In general, as the number of observations increases, the standard error of estimating parameters decreases. (The major exception to this guideline occurs when guideline 4 is not followed.)
2. Increasing the number of examinees per subgroup is leas: effective in reducing the standard error of estimate.
3. For normal normative distributions, increases in the number of items per subtest are most effective in reducing standard errors of estimate; for negatively-skewed distributions, increases in the number of subtests are most effective.
4. When tk is greater than K, tk should be an integer multiple of K and items should be selected randomly but subject to the restriction that among subtests each item appears with equal frequency.
5. In general, fewer observations are required to estimate parameters of a skewed normative distribution than of a normal normative distribution.
6. If subtest items are being selected according to a stratifiedrandom sampling plan instead of a random sampling plan, items should be stratified according to difficulty level and not according to content.
7. As the reliability of the normative distribution of test scores increases, it becomes increasingly difficult to estimate parameters. For this reason, it is true generally that a relatively large number of observations is required by the sampling plan when estimating parameters of a distribution having high reliability. This is true also when the variance of item difficulty indices is large.
8. If no information concerning the normative distribution of test scores is available, select a sampling plan having the number of subtests equal to the square root of the total number of test items (rounded to the nearest integer) with each subtest having approximately the same number of test items.

Guidelines such as these are concerned primarily with relative standard errors of estimate in multiple matrix sampling. Although Lord and Novick (1968, equation 11.12.3) have determined algebraically the standard error of estimating the mean proportion correct score in multiple matrix sampling given nonoverlapping random samples of dichot-omously-scored items drawn without replacement from the item population, the standard error of estimate for any parameter using any and all sampling plans may be determined easily and effectively through use of the simulation model for multiple matrix sampling described in detail in Chapter V.

Multiple Matrix Sampling Step by Step

Step 1: Construct or select the K-item test. If possible, assemble the items into strata according to difficulty level.

Step 2: Determine the limitations and restrictions which must be imposed upon the test administration procedure.

Step 3: Select a sampling plan which is appropriate in view of the known characteristics of the normative distribution, the restrictions and limitations inherent in the test administration procedure, and guidelines 1 through 8.

Step 4: Administer subtests to examinees in a standardized procedure. Avoid confounding subtests with examinee subgroups, i.e., make every attempt to have examinee subgroups homogeneous.

Step 5: Compute estimates of parameters using equations 4.1, 4.2, $4.4,4.5,4.7$ and 4.9 with the computer program given in Appendix A.

REFERENCES

Lord, F. M. \& Novick, M. R. Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley, 1968.

Osburn, H. G. The effect of item stratification on errors of measurement. Educational and Psychological Measurement, 1969, 29, 295301.

Shoemaker, D. M. \& Osburn, H. G. An empirical study of generalizability coefficients for unmatched data. British Journal of Mathematical and Statistical Psychology, 1968, $\overline{21,}$ 239-246.
Shoemaker, D. M. Allocation of items and examinees in estimating a norm distribution by item-sampling. Journal of Educational Measurement, 1970, 7, 123-128. (a)
Shoemaker, D. M. Item-examinee sampling procedures and associated standard errors in estimating test parameters. Journal of Educational Measurement, 1970, 7, 255-262. (b)
Shoemaker, D. M. Further results on the standard errors of estimate associated with item-examinee sampling procedures. Journal of Educational Measurement, 1971 (In Press). (a)

Shoemaker, D. M. Standard errors of estimate in item-examinee sampling as a function of test reliability, variation in item difficulty indices and degree of skewness in the normative distribution. Unpublished manuscript, 1971. (b)

IV

Computational Formulas in Multiple Matrix Sampling

Computational formulas used in multiple matrix sampling are applied easily in practice and are detailed and sequenced appropriately in the following application of the procedure. It should be noted initially that all formulas assume uniform item scoring procedures; for example, some items cannot be scored dichotomously and other trichotomously.

An Application of Multiple Matrix Sampling

A spelling program is being designed for kindergarten students and the word and rule content of this program is to be related closely to the reading program used by these students. Before constructing such a program it is necessary to determine the spelling proficiency of those students who have used the reading program but have not had formal spelling instruction on the related words. Although there were 78 unique words introduced in the particular reading program under consideration, technical considerations dictated that only words having regular spellings be included in the word population. As a result, the original word population was reduced from 78 words to 50 words. The modified word population was then subdivided through random sampling without replacement into 5 subtests. containing 10 words each. (This is one of many procedures which could have been used. Alternative procedures are discussed in detail in Chapter III.) Three kindergarten classes were selected randomly from the pool of 9 classes. Students within each class were divided at random into 5 groups and each group was assigned at random to one of the 5 subtests. Each test was administered individually. All items were scored dichotomously ($1=$ pass, $0=$ fail) with the results of each subtest given in Tables 4.1 through 4.5 .

Estimating Parameters From Subtest Results

In multiple matrix sampling, subtest results are of secondary interest. Of chief concern is the estimation of parameters, that is, the results which would have been obtained had all students been tested over the entire set of 50 items comprising the word population. The results of each subtest, however, can be used to provide estimates of parameters of interest. For example, from subtest 1 it is possible to
obtain an estimate of several parameters, i.e., μ (the population mean test score), σ (the standard deviation of test scores), σ^{2} (the variance of test scores), μ_{3} (the third moment about the arithmetic mean), μ_{4} (the fourth moment about the arithmetic mean), α_{21} (the coefficient of reliability), g_{1} (the index of skewness), and g_{2} (the degree of kurtosis). All of these parameters are not independent, but each can be estimated from the results of one subtest. In multiple matrix sampling, multiple subtests are used and, hence, multiple estimates of each parameter are obtained. A more accurate estimate of each parameter is obtained by combining or pooling the estimates obtained from each subtest.

Although it is possible to estimate several parameters, the majority of investigations are interested primarily in estimating μ, σ^{2}, and α_{21}. The appropriate formulas for estimating these parameters from subtest i are

$$
\begin{gather*}
\hat{\mu}_{i}=\frac{\overline{K \bar{T}}_{i}}{k_{i}}, \tag{4.1}\\
\hat{\sigma}_{i}^{2}=\frac{n_{i} K\left\{(K-1) s_{i}^{2}-\left(K-k_{i}\right) \sum v_{i}\right\}}{k_{i}\left(k_{i}-1\right)\left(n_{i}-1\right)},
\end{gather*}
$$

and,

$$
\begin{equation*}
\hat{\alpha}_{21_{i}}=\frac{K}{K-1}\left[1-\frac{\hat{\mu}_{i}-\frac{\hat{\mu}_{i}^{2}}{K}}{\hat{\sigma}_{i}^{2}}\right] \tag{4.3}
\end{equation*}
$$

where,

$$
K=\text { the total number of items in the population, }
$$

$k_{i}=$ the number of items in subtest i,
$n_{i}=$ the number of examinees receiving subtest i,
Table 4.1
I fseqqus foa suotizeandmog puy sannsay

Examinee	Class	03	Item									T
			09	11	16	21	27	37	42	44	50	
01	1	1	0	1	1	1	1	1	1	1	0	8
02	1	1	1	1	1	1	0	1	0	1	1	8
03	1	1	1	1	0	1	0	0	0	0	0	4
04	1	1	1	1	0	0	0	0	0	0	0	3
05	1	0	0	0	0	0	0	0	0	0	0	0
06	1	1	1	0	1	0	1	0	0	0	1	5
07	2	1	1	1	0	1	0	1	0	1	0	6
08	2	1	1	0	0	1	0	0	0	0	0	3
09	2	0	0	0	0	0	1	1	0	1	0	3
10	2	0	1	0	0	0	0	0	0	0	0	1
11	2	1	1	1	1	1	0	1	0	1	0	7
12	2	1	0	0	1	0	0	1	0	0	0	3
13	3	0	1	0	0	1	0	0	0	0	0	2
14	3	0	1	1	1	1	0	0	0	1	0	5
15	3	0	0	0	0	0	0	0	0	0	0	0
16	3	0	0	0	0	0	0	0	0	0	0	0
17	3	1	1	0	1	0	0	1	1	1	0	6
18	2	0	0	0	0	0	0	0	0	0	0	0

-19-
Table 4.3
Results And Computations For Subtest 3

Examinee	Item											T
	Class	01	05	06	14	15	20	25	26	29	32	
				0	1	1	1	1	1	0	1	8
01	1	1	1	0	1	0	0	1	0	0	0	3
02	1	0 1	0	0	i	0	1	1	1	0	0	6
04	1	0	0	1	0	0	1	0	0	0	0	2 10
05	1	1	1	1	1	1	1	1	1	0	0	6
06	1	1	1	0	1	1	1	0	1	0	0	2
07	2	0	1	0	0	0	0	1	1	1	0	8
08	2	0	1	1	1	1	1	0	1	0	0	1
09	2	1	0	0	0	0	0	0	0	0	0	2
10	2	1	0	0	1	0	1	1	1	0	0	8
11	3	1	1	1	1	1	0	0	1	0	0	5
12	3	1	1	0	0	0	0	0	0	0	0	0
13	3	0	0	0								

$\begin{array}{ccccccccccc}\mathrm{p} & .6154 & .6154 & .3846 & .6923 & .3846 & .5385 & .4615 & .6154 & .1538 & .2308 \\ \mathrm{p}(1-\mathrm{p}) & .2367 & .2367 & .2367 & .2130 & .2367 & .2485 & .2485 & .2367 & .1301 & .1775\end{array}$

24
-20-
Table 4.4
Results And Computations For Subtest 4

Examinee	Item											T
	Class	02	04	07	10	19.	24	31	39	41	47	
01	1	1	1	0	1	0	0	1	1	0	0	5
02	1	0	0	1	0	0	0	1	0	0	0	2
03	1	1	1	1	1	0	1	1	0	1	1	8
04	1	1	1	1	1	1	1	1	1	1	1	10
05	1	1	1	1	1	0	1	1	1	1	1	9
06	2	0	1	1	1	0	1	0	0	0	0	4
07	2	1	1	1	1	0	1	1	1	1	1	9
08	2	0	0	0	0	0	0	0	0	0	0	0
09	2	0	1	1	0	0	0	1	1	0	0	4
10	3	0	0	1	1	0.	0	1	0	0	0	3
11	3	1	1	1	1	0	0	1	1	1	0	7
12	3	0	0	1	1	0	0	1	0	0	0	3
13	3	0	0	0	0	0	0	0	0	0	0	0

-21-
Table 4.5
Results And Computations For Subtest 5

Examinee	Class	Item										T
		13	17	22	28	34	35	36	45	48	49	
	,		0	0	1	0	0	1	0	1	0	4
01	1	1	0	0	0	0	0	0	0	0	0	0
02	1	0	0	0	0	0	0	0	0	0	0	1
04	1	0	0	0	0	0	0	0	0	0	0	6
05	2	0	1	0	1	1	1	1	0	1	0	5
06	2	1	1	1	0	0	1	0	1	0	0	0
07	2	0	0	0	0	0	0	0	0	0	0	0
08	2	0	0	0	0	0	0	1	1	0	0	7
09	3	1	0	1	1	1	1	0	0	0	0	0
10	3	0	0	0	0	0	0	0	0	0	0	0
11	3	0	0	0	0	0 0	0	0	0	0	0	0
12	3	0	0	0	0	0	0					

$$
\begin{aligned}
& \bar{T}_{i}= \text { the mean test score on subtest } i, \\
& s_{i}^{2}= \sum_{i}\left(T-T_{i}\right)^{2} / n_{i}, \text { the variance of test scores on subtext } i, \\
& \text { and } \\
& k_{i} \quad \\
& \Sigma v_{i}= \text { the sum of the } k_{i} \text { item variances in subtext } i . \\
& \text { If items are scored dichotomous ty, the variance } \\
& \quad \text { of item } j \text { is equal to } p_{j}\left(1-p_{j}\right) \text { where } p_{j} \text { is } \\
& \text { the proportion of examinees answering item } j \\
& \text { correctly. }
\end{aligned}
$$

The computational formula for $\hat{\sigma}^{2}$ was derived from an associated formula given by Sirotnik (1970) in which it was assumed that the number of examinees and number of items in the population were both finite. Formula 4.2 is based on the assumption that the number of examinees in the population is infinite and that the number of items in the populaLion is finite.

The results of each subtest provide an estimate of μ and σ^{2} and a pooled estimate of μ and σ^{2} is obtained by combining the t subtest estimates using

$$
\begin{equation*}
\hat{\mu}_{\text {pooled }}=\frac{\sum o_{i} \hat{\mu}_{i}}{\sum o_{i}} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{o}_{\text {pooled }}^{2}=\frac{\sum o_{i}^{t} \hat{\sigma}_{i}^{2}}{\sum o_{i}} \tag{4.5}
\end{equation*}
$$

where,

$$
\begin{equation*}
o_{i}=n_{i} k_{i} \tag{4.6}
\end{equation*}
$$

the number of observations obtained from subtest 1 . If the total number of examinees ${ }^{t} n_{i}=N$ is less than $500, \hat{\sigma}_{\text {pooled }}^{2}$ should be multiplied by $(N-1) / N$. Pooled estimates of μ and σ^{2} for the word spelling project are given in Table 4.6. The pooled estimate of the mean test score on the 50 -item test is 20.4287 . On the basis of this result, the conclusion was made that kindergarten students can spell correctiy approximately 40 per cent of words having regular spelling in the reading program without having had any formal spelling instruction.

Although individual estimates of the reliability of the 50-item test could have been obtained from each subtest and then comoined into a single estimate, a simpler procedure for estimating α_{21} is one using the pooled estimates of μ and σ^{2}. Specifically,

$$
\begin{equation*}
\hat{\alpha}_{21}=\frac{K}{K-1}\left[1-\frac{\hat{\mu}_{\text {pooled }} \cdots \frac{\hat{\mu}_{\text {pooled }}^{2}}{K}}{\hat{\sigma}_{\text {pooled }}^{2}}\right] \tag{4.7}
\end{equation*}
$$

For the word spelling test α_{21} for the 50 -item test was estimated from 4.7 to be .9479. The exact computations are given in Table 4.7 where $\hat{\alpha}_{21}$ is computed as an intermediate step in approximating the normative test score distribution with a probability distribution.

Direct Calculation of $\operatorname{SE}\left(\hat{\mu}_{\text {pooled }}\right)$

A more meaningful interpretation of $\hat{\mu}_{\text {pooled }}$ is possible if $\operatorname{SE}\left(\hat{\mu}_{\text {pooled }}\right)$ is known. Although $\operatorname{SE}\left(\hat{\mu}_{\text {pooled }}\right)$ and $\operatorname{SE}\left(\hat{\sigma}_{\text {pooled }}\right)$ may be determined for all sampling plans through use of the simulation model described in Chapter V, Lord and Novick (1968, equation 11.12 .3) have derived an equation for determining the standard error of the mean proportion correct score given (a) items are scored dichotomously, (b) items are sampled randomly and without replacement from the item population, and (c) examinees are sampled randomly and without repla ement from the examinee population. Restrictions (b) and (c) produce item subsets and examjnee subgroups which are nonoverlapping, $1 . e .$, no item is found in more than one subtest and no examinee

$$
-24-
$$

Table 4.6
Pooled Estimates Of Parameters From Subtest Results

Subtest	Number of Observations
1	180
2	140

is found in more than one subgroup. Equation 11.12 .3 when modified to give the standard error of the mean test score is

$$
\begin{align*}
\operatorname{var}\left(\hat{\mu}_{\text {pooled }}\right)= & {\left[\frac{1}{t k n}\right]\left[\frac{1}{(K-1)(N-1)}\right] } \\
& {\left[k^{2} N \sigma_{p}^{2}\{(K-k)(n-1)-k n(t-1)\}+\right.} \tag{4.8}\\
& K \sigma^{2}\{(N-n)(k-1)-k n(t-1)\}+ \\
& \hat{\mu}(K-\hat{\mu})\{(K-k)(N-n)+\operatorname{kn}(t-1)\}],
\end{align*}
$$

where K refers to the total number of test items, N to the total number of examinees, σ^{2} to the population variance, σ_{p}^{2} to the variance of item difficulty indices, and $\hat{\mu} \quad$ to the estimate of the population mean obtained from multiple matrix sampling.
In practice, σ^{2} and σ_{p}^{2} are estimated; t, k, and n are parameters defining the sampling plan. of course, $\operatorname{SE}\left(\hat{\mu}_{\text {pooled }}\right)=\operatorname{VAR}\left(\hat{\mu}_{\text {pooled }}\right)^{\frac{1 / 2}{2}}$ No equation is given by Lord and Novick for $\operatorname{SE}\left(\hat{\sigma}_{\text {pooled }}\right)$ under multiple matrix sampling.

Approximating the Normative Distribution

In addition to estimating individual parameters through multiple matrix sampling, it is possible to estimate the entire normative frequency distribution of test scores which would have been obtained by testing all students on all 50 items. The negative hypergeometric distribution has been shown by Keats and Lord (1962) to provide a reasonably good fit for a wide variety of test score distributions when the test score is the number of correct responses. The negative hypergeometric distribution is a function of the mean test score μ, the variance of the test scores σ^{2} and the total number of items in the test K. Lord (1962) and Shoemaker (1970) have demonstrated the negative hypergeometric distribution
with parameters estimated by multiple matrix sampling can be used satisfactorily to approximate normative distributions of number correct test scores. The formula for the negative hypergeometric distribution is

$$
\begin{equation*}
h(T)=\frac{c(-K)_{T}^{(a)} T}{(-b)_{T} T!} \text { for } T=0,1,2, \ldots, K \tag{4.9}
\end{equation*}
$$

where,

$$
\begin{gathered}
a=\left(-1+1 / \hat{\alpha}_{21}\right) \hat{\mu}_{\text {pooled }} \\
b=-a-1+K / \hat{\alpha}_{21} \\
c=\frac{b^{[K]}}{(a+b)^{[K]}}
\end{gathered}
$$

noting that,

$$
b^{[K]}=b(b-1)(b-2) \ldots(b \cdots k+1)
$$

$$
(a)_{T}=a(a+1)(a+2) \ldots(a+T-1)
$$

$$
\begin{gathered}
(a)_{0}=b^{[0]}=1 \\
T!=T(T-1)(T-2) \ldots(2)(1) .
\end{gathered}
$$

Using estimates of μ and σ^{2} obtained from the word spelling project, the calculations necessary for approximating the normative
distribution on the $50-i \operatorname{tem}$ test with the negative hypergeometric distribution are illustrated in Table 4.7 with complete results given in Table 4.9. The computations involved in estimating μ and $\sigma 2$ and approximating thfe normative distribution by the negative hypergeometric distribution are more laborious than difficult. A computer program has been developed which performs all the necessary computations and output for the word spelling project is given in Tables 4.8 and 4.9. A detailed writaup and listing of the computer program is given in Appendix A.

An examination of the estimates of parameters given in Table 4.8 suggests that individual subtests were not equally difficult, particularly subtest 5. Although the words included in subtest 5 were selected randomly from the 50 -word population and administered to subgroups of examinees selected at random from each class, the results merely confirm the wellknown fact that extreme cases do ocrur through random sampling. An obvious advantage, then, of multiple matrix sampling over any individual itemexaminee sample is that the estimates obtained in the former case are based on a composite and hence less subject to sampling extremities. Stated more precisely, the standard error associated with the pooled estimate of the mean test score is less than the standard error associated with any of the estimates of the mean obtained from subtests. The results for μ and σ given in Chapter V illustrate adequately the difference in standard errors of estimate described here.

The relative frequencies given in Table 4.9 are actually the individual probabilities associated with all possible test scores. For example, the probability of an examinee spelling correctly 20 words out of 50 is .023. An equally appropriate interpretation is that 2.3 per cent of the examinees in the population would spell correctly 20 words. As should be the case, the relative frequencies in Table 4.9 sum to unity. An estimate of the number of examinees receiving each test score is obtained by multiplying the total number of examinees in the population by the probability associated with each test score. For example, if there were 1000 students in the population of kindergarteners, 23 students would be expected to spell correctly 20 of the 50 words on the test.

Although equations 4.1 and 4.2 are appropriate for all item scoring procedures, the negative hypergeometric distribution is used only when the test score is the number of correct answers. This is, of course, the case when items are scored $1=$ pass and $0=$ fail. When items are not scored dichotomously, the normative frequency. distribution may be approximated by a Fearson curve using the first moment about the origin and the second, third and fourth moments about the mean. There are 12 curves in the family of Pearson curves and the procedure for selecting the appropriate curve and making the necessary calculations to approximate the normative distribution are given by Elderton (1938 , pp. 38-127) and by Kendall (1952, pp. 137-145). Lord (1960) has suggested that a Pearson Type I curve may be an appropriate selection. It should be mentioned, however, that such a procedure is not a casual undertaking. Before such procedures can be used, computational formulas for estimating μ_{3} and μ_{4} must be derived. Guidelines for estimating these monents are given by Hooke (1956).

$$
-28-
$$

Table 4.7
Computations For Negative Hypergeometric Distribution

$$
\begin{aligned}
\hat{\alpha}_{21} & =(50 /(50-1))\left(1-\left(20.4286-20.4286^{2} / 50\right) / 170.0552\right)=.9479 \\
\mathrm{a} & =(-1+1 / .9479)(20.4287)=1.1226 \\
\mathrm{~b} & =-1.1226-1+50 / .9479=50.6250 \\
\mathrm{c} & =\frac{50.6250^{[50]}}{51.7476^{[50]}}=\frac{50.6250(50.6250-1)(50.6250-2) \ldots(50.6250-49)}{51.7476(51.7476-1)(51.7476-2) \ldots(51.7476-49)}=.0214
\end{aligned}
$$

$$
h(0)=(.0214) \frac{(-50)_{0}(1.1226)_{0}}{(-50.6250)_{0} 0!}=(.0214) \frac{(1)(1)}{(1)(1)}=.0214
$$

$$
h(1)=(.0214) \frac{(-50)_{1}(1.1226)_{1}}{(-50.6250)_{1} 1!}=(.0214) \frac{(-50)(1.1226)}{(-50.6250)(1)}=.0237
$$

$$
h(2)=(.0214) \frac{(-50)_{2}(1.1226)_{2}}{(-50.6250)_{2} 2!}=(.0214) \frac{(-50)(-49)(1.1226)(2.1226)}{(-50.6250)(-49.6250)(2)}=.0248
$$

$$
-29
$$

Table 4.8
Estimates Of Parameters For Word Spelling Project

POOLED VARIANCE $=170.0552200$
-30-

Table 4.9
Estimated Relative Frequency Per, Test Score On The 50-Item Test Using The Negative Hypergeometric Distribution

Score	Relative Frequency	Score	Relative Frequency
0	. 0213564		
1	. 0236785	26	. 0216387
2	. 0248133	27	. 0211852
3	. 0254953	28	. 0207151
4	. 0259319	29	. 0202280
	. 0262115	30	. 0197236
6	. 0263806	31	. 0192016
7	. 0264667	32	. 0186613
8	. 0264872	33	. 0181020
9	. 0264544	34	. 0175230
10	. 0263766	35	. 0169233
11	. 0262602	36	. 016301.7
12	. 0261101	37	. 0156567
13	. 0259298	38	. 0149867
14	. 0257223	39	. 0142896
15	. 0254900	40	. 0135627
16	. 0252347	41	. 0128031
17	. 0249578	42	. 0120066
18	. 0246608	43	. 0111683
19	. 0243444	44	. 0102815
20	. 0240095	45	. 0093369
21	. 0236568	46	. 0083215
22	. 0232868	47	. 0072158
23	. 0228997	48	. 0059869
24	. 0224960	49	. 0045728
25	. 0220756	50	. 0028209

Computational Irregularities
In estimating parameters from subtests having a small number of items and examinees, it happens frequently that $\hat{\sigma}^{2}$ is equal to zero or is less than zero for one or more subtests. Although uninterpretable, estimates such as these should not be discarded or set equal to zero in computing $\hat{\sigma} 2$. It must be remembered that results of any subtest
are relatively unimportant; what is important is the accuracy of the pooled estimate of σ_{0}^{2} Any procedure which ignores part of the data produces an estimate of σ^{2} which is biased, i.e., it would not approach the true value even if the number of subtests was increased indefinitely. Sirotnik (1970) has verified empirically this conclusion.

REFERENCES

Elderton, W. P. Frequency curves and correlation. Cambridge: University Press, 1938.

Hooke, R. Some applications of bipolykays to the estimation of variance components and their moments. Annals of Mathematical StatigEieg, 1956, 27, 80-98.
Keats, J. A. $\& \notin$ Lord, F. M. A theoretical distribution for mental test scores. Psychometrika, 1962, 27, 59-72.

Kendal1, M. G. The advanced theory of statistics, Volume I (Fifth Edition) New York: Hafner, 1952.

Lord, F. M. Use of true-score theory to predict moments of univariate and bivariate observed-score distributions. Psychometrika, 1960, 25, 325-342.

Lord, F. M. Estimating norms by item sampling. Educational and Psychological Measurement, 1962, 22, 259-267.
Lord, F. M. \& Novick, M. R. Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley, 1968.

Shoemaker, D. M. Allocation of items and examinees in estimating a norm distribution by item-sampling. Journal of Educational Measurement, 1970, 7, 123-128.

Sirotnik, K. An analysis of variance framework for matrix sampling. Educational and Psychological Measurement, 1970, 30, 891-908.

Computer Simulation of Multiple Matrix Sampling

In evaluating a particular sampling plan or contrasting the relative merits of several plans used in multiple matrix sampling, statistics of primary importance are the standard error of estimate and the mean estimate for each parameter given that sampling plan. For example, if an investigator were estimating parausters of a 50 -item test using multiple natrix sampling, one sampling plan might be (5/20/30); another, ($10 / 10 / 60$). In the first sampling plan, the 50 -item test is subdivided through random sampling without replacement within subtests and with replacement between subtests into 5 subtests containing 20 items each with each subtest administered to 30 examinees; in the second plan, similarly, 10 subtests containing 10 items each with each subtest administered to 60 examinees. The sampling plan selected will be used only once in an investigation; yet, in selecting the particular plan to be used, the investigator must be aware of the standard error of estimate associated with each sampling plan under consideration. Lord and Novick (1968, equation 11.12.3) have derived algebraically the standard error of estimating the mean proportion correct score given nonoverlapping random samples of dichotomouslyscored items drawn without replacement from the item population. No comparable equation is given by them for computing the standard error of estimating the population standard deviation under multiple matrix sampling. What is required, however, are equations for estimating standard errors of estimate per parameter for all potentially useful sampling plans, not just those plans involving nonoverlapping random samples of items from the item population. The computational difficulties in such a task are not minor; however, the results of such equations are approximated readily and to any desired degree of accuracy through the computer simulation model described herein. The remaining sections of this chapter are devoted to a detailed discussion of a simulation model for multiple matrix sampling. The reader uninterested in such matters can bypass safely this chapter without a loss of continuity. However, several of the guidelines for multiple matrix sampling given in Chapter III are based on results obtained through use of this model and, it must be stressed, that the results obtained are only as good as the simulation model used.

Simulated Post Mortem Sampling

The algorithm used within the model is described most appropriately as simulated post mortem multiple matrix sampling. In post mortem sampling, item-examinee samples are taken from an N by K data base obtained by testing N examinees over K items; in simulated post mortem sampling, the N by K data base is computer-generated by a simulation model. Generating data bases with prescribed parameters is essential in investigating hypotheses in multiple matrix sampling because it is difficult, if not impossible, to locate existing data bases having the necessary variation in test parameters. For example, if the standard error of estimate were being investigated as a function of variation in item difficulty indices for a given test reliability and test length, it would be difficult locating data bases with $\sigma_{p}^{2}=.00, .05$,
and .08 all having $\alpha_{20}=.80$ and the same test length. Such a problem is, however, handled easily with a simulation model. As an overview, the computer program generates a data base, selects multiple itemexaminee samples from this data base, performs all calculations necessary for estimating parameters, and replicates this procedure as many times as specified before computing the standard error of estimate and mean estimate per parameter over replications. The computer program is restricted to data bases having dichotomously-scored items and, in multiple matrix sampling, to subtests having an equal number of items and examinees.

Generation of Data Bases

In simulating multiple matrix sampling, generation of the data base is of primary importance. Although one procedure might be that of generating an N by K matrix and storing it in memory, a more appropriate procedure is one in which the item scores on the K-item test are generated for one and only one individual at a time. All that is stored in memory are the K item scores for one individual. The procedure, however, for generating item scores must be one such that, over any number of hypothetical examinees generated, the items and test scores have prescribed characteristics. In this procedure, the population of examinees N is countably infinite. The test parameters subject to manipulation within the program are: (a) K, the number of items in the item population, (b) μ, the mean test. score over examinees, (c) σ^{2}, the variance of test scores over examinees, (d) α_{20}, the coefficient of reliability for the K-item test, (e) σ_{p}^{2}, the variance of the item difficulty indices, where, the difficulty index p_{i} for item i is the proportion of examinees answering correctly item 1 , and (f) the degree of skewness in the distribution of test scores for examinees on the K-item test. In the computer program, values for K, μ and σ_{p}^{2} must be specified by the user. The maximum value for K is 150 ; μ is, therefore, restricted to values $0<\mu<K$. If α_{20} is specified, σ^{2} is determined by the well-known relationship

$$
\begin{equation*}
\alpha_{20}=\frac{K}{K-1}\left[\frac{\sigma^{2}-\mu+\frac{\mu^{2}}{K}+K \sigma_{p}^{2}}{\sigma^{2}}\right] \tag{5.1}
\end{equation*}
$$

derived originally by Tucker (1949). If σ^{2} is specified by the user, $\alpha 20$ is determined consequently. Such an arrangement has been incorporated within the program to facilitate hypothesis testing where either σ^{2} or α_{20} is to be controlled across levels of K. Of course, $\bar{p}=\mu / K$ is determined once μ has been specified. The degree of skewness in the normative distribution is simulated by using the lognormal or normal probability distribution functions to generate test score distributions. The lognormal distribution with two parameters is used to generate positively-skewed test score distributions while the three parameter lognormal distribution is used for negatively-skewed distributions. The lognormal distribution is described in detail by Aitchison and Brown (1957) and a detailed explanation of simulating stochastic variates with the lognormal distribution is given by Naylor, Balintfy, Burdick and Chu (1966). The normal density function is, of course, used to simulate normal test score distributions. Density functions for the two and three parameter lognormal probability distributions are, respectively,

$$
\begin{gather*}
\Omega\left(T \mid \mu, \sigma^{2}\right)=\frac{1}{\operatorname{T\sigma } \sqrt{2 \pi}} \exp \left[-\frac{\{\ln (T)-\mu\}^{2}}{2 \sigma^{2}}\right] \tag{5.2}\\
\Omega\left(T^{\prime} \mid T^{\prime}=K-T, \mu, \sigma^{2}\right)=\frac{1}{T \sigma \sqrt{2 \pi}} \exp \left[-\frac{\{\ln (T)-\mu\}^{2}}{2 \sigma^{2}}\right] \tag{5.3}
\end{gather*}
$$

for $T=0,1,2, \ldots, K$.
For the normal distribution, the density function is

$$
\begin{equation*}
N\left(T \mid \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \Pi}} \exp \left[-\frac{(T-\mu)^{2}}{2 \sigma^{2}}\right] \tag{5.4}
\end{equation*}
$$

The constants μ and σ^{2} in 5.4 are equal, respectively, to the desired mean and variance in the normative distribution; however, in 5.2 and 5.3 , μ and σ^{2} are a function of the desired mean and variance in the normative distribution. If the desired mean and variance of the normative distribution are denoted, respectively, by α and β, μ and $\sigma 2$ in 5.2 and 5.3 are computed by

$$
\begin{equation*}
\mu=\ln (\alpha)-\frac{\ln \left(\beta^{2} / \alpha^{2}+1\right)}{2} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}=\ln \left(\beta^{2} / \alpha^{2}+1\right) \tag{5.6}
\end{equation*}
$$

The appropriate derivations for 5.5 and 5.6 are given by Naylor, Balintfy, Burdick and Chu (1966). If z is a random normal deviate $N(0,1)$, test scores T having lognormal distributions are generated by

$$
\begin{equation*}
T_{i}=\exp \left(\mu+\sigma z_{i}\right) \quad i=1,2, \ldots, N \tag{5.7}
\end{equation*}
$$

for positively-skewed distributions, and

$$
\begin{equation*}
T_{i}=K-\exp \left(\mu+\sigma z_{i}\right) \quad 1=1,2, \ldots, N \tag{5.8}
\end{equation*}
$$

for negatively-skewed distributions. For nurmal distributions,

$$
\begin{equation*}
T_{i}=\mu+\sigma z_{i} \quad i=1,2, \ldots, N \tag{5.9}
\end{equation*}
$$

The T scores computed in $5.7,5.8$ and 5.9 will be continuous variables. Because items are scored dichotomously, the T score must be rounded to the nearest integer value. The midpoint of each score interval is taken to be that point above which one-half of the area in that score interval is found. This point is found by integrating via trapezoid rule the area under the appropriate normal or lognormal curve. If the T score is
equal to or greater than the midpoint, the score is rounded up; if not, the score is rounded down.

Item scores are related to test scores. Specifically, if $X_{i j}$ is the item score for examinee i on item $j, \sum_{j}^{K} X_{i j}=T_{j}$. Also, $\bar{p}=\bar{T} / K$. If σ_{p}^{2} is greater than zero, Individual item difficulty indices are generated by

$$
\begin{equation*}
p_{i}=\bar{p}+\sigma_{p} z_{i} \quad i=1,2, \ldots, k \tag{5.10}
\end{equation*}
$$

where z_{i} is a random normal deviate. When σ_{p}^{2} is not equal to zero, the distribution of p_{i} values will be approximately normal. Ii σ_{p}^{2} is equal to zero, $p_{i}=\bar{p}$ for all values of i. With skewed distributions, σ_{p}^{2} is typically $0<\sigma_{p}^{2}<.001$ and, because of this, σ_{p}^{2} is set to zero for all skewed distributions generated by the simulation model. After the item difficulty indices have been generated within the program, deciding if an examinee passes or fails each item is relatively simple. Item difficuity indices are computed for all items generated. An examinee "passes" those items which will bring the computed item difficulty indices most closely to the desired item difficulty indices. For example, if the computed item difficulty for item i were less than the desired item difficulty for item i, examinee j would pass item i; if the computed difficulty were equal to or greater than the desired item difficulcy, he "fails" item i. In the program, the desired item difficulty indices are sorted in descending order. If, in following the algorithm from the first through the Kth item, $\sum_{i}^{K} X_{i j} \neq T_{j}$, the first $T_{j}-\sum_{i j}^{K} X_{i j}=d$ items not already passed by examinee j are scored by the program as items answered correctly by him.

The validity of the simulation model is found in its ability to generate the desired data base. Two examples of data bases generated by the model are given in Tables 5.1 and 5.2. Although the discrepancies in Table 5.2 are minor, it should be noted that the magnitude of the discrepancies decreas with increases in K.

Simulation of Multiple Matrix Sampling

Subtests are constructed within the program by sampling at random items from the K-item population. For example, if K equals 50 and a (5/10/3G)

Table 5.1
Results Obtained From Simulation Model For 3000 Examinees When $K=20$ With The Normative Distribution Distributed Normally

Parameter	Input	Output
K	20	20
μ	10.0000	10.0150
σ^{2}		computed
α_{20}	.8000	.7999
\bar{p}	.5000	.5010
σ_{p}^{2}	.0800	.0799
N	3000	3000

Item Difficulty Indices			Obtained Frequency Dist. Score Frequency	
			0	16
1	. 987	. 987	1	17
2	. 901	. 901	2	36
3	. 857	. 857	3	47
4	. 782	. 787	4	96
5	. 750	. 750	5	136
6	. 737	. 738	6	182
7	. 702	. 703	7	225
8	. 634	. 634	8	307
9	. 565	. 566		266
10	. 518	. 519	10	328
11	. 458	. 458	11	327
12	. 442	. 442	12	256
13	. 430	. 430	13	210
14	. 374	. 374	14	191
15	. 275	. 275	15	122
16	. 208	. 209	16	104
17	. 139	. 140	17	67
18	. 113	. 114	18	38
19	. 112	. 113	19	16
20	. 026	. 026	20	13

Table 5.2
Results Obtained From Sixulation Model For 3000 Examinees When $\mathrm{K}=20$ With The Normative Distribution Negatively-Skewed (Three Parameter Lognormal Distribution)

Parameter	Input	Output
K	20	20
μ	17.5000	17.6150
σ^{2}		computed
α	. 8000	. 7570
$\overline{\mathbf{p}}$. 8750	. 8810
σ_{P}^{2}	. 0000	. 0002
N	3000	3000

Item Difficulty Indices			Obtained Frequency Dist. Score Frequency	
			0	16
1	. 875	. 930	1	3
2	. 875	. 908	2	2
3	. 875	. 888	3	5
4	. 875	. 876	4	4
5	. 875	. 876	5	3
6	. 875	. 876	6	3
7	. 875	. 876	7	6
8	. 875	. 876	8	8
9	. 875	. 876	9	15
10	. 875	. 876	10	15
11	. 875	. 876	11	32
12	. 875	. 876	12	32 43
13	. 875	. 876	13	43 84
14	. 875	. 876	14	84 135
15	. 875	. 876	15	130
16	. 875	. 876	16	352
17	. 875	. 876	18	670
18	. 875	. 876	18	885
19	. 875	. 875	19	885 495
20	. 875	. 875	20	495

sampling plan were used, 5 subtests would be formed by sampling without replacement from the 50 -item pool 10 items for each subtest. If ($10 / 10 / 30$) were used, 10 subtests would be formed containing 10 items each; however, the sampling plan for items requires sampling without replacement for each subtest but with replacement between subtests. In ($10 / 10 / 30$), several items will be common to more than one subtest. Taking ($10 / 10 / 30$) as an example, item scores on the $K-i t e m$ test would be generated by the program for 300 examinees. For subtest 1 , the data from the first 30 examinees would be processed for only those items included in subtest 1. An identical procedure is followed for subtest 2 through subtest 10. The computations performed on each item-examinee sample are identical to those outlined in Chapter IV. If the user opts r replications of a particular sampling plan, r pooled estimates of each parameter will be produced and the standard error of estimate per parameter with that sampling plan is the standard deviation of the r pooled estimates for each parameter. Sample output for the ($10 / 15 / 30$) plan with 5 replications is given on page 42 through 49 for the normal normative distribution case.

Uses for the Simulation Model

It is anticipated that the computer program for simulating multiple matrix sampling described herein, and listed with expanded writeup in Appendix B, will facilitate readily a detailed examination of the relative merits of one or more sampling plans in multiple matrix sampling. In multiple matrix sampling questions asked frequently are "How do I do it?" and "If I sample this way, how accurate will the estimates be?" Questions such as these are answered easily through use of the simulation model. The results obtained from the program are reasonable to the degree that the normative distributions can be described adequately by the normal and lognormal probability distributions. It is commonly known that achievement test scores are frequently normaliy distributed. However, the scores on criterion-referenced tests, i.e., end-of-program tests, are frequently markedly negatively-skewed and resemble closely a three parameter lognormal distribution. It is anticipated that the simulation model will prove to be an asset in test theory and test construction courses permitting the student to have a working familiarity with sampling procedures used in multiple matrix sampling.

REFERENCES
Aitchison, J. \& Brown, J. A. C. The lognormal distribution. Cambridge: Cambridge University Press, 1957.

Lord, F. M. \& Novick, M. R. Statistical theories of mental test scores. Reading, Mass.: Addison-Wesiey, 1968.

Naylor, T. H., Balintify, J. L., Burdick, D. S. \& Chu, K. Computer simulation techniques. New York: ïiley, 1966.

Tucker, L. R. A note on the timation of test reliability by the KuderRichards on Formula 20. sychometrika, 1949, 14, 117-119.
-42-

.1.) 1.1	$1!09$
-	
V $\therefore 191$.	$\therefore \square$
1.	$?$
1. $+1+\cdots$	$1.70 n$
Vi, (1)	1. 0

-1:

IRT in
\therefore :r.T \quad ?
Mirp: \because
$\therefore 41 \mathrm{CH}$

\therefore AlGT!V: UTコTLIGUTTMM 1

FILMED FROM BEST AVAILABLE COPY
-43~

-44-

SUBTEST ITENS

ESTIMATE OF PARAMETER

$4.604<635$

EST. CF MEAN
FST. OF STANDARD DEVIATION $-\frac{0.218}{4.083}$
REPLICATITN NO. 4
FILMED FROM BEST AVAILABIE COFY

Hypothesis Testing and Multiple Matrix Sampling

Parameters estimated through multiple matrix sampling are integrated easily into a variety of hypothesis testing procedures. For example, onesample and two-sample t-tests can be performed readily with estimates of μ and σ^{2} obtained by multiple matrix sampling. Specifically,

$$
\begin{equation*}
\mathrm{t}_{\mathrm{df}=\mathrm{N}-1}=\frac{\hat{\mu}_{\text {pooled }}-\mu_{\text {standard }}}{\left(\hat{\sigma}_{\text {pooled }}^{2} / \mathrm{N}\right)^{\frac{1}{2}}} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{t}_{\mathrm{df}=\mathrm{N}_{1}+\mathrm{N}_{2}-2}=\frac{\hat{\mu}_{1_{\text {pooled }}}-\hat{\mu}_{2_{\text {pooled }}}-\left(\mu_{1}-\mu_{2}\right)}{\left[\frac{\left(\mathrm{N}_{1}-1 \hat{\sigma}_{1}^{2}{ }_{\text {pooled }}^{2}+\left(\mathrm{N}_{2}-1 \hat{\sigma}_{2_{\text {pooled }}^{2}}^{2}\right.\right.}{N_{1}+N_{2}-2}\right]\left[\frac{1}{N_{1}}+\frac{1}{N_{2}}\right]} . \tag{6.2}
\end{equation*}
$$

The t-test for the difference between two independent means given in 6.2 can be extended to completely randomized and factorial analysis of variance designs where the dependent variable is a mean test score. Although analysis of variance designs with mean scores as the dependent variable are found intrequently in the literature, the frequently occuring circumstances in which mean scores are preferabie to raw scores in such analyses are detailed most succinctly by Peckhan, Glass and Hopkins (1969).

Consider the design in which the relative merits of four experimental training programs are being contrasted through end-of-program test scores obtained from students participating in each procedure. Through an analysis of pretest scores given to all students, ten classes have beer selected for each training program such that, across training programs, the four groups of 10 classes are approximately homogeneous at the start of instruction. The mean achievement test score for each class is estimated easily through multiple matrix sampling. The statistical layout and sources of variation are given in Table 6.1. If an additional variable, such as school district, were added to the design, the statistical layout and sources of variation are modified slightly as seen in Table 6.2. After the measurement on the dependent variable is accomplished, computations in the analysis of variance proceec in the usual manner. The novelty herein is in estimating the class mean test score through multiple matrix sampling.

Testing homogeneity of variance hypotheses of the form $\sigma_{1}^{2}=\sigma_{2}^{2}=$... $=\sigma^{2}$ is accomplished for two variances by

$$
\mathrm{F}_{\left(\mathrm{N}_{1}-1, \mathrm{~N}_{2}-1\right)} \frac{\hat{\sigma}_{1}^{2}}{\hat{1}_{\text {pooled }}^{\hat{\sigma}_{2}^{2}}}
$$

and for more than two variances by, for example,

$$
\begin{equation*}
\mathrm{F}_{\text {max }}=\frac{\stackrel{\hat{\sigma} 2}{\text { largest }}}{\hat{\sigma}_{\text {sma11est }}^{2}} . \tag{6.4}
\end{equation*}
$$

Tables for the $F_{\text {max }}$ statistic have beer innstructed by Hartley and are given in Winer (1962, p. 653). Another simple test for homogeneity of variance developed by Cochran which lends itself to multiple matrix sampling is

$$
c=\frac{\dot{\sigma}_{\text {largest }}^{2}}{\sum \hat{\sigma}^{2}}
$$

and the necessary tables for the C statistic are given in Winer (1962, p. 654). The procedures in $6.3,6.4$, and 6.5 are not the only tests possible, but they are used frequently and illustrate the concept.

The normative distribution approximated by the negative hypergeometric distribution with parameters estimated through multiple matrix sampling provides the basic data, for several goodness-of-fit tests. For example, the Kolmogorov-Smirnov one-sample test (Siegel., 1956, pp. 47.52) provides a test of the hypothesis that the approximated distribution of scores came from a population of scores having a specified theoreti zal distribution. The test involves specifying the cumulative frequency distribution which would occur under the theoretical distribution and comparing that with the approximated cumulative frequency distribucion. The cumulative frequency distribution is, of course, obtained readily after the individual frequencies have been determined by multiplying the number of examinees in the population by the relative frequency per test score approximated by the negative hypergeometric distribution. A simple extension of the Kolmogorov-Smirnov one-sample test is the Kolmogorov-Smirnov two-sample test (Siegel, 1956, pp. 127-136) which is concerned with the agreement between two approximated frequency distributions.

The tests of hypotheses mentioned herein do not constitute an exhaustive listing of statistical tests to which estimates of parameters obtained through multiple matrix sampling are applicable. The intent. is merely that of suggesting the applicability of a novel technique to traditional hypothesis testing procedures. It should be noted that the $t-$ tests given in 6.1 and 6.2 are to be considered conservative tests of the hypotheses under consideration. The standard errors of estimate given in the denominators are those for the natched-items design and there is evidence (Osburn, 1967) suggesting that the corresponding standard errors under multiple matrix sampling will be less. In the algebraic derivation supporting this conclusion, Osburn was considering a form of multiple matrix sampling in which k items were selected at randon from the population of items for each examinee.
-53-

Table 6.1

Statistical Layout For One-Way Analysis Of Variance Problem With The Dependent Variable Being A Mean Achievement Test Score Estimated Through Multiple Matrix Sampling

Source of Variation	Degrees of Freedom
	3
Programs	36
Classes Within Programs	39
Total	

Table 6.2
Statistical Layout For Factorial (Tho-Way) Analysis Of Variance Problem With The Dependent Variable Being A. Mean Achievement Test Score Estimated Through Multiple Matrix Sampling

Program
i

District A

$\hat{\mu}_{6}$ pooled ${ }^{\hat{\mu}}{ }_{16}$ pooled ${ }^{\hat{\mu}_{26}}$ pooled ${ }^{\hat{\mu}_{36}}$ pooled

District B

Source Of Variation	Degrees of Freedom
Programs	3
Districts	1
Programs x Districts	3
Classes Within Programs \times Districts	32
Total	39

-55-

REFERENCES

Osburn, H. G. A note on design of test experiments. Educational and Psychological Measurement, 1967, 27, 797-802.

Peckham, P. D., Glass, G. V. \& Hopkins, K. D. The experimental unit in statistical analyses. Journal of Special Education, 1969, 3, 337-349.

Siegel, S. Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill, 1956.

Winer, B. J. Statistical principles in experimental design. New York: McGraw-Hill, 1962.

VII

Unique Applications of Multiple Matrix Sampling

Multiple matrix sampling has been used traditionally to estimate parameters of standardized tests where the total test score is equal to the sum of the item scores. For investigations focused primarily on group assessment, multiple matrix sampling has been demonstrated empirically to be an important and valuable procedure. Multiple matrix sampling, however, is applicable to a broader range of research problems than that suggested by the current literature. Four unique and timportant applications of multipie matrix sampling are described in this chapter. As is the case with most psychometric procedures and is certainly the case with multiple matrix sampling, the range of applications is determined solely by the degree of inventiveness in the individual researcher.

Design of Experiments

In the evaluation of instructional programs, the pre-post paradigm is used frequently and, as is traditionally the case, an individual test is administered to all examinees at both the start and end c instruction. Given an item population related to the instructional progr: under evaluation, a resedich design such as this is improved easily $w^{-\quad}$ the addition of multiple matrix sampling. In p.lace of using the sa test pre and post, random or stratified-random parallel tests are us 1 with parameters for both tests estimated through multiple matrix sam ing. A procedure such as this could be expanded further to include intermediate testing using additional parallel tests. An example of a design such as this and one demonstrating the concomitant benefits is given by osburn and Shoemaker (1968). In the evaluation of instructional programs it should be noted that a researcher is seldom interested in individual test items, individual tests, or individual examinees but is interested primarily in group behavior over time with regard to some specified item population. As such, multiple matrix sampling in conjunction with random or stratified-random parallel tests is an ideal measurement procedure.

Estimation of Covariance and Correlation Matrices

Item and test covariance matrices (and, hence, correlation matrices) are estimated readily through multiple matrix sampling. A modified
sampling plan is required such that all possible pairs of items or tests are included in one or more subtests or subbatteries. For example, consider estimating the elements in a covariance matrix for a 5-item test. To compute the covariance of Item 1 with Item 4, there must be a subgroup of examinees responding to both Item 1 and Item 4. If the examinee subgroup is sampled randomly from the population of examinees, $\operatorname{COV}(1,4)$ computed over those examinees is an estimate of $\operatorname{COV}(1,4)$ which would have been obtained by testing all examinees over both items. All remaining entries in the covariance matrix are estimated identically. A test covariance matrix is determined similarly with items being replaced by tests. A procedure such as this sets the stage for multiple matrix sampling playing an important role in a variety of multivariate procedures as, for example, factor analysis. Although little has been done in this area, some important preliminary research and a few of the relevant equations for estimating parameters have been reported by Lord (1960), Ray, Hundleby and Goldstein (1962), Knapp (1968) and Timm (1970).

Questionnaires and Surveys

A perennial problem with questionnnaires and surveys is the disappointingly low rate of completions or returns. Return rates of 20 to 30 per cent are not uncommon. Although examinees fail to return questionnaires for a multitude of reasons, one factor is undoubtedly the length of the questionnaire and the time required to complete all questions. If the measurement required is the proportion of examinees in each category, results can be approximated through multiple matrix sampling by administering questions selected randomly to a random sample of examinees. For example, if an 8-page questionnaite were to be administered to all elementary school teachers within a particular city, the questions contained therein could be divided into 8 subquestionnaires (each of which would require no more than the front of one piece of paper) with each subquestionnaire administered to a random sample of teachers. The time for completing each subquestionnaire is minimal and, as such, may increase the rate of returns. The point to be made is simply this: a little data from a large number of teachers is better than a lot of data from few teachers. It must be remembered, however, that questions within questionnaires are interrelated frequently (If "No" on Question 13, go to Question 20.) and complications such as these must be incorporated in constructing subquestionnaires.

Measurement in the Affective Domain

It is frequently the case that an investigator is interested in scaling the preferences or affect of a group or individuals for a particular set of objects. Although there are several procedures which could be used, the method of paired-comparisons is one encountered frequently in the literature (e.g., Snider (1960) and Holliman (1970). In the
-58-

$48:$
method of paired-comparisons, all possible combinations of the objects taking two at a time are presented individually and for each pair the examinee is asked to indicate his preference. For axample, if 6 stimuli were being scaled by the method of paired-comparisons, the test so constructed would contain $6(6-1) / 2=15$ items, for 12 stimuli, 66 items. After all pairs have been administered to all examinees, the preliminary analysis of the data involves the computation of the F-matrix and subsequent P -matrix. The P -matrix is the base from which the scale values per stimulus are computed and it is in estimating the values in the P -matrix that an application of multiple matrix sampling is found. Relevant preliminary research in this area has been reported by McCormick and Roberts (1952), McCormick and Bachus (1952) and Bursack and Cook (1970). If the s stimuli are numbered consecutively from 1 to s, the F-matrix is an s by s matrix with entries denoting the frequency with which the column stimulus was judged more favorable than the row stimulus. An example of an F-matrix and associated P-matrix are given in Table 7.1. Dividing each entry in the F-matrix by the total number of examinees, which is in this case equal to 17 , produces the corresponding entry in the P-matrix labeled appropriately as the proportion of examinees selecting the column stimulus over the row stimulus. In estimating the entries in the p-matrix through multiple matrix sampling, paired-comparisons are selected at random from the pool of all possible pairs and administered to samples of examinees selected randomly from the testable population.

Shoemaker (1971) using a post mortem item-examinee sampling design has explored systematically the feasibility of using multiple matrix sampling to estimate scale values obtained by the method of paired-comparisons. The major conclusions reached in this investigation were that (a) scale values can be approximated satisfactorily through multiple matrix sampling, and (b) the similarity between the estimated scale values and the normative scale values increases with increases in the number of observations acquired by the sampling plan, with the converse true. The specific procedure used to estimate the P -matrix from subtest results is detailed in the following 5 steps. Each step is illustrated with results from one replication of a (3/10/15) sampling plan. (In the Shoemaker investigation, the data base consisted of responses made by 407 primary grade students to a 15-item test designed to scale degree of affect to 6 stimuli.)

Step 1: Three subtests containing 10 items each are formed by sampling items randomly and without replacement within subtests but with replacement between $s u b$ tests.

Subtest
Items

1	8	14	11	9	6	2	3	12	15	10
2	14	6	3	12	4	1	2	11	13	10
3	14	13	2	9	6	11	4	15	3	12

Step 2: Three subgroups of examinees containing 15 examinees each are formed by sampling randomly and without replacement from the 407 examinee population.

Subgroup	Examinees														
1	359	22	280	272	139	206	169	321	323	23	271	66			100
2	345	367	281	390	366	70	361	250	154	168	8	138	279	335	399
3	34	220	276	125	382	219	217	327	401	385	113	62	77	192	156

Step 3: Pairing subtest i with subgroup 1, an f-matrix is formed for each subtest using only the responses made by the corresponding examinee subgroup on the items contained in that subtest. Each f-matrix is constructed in conjunction with a link-matrix containng the code numbers of stimuli paired within each test item. For the data base considered herein, the link-matrix was

Fest Item	Stimulus Pair	
01	1	2
02	4	3
03	5	6
04	2	6
05	1	3
06	4	5
07	2	3
03	1	5
09	4	6
10	1	4
11	2	5
12	3	6
13	3	5
14	1	6
15	2	4

The f-matrices for the 3 subtests used in (3/10/15) are

$$
\text { f-matrix 1 }=\left[\begin{array}{rrrrrr}
& 0 & 0 & 9 & 14 & 8 \\
0 & & 0 & 8 & 15 & 0 \\
0 & 0 & & 5 & 0 & 4 \\
6 & 7 & 10 & 3 & 12 & 9 \\
1 & 0 & 0 & 3 & 13 &
\end{array}\right]
$$

3. 65

-61.						
f-matrix $2=$	-	-				7
		13	0	5	0	10
	2		0	0	11	4.
	0	0		4	6	2
	10	0	11		11	0
	0	4	9	4		1
	5	11	13	0	14	
f-matrix $3=$		0	0	0	0	7
	0		0	9	14	8
	0	0		6	6	4
	0	6	9		13	11
	0	1	9	2		3
	8	7	11	4	12	

Step 4: In pooling the f-matrices to obtain the P-matrix, an ac-counting-matrix is required to distinguish between items omitted in the construction of subtests and items to which all examinees in a particular subgroup responded identically. For the f-matrices given in step 3, the accounting-matrix is

$$
\text { accounting-matrix }=\left[\begin{array}{lllllll}
0 & \cdots & 1 & 0 & 2 & 1 & 3 \\
1 & 0 & 0 & 2 & 3 & 2 \\
0 & 0 & 0 & 3 & 2 & 3 \\
2 & 2 & 3 & 0 & 3 & 2 \\
1 & 3 & 2 & 3 & 0 & 3 \\
3 & 2 & 3 & 2 & 3 & 0
\end{array}\right] \cdot
$$

Off-diagonal zeros are of critical importance in pooling subtest results. In each f-matrix, $f(i, j) \not f f(j, i)=n$ for those stimulus pairs contained within the subtest and $f(j, i)$, for example, could be zero for two reasons: (a) the item containing stimulus pair (i, j) was not included in the subtest, or (b) all examinees in that particular subgroup selected stimulus i over stimulus j. This distinction must be maintained in pooling the f-matrices to produce the P-matrix.

Step 5: The P -matrix is formed by pooling across corresponding encries in t' e f-matrices after each entry in the f-matrix has been divided by the nur', er of examinees in the corresponding subgroup. The sum of proportions is. then divided by the corresponding number in the accounting-matrix. As an example, consider computing the $(1,6)$ and $(5,1)$ entries in the P-matrix:

If the number of examinees per subgroup is unequal, the proportions are combined by a weighted arithmetic mean and the corresponding entry in the accounting-matrix is equal to the number of examinees for which data existed. Elements in the P-matrix are set equal to . 5 if the corresponding entry in the accounting-matrix is equal to zexo. In this example, the P -matrix is

$$
\text { P-matrix }=\left[\begin{array}{llllll}
.500 & .867 & .500 & .467 & .933 & .556 \\
.133 & .500 & .500 & .567 & .889 & .400 \\
.500 & .500 & .500 & .333 & .400 & .222 \\
.533 & .433 & .667 & .500 & .800 & .667 \\
.067 & .111 & .600 & .200 & .500 & .133 \\
.444 & .600 & .778 & .333 & .867 & .500
\end{array}\right] \text {. }
$$

After the P-matrix has been formed, scale values per stimulus are computed as if all examinees had responded to all items using computational procedures detailed in Edwards (1957). Using Thurstone's Model V scaling procedure, the resultant scale values from the P-matrix given in step 5 and those obtained from using all 407 examinees over all items are

	s_{1}	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{4}$	$\mathrm{~s}_{5}$	$\mathrm{~s}_{6}$
(3/10/15) Norm (5)	.000	.442	.688	.172	1.184	.184

REFERENCES

Bursack, B. A. \& Cook, D. L. Utilizing item sampling techniques to scale affective reaction to mathematics. Paper presented at the meeting of the American Educational Research Association, Minneapolis, Minnesota, 1970.

Edwards, A. L. Techniques of attitude scale construction. New York: Appleton-Century-Crofts, 1957.

Holliman, N. B. The scaling of incentlves for children by pajir compar-ison. Psychological Record, 1970, 20, 197-202.

Knapp, T. R. An application of balanced incomplete block designs to the estimation of test norms. Educational and Psychological Measurement, 1968, 28, 265-272.

Lord, F. M. Use of true-score theory to predict moments of univariate and bivariate observed-score distributions. Psychometrika, 1960, 25, 325-342.

McCiormick, E. J. \& Bachus, J. A. Paired comparison ratings. I. The effect on ratings of reductions in the number of pairs. Journal of Applied Psychology, 1952, 36, 123-127.

McCormick, E. J. \& Roberts, W. K. Paired comparison ratings. II. The reliability of ratings based on partial pairings. Journal of Applied Psychology, 1952, 36, 188-192.

Osburn, H. G. \&
D. M. Pilot project on computer generated test items. Fit nc : Project No. 6-8533, Grant No. OEG-1-7-0685333917, U. S. Department of Health, Education and Welfare, Office of Education, Bureau of Research, 1968.

Ray, W. S., Hundleby, J. D. \& Goldstein, D, A. Test skewness and kurtosis as functions of item parameters. Psychometrika, 1962, 27, 34-47.

Shoemaker, D. M. An application of item-examinee sampling to scaling affect by the method of paired-comparisons. Unpublished manuscript, 1971.

Sn!.der, B. Attitude of kindergarten children toward specially prepared story materials. Journal of Experimental Education, 1960, 28, 207218.

Timm, N. H. The estimation of variance-covariance and correlation matrices from incomplete data. Psychometrika, 1970, 35, 417-437.

BJ.BLIOGRAPHY

Cahen, L. S. An interim report on the National Longitudinal Study of Mathematical Abilitiles. The Mathematics Teacher, 1965, 58, 522-526.

Cahen, L. S., Romberg, T. A. \& Zwirner, W. The estimation of mean achievement scores for schools by the item-sampling technj.que, Educational and Psychological Measuremeric, 1970, 30, 41-60.

Cook, D. L. \& Stufflebeam, D. L. Estimating test norms from variable size item and examinee samples. Educational and Psychological Measurement, 1967, 27, 601-610.

Cronbach, L. J. Course improvement through evaluation. Teachers College Record, 1963, 64, 672-6133.

Cronbach, L. J., Rajaratnam, N. \& Gleser, G. C. Theory of generalizability: A liberalization of reliability theory. British Journal of Statistical Psychology, 1963, 16, 137-163.

Cronbach, L. J., Sch ${ }^{\text {nemann, } P \text {. \& McKie, D. Alpha coefficients for }}$ stratified-parallel tests. Educational and Psychological Measurement, 1965, 25, 291-312.

Gorth, W. \& Grayson, A. A program to compose and print tests for instructional testing using item sampling. Educational and Psychological Measurement, 1969, 29, 173-174.

Hooke, R. Some applications of bipolykays to the estimation of variance components and their momentis. Annals of Mathematical Statistics, 1956, 27, 80-98.

Johnson, M. C. \& Lord, F. M. An empirical study of the stability of a group mean in relation to the distribution of test items among pupils. Educational and Psychological Measurement, 1958, 18, 325329.

Keats, J. A. \& Lord, F. M. A theoretical distribution for mental test scores. Psychometrika, 1962, 27, 59-72.

Kleinke, D. J. A prograin for generating a negative hypergeometric distribution for test score data. Educationa! and Psychological Measurement, 1970 , 30, 745-746.

Knapp, T. R. An application of balanced incomplete block designs to the estimation of test norms. Educational and Psychological Measurement, 1968, 28, 265-272.

Lord, F. M. Sampling fluctuations resulting from the sampling of test items. Psychometrika, 1955, 20, 1-23.

Lord, F. M. Tesc norms and sampling theory. Journal of Experimental Education, 1959, 27, 247-263.
Lord, F. M. Statistical inference about true scores. Psychometrika, 1959, 24, 1-17.
Lord, F. M. Use of true-score theory to r redict moments of univariate and bivariate observed-score distributions. Psychometrika, 1960, 25, 325-342.

Lord, F., M, Estimating norms by item sampling. Educational and Psychological Measurement, 1962, 22, 259-267.

Lord, F. M. \& Novick, M. R. Statistical theories of mental test scores. Reading, Mass.: Addison-Wesley, 1968. (Chapter 11, Pp. 234-260: Item sampling in test theory and in research design; Chapter 23, pp. 508-529: Binomial error models).

Osburn, H. G. A note on design of test experiments. Educational and Psychological Measurement, 1967, 27, 297-802.
Osburn, H. G. Item sampling for achievement testing. Educational and Psychological Measurement, 1968, 28, 95-104.
Osburn, H. G. The effect of item stratification on errors of measurement. Educational and Psychological Measurement, 1969, 29, 295-301.
Owens, T. R. \& Stufflebeam, D. L. An experimental comparison of item sampling and examinee sampling for estimating test norms. Journal of Educational Measurement, 1969, 6, 75-83.

Plumlee, L. B. Estimating means and standard deviations from partial data - an empirical check on Lord's item sampling technique. Educational and Psychological Measurement, 1964, 24, 623-630.
Rajaratnam, N., Cronbach, L. J. \& Gleser, G. C. Generalizabı11ty of stratified-pardllel tests. Psychometrika, 1965, 30, 39-56.
Shoemaker, D. M. \& Ósburn, H. G. An empirical study of generalizability coefficients for unmatched data. British Journal of Mathematical and Statistical Psychology, 1968, 21, 239-246.
Shoemaker, D. M. \& Osburn, H. G. Computer-aided item sampling for achievement testing: a description of a computer program implementing the universe defined test concept. Educational and Psychological Measurement, 1969; 29, 165-172.

Shoemaker, D. M. Allocation of items and examinees in estimating a norm distribution by item-sampling. Journal of Educational Measurement, 1970, 7, 123-128.
hoemaker, D. M. Item-examinee sampling procedures and associated standard errors in estimating test parameters. Journal of Educational Measurement, 1970 , 7, 255-262.
irotnik, K. An investigation of the context effect in matixix sampling. Journal of Educational Measurement, 1970, 7, 199-207.
irotnik, K. An analysis of variance framework for matrix sampling. Educational and Psychological Measurement, 1970, 30, 891-908.

APPENDIX A

Listing And Expanded Writeup Of Computer Program For Estimating Test Parameters Through Multiple Matrix Sampling And For Approximating Normative Distributions With The Negative Hypergeometric Distribution

A Fortran IV Program For Estimating Test Parameters Through Multiple Matrix Sampling And For Approximating A Normative Distribution Of Test Scores With The Negative Hypergeometric Distribution

The negative hypergeometric distribution provides a reasonably good fit for a variety of test score distributions when the test score is the number of correct answers. The negative hypergeometric distribution is a function of the mean test score, the variance of the test scores and the total number of items in the test. The first two parameters may be approximated efficiently by multiple matrix sampling. Furthermore, the negative hypergeometric distribution with parameters estimated by multiple matrix sampling can be used satisfactorily to approximate a normative distribution of number correct test scores.

In multiple matrix sampling, a set of K test items is randomly divided into subsets of items. Each subset of items is then randomly assigned to a group of examinees. Although each examinee receives only a proportion of the complete set of test items, the statistical model permits one to estimate the mean and variance of the total test score distribution for all examinees over the complete set of test items. Multiple matrix sampling is an efficient procedure for appro mating a normative distribution when it is not possible or is economic.ally unfeasible to administer the complete set of K items to all examinees in the testable population.

The Fortran IV program which approximates the normative distribution with the negative hypergeometric distribution is relatively machineindependent and has been implemented easily on an IBM 7040, IBM S 360/50, IBM S 360/91 and a UNIVAC 1108. The program has been designed to approximate test score distributions involving at maximum 500 items. However, this restriction may be easily modified. The number of subtests and number of examinees per subtest are limited only by the amount of computer time available.

Organization Of Control Cards And Data Cards
columns (all integers right-justified)

Card Set 1 (1 card)	$1-72$	Alphanumeric titl ϵ of project
Card Set $2(1$ card)	$1-5$	Integer number of examinee groups
$6-10$	Integer number of items in each subtest	
	$11-15$	Integer number of examinees per subgroup

columns

51-55

Format Card Set
(k cards, optional)

Data Card Set
(k cards, optional)

Punch 00000 if there is only one format card by which all item scores are to be inputted

Punch 00001 if there is to be a diffferent format card for each item-examinee samale within a data set

Standard Fortran IV format punched in columns 1-72 on each card and enclosed in parentheses for inputting item scores for each examinee in each item-examinee sample. The number of format cards may not exceed 9 for each item-examinee data set. The first card after the format cards must contain END OF FORMAT in columps 1-13.

Example: (5X,25F1.0)
END OF FORMAT
The responses of each examinee per item-examinee samplei be sequenced by examinee group and within each group by examinee.

Acceptable Input Data Structures
Plate 1 Plan 2 \quad Plan 3

Fortran Source Deck Card Set 1 Card Set 2

Fortran Source Deck
Card Set 1
Card Set 2
Format Card Set
Data Cards

Fortran Source Ped
Card Set 1
Card Set 2
Format Card Set I
Data From Sample 1
Format Card Set Z
Data From Sample z 2
-••
Format Card Set Data From Sample t

Plan 4
Plan 5

Fortran Source Deck
Card Set 1
Card Set 2
Format Card Set
Card with no. of examinees and items for subtest 1
Data from subtest 1
Card with no. of examinees and items for subtest 2
Data from subtest 2.
-••
Card with no. of examinees and items for subtest t Data from subtest t

Fortran Source Deck
Card Set 1
Card Set 2
Format Caid Set 1
Card with no. of examinees and items for subtest 1
Data from subtest 1
Format Card Set 2 Card with no. of examinees and items for subtest 2
Data from subtest 2

Format Card Set t Card with no. of examinees and items for subtest t Data from subtest t

Plan 1: Mean and variance of test scores are inputted on card set 2 . No item scores are required.

Plan 2: Mean and variance of test scores are to be estimated from itemexaminee samples. All item scores in each item-examinee sample are organized in the same manner on the data card and are to be inputted with one format card.

Plan 3: Same as Plan 2, with exception that item scores for each itemexaminee sample are not organized on data cards in same manner. Each sample requires an individual set of format cards describing how item scores are organized for that particular sample.

Plan 4: Same as Plan 2 with exception that number of examinees and number of items per subtest are not constant across subtests. Same format card is used for each data set.

Plan 5: Same as Plan 3 with exception that number of examinees and number of items per subtest are not constant across subtests. In addition, different format cards are used for each data set.

RFFF:RENCE
LORD, FF.M. AND NOVICK. M.K. STATISTICAL IHEOKIES OF MENTAI IEST SCORES. HEAMING, MASS. ADUISUN-WESLEY,1968,CHAPTER 23.

DAVIL: M. SHOKMAKER

> NTS $=$ NUMBER OF ITEMS PEH SUBTEST NTP $=$ NUMBER DF ITEMS IN TEST ITEM POPULATION NSM $=$ NUMBFR OF SUBTESTS NSS $=$ NUMBER UF EXAMINEES PER SUBGROUF NSP $=$ NUMHFR OF EXAMINEES IN EXAMINEE PGPULATIUN $\because G A R ~$ GSTIMAIE OF MEANTEST SCORE VAR $=$ ESIIMATE OF TEST SCORE VARIANCE

COMMON JUIMY (500), $2(500)$
OIMENSION TITLE (18)
\longleftarrow
\therefore INPLT PROBLEM HARAMETERS
1000 KFAD (5,1, $\mathrm{KN}, \mathrm{N}=5000$) (TITLE(I),I=1.18), 1NSM, NTS, NSS, NTP,NSP, XBAR:VAR,NTPH,NFMT
WHITE $(6,5)(T I T L E(I), 1=1,18)$
IF (IFIX(VARH1000:). NE, O) WRITE (6,9) XHAR,VAR
ESTIMATE MEAN AN! VARIANCE FROM SUBTESTS
IF (IFIXPVAK=IUOO,) EEO,O) CALL POOL(NSS,NIS,NSM,NTP, XBAR,VAK,NF IF (NSP . 0 (0) $N S P=1000$. WFITE $(6,10)$ NSP

COMPIJTE HARAMETERS FOK NEGATIVE HYPERGEOMETRIC DIJTRIBUTION

$$
S=N T i^{2}
$$

$A 21=(S /(S-1)) \#.(1,-X B A R \#(S-X B A R) /(S * V A K))$
IF (A 21 , GT. O.) GO TO 40
WKITE (6,7) A?1
GO TO 1000
40 CONTINUE
$A=(-1,+1 . / A 21) * X B A R$
$B=-A-1 .+S / 421$
$S L O G 1=0$.
SLOG2=0.
$C=A+B$
[1O $\mathrm{DO}_{1} \mathrm{I}=1$, NTP
SLOG1 $=$ SLOG1 + ALOG10 ($\mathrm{B}-\mathrm{I}+1$.)
$30 \quad S L O G 2=S L O G 2+A L O G 10(C-I+1$.
$\mathrm{C}=10$.\# (SLUG1-SLOG2)
WR11E (6,3) A21, A, B, C
COMFUTE NEGATIVE HYPERGEUMETRIC DISTRIBUTION
$N 3=N T P+1$
WRITE $(6,4)$
$C K=0$ 。
DO $100 \quad 1=1, \mathrm{~N} 3$ $K=1-1$
CALL NEGHGH (K,A,B,C,S,NSP,HX,HFX) $C K=C K+H X$
$P(1)=H X$
WRITE $(6,2)$ K, HX,HFX,CK
100 CONTINUE
plot Negative hypergeometric distribution

```
IF (NGPH.EO. O ) CALL PLOT (NTP)
```

GO TO 1000
5000 WRITE $(6,8)$
CALL EXIT
1 FORMAT (18A4/515,.2F10.0.215)
FURMAT (110.3F30.7)
3 $\operatorname{FGKMAT}(/ 7 H$ KR21 $=F 12.3 .6 X, 3 H A=F 15.7 / 25 X, 3 H B=F 15.7 / 25 X, 3 H C=E 18$.
17////) (////5X,5HSCORE, $22 X, 4 H H(X), 26 X, 6 H N H H(X), 24 X, 6 H C U M H X / /)$
FORMAT (1H1,18A4//)
FORMAT (43H KRZ1 NEGATIVE OR 2ERO DATA SET ABORTED,5X, 6HKR21 =
1(10.4)
8 FORMAT (1H-20X,19HALL INPUT PROCESSED)
9 FORMAT (//7H XBAR $=F 12.3 / / 7 \mathrm{H} \quad V A R=F 12.3$)
10 FOHMAT ($/ 4 X, 3 H N=I 8$)
EAD

77

SUBKOUTINE NFGHGR（K，A，B，C，S，NSUB，HX，HFX）
it（K．EW．O ）GO 10 iso
SLUG1＝0．
SI OG2＝0．
SLOG3 $=0$ 。
SLUL4 $4=0$ ．
LIC $100 \quad \mathrm{I}=1 . \mathrm{K}$
SLOG1＝SLOG1 + ALOG10（S－1 +1.$)$
SL OGC2 $=S L O G 2+A L U G 10(A+I-1$,
SLUGS $=$ SLOGS $+A L O G 10(B-I+1$ ．$)$
100 SLUG $4=$ SLUG4 4 ALUG10（FLOAT（I））
$H X=C * 10 . * *(S L O G 1+S L O G 2-S L O G 3-S L O G 4) ~$
$125 \mathrm{HFX}=\mathrm{HX} * \mathrm{NSUG}$
REIURN
$150 \quad H X=C$
GO 10125
END

SUBKDUTINE RDFMT（FMT）
FOKMAT (ENCLOSEI) IN PARENTHESES) COL 1-72
CONTINUE UN CARD 2 IF NECESSARY
CONTINUE UN CARD 3 IF NECESSARY
ETC.
MAXIMUM NUMBER OF FORMAT CARDS IS 9
＇END OF FORMAI＇NECESSAKY ．．．PUNCH 1 N COLUMNS 1 － 1
DIMENSION FMT（200）
DATA END／3HENI）／
$N=1$
$00100 \quad 1=1.10$
$M=N+17$
READ（5．1）（FMI（J），J＝N．M）
IF（ FMT（N）．E（S．END ）RETURN
$100 \quad N=N+18$
WRIIE（6，2）
STOP
1 FQRMAT（16A4）
2 FORMAT（ 3 JH \＃\＃\＃EXCESSIVE NUMEER OF FORMAT CARDS） END

TEFMINATIGiv of pOOLED ESTIMATE OF POPULATJUN MEAN TEST SCORE ANL AK! ANCE

```
LUMMON P(500),X(500)
1)IMENSION FMT(200)
IF ( NFMT ,EQ. U) CALL, RDFMT(FMT)
WHITE (6,1)
NTにST=NSUB#NITEMS
SESTM=0.
SFSTV=0.
NSM=0
SWGHT=0.
100 1000 1=1, VSAM
    IF (NFM1 .NE. U ) CALL RDFMT(FMT)
    IF ( NTEST.EQ. 0) HEAD (5,6) NSUB,NIIEMS
    SY=0.
    SYr=0.
    |!20J=1.NI TEMS
    ~(J)=0.
    i:L. b[i] J=1,NguB
    R(iAU (5,FM\Gamma) (X(K),K=1.NITEMS)
    Y=0.
    DO ל10 K=1,NITEMS
    f(K)= P(K)+X(K)
    Y}=Y+X(K
    SY=SY+Y
    SYY=SYY+Y#Y
    XGR=SY/NSUU
    VR=(SYY-SY*SY/NSUB)/NSUB
    SHO=0.
    1.0 520 J=1,N]TEMS
    PF=P(J)/NSUB
    SPQ=SPQ+PP#(1.-PP)
    NSM=NSM+NSUH
    WGHT=NSUB*NITEMS
    ESTM=NTP*XBR/NITEMS
    ZSIV=(NSUB#NTP#((NTP-1.)&VR-(NTP-NITEMS)#SPQ))/
    1(NITEMS*(NITEMS-1.)#(NSUB-1,))
    SESTM=SESTM+ESTM*WGHT
    SESTV=SESTV & ESTV#WGHT
    SWGHT = SWGHT + WGHT
    WHIIE (6,2) I,ESTM,ESTV
OO CONTINUE
    XBAK=SESTM/SWGHT
    VAR=SESTV/SWGHI
    IF (NSM.I.T. 500) VAR=VAR*(NSM-1.)/NSM
    WRITE (6,3) XBAK,VAR
    RETURN
    FOMMAT (///124X,21HESTLMATE OF PARAMETER///5X,6HSAMFLE,1OX, 4HMEAN
1,16X,8HVAK [ANCE///]
    FORMAT (110,2F20,7).
    FCRMAT (//14H POOLED XBAR =F20.7/118H POOLED VARIANCE=F16.7/1/)
    FORMAT (215)
    IN
7 9
```

```
            SHBKOUTINE PLOT (NITEMS)
            KEAL N
            COMMON N(500), P(500)
            OIMENSION BCD(10)
            LATA BCD/1HO,1H1,1H2,1H3,1H4,1H5,1H6,1H\%,1H8,1H9/
            LIATA BLK, MOT,XX/1H,1H,,1HX/
C. LOCATE MAXIMUM VALUE for \(H(X)\)
C
            NNN \(=\) NITEMS +1
            \(T=0\) 。
            Do bo \(1=1\), NNN
            IF ( P(1) .GT. I ) T=P(1)
    50 CONTINUE
C DETERMINATIUN OF APPROPRIATE SCALE FACTOR FOK H(X) PLOT
C \(\quad J=0\)
    [10 60 I \(=1,6\)
            \(K=1-1\)
            \(J=r * 10 . * * K\)
            IF ( J.tu. O ) GO TO 60
            \(j=K-1\)
            WRITE \((6.3)\).
            GO TO 70
    60 GONTINUE
\(C\)
\(C\)
\(C\)
    DU \(75 \quad 1=1\), NNN
\(75 \quad H(L)=P(1) * 10 . \# \# J\)
C
C LABEL ORUINATE
WRITE (6,1)
    DO \(500 \quad 1=1.100\)
    \(200 \quad N(1)=B L K\)
    \(N(101)=B C i(2)\)
        WRITE (6.2) (N(J),J=1.101)
        \(N \mathrm{~N}=0\)
        10 \(550 \quad 1=1.10\)
        ic \(375 \mathrm{~J}=1,10\)
    \(\Rightarrow 75 \quad N(N N+J)=B C D(I)\)
        \(N N=N N+10\)
    つ50 CONTINUE
        \(N(101)=B C D(1)\)
        WRITE \((6,2) \quad(N(J), J=1,101)\)
        D0) \(580 \quad 1=1.101 .10\)
        UG \(590 \mathrm{~J}=1,10\)
        \(k=J-1\)
```

```
        \(N(101)=B C \nu(1)\)
        WHIPE \((6,2) \quad(N(J), J=1,101)\)
        \(100595 \quad 1=1.101\)
    395
        \(N(1)=1301\)
        WFITE ( 6,2 ) (N(J),J=1,101)
    \(\because\) PLOT ValuES of SCALED \(H(x)\)
    D0 \(100 \quad I=1\), NNN
    \(n=1-1\)
    \(L=P(1) \# 100 .+1.5\)
    [1) \(105 \quad J=1,101\)
    \(105 \quad N(J)=Q L K\)
    (0) \(110 \quad J=1\), \(L\)
    \(110 \quad\) ज. \((J)=x X\)
        \(00120 \mathrm{~J}=11.101 .10\)
        If ( N(J) . . H . BLK ) N(J) = WOT
    120
    continue
    WRITE (6.4) K,(N(J),J=1,101)
    100 CONTINUE
C: END OF GRAPH
    110 \(900 \quad 1=1,101\)
    \(900 \mathrm{~N}(1)=00 \mathrm{~T}\)
        WRITE (6,2) (N(J),J=1,101)
        RETURN
    1
    2
    3
    FORMAT ( 1 H1,50X,40HPROPORTIUN OF POPULATION KECEIVING SCORE//)
    I OKMAI (14X,101A1) SH(X) SCALED BY 10 EI3,9H IN GKAPH//)
    FOKMAT (////5X.19HH(X) SCALED BY 10 EI3.9H IN GRAPH//)
    IOHMAT (I10,4X,101A1)
    END
```

-77-
Sample Output

Card $\quad 000000000111111111122222222223333333333444444444455555555556$ column 123456789012345678901234567890123456789012345618901234567890
FIRST YEAR WORD SHELLING PROJECT SHOFMAKEK/OKALIA
0000500000000000050
00000 (10X.10F1.0)
END OF FORMAT
0001800010
01111011111110
02111111101011
03111110100000
04111110000000
051120000000000
06111101010001

07211110101010
08211100100000
09210000011010

10210100000000
$1121 \quad 1111101010$
12211001001000
13310100100000
14310.111 .100010

15310000000000
16310000000000
17 3 171101001110
1821000000000
0001400010

01	1	2	11111100.11
$0{ }^{2}$	1	2	1011100000
03	1	2	1.1001 .01000
04	1	2	1111110000
05	1	2	101111001.0
06	1	2	1110110000
07	2	2	1010100000
08	2	2	1111110010
0.9	2	2	110.1111 .01 .0
10	2	2	1111110000
11	3	2	0001110000
12	3	2	1111111100
13	3	2	1101000000
14	3	2	0011110000

0	13		1101111101
02	13	3	0101001000
03	13	3	1001011101
04	13	3	0010010000
05	13	3	1111111111
06	3	3	1101110100
0%	73	3	0100000.100
08	23	3	0111111110
09	3	3	1000000000
10	23	3	1001000000
1.	33	3	1111111100
12	33	3	1111000100
13	33	3	000000000
0001300010			
01	14	4	1101001100
02	14	4	0010 (10, 00
03	14	4	1ı110110.1
04	1	4	1111111111
05	1	4	1111011111
06	2	4	011.1010000
07	2	4	1111111111.
08	2	4	0000000000
09	2	4	0110001100
10	3	4	0011001000
11.	3	4	11.11001110
12	3	4	0011001000
13	3	4	0000000000
0001200010			
01		5	1001001010
02	1	5	000000000
03	1	5	1000000000
04	1	5	0000000000
05	2	5	0101111010
06	2	5	1110010100
07	2	5	000000000
08	2	5	000000000
09	3	5	1011111100
10	3	5	000000000
11.	3	5	0000000000
12	3	5	0000000000

-79.

10%

APPENDIX B

Computer Program For Simulating Multiple Matrix Sampling

84

Computer Program For Simulating Multiple Matrix Sampling

The computer program for simulating multiple matrix sampling is described in detail in Chapter V. A listing of the Fortran IV program is given in this appendix for those readers who may want to implement the model on the computer configuration available to them. The program given herein was written originally for a UNIVAC 1108 and a modified version has been implemented on an IBM S 360/91. In modifying the program for the S 360/91, the only changes made were those involving the uniform (. 00 to .99) random number generator RUNIF. On the 1108, RUNIF is initialized by RINITL. Calling RINITL with BASE as the argument causes BASE to be used as the starting value or seed in the algorithm used by RUNIF in generating uniform random numbers. Because RINITL is specific to UNIVAC 1108, readers should consult the local computing center staff to determine the subprogram and calling procedures at that installation comparable to the RINITL/ RUNIF system. The conversion process was relatively simple for the S 360 / 91 and it is anticipated that such will be the case with other hardware and software systems. Input values to the program are made on one parameter card. The organization of the card is described at the beginning of the program listing. Examples of parameter cards are found on page 97 of this appendix. Sample output from the program is given in Chapter
\therefore

```
COMPUTER SIMULATIUN OF ITEM－EXAMINEE SAMPLING
``` DAVID M，SHUEMAKER
```

PARAMETER CARU (THERE IS JUST ONE)

```
 COLUMNS (ALL INTEGERS RIGHT-JUSTIFIED)
 01-03 INTEGER NUMBER OF ITEMS IN TOTAL TEST
 04-09 DESIRED MEAN TEST SCORE IN PQPULATION
 (MUST BE SPECIFIED, WITH DECIMAL POINT PUNCHED ON CARD)
 10-15 DESIRED VARIANCE OF TEST SCORES IN POPULATIO'N
 (WITH DECIMAL POINT PUNCHED ON CARD)
 NOTE ... IF VARIANCE IS OMITTED, RELIABILITY MUST
 BE SPECIFIED.
 16-21 DESIRED VARIANCE OF ITEM DIFFICULTY INDICES OVER
 POPULATION OF EXAMINEES. THE ITEM DIFFICULTY
 INDEX FOR ITEM I IS THE PROPORTION OF EXAMINEES
 ANSWERING ITEM I CORRECTLY.
(MUST BE SPECIFIED WITH DECIMAL POINT PUNCHED ON CARD)
 WITH SKEWED DISTRIBUTIONS, VARIANCE OF ITEM
 DIFFICULTY INDICES IS ASSUMED TO BE EQUAL TO ZERO.
 DESIRED RELIABILITY OF TEST SCORES IN POPULATION
 (WITH DECIMAL POINT PUNCHED ON CARD)
 NOTE... IF RELIABILITY IS OMITTED, VARIANCE MUST
 BE SPECIFIED.
 INTEGER NUMBER OF SUBTESTS IN ITEM-EXAMINEE SAMPLING
 INIEGER NUMBER OF ITEMS PER SUBTEST
 (U゙ONSTANT ACROSS SUBTESTS)
 INTEGER NUMBER OF EXAMINEES PER SUBTEST
 (CONSTANT \({ }^{-}\)ACRŌSS SUBTESTS)
 INIEGER NUMBER. OF INDEPENDENT REPLICATIONS OF ITEM-
 EXÁMINEE SAMPLING PLAN
 SAMPLING PLAN FOR ITEMS
 \(0=\) SAMPLING WITH REPLACEMENT
 (USED WHEN TK IS GREATER THAN K)
 1 = SAMPLING W】IHOUI REPLACEMENI
 (USE Ẅ WHEN TK IS LESS THAN OR EQUAL TU K)
 86

2 = SAMPLING WITHOUT REPLACEMENT BUT SUBJECT TO RESTRICTION THAT ITEMS OCCUR WITH EQUAL FREQUENCY AMONG SUBTEXTS (U USED WHEN SK IS GREATER THAN K)

45
INTERMEDIATE PRINTOUT OPTION
\(0=\) NO INTERMEDIATE PRINTOUT
\(1=\) INTERMEDIATE PRINTOUT WANTED
NEGATIVE HYPERGEOMETRIC DISTRIBUTION OPTION
\(U=\) NO NEG. HYPER. DIST. WANTED
\(1=\) COMPUIE NEG. HYPER. DIST.
47
DEGREE OF SKEWNESS IN NORMATIVE DISTRIBUTION
\(1=\) NORMALLY DISTRIBUTED
\(2=\) POSITIVELY SKEWED
3 = NEGATIVELY SKEWED
48-53
SEED FOR UNIFORM RANDOM NUMBER GENERATOR (ODD NUMBER)
25

RESTRICTIONS
generate item difficulty indices
\(0=\) GENERATE NEW ITEM DIFFICULTY INDICES
1 = USE ITEM DIFFICULTY INDICES GENERATED BY PREVIOUS DATA CARD

MAXIMUM NUMBER OF ItEMS IS 150 (EASILY MODIFIED. HOWEVEK) ITEMS SCORED HICHOTOMOUSLY

PROGRAM WILL pROCESS REPEATED PARAMETER CARDS NUMBER LIMITEd ONLY BY AMOUNT OI COMPUTER TIME ALLOCATED)

REAL N.M.MPOP
COMMON N(1b0), M(150),LT(3000)
COMMON /OLOCKI/ YEAR,YSU,MPOP,SPUP,KPOP,NUIST, BASE,INTPRT
COMMON /BLOCKs/ RND(150)
COMMON /BLOC KB/ P(150),O(150),NSUB

2000 READ (5.1,END=5000) KPOP,MPUP, VPOP, PVAK, A2O,NI,I PT, NSF, REPS, 1 ISAMP,INTPRT,NHPER,NDIST,BASE,ISAVE IF (NDISI GT. 1) PVAR \(=0\). WRITE (6,2) BASE,MPOP, VPOP,KPOP,A2O,PVAR,NT,IPT, NSPT, NREPS,
IISAMP, NHPEK, NDIST, INTORT

INITIALIZE RANDOM NUMBER GENERATOR (UNIQUE TO LC)

C
6
NSUB \(=0\)
C. CHECK ON PARAMETERS

C IF (ISAMP.NE. 1) GO TO 30
IF (NTHIPT.GI. KPOP) GO TO 5
IF (A \(20 . L T .0\). . OR, A20. GT. 1.) GO TO 55
IF (NDIST.GT. \(\mathrm{I}^{\circ}\),OR. NDIST.LT, 1) GO 1055
IF (IFIX(A20\#1000.), EQ.O.AND.IFIX(VPOP\#1000,), EQ.O) GO TO b
IF (IFIX(MPOP*1000.).GE:KPOP*1000) GO TO 55
IF (PVAR.LT. . 2) GO TO 70
S5 WRITE \((6,3)\)
Go TO 2000
\(c\)
\(c\)
COMPUTE NECESSARY PARAMETERS
c.

10 TEMD \(=\) MPOF\# (KPOP-MPOP) -KPOP*KPOP*PVAR IF (IFIX (VPOP).EQ. 0) \(V P D P=T E M P /(K P O P-(K P O P-1) \# A 20\). SFUP \(=\) SORT (VPOP) WFITE (6,13) SPUP
c.

C
IF (ISAVE.EO. 1) GO TO 102
\(\stackrel{C}{C}\)
C GENERATE ITEM OIFFICULYY INDICES PPROPORTION OF EXAMINEES ANSWERING C ITEM CORRECILY)
(: IF (IFIX((KPOP-MPOP) \#1000.) ,EQ.O) GO TO. 55
D1=1000.
\(P B A R=M P O P / K P O P\)
DO \(173 \quad[=1\), KPOP
\(173 \quad 0(1)=0\).
IF (IFIX(PVAR\#1000.) ,GT. O) GO TO 66
DO \(65 \mathrm{I}=1\), KHOP
\(65 \quad \mathrm{P}(\mathrm{I})=\mathrm{PBAR}\)
GO 10102
```

$P S D=S Q R T(P V A R)$
66 PSD=SQRT(PVAR)

```
\(\because\)
c
D0 100 IJ=1,100
[JO \(74 \mathrm{I}=1\), KPOP
CALL RANUND (Z)
\(Q(1)=Z \# P S D+P B A K\)
JF (\(Q(1) \quad\) LT. 0.\() \quad 0(1)=0\).
74 IF (O(I).GT. 1.) Q(I)=1.
© DETERMINE INITIAL MEAN AND VARIANCE OF GENERATED ITEM DIFFICULTY C INDICES
C
```

SP=0.
SPP=0.
LO 81 I=1,KPOP
PP=Q(I)
SP=SP+PP

```
ti \(\quad \mathrm{SPP}=\mathrm{SPP}+\mathrm{PP} \# \mathrm{PP}\) \(F V R=(S P P-S P a S P / K P \cap P) / K P O P\) \(C V K=S O R T(F V A R, H V R)\)
scale variance ol Itrm iditficulty indices to standard
```

SP $\mathrm{P}=0$ 。
spp=0.
LO B2 $1=1, K P O P$
$\theta(1)=0(1) * C V R$
if $(Q(1) . G T .1) Q.(I)=1$.
FF=Q(I)
$S P=S P+P P$
九2 $\quad S P P=S P P+\mu P \# P P$
$P \vee R=(S P P-S P * S P / K P O P) / K P O P$

```
SCALF MEAN OF ITEM IItFICULTY INDICES
 D \(4=S P / K P J P-P B A H\)
 \(S P=0\) 。
 SPP=0.
 UO \(84 \mathrm{I}=1, \mathrm{KPOP}\)
 \(Q(I)=0(I)-104\)
 IF \((Q(I) . L T .0) Q.(I)=0\).
 IF (\(Q(1) \cdot G T .1.) Q(1)=1\).
 \(P P=0(1)\)
 \(S P=S P+P P\)
\(84 \quad S P P=S P P+F F \# P F\)
 \(P V R=(S P P-S P \# S P / K P O P) / K P O P\)
 PER=SP/KPUP
 \(102=A B S\left(P \vee A R-P V^{R}\right)\)
 \(03=A B S(P B A K-P B K)\)
 \(11=(01+.0005)=1000\).
 \(12=(02+.0005) \neq 1000\).
 \(I 3=(03+.0005) \# 1000\).
 IF (I2 :LE. 5 . ANU. I 3 .LE. 5) GO TO 103
 IF (12 . GE. 11) GO TO 100
 \(\mathrm{L} 1=\mathrm{D} 2\)
 חO \(90 \mathrm{I}=1, \mathrm{KPOP}\)
 \(\rightarrow 0 \quad\) - (I) \(=0\) (I)
 100 CONTINUE
 103 100 \(104 \mathrm{I}=1, \mathrm{KPOP}\)
 \(104 \quad P(1)=Q(1)\)
 NSTOP=KPOP-1
 DC: \(110 \mathrm{I}=1\), NSTUP
 \(j v=1+1\)
 DO 110 J=JJ.KPOP

 TEMP=P(J)
 \(P(J)=P(I)\)
 \(P(I)=T E M P\)
 110 CONTINUE
 102 IF (INTPKT.EQ. 1) WRITE (6,4) (P(I),I=1,KPOP)
C
```

IF (NDIST .EQ. 1 ) GOTO 111
IF (NDIST, EQ. 3) MPOP=KPOP-MPOP
YVAR=ALOG(VPOP/(MPOP*MPOP)+1,)
YBAR=ALOG(MHOP)-YVAR/2.
YSU=SQRT(YVAR)
C
111 IF (ISAVE.EQ. 0 ) CALL ROUND
C}\mathrm{ CREPICATION OF ITEM-EXAMINEE SAMPLING PARADIGM
SXM=0.
DO /000 [JK=1,NREPS
CALL ALLOC (NT,IPT,ISAMP)
IF (INTPKT ,EQ, O, GO TO 113
WRITE (6,5)
J=0
N1=NT*IPT
LO 112,I=1,N1, IPT
KK=I+IPT-1
J=J+1
112 WRITE (6,6) J,(LT(K),K=I,KK)
113 CALL POOL (NSPI,IPT,NT,XBAR,XVAR)
XSD=0.
IF ( XVAR ,GT. O.) XSD=SQRT(XVAR)
IF ( INTPAT .EO, 1) WRITE (6,7) IJK,XBAR,XSD
SXM=SXM+XBAK
SXS =SXS + XSD
SXXM=S XXM+XBAR\#XBAK
SXXS=S XXS*XSD* XSD
C
C COMPUTATION OF CONSTANTS FOR NEGATIVE HYPERGEOMETRIC DISTRIBUTION OPTIO
C
IF (NHPEH .EQ, O, GO 10 7000
A21=(KPOP/(KPOP-1,))*(1,-XBAR*(KPOP-XBAR)/(KPOP-XVAR))
IF ( A21.GI. O. ) GO TO 120
WRITE (0,8) A21
GO 10 2000
120 A = (-1,+1,/A21)* XBAK
B=-A-1.+KPOP/A21
SLOG1=0.
SLOG2=0.
C=A+B
DO 140 I=1,KPOP
SLOG1=SLOG1+ALOG10(B-I +1.)
140. SLOG2=SLOG2+ALOG10(C-I +1.,)
C=10,**(SLUG1-SLOG2)

```
\(\mathrm{A}=K \mathrm{KPOH}+1\)
UK=0.
ir \(1001=1, N 3\)
\(k=1-1\)
(ALL NEGHUK (K, A, B, C, HX)
CK=CK K HX
60 lif(1I \((6,1 u) \mathrm{K}, \mathrm{HX}, \mathrm{CK}\)

\section*{OOU CONIINUE}

COMPUIE STAVDARO ERRORS OF ESTIMATE OVER KEFLICATIONS
```

HAKS=SXS/NREPS
\#AKM=SXM/NKFPS
SES=SQRT((SXXS-SXSHSXS/NREPS)/NRERS)
SEM=SGRT(SXXM-SXM*SXM/NREPS)/NREPS)
WFIIE (6,11) BAKM,SEM,BARS,SES
G010.2000

```

\section*{EXII GRACEFULEY}
```

OO(1)WFITE (6.12)
CALGEXII

```
FORMAT STATEMENIS

FURMAT \((13,4 F 6,0,414,411,66,0,12)\)
FORMAT L L LHJPROHLEM NO,F9. \(2 / / / 2 O H\) PARAMETERS INPUTTED///AX, \(4 H M E A N, ~\) \(17 X, F 8.3 / / 4 X, 4 H V A R I A N C E, 3 X, F 8,3 / / 4 X, 1 H K, 10 X, I 4 / 4 X, 8 H A L P H A, Z U, 3 X\), \(2 F 8.3 / / 4 X, 6 H V A R(H), 5 X, F 8,3 / / / 11 \times 2 / H L T E M-E X M L N E E S A M P L I N G T L A N / / /\) \(34 X, 2\) HNT, \(5 X, 14 / 14 X, 3 H I P T, 4 X, I 4 / 14 X, 4 H N S P T, 3 X, 1 / 4 / 4 X, 5 H N R E P S, 2 X\),
 5 HYPERGEUMETP!C, \(3 X, 12 / 14 X, 22 H N O R M A T I V E U I S T R I H U T I O N, I 6 / / 4 X, 21 H I N T E ~\) GRMEDIATF HRINTOUT,17//)
FORMAT (2UH *** ERKOR ON PARAMETER CARD///12X,2HOH//29H NEEU MURE
1 IFFO ON PARAME EKS):
FORMAT (/////24HITEM, DIFFICULTY, \(1 N D I C E S / /(10 F /, 3)\))
FCHMAT \((/ / / 18 H\) SUBLEST, \(5 \times, 5 H I T E M S / / /)\)
FOKMAT \((1 \times, 15,5 \times, 2014 /(11 \times, 2014))\)
FRHMAT (\(/ 1 / 16 H\) REPLICATION NO, I \(5,5 \times, 12 H E S T\), \(O F\) FMEAN, , \(24,3 / 26 \times, 26 H\)
1ESI, OF, STANDARD, DEVIATION,FIO, S/'/), UATA SET. ABORTED,SX,GHKR21, \(=\)

\(1(10.4)\)
FURMAT (/// \(/ 5 \times, 5 H S C O F E, 22 \times, 4 H H(X), 26 X, 8 H C U M, H(X) / / / \%)\)
FUKMAT, (11 \(10,2 F, 30,7)\)

SUBROUTINE POOL. (NSPT,IPT,NT, XBAR, XVAR)
C: DFTERMINATION OF PDOLED ESTIMATE OF POPULATION MEAN TEST SCOKI: AND
C VARIANCE
REAL MPOP
COMMON P (150), X(150).LT(3000)
COMMON /BLOCKI/ YBAR,YSD,MPOP, SPOP,KPOP, NDIST, BASE,IPRT
D) MENSION TEST(150)

IF (IPRT, EQ. 1) WRITE (6.1)
SESTM=0.
SESTV=0.
NSM \(=0\)
LU 1000 I \(=1, N T\)
\(S Y=0\).
SYY=0.
DO \(508 K=1,1+T\)
\(208 \quad F(K)=0\).
ISTART=IHT(1-1)+1
1STOP=IPT*I
DC. \(500 \mathrm{~J}=1\), NSPI

CALL DATA (IESI)
LL=0
DO \(505 K=I S T A R I\) ISTOP
\(K K=L T(K)\)
\(L L=L L+1\)
\(j 05 \mathrm{X}(L L)=T E S T(K K)\)
\(Y=0\).
U0 \(510 \quad K=1,1 P T\)
\(T=x(k)\)
\(P(K)=P(K)+1\)
\(510 \quad Y=Y+T\)
\(S Y=S Y+Y\)
20O SYY=SYY+Y\#Y
\(X B R=S Y / N S P T\)
\(V R=(S Y Y-S Y * S Y / N S P T) / N S P T\)
\(S P Q=0\).
DO \(520 \mathrm{~J}=1\) IIPT
\(P P=P(J) / N S P T\)
\(520 \quad S P Q=S P Q+P H(1,-H P) \cdot\)
\(N S M=N S M+1\)
ESTM \(=K P O F \quad X B R / I P T\)

\(1(N S P T-1)\),
SESTM=SESTM+E゙STM
SESTV=SESTV+ESTV
ESIS=0.
If (E゙STV,GT. O.) ESTS=SORT(ESTV)
\| (ESTV ,LT, 0.) ESTS=-1.*SORT(AES(ESTV))
IF (IPRT, EQ. 1) WRITE (6.2) 1,EESTM,ESIV,ESTS
1000 CONTINUE

XHAR =SESTM/NSM
\(X \vee A R=S\) STTV/NSM
\(\because=N S P T\) NSM
I) (M.LT, 50U) XVAR=XVARM(M-1.)/M

RETURIV
F OKMAT (///38X,22HESTIMATE OF PARAMETER///SX. GHSAMHLE,IOX. 1 IHMEAN, \(16 \mathrm{X}, 8\) HVARIANCE, \(12 \mathrm{X}, 12 \mathrm{ZSTANDARD}\) UEV//)
FOHMAT (110.3F20.7)
1.AD

SUBKOUTINE UATA (X)
i: GENERATION UF ITEM SCORES AND TEST SCORE FUR HYPOTHETICAL EXAMINEE
REAL MPUP
INTEGER TSCORF
COMMUN / HLOCK1/ YBAR,YSD,MPOF,SPOP,KPOF,NIJIST, BASE, INTPFT
(COMMON /BLOCKZ/ RND(150)
COMMON/BLUCK3/P(150),Q(150), NSUH
[JMENSION X(150)
\(\because\)
\(\because\) GENERATE TOTAL TEST SCORE
C
\(N S \cup B=N S U B+1\)
CALL RANLIND (Z)
G0 10(215,220,220).NDIST
215 TEMP \(=Z \# S P O P+M P O P\)
0010230
\(220 \quad T E M F=E X P(Z \nabla Y S O+Y B A R)\)
\(\angle 30\) IF (TEMP.LT. O.) TEMP = 0.
IF (TEMP.GT. FLOAT(KPOP)) TEMP = KPOP
\(K K=T E M P+1\).
IF (KK. (il. KHOP) KK=KPOP
\(T S C O R E=T E M P+(K K-R N D(K K))\).
IF : TSCUKE .LT, 0 , TSCORL \(=0\)
IF (TSCOKE GI. KPOP) ISCORE=KPOP
IF (NDIST, EQ. 3) ISCOFE=KPOP-TSCORE
i: GENFFAIE ITEM SCOHES YOR EXAMINEE C
[O \(240 \mathrm{~J}=1, \mathrm{KPOP}\)
\(240 \quad x(J)=0\).
IF (TSCORE .EU. O) GO TO 300
IF (TSCORE .LI. KPOP) GO TO 248
DO \(242 \mathrm{~J}=1, \mathrm{KPOH}\)
\(242 \quad x(J)=1\).
GO TO 300
248 KOUNT \(=0\)
DO \(250 \mathrm{~J}=1, \mathrm{KPOP}\)
IF \((\mathrm{IFIX}(\mathrm{Q}(J) * 1000\), . GT. IFIX(P(J)\&1000.), GOTO 250
POUNT = KOUNT + 1
II (KOUNT.GT, TSCORE) GO TO 300
\(x(J)=1\).
250 CONTINUE
DO \(260 \mathrm{~J}=1, \mathrm{KPOP}\)
IF (IFIX(X(J)) ,EQ. 1) GO TO 260
KOUNT =KOUNT +1
IF' (KOUNT . GT. TSCORE) GO TO 300
\(x(J)=1\) 。
260 CONTINUE
300 [1O \(320 J=1, \mathrm{KPOH}\)
\(320 Q(J)=(D(J) *(N S U 甘-1)+,X(J)) / N S U B\)
BETURN
END

SUBROUTINE NEGHGR (K,A,B,C,HX)
NEGATIVE HYPERGEOMETRIC FUNGTIUN
RFAL N,MOMPOP
COMMON N(150), M(150), LT(3000)
COMMON/BLOCKI/ YBAR,YSD,MPOP,SPOP,KHOH,NDIST,BASE,INTPKI IF (K.EO. O) GO TO 150
\(S=K P O Q\)
SIOG1=0.
SLOGZ=0.
\(51.0 G 3=0\).
SLUG4 \(=0\).
\(10 \quad 100 \quad 1=1, K\)
SLOG1 \(=\) SLOG1 \(+A \operatorname{LOG10(S-1+1,)~}\)
\(S L . O G 2=S L O G 2+A L O G 10(A+1-1\),
SIOG3 SLO OS \(+A L O G 10(B-I+1\),
\(100 \quad\) SLOG4=SLOG4+ALOG10(FLOAT (1))
\(H X=\mathrm{C} * 10 . * *(S L . O G 1+\) SLOG2-SLOG3-SLOG4)
RETURN
150 \(H X=C\)
FETURN
END

95
```

    SUBKOUTLINE ALLOU心 (NT,IPT,ISAMP)
    U RANUOM ASSIGNMENT UF ITEMS TO SUBTESTS
REAL MPOP
COMMON X(SOO),LT(3000)
COMMON/BLOCK1/ YBAR,YSD,MPOP,SPOP,KPOP,NDIST,EASE,INTPRT
EIMENSION L(150),KNTR(150)
LC 100 I=1,KPOP
KNTR(I)=0
100 L(I)=I
NN=NT*IPT
IF ( ISAMP .EQ. 2 ) GO TO 200
130 k=0
00 150 I=1,NN
165 R=KUNIF(BASE)
JJ=R\#KPOP+1.
1F ( JJ.LT, 1 ) JJ=1
IF (JJ,GT. KPUP ) JJ=KPOP
IF (L(JJ).GT. O ) GO TO 170
GO TO 165
170 LT(1)=L(JJ)
K=K+1
IF ( ISAMP .NE. 1 ) GO TO 180
L(JJ)=-L(JJ)
GO TO 150
180 IF ( K .LT. IPT ) GO TO 185
N=U
: UU'IBS }11=1,KPU
183 L(1I`)=1A⿱一𧰨㇒⿴囗⿱一一犬心(L(1I))
GC%O15u
185 L(JJ)=-L(JJ)
130 CONTINUE
RETURN
200 NMULT = NN/KPOP
IF (IFIX((FLOAT(NN)/KPOP)*10.).NE,IFIX(FLOAT(NMULT)*10.)) GOTO400
K=0
NSTUP=NN-IPT
00 300 I=1,NSTUP
210 K=RUNIF(BASE)
JJ=R\#KPOP+1.
IF ( JJ,LT, 1 ) JJ=1
IF ( JJ,GT. KHOP ! JJ=KPOP
iF (L(JJ),GT, O ,AND. KNTR(JJ),LT. NMULT ) GO TO 220
GO TO 210
220 LT(1)=L(JJ)
K=K+1
KNTK(JJ)=KNTR(JJ)+1
IF ( K .LT. IP!) GO TO 25D
K=0

```
```

LC 230 J=1,KPOH
L(J)=IABS(L(J))
\thereforeO TO 300
L(JJ)=-L(JJ)
CONTIINUE
\#O 350 I=1,KPOP
IF ( KNTK(1) .EQ. NMULT ) GO TO 350
NSTUP=NSTUP+1
LT(:NSTOP)=1
cuntinue
REIURN
iF (NN .GT. KPOP ) ISAMP=0
If (NN.EQ.KPOP ) ISAMP=1
WतL1!t (6,1) ISAMP
{0 TO 13U
FOFMAT (2YH TK NOT INTEGER MULTIPLE OF K//3OH ITEM-SAMPLING SWITCH
RESET TOlb///
CND

```

\section*{subkoutint handind (\(x\))}

RFAL MPOF
COMMON/BLOCKI/ YBAK,YSD,MPUP,SPOP,KPUP,NDIST, BASE,INTPKT
1) MENSION C (290),C1(90),C2(85),C3(45),C4(60):Cb(10)

EGUIVALENCE (VIAIL,C(200)), (C1(1),C(1)), (C2(1),C(91)),
1 (C3(1),C(176)),(C4(1),C(221)),(C5(1),C(281))
1) \({ }^{1}\) TA C1/
\(1,2, .2, .3,3, .3, .3,3, .5,6,6\),
\(2,6,6,6, .8, .8,8,1 \ldots 1 \ldots 1,5,0 \ldots\)
\(30 \ldots 0,0 \ldots 0,0 \ldots 0 \ldots, 1,1, .1, \ldots 1\),
4,1,.1,.1, 2,.2, 2,.2, 2,.3, 3,
\(5,4, .4, .4, .4, .4, .4, .5,5, .5,5\),
6 . 5, 6,.7,.7,.1,.7,.7,.8,.8,.9,
\(7,9,9,9,1,1,1,1,1,1,1,1,1,2,1,2\),
\(81,2,1,3,1,3,1,4,1,4,1,5,1,6,1,7,1.8, .4\),
\(9,4, .4,7, .9, .9, .9,1.1,1.1,1.1,1.1\) /
DATA C21
1 1.3,1,3,1,3,1,3,1,3,1,3,1,4,1,4,1,6,1,6,
\(1,6,1,6,1,6,1,6,1,7,1,7,1,7,1,8,1,9,1,9\), 1.9,1.9,1.9,1.9,1,9,1,9,2,,2.,2.,2.,

2, 2., 2, 2, 1,2.1,2,1,2,1,2,1,2,1,2.2,
\(2 \cdot 2,2 \cdot 2,2 \cdot 2,2 \cdot 3,2,3,2,3,2,4,2,4,2,5,2,6\),
.7,1,1,1.3,.4,1,1,9,1,4,.9,.8,.6,
, \(3,1,2,1,6,1,7,3,1,5,2,1,8,2,2,2\),
8 2, b, 2. 3, 2,4,2,1,.1,2,7,0.,2.6,2, 3,2.9,
9 . \(943216501, .946409288, .949496939\), . \(952578378, .955556164\) /
UATACB/
.961388536, . \(964198279, .966788825, .969367756\),
971936598 ,
\(.983249373, .985020795, .986448314\),
.990207369,.941260517,.992236259,
\(.994845636, .995501310, .995889739\).
.942278196,.945572077,.948551446.
.956691427,.960485017, .963804134, .966571775,
\(8.971291678, .974201251, .976132812, .978422883\),
9.983065206
.984224076,.986325151,
[IATA C4/ 4 . \(990781611, .991730598, .993063286, .993813410\),
1.9894907546,.995110801,. .995805552,.996077866,.996413834.
\(3.973, .9960 .992, .920, .998, .982, .990, .990, .985, .959\),
. \(942, .994, .986, .985, .890, .988, .980, .943, .977, .843\),
. \(913, .975, .974, .978, .755, .970, .501, .971, .968, .96 \%\),
\(12.5,8,2052333,6.9186539,20 ., 9.0325579\),
\(74.6444448,6.4086308,10,111.111111,14.535714\),
\(816.666666,7,5104139,5.5743498,5.2288616,25\).
\(95.9645244 .4 .3951201,4.9208132,3.9631786,33.333333 /\) DATA C5/
1 3.44279世5.3.7148844,3.6020289,4,1690656.50.,
\(23.1592514 .100 . .3 .2956424 .3 .0324898 .2 .9143782\) /
\(\mathrm{SGN}=1\).
(i=RUNIF(BASE)
IF (U.LT. . 5) \(S G N=-1\).
U=RUNIF(BASE)
1V2 \(=1000 . \# U\)
-94-
```

IV1=1V2/10
v=100.*U-.1*FLOAT(IV2)
|f (U .(的. .79 ) GO TO 10
x=(C(IVI+1)+V)aSGN
HEIURN
1 0
if (U.GE. .94%GO 10 20
x=(C(IV2-7/0)+V)\#SGN
HETURN
If ( U .GE. VTAIL ) GO TO 30
J=1/0
J= J+1
1F (U.GE. C(J) ) GO TO 21
If (U., (1.C(J+3O) ) GOTO. 23
U=RUNIF(BASE)
X=(c(J-3U)+.1\#U)\#SGN
REIURN
U=KUNIF(SASE)
V=RUNIF(jASt)
U1=AMIN1(U,V)
U2=AMAX1(U,V)
If ( U2.GE. C(J+60) ) GO 10 25
x=(C(J-30)+.1*U1)\#S(2N
KETUKN
h=-.5*(.1*U1-.1)*(2.*C(J-30) +.1*U1*.1)

```

```

        (11=RUNIF (SASE)
        U2=RUNIF(RASE)
        S=U1*U1+|゙<#U?
        11 ( S .GE. 1., ) GO TO 30
        T=SQRT((9.-2.*ALOG(S))/S)
        IF (UI#1.LE. 3.) GO.TO 32
        x=U1#T#SU.N
        HETUNN
        If ( U2#T .LT. 3. ) GO 10 30
        x=UC#T#Sid
        KFTURN
        END
    ```

SHEKDUTINL. RUJUNO

\(\because\) HETWEEN ADJALENT INTEGEH SCOFES IS COMPUTEL GY MEANS OF THETHAFEZOII FOHMULA. THE ROUNDING VALUE IS THAT CONTINUOUS TEST \(\therefore\) SCORE SUCH THAT OVE-HALF OF THE ARHA WITHII THE SCOKF. INTEKVAL - above that point.

REAL MPJP
GUMMON/HLOCKI/ YBAR,YSU,HPOP, SPOP,KPOP,NLIST, BASE, IFRT
GOMMUN/BLDCKZ/ RND(150)
I) MENSION Y(1.01)

OFLTA \(=.01\)
YVAR \(=\) YSU Y Y S
VPOH=SPOPASPOP
FI=S.1415921
lic \(10(40,50,50)\), NOIST
CND1=1./SQHT(2.*PI*VPOP)
CND2=2.*VPOP
GO TO 60
万O CLN1=1./SQHT (2.*PI\#YVAK)
CLN2 2 2. \(\because Y V A R\)
60 CONTINUE
C
©
SAREA \(=0\).
IF (IPRT.EQ. 1) WRITE (0,7)
DO \(100 \mathrm{I}=1 . \mathrm{KPOP}\)
\(\mathrm{N}=1-1\)
DO \(150 \quad J=1.101\)
\(K=j-1\)
\(X=N+K\) \# DELTA
ge 10 (130,131,131), NDIST
\(130 \quad Y(J)=C N D 1 * E X P(-((X-M P U P) * * 2) / C N D 2)\)
GO TO 150
\(1_{3} 1\) IF (X GT. O.) GU TO 135
\(Y(J)=0\).
GOTO 150
\(135 \quad Y(J)=(C L N 1 / X) * E X P(-((A L O G(X)-Y B A R) * * 2) / C L N 2)\)
150 CONTINUE \(\quad\) IF (IPRT, EO. 1) WRITE (6,5) \(\mathrm{N},(Y(J), J=1,101,10)\)
\(I F_{1}(I P R T \quad 00\).
\(N_{1}=Y(1) \# 10000\).
\(\mathrm{N} 2=\mathrm{Y}(101) * 10000\).
IF (N1.GT. O .OR. N2 ,GT, O) GO TU 153
\(\operatorname{HND}(1)=N+.5\)
GL 10100
\(153 \quad A R E A=0\). DO \(155 \quad J=2.100\)
1.55 AREA \(=A \operatorname{Act}+Y(J)\)
\(L H E A=L E L \mid A *((Y(1)+Y(101)) / 2 .+A K E A)\)
SAKHA＝SAKEA＋AREA
\(\because=0\) ．
！ \(160 \mathrm{~J}=1,100\)
\(h=J+1\)
\(F=F+((Y(J)+Y(K))\) \＃\()\) tLTA／2，）／AKtA
i）（ \(\mathrm{H} . \mathrm{L}\) ．． 5 ）GOTO 160
HAI）（I）\(=N+J \# \operatorname{HFL} T A\)
？ 10100
wirlit（6．3）
どタL！EX！T
CUN1」NいE
\(\|\)（IPKT，EG，U）KETURN．
WRITE \((6,6)\) SAKEA
WFITF：\((6,1)\)
1．0 \(200 \quad I=1 . K P\) OH
\(J=1-1\)
WK1TE（6．2）J，KNU（1），I
HFIUNN
FGRMAT（／／／22 KOUNDING HULE
fOKMAT（17X，15，t10．2，5X，15）
FFRMAT（ 3411 PROBLEM IN ROUND SUBR EXIT CALLED）
FITMAT（1X，13，11F8．4）
FOKMAT（7H ARE：A＝F1b．7／／）
FOKMAT（／／23H UISTRIBUIION URUINATES／／
\(1 \quad 3 \mathrm{X}, 1 \mathrm{HN}, 3 \mathrm{X}, 2 \mathrm{H}, 0,6 \mathrm{X}, 2 \mathrm{H}, 1,6 \mathrm{X}, 2 \mathrm{H}, 2,6 \mathrm{~K}, 2 \mathrm{H}, 3,6 \mathrm{X}, 2 \mathrm{H}, 4,6 \mathrm{X}, 2 \mathrm{H}, 5\),
\(26 \mathrm{X}, 2 \mathrm{H}, 6,6 \mathrm{x}, 2 \mathrm{H}, 1,6 \mathrm{X}, 2 \mathrm{H}, 8,6 \mathrm{X}, 2 \mathrm{H}, 9,5 \mathrm{O}, 3 \mathrm{H}, \cdot \mathrm{U} / / 1\)
L：\(: \mathrm{D}\)
Examples Of Parameter Cards .

Card
```

