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The terms genome engineering, genome editing, and gene editing, refer to modifications

(insertions, deletions, substitutions) in the genome of a living organism. The most widely

used approach to genome editing nowadays is based on Clustered Regularly Interspaced

Short Palindromic Repeats and associated protein 9 (CRISPR-Cas9). In prokaryotes,

CRISPR-Cas9 is an adaptive immune system that naturally protects cells from DNA virus

infections. CRISPR-Cas9 has been modified to create a versatile genome editing

technology that has a wide diversity of applications in medicine, agriculture, and basic

studies of gene functions. CRISPR-Cas9 has been used in a growing number of monocot

and dicot plant species to enhance yield, quality, and nutritional value, to introduce or

enhance tolerance to biotic and abiotic stresses, among other applications. Although

biosafety concerns remain, genome editing is a promising technology with potential to

contribute to food production for the benefit of the growing human population. Here, we

review the principles, current advances and applications of CRISPR-Cas9-based gene

editing in crop improvement. We also address biosafety concerns and show that humans

have been exposed to Cas9 protein homologues long before the use of CRISPR-Cas9 in

genome editing.

Keywords: genome editing, CRISPR-Cas9, Cas9 human exposure, plant breeding, biosafety regulations

INTRODUCTION

The world population is predicted to reach 10 billion by 2050. While the available farm land and

water are being reduced, the global demand for food will increase 25%–70% above current
production levels (Hunter et al., 2017). Thus, feeding a rapidly growing population, particularly

in the face of climate change, is a big challenge. There is, therefore, an urgent need to improve food

production and accelerate sustainable agricultural development.

Long time before the field of genetics was established, humans genetically modified plants

through breeding and selection. Without knowledge of genes, mutagenesis, or gene editing, our

ancestors influenced the genetic make-up of plants and animals by selecting for traits conducive to
food production (Wang et al., 1999; Clark et al., 2005; Li et al., 2013b). A prime example is maize

(Zea mays subsp. mays L.), which is one of the most produced cereals worldwide. Molecular,

cytological, and isozyme profiles have shown that maize is a descendant of an annual species of
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teosinte (Zea mays ssp. parviglumis) native to the Balsas River

Valley on the Pacific slopes of the states of Michoacán and

Guerrero, Mexico. The process started approximately 9,000 years

ago. Teosinte has a popping ability that provided an incentive for

its cultivation. Repetitive cycles of selection for traits conducive

to kernel production led to the development of the maize plant as
we know it (Doebley et al., 1990; Dorweiler et al., 1993; Piperno

and Flannery, 2001).

To make plant breeding faster, more predictable, and

amendable to a wide range of species, several techniques of

plant genetic engineering have been developed. Genome editing

through programmable endonucleases is the most recent
approach to genetic engineering. Endonucleases are used to

specifically induce double strand breaks in target genes of

interest. The cellular DNA repair pathway then acts on the

double strand break to restore the damage through non-

homologous end joining (NHEJ) or homology-directed repair

(HDR). In the process, insertions, deletions, substitutions, and
DNA recombination may occur (Puchta et al., 1996; Puchta,

2005; Symington and Gautier, 2011).

Three kinds of programmable endonucleases are currently being

used for plant genome editing. Zinc finger nucleases, transcription

activator-like effector nucleases (TALENs), and CRISPR-Cas9

(Malzahn et al., 2017; Shah et al., 2018; Zhang et al., 2018a; Bao

et al., 2019). Zinc finger nucleases are chimeric proteins composed
of a synthetic zinc finger DNA binding domain and a DNA cleavage

domain. The zinc finger DNA binding domain can be modified to

specifically target any long stretch of double stranded DNA of

interest (Kim et al., 1996; Cathomen and Joung, 2008). Zinc finger

nucleases have been used to edit the genomes of several species,

including maize, rice and Arabidopsis (Shukla et al., 2009; Osakabe
et al., 2010; Ainley et al., 2013; Gallego-Bartolome et al., 2019).

TALENs are sequence-specific nucleases consisting of

transcription activator-like effectors fused to the catalytic domain of

the FokI endonuclease (Boch et al., 2009; Christian et al., 2010). The

DNA-binding domain in TALE monomers in turn is comprised of a

central repeat domain (CRD) that directs DNA binding and host

specificity. The CRD is formed by tandem repeats of 34 amino acid
residues, each binding to one nucleotide in the target nucleotide

sequence which allows more flexible target design and increases the

number of potential target sites relative to those that can be targeted

by zinc finger nucleases (Moscou and Bogdanove, 2009). Genome

editing by TALENs has been demonstrated in a wide variety of plants

including Arabidopsis (Christian et al., 2013), barley (Budhagatapalli
et al., 2015), Brachypodium (Shan et al., 2013), maize (Char et al.,

2015), tobacco (Zhang et al., 2013), potato (Clasen et al., 2016; Nicolia

et al., 2015), rice (Li et al., 2012; Shan et al., 2013; Shan et al., 2015),

soybean (Du et al., 2016), sugarcane (Jung and Altpeter, 2016),

tomato (Lor et al., 2014), and wheat (Liang et al., 2014).

The CRISPR-Cas9 system consists of a programmable Cas9

nuclease and a synthetic short guide RNA (sgRNA). DNA target
specificity is provided by the guide RNA (Figure 1). Thus, the

CRISPR-Cas9 system is much easier to be constructed than Zinc

finger or TALENs, simple, efficient, has low cost and allows the

targeting of multiple genes at once (Cong et al., 2013; Mali

et al., 2013).

The CRISPR-Cas9 system has a wide diversity of applications.

In medicine, it has been applied in research related to cancer,

virus infections, genetic diseases and detection of pathogens.

This system has been successfully used in mice to correct

mutations in monogenic diseases (Schwank et al., 2013; Ye

et al., 2014; Yin et al., 2014; Kang et al., 2015), including the
one responsible for Duchenne muscular dystrophy (DMD)

(Long et al., 2016; Nelson et al., 2016; Tabebordbar et al.,

2016). CRISPR-Cas9 has also been used to disrupt HIV-1

provirus (Ebina et al., 2013), human papillomaviruses

(Kennedy et al., 2014) and hepatitis B virus (Kennedy et al.,

2015). Furthermore, CRISPR-Cas9 has also been used to target
human hereditary liver diseases (Yang et al., 2016; Yin et al.,

2016) and has shown great promise for the treatment of cancer

(Chen et al., 2019) and Hutchinson–Gilford progeria syndrome

(Beyret et al., 2019). In human cells, CRISPR-Cas9 has been used

successfully to replace endogenously-encoded antibodies with

antibodies protective against Respiratory Syncytial Virus (RSV),
human immunodeficiency virus (HIV), influenza virus, and

Epstein-Barr virus (EBV) (Moffett et al., 2019). This review is

focused on applications of CRISPR-Cas9 in crop improvement.

COMPONENTS OF CRISPR-CAS9

Clustered regularly interspaced short palindromic repeats
(CRISPR) are a family of DNA sequences found in the

genomes of bacteria and archaea. CRISPRs were first

discovered downstream of the alkaline phosphatase isozyme

gene (iap) in Escherichia coli (Ishino et al., 1987). Palindromic

repeats are separated by short (32 to 36 bp) sequences derived

from the DNA of viruses that have previously infected the cell or
its predecessors. These virus-derived sequences integrated into

the bacterial genome provide a memory system of previous virus

infection. Once integrated into the genome, CRISPRs are

transcribed and the virus-derived sequences form short guide

RNAs that are bound by CRISPR associated protein 9 (Cas9).

Cas9 is a DNA endonuclease. In bacteria and archaea, the natural

role of the CRISPR-Cas9 system is to provide adaptive antiviral
immunity against DNA viruses. Binary complexes formed by

guide RNA-Cas9 recognize and cleave DNA of incoming viruses

with sequence similarity to the guide RNA (Garneau et al., 2010;

Horvath and Barrangou, 2010; Jinek et al., 2012; Sternberg

et al., 2014).

There are several CRISPR-Cas systems in bacteria and
archaea. For a comprehensive review, see (Karginov and

Hannon, 2010; Sorek et al., 2013). The CRISPR-Cas9 system

most frequently used in plant genome editing is an adaptation of

the type II CRISPR-Cas system of Streptococcus pyogenes

(Garneau et al., 2010). S. pyogenes is a Gram-positive human-

restricted pathogen that colonizes the pharynx and the skin

causing an array of diseases ranging from mild sore throat and
impetigo to invasive and life-threatening infections

(Cunningham, 2000; Rosinski-Chupin et al., 2019). Type II

CRISPR-Cas system consists of a Cas9 protein with DNA

endonuclease activity and one CRISPR RNA transcript that is
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processed to form one or several short guide RNAs that direct

Cas9 to the target DNA sequence (Figure 1) (Jinek et al., 2012;

Lander, 2016; Jiang and Doudna, 2017). In the cell, Cas9 binds to

the guide RNA and forms a binary complex that scans the

genome for the DNA target for cleavage using Watson-Crick

base pairing. The specificity is determined by the guide RNA.
Cas9 also requires a specific proto-spacer adjacent motif (PAM)

localized on the non-target DNA strand, directly downstream of

the target DNA sequence (Figure 1B). Cas9 from S. pyogenes

recognizes NGG as a PAM (Anders et al., 2014; Lander, 2016;

Jiang and Doudna, 2017). Cas9 proteins have two signature

nuclease domains: HNH and RuvC. The HNH-like nuclease

domain cleaves the target DNA strand complementary to the
guide RNA sequence. The RuvC-like nuclease domain cleaves

the non-target strand (Jinek et al., 2012; Gao et al., 2017; Jiang

and Doudna, 2017). This creates a DNA double strand break

(DSB) at the target site, which can be subsequently used to

introduce modifications by NHEJ or HDR (Figure 1C)

(Symington and Gautier, 2011). In higher plants, NHEJ occurs

most frequently than the more precise HDR, which requires a

donor DNA template during homologous recombination to
repair the dsDNA breaks. NHEJ does not require a

homologous repair template (Puchta et al., 1996; Puchta,

2005). NHEJ has therefore become a popular way to disrupt

genes by the creation of small base pair indels (insertions/

deletions) at specific points in the target genes, while HDR can

be used to precisely introduce specific point mutations and insert

or replace desired sequences into the target DNA (Figure 1C) (Li
et al., 2013a). Currently, it is also possible to precisely edit a

single base pair in the genome without the introduction of DSBs

FIGURE 1 | Targeted genome editing using CRISPR-Cas9. (A) The CRISPR-Cas9 system consists of a Cas9 protein and one or several guide RNA. Guide RNAs

determine target DNA specificity by sequence complementarity. (B) Guide RNA and Cas9 protein form a binary complex that specifically cleaves target DNA creating

a double-strand DNA break. (C) Cellular DNA repair mechanisms, non-homologous end joining (NHEJ) and homology-directed repair (HDR), repairs the double-

strand DNA break. In the process, short insertions, deletions, nucleotide substitutions, or gene insertion may occur.
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by using engineered Cas9 base editors. The base editors consist of

a dead Cas9 domain fused to a cytidine deaminase enzyme that

can be programmed with a guide RNA and is able to convert G to

A and C to T without inducing dsDNA breaks (Komor et al.,

2016). A Cas9 fused with a transfer RNA adenosine deaminase

that can mediate conversion of G to A and C to T was also
created (Gaudelli et al., 2017). These base editors install point

mutations without generating excess undesired editing

byproducts. In plants, base editing has been used to efficiently

generate point mutations in maize, rice and wheat (Rees and Liu,

2018). These base editors will allow more and better genome

modifications and expand the type of cells that can be efficiently
edited. In order to make CRISPR-Cas9 a successful genome

editing technology in plants, several modifications have been

implemented. These include codon modification of the protein

Cas9 to ensure its stability in plants, the use of strong constitutive

or inducible promotors and the development of versatile DNA

cassettes to co-express guide RNAs and Cas9 in the same cells (Li
et al., 2013a).

THE GENOME EDITING PROCESS

A fundamental part of the genome editing process is the

identification of target genes that determine phenotypes of

interest, such as susceptibility to viruses (Garcia-Ruiz, 2018),

other pathogens, resistance to herbicides or adverse

environmental factors (Table 1). Assessment of natural
variation or systematic genome-wide screens are also powerful

approaches to identify target genes (Kushner et al., 2003; Panavas

et al., 2005; Pyott et al., 2016; Giner et al., 2017).

Guide RNAs are artificially designed to specifically direct

Cas9 to the target gene to be edited. Bioinformatic programs that

generate candidate guide RNAs while accounting for the

possibility of off-targets are available (http://crispr.mit.edu/).
Dynamic expression vectors have also been designed to clone

and co-express guide RNAs and Cas9 (Li et al., 2013a; Fauser

et al., 2014; Shimatani et al., 2017). Although variations have

been developed recently (Toda et al., 2019), transformation of

plant cells to express guide RNAs and Cas9 follows a process

similar to these established for the generation of transgenic
plants (Figure 2). The expression cassettes contain constitutive

or inducible promoters, transcription terminators and antibiotic

and/or herbicide resistance markers used for selection purposes

(Li et al., 2013a; Fauser et al., 2014; Shimatani et al., 2017).

The vector carrying the Cas9 protein and the guide RNA is

then introduced into Agrobacterium tumefaciens or Rhizobium
rhizogenes (Figure 2B). Colonies containing the CRISPR-Cas9

construct are further used to transform plants by Agrobacterium-

mediated transformation and first generation transgenic plants

are identified by antibiotic or herbicide selection (Li et al., 2013a;

Pyott et al., 2016; Veillet et al., 2019). Green fluorescent protein

(GFP) has also been used to distinguish cells or calluses

containing the CRISPR-Cas9 cassette (Doench et al., 2014). In
all cases, sequencing the target gene is required in order to

identify the mutations introduced by genome editing. The

presence of the CRISPR-Cas9 cassette renders the plants

transgenic and thus subject to the corresponding biosafety

regulations (Callaway, 2018; Garcia Ruiz et al., 2018;

Eckerstorfer et al., 2019). However, in sexually propagated

plants, after identification of the genome edited plants, the

CRISPR-Cas9 transgene can be eliminated by Mendelian

segregation (Figures 2D–E) (Zhang et al., 2019a). This key
part of the process removes the transgene in the third or

subsequent generations resulting in the formation of genome-

edited plants without a transgene (Pyott et al., 2016). Because of

the absence of the transgene in these plants, they resemble those

with mutations generated by natural means or chemical

mutagenesis (Lellis et al., 2002; Pyott et al., 2016).
Because the introduction of the CRISPR-Cas9 cassette as a

transgene might be controversial under certain regulations in

some countries (Table 2), protocols have been developed to edit

genomes without transgenes using guide RNA-Cas9

ribonucleoprotein complexes (Liang et al., 2017; Toda et al.,

2019) or transient expression (Zhang et al., 2016).
Not all plant species are susceptible to A. tumefaciens. In

species recalcitrant to Agrobacterium-mediated transformation,

alternatives include Rhizobium rhizogenes-mediated or

protoplast transformation. R. rhizogenes previously known as

Agrobacterium rhizogenes, is a soil-borne gram-negative bacteria

that causes hairy roots in plants. In most plant species, cells

transformed with R. rhizogenes and its Ri plasmid differentiate
into transformed roots, serving as a visual marker for marker-

free screening and selection (Young et al., 2001; Bahramnejad

et al., 2019). A comprehensive description of R. rhizogenes

strains, binary vectors, and plants transformed using them is

provided by (Bahramnejad et al., 2019). Examples of plants

edited through CRISPR-Cas9 using R. rhizogenes include
soybean (Du et al., 2016), tomato and rubber producing

dandelion Taraxacum kok-saghyz (Iaffaldano et al., 2016).

PROTOPLAST OR ZYGOTE
TRANSFORMATION

For several plant species, including maize, soybean, wheat, rice,

tomato, lettuce, arabidopsis, petunia, grapevine, apple, potato,

and tobacco, protocols have been developed to isolate protoplast

and transfect them with cassettes carrying CRISPR-Cas9 for
genome editing purposes. Protoplast transfection has been

used to rapidly optimize CRISPR-Ca9 parameters (Woo et al.,

2015; Lin et al., 2018). However, isolation of single-protoplast has

been used to regenerate stable transformants after transfection

with cassettes carrying CRISPR-Cas9 or with ribonucleoprotein

complexes assembled in vitro by synthesizing small guide RNAs
and Cas9 protein. Gene editing using ribonucleoprotein

complexes has the advantage of obtaining mutants without the

presence of exogenous DNA. Preassembled Cas9-guide RNA

ribonucleoproteins complexes can be delivered into protoplasts

using polyethylene glycol-calcium-mediated transfection (Woo

et al., 2015; Kim et al., 2017; Liang et al., 2017; Lin et al., 2018).

To overcome the low efficiency of this approach, a protocol has
been develop to transform plant zygotes by ribonucleoprotein

complexes or by biolistic bombardment (Toda et al., 2019).
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TABLE 1 | Representative applications of CRISPR-Cas9 in crop breeding.

Group Crop

species

Target gene Role Modification Target trait Reference

Monocotyledon Maize ZmTMS5 Causes the TGMS trait Gene knockout Thermosensitive genic

male sterility

(Li et al., 2017)

Monocotyledon Sorghum k1C Encode 22-kD a-kafirin proteins Genes

disruption in N-

terminal ER

signal peptide

region

High Lysine content

and increased protein

digestibility

(Li et al., 2018a)

Monocotyledon Wheat TaEDR1 Negative regulator of the defense response

against powdery mildew

Knock-down all

three homologs

of TaEDR1

Powdery mildew

resistance

(Zhang et al.,

2017b)

Monocotyledon Wheat TaGW2-A1, -B1 and

-D1.

Genetic control of grain weight and protein

content traits

Homologous

genes knockout

Grain weight and

protein content

increase

(Zhang et al.,

2018a)

Monocotyledon Wheat Ms1 Male fertility gene Gene knockout Male sterility (Okada et al.,

2019)

Monocotyledon Rice OsRR22 Transcription factor Inactivating

mutations

Enhanced salinity

tolerance

(Zhang et al.,

2019a)

Monocotyledon Rice CAO1 and LAZY1 Synthesis of Chl b from Chl a and regulating

shoot gravitropism, respectively

Genes'

disruption

Defective synthesis of

Chlorophyll b and

tiller-spreading

phenotypes

(Miao et al.,

2013)

Monocotyledon Rice SBEI and SBEIIb Determining the amylose content, fine structure

of amylopectin, and physiochemical properties

of starch

Genes

disruption

Higher proportion of

long chains in

amylopectin

(Sun et al., 2017)

Monocotyledon Rice Gn1a, DEP1, GS3 and

IPA1

Regulators of grain number, panicle

architecture, grain size and plant architecture,

respectively

Genes

disruption

Enhanced grain

number, dense erect

panicles, and larger

grain size, respectively

(Li et al., 2016)

Monocotyledon Rice OsERF922 Negative regulator of Rice blast resistance Gene disruption Enhanced rice blast

resistance

(Wang et al.,

2016a)

Monocotyledon Rice OsSWEET13 Sucrose transporter. Negative regulator of

bacterial blight resistance

Gene knockout Bacterial blight

resistance

(Zhou et al.,

2015)

Monocotyledon Rice OsMATL Encodes a pollen-specific phospholipase Gene knockout Haploid seed

formation

(Yao et al., 2018)

Monocotyledon Rice ALS Acetolactate synthase encoding gene Gene disruption Herbicide resistance (Endo et al.,

2016)

Monocotyledon Rice ALS Acetolactate synthase encoding gene Gene

replacement

Herbicide resistance (Sun et al., 2016)

Monocotyledon Rice TMS5 Thermo-sensitive genic male sterility gene Gene knockout Thermo-sensitive

genic male sterility

(Zhou et al.,

2016)

Monocotyledon Cavendish

banana

Musa

acuminata)

PDS Phytoene desaturase encoding gene Gene knockout Albinism phenotype (Naim et al.,

2018)

Monocotyledon Banana

(Musa spp.)

Integrated endogenous

banana streak virus

(eBSV) in the B

genome of plantain

The eBSV activates into infectious viral particles

under stress

Knockout the

integrated

dsDNA of BSV

from the banana

genome

Asymptomatic plants

to banana streak virus

(Tripathi et al.,

2019)

Dicotyledon Camelina

sativa

FAD2 Fatty acids biosynthesis Genes knockout Improve seed Oleic

acid content

(Jiang et al.,

2017)

Dicotyledon Arabidopsis

thaliana

The FWA and the

SUPERMAN

promoters.

Flowering time gene and a transcriptional

regulator of floral homeotic genes

Genes knock in. Targeted gene

activation and DNA

methylation in

Arabidopsis

(Papikian et al.,

2019)

Dicotyledon Arabidopsis

thaliana

CBFs C-repeat binding factors encofing genes, key

transcription factors in the cold stress response

Genes

disruption.

Deletions and

insertions

Cold tolerance (Jia et al., 2016b)

Dicotyledon Tomato SlJAZ2 Important repressor in jasmonate signaling

pathway. Key regulator of stomatal aperture

during biotic stresses

Gene knock in,

lacking the C‐

Bacterial speck

resistance

(Ortigosa et al.,

2018)

(Continued)
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TABLE 1 | Continued

Group Crop

species

Target gene Role Modification Target trait Reference

terminal Jas

domain

Dicotyledon Tomato SlMlo1 Confers susceptibility to fungi, causing the

powdery mildew disease

Gene disruption.

48 bop deletion

Powdery mildew

resistance

(Nekrasov et al.,

2017)

Dicotyledon Tomato SP5G Florigen paralog and flowering repressor Gene knockout Rapid flowering. Early

yield

(Soyk et al.,

2017)

Dicotyledon Tomato SlAGL6 Transcription factor. It plays essentials roles,

especially in flower meristem and floral organ

development

Gene knockout Parthenocarpic

phenotype

(Klap et al., 2017)

Dicotyledon Tomato SlIAA9 Key gene controlling parthenocarpy Gene knockout Parthenocarpic

phenotype

(Ueta et al.,

2017)

Dicotyledon Tomato SlMAPK3 Mitogen-activated protein kinases 3 encoding

gene, responds to drought stress

Gene knockout. Drought tolerance (Wang et al.,

2017)

Dicotyledon Tomato CrtR-b2 and Psy1. Key genes of carotenoid biosynthesis Genes knockout Changes on

carotenoids profile

(D'ambrosio

et al., 2018)

Dicotyledon Wild tomato SELF-PRUNING,

OVATE, FASCIATED

and FRUIT WEIGHT

2.2, MULTIFLORA and

LYCOPENE BETA

CYCLASE

Encode general plant growth habit, fruit shape,

fruit size, fruit number and nutritional quality,

respectively

Genes knockout Obtain domestication

traits (fruit number,

size, shape, nutrient

content and plant

architecture)

(Zsogon et al.,

2018)

Dicotyledon Stress-

tolerant

wild-tomato

SP, SP5G, SlCLV3,

SlWUS and SlGGP1

Flowering repressors, small-peptide-encoding

gene, homeobox-encoding gene and vitamin

C–biosynthetic enzyme encoding gene.

Genes

disruption.

Insertions,

deletions and

invertions.

Domesticated

phenotypes yet

retained parental

disease resistance and

salt tolerance

(Li et al., 2018b)

Dicotyledon Potato GBSS Granule-bound starch synthase encoding gene,

is responsible for amylose synthesis

Gene knockouts Increased amylopectin

content

(Andersson et al.,

2017)

Dicotyledon Cucumber eIF4E Eukaryotic translation initiation factor. Is a

central part of the translation machinery

Gene knockout Cucumber Vein

Yellowing Virus,

Zucchini yellow

mosaic virus and

Papaya ring spot

mosaic virus-W

resistance

(Chandrasekaran

et al., 2016)

Dicotyledon Soybean GmFT2a Integrator in the photoperiod flowering pathway

in soya bean

Gene

disruption.1‐bp

insertion or short

deletion

Late flowering (Cai et al., 2018)

Dicotyledon Grape VvWRKY52 Transcription factor gene that plays important

roles in plant defense regulatory networks in

grape

Gene knockout Botrytis cinerea

resistance

(Wang et al.,

2018)

Dicotyledon Oranges CsLOB1 Plays a critical role in promoting pathogen

growth and erumpent pustule formation

Disruption of

CsLOB1

promoter.

Deletions,

insertions and

substitutions

Citrus canker

resistance

(Peng et al.,

2017)

Dicotyledon Grapefruits CsLOB1 Critical citrus disease susceptibility gene for

citrus canker

Disruption the

coding region of

both alleles of

CsLOB1

Citrus canker

resistance

(Jia et al., 2017)

Dicotyledon Grapefruits CsLOB1 Plant‐specific transcriptional factor in the lateral

organ boundaries (LOB) domain family

Disruption of the

PthA4 effector

binding

elements in the

Type I CsLOB1

Promoter

Citrus canker

alleviated

(Jia et al., 2016a)

Fungus Mushroom PPO Enzymes that use molecular oxygen to oxidize

ortho-diphenols to ortho-quinones. These

commonly cause browning reactions following

tissue damage, and may be important in plant

defense. Some PPOs function as hydroxylases

Knockout of one

of six PPO

genes

Non-browning

phenotype

(Waltz, 2016b)

El-Mounadi et al. Gene Editing Applications

Frontiers in Plant Science | www.frontiersin.org February 2020 | Volume 11 | Article 566

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


DE NOVO INDUCTION OF MERISTEMS

Delivering the CRISPR-Cas9 cassette into the germ line or

protoplasts is technically challenging and inefficient. However,

in dicotyledonous plants, those limitations might be eliminated

through de novo induction of meristems. Developmental

regulators and gene-editing components are delivered into
somatic cells of whole plants. From treated tissue, shoots

FIGURE 2 | Genome editing process using CRISPR-Cas9 and Agrobacterium tumefaciens. (A) Cas9 protein and guide RNAs are cloned into the same plasmid

vector containing transfer DNA (T-DNA) signals. Expression is driven by strong constitutive (U6, 35S, or other), inducible or tissue specific promoters. Transcription

termination is programmed by addition of terminator such as the U6 or Nopaline synthase (NOS). For plant genome editing purposes, Cas9 has been codon-

optimized and might contain an epitope tag to determine expression. (B) A. tumefaciens or R. rhizogens is transformed with the plasmid vector carrying the cassette

for Cas9 protein and guide RNAs expression. (C) Bacteria is used to transform embryos, ovules in flowers, protoplasts, roots, or cells in leaves. Integration site of the

T-DNA is random. (D) Expression of Cas9 protein and guide RNAs lead to editing of the target DNA. The T-DNA insertion site and the DNA target are likely not

linked. (E) The T-DNA insertion and edited part of the genome can be separated by Mendelian segregation.
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emerge that contain the targeted DNA modifications that are

transmitted to the next generation (Maher et al., 2019).

APPLICATIONS OF GENOME EDITING IN
CROP IMPROVEMENT

Genome editing with CRISPR-Cas9 is amendable to edit any

gene in any plant species. Because of its simplicity, efficiency, low

cost, and the possibility to target multiple genes, it allows faster
genetic modification than other techniques. It also can be used to

genetically modify plants that were previously neglected. The

potential that this represents for crop breeding and the

development of sustainable agriculture is incommensurable

(Cong et al., 2013; Mali et al., 2013; Zhang et al., 2017a; Toda

et al., 2019; Wurtzel et al., 2019; Zhang et al., 2019b).
Impressive genetic modifications have been achieved with

CRISPR-Cas9 to enhance metabolic pathways, tolerance to biotic

(fungal, bacterial or viral pathogens), or abiotic stresses (cold,

drought, salt), improve nutritional content, increase yield and

grain quality, obtain haploid seeds, herbicide resistance, and

others (Table 1). Notable cases include thermosensitive genic

male sterility in maize (Li et al., 2017) and wheat (Okada et al.,
2019), improved nutritional properties in sorghum and wheat (Li

et al., 2018a; Zhang et al., 2018b), tolerance or resistance to

pathogens (Zhang et al., 2017b; Pyott, 2016), and resistance to

herbicides (Endo et al., 2016; Sun et al., 2016).

In potato CRISPR-Cas9 was used to knockout the gene

encoding granule-bound starch synthase (GBSS) in one round
of transfection resulting in the development of potato plants that

produce amylopectin starch, a highly desirable commercial trait

(Andersson et al., 2017). In cucumber CRISPR-Cas9 system was

used to inactivate the eukaryotic translation initiation factor gene

elF4E. The resulting non-transgenic homozygotic mutant plants

were immune to Cucumber vein yellowing virus (Genus

Ipomovirus) and resistant to the potyviruses Zucchini yellow

mosaic v i rus and Papaya r ing spot mosa ic v i rus

(Chandrasekaran et al., 2016). Engineering genetic resistance to

viruses and other pathogens has immense potential to manage
diseases for which no natural resistance has been detected, such

as maize lethal necrosis disease and tomato brown rugose fruit

virus (Luria et al., 2017; Garcia-Ruiz, 2018; Wamaitha

et al., 2018).

HUMAN EXPOSURE TO CAS9 PROTEINS

In many bacteria and most archaea, CRISPR-Cas provides
acquired immunity against viruses and plasmids by targeting

nucleic acid in a sequence-specific manner (Horvath and

Barrangou, 2010). Comparative genomic analyses revealed that

CRISPR and genes coding for their associated proteins were

present in diverse bacterial phylogenetic groups (Haft et al., 2005;

Lillestol et al., 2006; Makarova et al., 2006). Since this adaptive

immune system is useful for bacterial survival, it is likely to be
present in all bacteria.

We compared the amino acid sequence of the Cas9 protein

from S. pyogenes used in plant genome editing to proteins from

bacteria to which humans are exposed through food

consumption or in the environment. Results showed that Cas9

from S. pyogenes has 23% to 58% similarity to Cas9 protein from
Streptococcus thermophilus, a bacterium widely used as a

probiotic and in the production of cheese and yogurt (Figure

3). Additionally, Cas9 from S. pyogenes shares up to 35%

similarity with Cas9 proteins from a wide range of bacteria

used in food production such as Lactobacillus plantarum used to

make cheese, yogurt, kefir and other fermented milk and meat

products as well as fermented vegetables and beverages (Coloretti
et al., 2007; Zago et al., 2011; Khemariya et al., 2016;

Settachaimongkon et al., 2016; Sidira et al., 2017; Behera et al.,

2018). L. plantarum is frequently encountered as a natural

inhabitant of the human gastrointestinal tract, in which it is a

transient guest acquirable through the diet (Vesa et al., 2000; De

Vries et al., 2006). Additionally, L. plantarum is often used as a
probiotic and can improve the balance of beneficial intestinal

microflora (Nguyen et al., 2007; Nagpal et al., 2012; Kassayova

et al., 2014).

Furthermore, Cas9 from S. pyogenes has homologues in

diverse Gram-positive and Gram-negative bacteria that occupy

very diverse niches throughout the human body (Louwen et al.,
2014). Some are commensals and others are pathogenic bacteria.

More than 80% amino acid sequence similarity was detected

between Cas9 from S. pyogenes and that from human commensal

and pathogenic bacteria such as Streptococcus dysgalactiae subsp.

equisimilis, Staphylococcus aureus, Klebsiella pneumonia and S.

canis (Figure 3).

These observations show that humans have been exposed to
Cas9 proteins in their food and environment long before the

development of genome editing. The biosafety risk of human

exposure to the Cas9 used for plant genome editing needs further

TABLE 2 | Regulation of genetically modified and genome edited plants

across countries.

Country Genetically modified

plants1
Genome-edited

plants2

Argentina Regulated Case-by-case,

mostly non-regulated

Australia Regulated Non-regulated

Brazil Regulated Case-by-case,

mostly non-regulated

Canada Regulated Regulated

Chile Regulated Case-by-case,

mostly non-regulated

European Union Regulated/opposed Regulated/Opposed

India Regulated Regulated

Japan Regulated Non-regulated

Malaysia Regulated Regulated

Mexico Regulated Regulated

New Zealand Regulated Regulated

South Africa Regulated Regulated

Thailand Regulated Regulated

United States of

America

Regulated Non-regulated

1Refers to the final product containing transgenes, such as selection markers or

other form of foreign DNA used during the process.
2Refers to the final product lacking transgenes that might have been used during

the process.
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assessment (Pineda et al., 2019) and our results do not mean that

potential human exposure to Cas9 used in genome editing

is irrelevant.

BIOSAFETY CONCERNS ABOUT
GENOME-EDITED PLANTS

Methodological, biosafety and social concerns remain about the

use of genome editing in plants. They mostly are related to target
gene site selection, guide RNA design, off-target effects, and the

delivery method. The major concern is the risk of generating

unwanted genetic changes in plants due to off-target mutations

(Liang et al., 2018; Pineda et al., 2019). Fragments of the

CRISPR-Cas9 might be degraded into filler DNA and inserted

into expected and/or unexpected genomic positions during the
DNA repair process (Gorbunova and Levy, 1997; Zhang et al.,

2016). However, transgene integration and the risk of off-target

mutations can be prevented by delivering in vitro pre-assembled

CRISPR-Cas9 ribonucleoproteins (Malnoy et al., 2016; Svitashev

et al., 2016; Zhang et al., 2016; Liang et al., 2018). This technique

has already been used in several crop species but there are still

some drawbacks in its application such as low stability, high costs
and high levels of technical requirements, which need to be

improved (Malnoy et al., 2016; Subburaj et al., 2016; Murovec

et al., 2018).

Substantial work has also been done to minimize off-target

effects of Cas9 itself, including improving RNA guide–design

strategies, ribonucleoprotein delivery, protein engineering, using

spatiotemporally controlled Cas9, and/or gRNAs through a

plethora of chemical or environmental inducers, or using

synthetic genetic circuits that modulate CRISPR function

according to predefined logic (Svitashev et al., 2016; Liang
et al., 2018). Base editing is also being modified to improve the

specificity of base editors by limiting deaminase activity outside

of Cas9 binding through the use of different deaminase effectors

or rationally engineering the deaminase to decrease its DNA

binding ability (Shimatani et al., 2017).

Other concerns about CRISPR-Cas9 technology are related to
the Cas9 protein itself as it was shown to induce an immune

response when delivered by adeno-associated virus in mice,

making immunogenic side effects a concern (Chew et al.,

2016). There are also concerns about the specificity of Cas9

and the limited number of sites which can be targeted due to the

requirement of the PAM (Spencer and Zhang, 2017). Protein

engineering efforts led to the identification of mutations in Cas9
that alter its PAM recognition and enhance its fidelity and

recognize other motifs (Kleinstiver et al., 2015; Kleinstiver

et al., 2016; Leenay and Beisel, 2017). Further modifications to

Cas9 and guide RNA design, such as FokI fusions, paired

nicking, and the use of truncated guide RNAs, have provided

additional improvements to specificity (Wyvekens et al., 2015).
Furthermore, Cas9 variants, Cas9 homologs derived from other

FIGURE 3 | Bacteria frequently in contact with humans and similarity of their proteins to S. pyogenes Cas9 frequently used in plant genome editing. Amino acid

sequence of S. pyogenes Cas9 was used to search for homologues proteins in GenBank. Proteins with more than 20% similarity are indicated. Features or

anthropocentric use of each bacteria species are color-coded.
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bacteria, or novel Cas proteins such as Cpf1 nucleases can be

used (Nakade et al., 2017; Pineda et al., 2019).

The societal concerns about genome editing stem in part from

the lack of information about its principles and applications. A

fundamental feature here is the distinction between genetically

modified plants, transgenic plants, and genome edited plants
(Garcia Ruiz et al., 2018; Eckerstorfer et al., 2019). Genome

edited plants may or may not be transgenic. As indicated above,

the transgene carrying the CRISPR-Cas9 cassette might be

removed by gene segregation (Figure 2). If this is done, a

genome-edited plant might be classified as non-transgenic.

Educating the public on the principles of genome editing has
the potential to correct and prevent the spread of misconceptions

(Garcia Ruiz et al., 2018; Eckerstorfer et al., 2019).

REGULATION OF GENOME-EDITED
CROPS

The term genetically modified refers to plants whose genome has

been modified in a way that would not have been occurred

naturally (Wang et al., 2016b; Duensing et al., 2018; Friedrichs
et al., 2019).

In contrast, gene editing refers to DNAmodifications similar

to those potentially generated naturally (deletions, nt

substitutions, insertions) of by conventional plant breeding

(Nature Plants Editorial, 2018). The basis to regulate the

release and international trade of living genetically modified
organisms were established in the Cartagena Protocol on

Biosafety. However, production, consumption, and regulation

of genetically modified plants have followed contrasting

patterns. While some countries reject consumption and ban

production, others openly grow and consume them (Garcia

Ruiz et al., 2018).

Regulation of genome-edited plants follows two frameworks.
Some countries regulate the process, while others regulate

characteristics of the final product (Eckerstorfer et al., 2019;

Van Vu et al., 2019). While some countries have established

biosafety regulations for genome edited plants, or declared their

deregulation (Table 2), most countries have not yet established

their position (Eckerstorfer et al., 2019). Challenges in regulating
plant genome editing include market access, and addressing the

societal concerns about its biological safety without limiting the

development of the technology (Kupferschmidt, 2018;

Eckerstorfer et al., 2019). Transgene-free, genome-edited plants

are similar to varieties containing genetic variations created

naturally (Figure 2). Therefore, commercialization of genome

edited plants or their products might bypass the strict biosafety
regulations required for transgenic plants (Tuteja et al., 2012;

Van Vu et al., 2019).

The United States Department of Agriculture (USDA)

declared in March 2018 that genome editing is the equivalent

of conventional breeding in some instances and therefore does

not require regulatory oversight within the American regulatory
framework (Waltz, 2016a). A mushroom engineered to resist

browning and a waxy corn engineered to contain starch

composed exclusively of amylopectin are the first CRISPR

edited crops to be approved for commercialization in the USA

with no regulations (Waltz, 2016b). The decision not to regulate

was based on the fact that no foreign DNA (transgene) was

inserted during editing and that the resulting change did not

involve resistance to pesticides or herbicides.
Canada, on the other hand, has remained committed to the

scientific principles laid down in its domestic regulatory framework

for plants with novel traits established 25 years ago. Canada's policy

states that any gene editing technology that creates a novel product

is subject to additional regulatory oversight on allergenicity, toxicity

and impacts on non-target organisms (Smyth, 2017). Two products
obtained by gene editing have been approved in Canada, non-

browning apples and non-dark spots potatoes (Waltz, 2016b). The

approval was granted after a lengthy evaluation process that

determined that the changes made to the apples and the potatoes

did not pose a greater risk to human health than apples and potatoes

currently available on the Canadian market (Waltz, 2016b).
Argentina has developed a functional regulatory system for the

approval of genome-edited products (Whelan and Lema, 2015).

The regulatory system was developed to be consistent with the

Cartagena Protocol on Biosafety and relies on case-by-case

assessment. If a transgene technology was used in the

development of a product, where the final product is free of the

transgene, then this product can be classified as nontransgenic.
Chile and Brazil followed Argentina's lead. Chile signed a normative

resolution in 2017 while Brazil published a resolution in January

2018 (Duensing et al., 2018). Both regulate gene-edited products on

a case-by-case basis and exempt them from regulation when there is

no insertion of transgenes.

Meanwhile, European Union (EU) countries remain
politically opposed to genetically modified crops (Waltz,

2016b). On July 2018, the Court of Justice of the European

Union (ECJ) ruled that gene-edited crops should be subject to

the same stringent regulations as conventional genetically

modified (GM) organisms. In its ruling, the ECJ determined

that only mutagenesis techniques that have conventionally been

used in a number of applications and have a long safety record
are exempt from this rule.

In Australia, the Gene Technology Act (GT Act), introduced

in 2000, stipulates that a GMO is an organism produced by any

technique that modifies genes or other genetic material. In 2001,

the Gene Technology Regulations were introduced. Schedule 1 of

these regulations, specifies that organisms resulting from an
exchange of DNA in which the donor species is also the hosts

species and the vector DNA does not contain heterogenous DNA

as not GMOs. In October 2019, an amendment to schedule 1

came in effect. The amendment excludes organisms modified

through CRISPR-Cas9 and other unguided repair of site-directed

nuclease activity (SDN), from being regulated as GMOs. The

amendment also indicates that organisms generated in the
intermediated steps of the SDN method are deemed non

GMOs if 1) no nucleic acid template is supplied to guide

genome repair through homology-directed recombination, and

2) the organism has no other modifications as a result of the gene

technology (Eckerstorfer et al., 2019).
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In New Zealand, importation, development, field testing, and

release of GMOs genetically modified are regulated by the

Hazardous Substances and New Organisms Act 1996 (HSNO

Act). The country has the most rigorous and comprehensive

process for regulation of GMOs. As a result of that, no GMO

commercial crops are grown in the country and no GM meat or
fresh produce is sold in the country. Furthermore, processed food

that contains imported GM ingredients is tested for safety and

should be labeled as so. In 2016, the HSNO Act was amended with

an article stating that plant breeding by genome editing is subject to

the same regulations as the GMOs (Shimatani et al., 2017).

India's regulatory process for research, development and use
of GMOs and their products, including new gene technologies

was established in 1989. The Food Safety and Standards

Authority of India define genetically engineered or modified

food as “any food or food ingredient composed or containing

genetically modified or engineered organisms obtained through

modern biotechnology, or food and food ingredients produced
from but not containing genetically modified or engineered

organisms obtained through modern biotechnology”. Thus all

new technologies including CRISPR-Cas9 gene technologies

(including genome editing) are still regulated within the

existing regulatory framework (Friedrichs et al., 2019).

Japan's Ministry of Health, Labor and Welfare (MHLW) has

recently declared that foods derived from genome editing
technologies which do not contain transgenic genes and/or

fragments of transgenic genes are not considered GMOs and

are not subject to regulations as long as the DNA double-strand

break induced by the genetic engineering method is either a base-

pair deletion, a naturally occurring gene deletion and/or a

concomitant insertion of one to several base pairs. The new
MHLW's policy also indicates that off-target mutations in GE

foods should not be of concern as they can also be observed in

multiple locations in the genome of crops produced by

traditional breeding (South et al., 2019; Van Vu et al., 2019).

It seems that the decision to regulate or not regulate GE crops

and foods depends mainly on the type of GMO regulatory system

already in place in the country. Countries that have adopted a
process-based GMO regulatory system and consider that

products made using the regulated process are fundamentally

different or more risky than similar products made using other

methods will likely regulate GE crops and foods under the GMO

laws. On the other hand, countries who follow a product-based

regulatory system and regulate based on the characteristics of the
final product rather than the process by which it was made might

not regulate GE crops and foods under GMO laws. Countries,

such as Malaysia and Thailand, who adopt a dual product and

process approach will also likely to regulate GE crops and foods

under GMO laws (Friedrichs et al., 2019).

FUTURE PERSPECTIVES

Due to the many practical applications related to food

production, genome editing can and will be used to solve

agricultural issues that directly affect food security, such a

citrus greening disease (Taylor et al., 2019), and the high yield

losses in C3 plants, such as rice and barely, due to inefficient

photorespiration in these crops. A recent report described the

construction of three synthetic glycolate metabolic pathways

in tobacco chloroplasts with the aim of improving the plant's

photosynthetic efficiency. Flux through the synthetic pathways
was maximized by inhibiting glycolate export from the

chloroplast using RNA interference to down-regulate a

native chloroplast glycolate transporter. In the transgenic

tobacco plants, the photosynthetic yield increased by 20%

while biomass productivity improved by more than 40%

(South et al., 2019). While this study did not use genome
editing technology and was carried out in Nicotiana tabacum,

a model plant, the concept can be applied easily and

successfully in staple crops using CRISPR-Cas9. Successful

improvement in photorespiration efficiency in crops such as

maize, rice and wheat, has the potential to substantially

increase food production for the growing worldwide
population while using the same cultivation areas and

without having to destroy more forest areas for agricultural

purposes. Producing crops with better quality food through

genome editing will also help achieve food security (Li et al.,

2018b; Narayanan et al., 2019).

CONCLUSIONS

Genome editing in general, and CRISPR-Cas9 in particular, is a
revolutionary tool that can impact science, food production, and

society. CRISPR-Cas9 has great potential for transforming

agriculture by making plants tolerant to biotic and abiotic

stresses and improving their nutritional value and yield. These

attributes are necessary to meet the demand of an increasing

world population. In order to be able to effectively and durably

use this technology in crop improvement, the scientific
community needs to address the various biosafety and societal

concerns about it. There is also a need to re-evaluate the

regulations of genome-edited plants and to educate the general

public about their properties.
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