
Principles for Entity Authentication
�

Michele Bugliesi, Riccardo Focardi, Matteo Maffei, and Fabio Tudone

Dipartimento di Informatica
Università Ca’ Foscari, Venezia, Italy

Technical Report CS-2002-16

Abstract. We study the roles of message components in authentication protocols. In particular, we inves-
tigate how a certain component contributes to the task of achieving entity authentication. To this aim, we
isolate a minimal set of roles that enables us to extract general principles that should be followed to avoid
attacks. We then formalize these principles in terms of rules for protocol parties and we prove that any
protocol following these rules (i.e., designed according to the principles) will achieve entity authentication.

1 Introduction

Security protocols, also known as cryptographic protocols, are designed to reach specific security
goals in (possibly) completely hostile environments, like, e.g., Internet. Typical security goals include
the communication of a secret between two trusted entities, an authenticated message exchange, the
generation and the sharing of a session key, the authentication of an entity with respect to another
entity (e.g., to a server), and more.

The design of security protocols is complex and often error prone, as witnessed by the many
attacks to long standing protocols reported in the recent literature on the subject (see, e.g., [9, 10,
13, 18–20]). Most of these attacks do not need to break cryptography to be performed. In fact, even
when cryptography is assumed as a fully reliable building-block, an intruder can engage a number
of potentially dangerous actions: it can intercept messages before they reach their destination, insert
new messages, read those that travel along the communication links and forge new ones using the
knowledge it has previously gained. All these actions are at disposal for an intruder to try to break a
protocol by exploiting a flaw in the underlying protocol logic.

In this paper, we focus on (shared-key based) cryptographic protocols for entity authentication,
i.e. on protocols that enable one entity (i.e., the claimant) to prove its claimed identity to another entity
(i.e., the verifier)[14, 5], and discuss a novel methodology to protect such protocols from attacks to
their logic.

A typical source of flaws in security protocols, and specifically in authentication protocols, is
a poor interpretation of messages: sometimes it is assumed that a certain message provides more
guarantees than it really does. As observed in [4] “every message should say what it means, i.e., its
interpretation should depend only on its content”. As a trivial example consider the protocol:

A � B :
�
“Here I am!” � KAB

in which Alice is sending to Bob the message “Here I am!” encrypted with a long-term key shared be-
tween them. When Bob receives the message, he could erroneously deduce that it has been generated
by Alice since it is encrypted with a key that only Alice (besides Bob himself) knows. However, this
is not true if Bob previously run the same protocol with Alice (with exchanged roles). In that case, the
following, well-known, reflection attack could be exploited by an intruder E:

�
This work has been partially supported by the MURST project ‘Modelli formali per la sicurezza” and the EU Contract
IST-2001-32617 ‘Models and Types for Security in Mobile Distributed Systems” (MyThS).



a � B � E � A � :
�
“Here I am!” � KAB

b � E � A � � B :
�
“Here I am!” � KAB

Here E is pretending to be A (denoted with E � A � ) in the first run a, intercepting the message sent
by Bob, and is replaying the same message back to Bob in a second run b. As a consequence, B
erroneously interprets his own message as sent by Alice. The problem is that Bob is assuming that the
message has been generated by Alice but this is not explicitly indicated in the message

Starting from this need to make the interpretation of messages unambiguous, we study in detail the
roles of message components in authentication protocols. In particular, we investigate how a certain
component, with a given role, contributes to the task of achieving entity authentication. As noticed
above, a way to avoid reflection attacks is to make the identifier of the message sender explicit:

A � B :
�
“Here is A!” � KAB

To motivate why adding “A” prevents the flaw, it is useful to investigate which role is played by “A”
in the authentication step. A low-level approach could lead to state that “A represents the entity which
encrypted the message”. When Bob receives the message, he is ensured that he was not the creator, as
A plays the role of “encrypter”. This interpretation is fine for this simple example, but it is unpractical
for more complicate authentication protocols as it only conveys information about how encryption
is used. Furthermore, is not always the case that encrypter identifiers are made explicit in protocol
messages.

We propose a refined, and more abstract, approach whereby we assign to entity identifiers the
roles entities typically play in authentication protocols. As an example, in the message above, we say
that “A represents the claimant of the authentication protocol”. This role is, in a sense, more abstract
than the role “encrypter” since it does not directly relate to who encrypted what. When B receives the
message, he can deduce that “A is the claimant of the protocol”, and avoid reflection attacks based on
this more abstract information.

We consider three fundamental roles for entity identifiers: � i � Claimant, an identifier representing
a principal willing to authenticate itself to some other principal; � ii � Intended verifier: an identifier
representing a principal that a claimant wants to act as a verifier for its response; � iii � Key owner:
an identifier representing a principal that owns a session key. We decided to choose these three roles
after studying many existing shared-key authentication protocols. In particular, we noticed that every
message encrypted with a long-term key contains an identifier that can be interpreted as playing one
such role.

There are other message components that are necessary to make these roles effective during the
authentication task. In particular, each role needs a time-dependent element, like e.g., nonces, times-
tamps, sequence numbers, that provides freshness. Here we only consider nonces, i.e., numbers that
are used only once: they are typically generated as challenges, and sent back inside encrypted mes-
sages, to be checked and thus prove that a certain message is not a replay of an old one. Together with
nonces, we associate entities with the session key they possess (this is always true of entities playing
the Key owner role). This is useful for distribution of session keys, where a trusted server wants to
communicate that a certain entity owns a certain session key.

We cast all of these ideas into the notion of authentication block, i.e., an abstraction of an en-
crypted message which only contains the message components that are directly relevant to authenti-
cation, plus their role in the authentication task. Authentication blocks have the form:

�����
I
�
N
�
Ks � K

2



where
�

is one of the three roles above, I represents an entity playing that role, N is a nonce, and Ks,
if present, is a session key owned by I. An entity which decrypts an authentication block, checking
the nonce N, gives the following unique interpretation to the block components: “Entity I is recently
playing the role

�
with respect to the entities that share the long-term key K, and is possessing the

fresh key Ks (if Ks is present)”.
In order to enforce this interpretation of authentication blocks, we propose a number of principles

to be followed by the trusted parties of an authentication protocol. These principles provide “safe
ways” for generating new authentication blocks from existing ones. For example, an entity A can
assign her identifier the Claimant role in order to authenticate herself with another entity B; also a
trusted server S can assign to entity A the claimant role, in a message directed to B, provided that
it has enough information to guarantee to B that A is indeed the claimant, i.e., provided that S has
another authentication block proving that A is willing to authenticate with B.

We then show that authentication blocks enable one to reason on authentication. Specifically,
we show that authentication guarantees can be expressed in terms of the decryption of particular
authentication blocks. For example, if an entity B decrypts a block where A is playing the claimant role
and B checks the nonce N present in the block, then he is guaranteed that A is indeed the identity of the
claimant and that A was recently running the authentication protocol with him, i.e., A is authenticated
to B.

We develop a formal model in which our principles are formalized as rules that regulate the forma-
tion of new authentication blocks from existing ones. Based on this model, we prove a safety theorem
which implies that protocols designed according to these principles provide the intended authentica-
tion guarantees against any security attack to the protocol logic.

The paper is organized as follows. In Section 2, we give a precise account of the intended inter-
pretation of authentication blocks, and introduce the design principles that convey that interpretation.
In Section 3, we develop a formal model for protocol authentication and cast our principles within
that model. Based on this formalization, we prove our safety theorem. In Section 4, we show that our
principles are effective for reasoning on authentication protocols. In particular, we show that they may
be exploited to re-arrange existing protocols, simplifying their structure. We conclude in Section 5
with a discussion of related work and final remarks. The proof of the safety theorem is detailed in a
separate Appendix.

2 Authentication principles

We start by introducing our principles informally, giving the underlying ideas and motivating them
through some examples. In Section 3, we formalize them as inference rules, proving their correctness
with respect to a formal definition of entity authentication.

As we mentioned, we will only consider attacks which are based on flaws in the protocol logic and
do not exploit any weakness of the underlying cryptographic primitives. We thus make the so called
perfect cryptography assumption, i.e. we abstract away from security issues regarding cryptographic
primitives and specific cryptographic algorithms, and we assume every cryptographic operation to be
a secure building-block. Specifically, we assume that:

– encryption and decryption are possible only by knowing the correct keys;
– encrypted messages contain enough redundancy to make it possible to tell a meaningful message

from a nonsensical one (this allows to detect the success (or failure) of a decrypt operation);
– long-term keys are safely distributed to participants and can never be learnt by any intruder (i.e.,

are stored locally in a secure place and are never sent out as protocol messages)

3



– every encrypted message has a form that makes it distinguishable from every other message in
the protocol; this may be simply implemented by tagging encrypted messages with a message
identifier, and is a simple way to avoid type-flaw attacks, i.e., attacks which are based on possible
confusion among protocol messages [13].

Authentication protocols can be partitioned into two classes depending on whether or not they are
based on a Trusted Third Party (TTP), i.e., a trusted entity that acts as intermediate party for the
authentication task. The presence of a TTP greatly simplifies the key-management of long-term keys:
it allows to have only one long-term key shared between each principal and the TTP, instead of having
one long-term key for every possible pairs of principals. As we shall see, our principles allow us to
deal with both kinds of authentication in a uniform way.

The principles are stated in terms of which roles encrypted components play in the authentication
task. In particular we focus on three fundamental roles, and on the principles aiming at giving a
correct “semantics” to such roles, by specifying � i � who is allowed to generate encrypted messages
with specific roles, and � ii � under which conditions such a generation is possible. This controlled use
of roles makes their interpretation unique, thus allowing use to derive authentication guarantees from
the observation of encrypted messages. As an example, the reception of an encrypted message with A
in the claimant role (and with a fresh nonce N) should imply that either A has generated such a fresh
message or a trusted server S has “forwarded” an authentication request from A to B. The specific
roles that entity identifiers can play are:

1. Claimant: an identifier representing a principal willing to authenticate itself to another principal;
2. Intended verifier: an identifier representing a principal that a claimant wants to authenticate with;
3. Key owner: an identifier representing a principal that owns a session key.

Roles are made explicit through authentication blocks, i.e., abstractions of an encrypted message
which only contains the message components which are useful for authentication, plus their role in
the authentication task. More in detail, an authentication block assigns a role to an entity identifier I, a
nonce N and, possibly, a session key Ks. The nonce has the aim of proving that I was recently playing
the specific role. The session key, if present, indicate that I (also) possesses the fresh key Ks.

Definition 1. An authentication block is a tuple of the form
��� �

I
�
N
�
Ks � KI1I2

where KI1I2 (I1
�� I2) is a

long-term key shared between I1 and I2,
�

is one of the the labels ��� ���
	 (“Claimant”), �
������� (“Key
Owner”), ������� � (“Intended Verifier”), I represents an entity playing such a role, N is a nonce, and Ks,
if present, is a session key owned by I. The session key Ks is mandatory only for the role ��������� . When
it is missing the block is simply denoted by

�����
I
�
N � K

Clearly, both I1 and I2 may decrypt1 the block
��� �

I
�
N
�
Ks � KI1I2

. The intended semantics of authenti-
cation blocks is the following: if entity I1 decrypts an authentication block and checks the validity of
nonce N, then it is guaranteed that

“Entity I is recently playing the role
�

with respect to I1 and I2, and is possessing the fresh
key Ks (if Ks is present)”.

where, in turn, “I is recently playing the role
�

with respect to I1 and I2” means:

1. if
� � ��� ����	 , I1 is not a TTP and I1

�� I then I1 is guaranteed that I is recently willing to authenti-
cate with I1;

1 Notice that we are assuming I1 �� I2, thus disregarding all issues related to self-authentication.

4



2. if
� � ����� � � I1 is a TTP and I1

�
I2

�� I then I1 is guaranteed that I2 is recently willing to authenticate
with I;

3. if
� � ��������� then I1 is guaranteed that I knows the session key Ks;

Notice that we give semantics to authentication blocks only in some specific situations. In particular,
since the ��� ����	 role is used to authenticate I to I1 (possibly through a TTP), we require I1 to be a
party other than a TTP and that I1

�� I, i.e., that I1 does not accept authentication requests from itself
(which is a typical source of “reflection attacks”). As the ����� � � role is used by I2 to communicate to a
TTP I1 that it (I2) intends to authenticate with I, we ask that I1 is a TTP and that I is different from the
other two identities. The fact that all the other cases have no semantics simply means that they do not
provide any guarantee to the receiver.

Example 1. We show, through a simple example, that authentication blocks allow to reason about
messages by making their interpretation unambiguous. Consider a message

�
M
�
A
�
N � KBS encrypted

with a long-term key shared between principal B and TTP S, and containing a message M, the en-
tity identifier A and a nonce N. One can deduce that this message is probably used to authenticate
something, as a nonce is present, but nothing more can be said from the message itself. If instead,
we represent it as an authentication block, we recover a precise, and unambiguous semantics. For ex-
ample we can represent

�
M
�
A
�
N � KBS as the block

� ��� ���
	 �
A
�
N � KBS

, meaning that this message can be
used to authenticate entity A to B, once nonce N has been checked by B. Alternatively,

�
M
�
A
�
N � KBS

could be mapped to
� ����� � � � A � N � KBS

to represents a request from B to authenticate with A through
the TTP S. Note that we cannot map the message to a block of the form

� ����� ��� � A � N �
Ks � KBS

as no
session key Ks is present in the message and Ks is mandatory for role �
������� . In other words, to see
a message as an authentication block, we need that every element required by the block is present in
the original message. Note also that M is “discarded” in authentication blocks. This reflects the fact
that it is irrelevant for authentication.

2.1 Protocols without TTP: Direct Authentication

If no TTP is present, the only way for Alice to authenticate with Bob is to use a long-term key shared
between Alice and Bob. For any pair of principals A and B, we note KAB the long-term key shared
between them.

Principle 1 (Direct authentication) Principal A may declare her intention to authenticate with prin-
cipal B by generating an authentication block encrypted with KAB, in which A plays the ��� ���
	 role,
i.e., a block of the form

� ��� ���
	 �
A
�
N � KAB

.

Note that this principle is consistent with the intended semantics of the ��� ����	 role. When B decrypts
the block

� ��� ���
	 �
A
�
N � KAB

, and verifies the nonce N, it is guaranteed that A is recently willing to
authenticate with himself; moreover, if A receives such a message, she will discard it as the block is
declaring herself as claimant.

Example 2. Consider the following simple protocol for unilateral authentication without TTP, inspired
to the ISO Simmetric Key Two-Pass Unilateral Authentication Protocol [5, 15]:

1) B � A : NB

2) A � B :
�
M
�
A
�
NB � KAB

5



B, the verifier, sends a freshly generated nonce to A as a challenge. A, the claimant, completes the
authentication session by sending a message M, A and NB encrypted using KAB. This proves to B the
identity of the claimant A, as only A and B know KAB.

As identifier A represents the claimant of the protocol run, we make this information explicit by
mapping message 2 into the authentication block

� ��� ����	 �
A
�
NB � KAB

(note that M is not in the block as
it is unessential for authentication). The protocol is a “good one” as it follows principle 1.

Example 3. We now show that failing to comply with the previous principle may lead to protocol
flaws. In particular, we consider the cases in which either A or NB are missing in Message 2. Interest-
ingly, in both both cases there is no way to represent the message as a valid authentication block as one
of the fundamental components is missing. And in both cases the protocol is insecure. Suppose first
that A is missing: Message 2 becomes

�
M
�
NB � KAB . Observing message

�
M
�
N � KAB , there is no way

to tell who between A and B is the claimant, so it is impossible to distinguish between messages that
belong to a protocol run and messages that belong to another concurrent protocol run with reversed
roles. This fact can be used effectively by an adversary as follows:

1.a) B � E � A � : NB

1.b) E � A � � B : NB

2.a) B � E � A � :
�
M
�
NB � KAB

2.b) E � A � � B :
�
M
�
NB � KAB

With such a “reflection attack” an enemy can trick B into believing that A has been actively involved
in the protocol run “a”, while in fact it has not.

Suppose now that the nonce is missing, i.e., the protocol becomes
�
A
�
M � KAB (the first message is

now useless). There is no way for B to tell if the message belongs to the current run or to a previous
one, so an adversary can convince B that it is talking to A without A actively participating:

old) A � B :
�
A
�
M � KAB

. . .
new) E � A � � B :

�
A
�
M � KAB

2.2 Protocols with TTP: indirect authentication

When a TTP is present, Alice may authenticate to Bob using the TTP as a mediator. In this setting, we
assume that Alice and Bob share a long-term key with the TTP named S. Instead, there is no way for
them to directly communicate through a common long-term key. The role � ����� � aims at dealing with
this kind of indirect authentication:

Principle 2 (Authentication through TTP) Principal A may declare to a TTP S her intention to
authenticate with principal B by generating an authentication block encrypted with KAS, in which B
plays the ����� � � role, i.e., a block of the form

� ������� � � B � N � KAS
.

Note that this principle is consistent with the intended semantics of � ����� � role: it allows A to commu-
nicate to a TTP her intention of authenticating with B.

This principle is useful when combined with other principles that allow the TTP to forward au-
thentication to the intended verifier B.

Principle 3 (Verified authentication forwarding) TTP S may declare to a principal B that a prin-
cipal A is recently willing to authenticate with B, provided that S has evidence of that fact, i.e, has

6



decrypted a block
� � ����� � � B � N � KAS

and checked the validity of N. In such a case, S generates an au-
thentication block encrypted with KBS, in which A plays the ��� ����	 role, i.e., a block of the form� ��� ����	 �

A
�
N

� � KBS
.

The principle above states that a TTP can forward authentication from A to B if the TTP is guaranteed
that A is recently willing to authenticate with B. This is provided by the (intended) semantics of the
authentication block

� ������� � � B � N � KAS
, and this principle is thus consistent with the intended semantics

of
� ��� ���
	 �

A
�
N

� � KBS
.

Example 4 (nonce-based Wide Mouth Frog Protocol 2). The Wide Mouth Frog protocol [7] achieves
unilateral authentication using a TTP. The original version is based on timestamps, here we consider
the nonce-based version presented in [11].

1) A � S : A
2) S � A : NS

3) A � S : A
� �

B
�
KAB

�
NS � KAS

4) S � B : � �
5) B � S : NB

6) S � B :
�
A
�
KAB

�
NB � KBS

This protocol can be seen as a direct application of principles 2 and 3. As a matter of fact, the two
encrypted messages 3 and 6, can be abstracted as the two authentication blocks

� � ����� � � B � NS � KAS
and� ��� ����	 �

A
�
NB � KBS

, respectively. This last block provides an authentication guarantee to B. Note that the
two encrypted messages have the same form. Assigning them to two different authentication blocks
make their interpretation very different and allows to easily reason about which guarantees the two
messages provide.

Next principle captures a variant of authentication forwarding that allows the TTP to forward authen-
tication even if it has not verified the claimant’s nonce. The idea is that the nonce sent by the claimant
is forwarded to the verifier who is in charge of checking its validity.

Principle 4 (non-verified authentication forwarding) TTP S may declare to a principal B that a
principal A is willing to authenticate with B with a nonce N, provided that S has evidence of that
fact, i.e, has decrypted a block

� ����� � � � B � N � KAS
. In such a case, S generates an authentication block

encrypted with KBS, in which A plays the ��� ����	 role and with the same nonce N of the previous block,
i.e., a block of the form

� ��� ���
	 �
A
�
N � KBS

.

The difference with respect to principle 3 is that N is not checked by the TTP but is forwarded to B,
in order to let him check its validity. This principle is again consistent with the intended semantics of
authentication blocks: the TTP is assured that A is willing to authenticate with B even if it does not
know anything about the freshness of this intention; for this reason, the TTP forwards the nonce N to
B so that B may check it and verify that the willingness of A to authenticate with him is also recent.

A possible scenario is the following: the nonce is originated by the verifier, sent to the claimant
who inserts it into the authentication request to the TTP; finally the nonce is forwarded back to the
verifier for the final check. This is what the “Woo and Lam Shared-Key Protocol” does [26].

2 This protocol suffers of a type-flaw attack: assuming that ciphertexts in message 3 and message 6 can be confused (this
is the base of a type-flaw) and both the principals A and B can play both roles, an adversary can succeed impersonating
one of the principals (see [11, 4, 6] for more detail). Recall that we are assuming that confusion among messages is not
possible, i.e., that encrypted protocol messages are implemented in a way that allow to distinguish among them, thus
preventing the attack mentioned above.

7



Example 5 (Flaws in the original Woo and Lam protocol). Here we report the original (flawed) ver-
sion of the protocol [26].

1) A � B : A
2) B � A : NB

3) A � B :
�
NB � KAS

4) B � S :
�
A
� �

NB � KAS � KBS

5) S � B :
�
NB � KBS

Message 3 is encrypted with the key shared with S and is thus directed to S (even if it is sent to B
who is in charge of forwarding it to S inside message 4). It represents the declaration of the intention
of A to authenticate with B. However, note that A does not include in the ciphertext of message 3 the
label of B. Thus, it is not possible to apply principle 2. The same happens in the last message, where
S doesn’t include any identity label. This make principle 4 inapplicable.

This failure to comply with the principles suggests following attack:

α.1) A � E : A
β.1) E � B : A
β.2) B � E : NB

α.2) E � A : NB

α.3) A � E :
�
NB � KAS

β.3) E � B :
�
NB � KAS

β.4) B � S :
�
A
� �

NB � KAS � KBS

β.5) S � B :
�
NB � KBS

At the end of the attack sequence B, accepts the authentication request of A even if A began a
session to authenticate itself with E , i.e., there is no correspondence of intentions. This is considered
a valid attack to entity authentication by many authors (see, e.g., [27, 16]). Interestingly, the attack
exploits the absence of B as intended verifier in message 3. To see that, note that β.3, E forwards to B
the message sent by A who is willing to authenticate with E . If the intended verifier (E in this case)
were made explicit in the message, such a forwarding would be detected by the server before sending
out the last message β.5. In fact, the correct version of this protocol [11] uses the identifiers precisely
as required by our principles.

2.3 Protocols with TTP based on session keys

Another way for Alice to authenticate with Bob through a TTP, is to establish a fresh session key with
Bob and then use it to authenticate her. The following principle states how key distribution should
happen:

Principle 5 (Session key distribution) TTP S may distribute to principals A and B a freshly gener-
ated key Ks by generating two authentication blocks encrypted with KAS and KBS and with B and A
playing the ����� ��� role, respectively. In particular, the two blocks have the form

� �
������� � B � N �
Ks � KAS

and
� ��������� � A � N � �

Ks � KBS
, respectively. No other messages containing Ks may be sent by S.

The principle above shows how the ����� ��� role is used: the TTP communicates to A (B) that B (A)
owns the key Ks. Note that, in order to guarantee the secrecy of the session key, the principle requires
that the TTP will never send other messages containing Ks.

8



Remark 1 (Role subsumption). It could be the case that a TTP generates, through principles 3 and
4, a block where A plays the ��� ���
	 role. At the same time the TTP could need to distribute to B a
session key owned by A, by applying principle 5 above. As a result the TTP generates the two blocks� ��� ����	 �

A
�
N � KBS

and
� �
� � ��� � A � N � �

Ks � KBS
. Since the information conveyed by the two blocks does

not overlap, we allow the role ��� ���
	 to subsume role �
������� , provided that Ks is specified in the
corresponding block. In other words, instead of generating the two blocks above, the TTP may just
generate

� ��� ���
	 �
A
�
N
�
Ks � KBS

.
The effect is to have in just one encrypted message the information conveyed by the two separated

ones: “A recently plays the ��� ����	 role and possesses the fresh key Ks”. Note that this is still consistent
with the (intended) semantics of authentication blocks. A known protocol, using this idea, is, for
instance, the Yahalom Protocol [7]. In section 4, we show an optimized variant of the Needham-
Schroeder Shared-Key Protocol that is similar to (a correct version of) the Yahalom Protocol.

The next principle is the basic step to provide entity authentication through session keys

Principle 6 (Authentication through session-keys) Principal A may declare her intention to au-
thenticate with principal B by generating a ciphertext

�
M � Ks , provided that A has evidence that Ks is

a fresh key owned by B, i.e., has decrypted a block
� �
� � ��� � B � N �

Ks � KAS
and checked the validity of N.

Applying this principle, a principal B may conclude that A is recently willing to authenticate with
him, if he receives a message

�
M � Ks and knows that � i � Ks is a fresh key owned by A and � ii � he did

not generate
�
M � Ks . An example of a protocol based on this kind of authentication is the Amended

Needham Schroeder Shared-Key Protocol [19].

2.4 Authentication Guarantees

In view of the principles we have outlined, there are two situations that can drive an entity to accept
an authentication request, which we formalize next. In the following definition, we tacitly assume that
B is not a TTP.

Definition 2 (Authentication 1). An entity B accepts the authentication request of A whenever it
receives and verifies (the nonce of) an authentication block

� ��� ����	 �
A
�
N � KIB

, or
� ��� ����	 �

A
�
N
�
K � KIB

,
with I any entity other than B.

Note that if I is A, then the authentication request is directly made by A. Otherwise, I must be a TTP,
say S, and the request is indirectly made S on behalf of A. The definition clarifies the importance of
the role ��� ����	 in describing the identity labels used to communicate a trusted authentication request.

There is, however, another way that an entity can to accept an authentication request:

Definition 3 (Authentication 2). An entity B accepts the authentication request of A whenever it has
received and verified (the nonce of) an authentication block in the form

� ��������� � A � N �
Ks � KSB

, with S
being a TTP, and receives a message

�
M � Ks that he did not generate.

3 Authentication Principles, Formally

We formalize our principles as a set of deduction rules, which specify � i � the format of the ciphertexts
that a trusted party should generate to complete an authentication session, and � ii � the conditions under
which such ciphertexts can safely be generated. The ciphertexts can be in two forms: either authen-
tication blocks encrypted with long-term keys (which we assume to be robust) or any other message

9



encrypted with session keys which are possessed by the trusted parties, and are only circulated among
them within authentication blocks.

Remarkably, the rules predicate the actions by the trusted parties only on the structure of the
ciphertexts that can be observed on the network. Thus, no knowledge is assumed on where the traffic
originates: it may either be generated by the trusted parties of the protocol, or else be the result of
the attacker generating its own traffic, or duplicating existing messages. It is important to note that
observing network traffic effectively corresponds to assuming that all the ciphertexts reach all parties,
included their intended recipients. This may at first be understood as a limitation on the power of the
intruder, because it prevents attacks to be mounted based on the interception (i.e., subtraction from the
net) of ciphertexts. This is not the case, however, as intercepting a message may only break liveness
properties, such as fairness in contract-signing, where two parties wants to be guaranteed that none of
them will get the contract signed before the other one (see, e.g., [22, 28]). Authentication, instead, is
(formalized as) a safety property, which is immune to attacks based on message absorption.

On the other hand, observing network traffic is appealing, as it simplifies our formalization, be-
cause it allows us to represent any protocol run solely in terms of the trace of the the outgoing traffic,
disregarding message reception.

3.1 Environments and Traces

The deduction rules derive judgments of the form Γ
�

σ, stating that σ is a trace, relative to the
environment Γ. The structure of environments and traces is summarized in Table 1.

Table 1 Environments and Traces

Events
e :: � new � I � V � New nonce/key

Markers
µ :: � e event�

run ��� I1 � I2 � init�
commit � I1 � I2 � completion�
check � I � N � nonce check

Actions
α :: � µ marker�

I �	� M 
 K encrypted message�
I ����
	� I � N � KS � K authentication block

Environments
Γ :: � /0 empty�

Γ � e new nonce/key

Traces
σ :: � ε empty�

α :: σ actions

We presuppose two sets of party identity labels: S for Trusted Third Parties (or Servers), ranged
over by S, and P for principals, ranged over by A

�
B, and two sets K of keys and N of nonces, ranged

over by K and N respectively. All such sets are assumed to be pairwise disjoint. We let I range over
S � P, and V over K � N. Finally,

�
ranges over the roles ��� ���
	 � � ����� � and ����� ��� .

A trace σ is a sequence of actions and collects the encrypted messages generated during (possibly
parallel) protocol runs as well as additional marker actions that we use to prove our safety result. In
Γ
�

σ, Γ keeps track of the events of protocol runs, i.e. the generation of the nonces and of the session
keys used in the runs.

The intuitive reading of the actions is as follows. Event new � I � V � traces the generation of the
nonce or key V by the entity I. Marker check � I � N � indicates the checking of the nonce N by the

10



entity I. Marker run � � I1
�
I2 � indicates the intention of (equivalently, the start of a protocol run by) I1 to

authenticate itself with I2, by exploiting the role
�

. Note that there might be many run � � I1
�
I2 � markers

corresponding to many (either parallel or sequential) protocol sessions. Finally, commit � I1
�
I2 � marks

the completion of the authentication session. The remaining actions denote the generation of encrypted
messages and of authentication blocks by an entity I: specifically, I �

�
M � K and I �

�����
I
�
N
�
KS � K

represent the generation by entity I of
�
M � K and

��� �
I
�
N
�
KS � K , respectively.

We use a number of notation conventions and shorthands. We write run � B � A � instead of run � � B � A �
when the role

�
is immaterial. We write authentication blocks as

�����
I
�
N � K when

��� � ��� ����	 � ����� � � � ,
as shorthands for

�����
I
�
N
��� � K , where

�
represents an empty key field.

A further definition is useful in presenting the deduction rules. We introduce an ordering relation
over events. The ordering is defined in terms of two corresponding orderings for keys and roles, noted�

, and defined as the least reflexive relations such that K
� �

, and ��� ����	 � �
������� , � ����� � � ����� ��� ,
respectively. The ordering over actions is also noted

�
, and defined as the least transitive and reflexive

relation such that I �
���

1
�
I
�
N
�
K1 � K �

I �
�
R2

�
I
�
N
�
K2 � K iff

�
1
� �

2 and K1
�

K2.

Definition 4 (block
�

trace). Given an action α and a trace σ, we write α
�

σ iff there exists an
action α � α

�

such that σ � σ
�

:: α
�

:: σ
� �

.

Intuitively, for an action α to belong to a trace σ, it is sufficient that a “greater” (or equal) action α
�

belongs to σ.

3.2 Deduction Rules

The deduction rules are reported in Table 2 and have the following uniform structure:

Γ
�

σ � side conditions �
Γ

� �
σ

�

where σ
�

extends σ. They define the conditions under which the judgment in the conclusion may be
derived from the judgment in the premise by including further actions in the trace. As anticipated,
the side conditions only test the presence of certain ciphertexts, and marker actions, in the current
trace σ. We do not assume any knowledge on the originators of the ciphertexts, which may therefore
be generated by trusted parties or the intruder3 . As for the marker actions, the side conditions test
the presence of events of the form new � I � V � , and of markers run � � I1

�
I2 � . The former represents the

creation of nonces and session keys, whose presence can be tested locally by the originators. The
latter, instead, mark the authentication intentions of the trusted parties of the protocol. These markers
are not part of the protocol: we include them in our traces to give a formal proof of safety. In doing so,
we assume that the protocol runs always start in the same way (hence applying the same principle),
i.e., if two protocol runs are indicated by two markers run � � I1

�
I2 � and run

�

� � I �

1

�
I

�

2 � in the same trace
σ, then it must be R � R

�

. This is reasonable as two sessions of the same protocol always start with
the same message, even if the entities may be different or could exchange their roles.

The environment Γ collects the events of the protocols, i.e. the creation of session keys and nonces,
and it is used by the deduction rules to ensure the freshness of nonces and session keys. The intuition is
as follows: when a new nonce is generated, or a session key created, it is included in the environment
(and in the trace). A nonce (key) can only be generated if it does not occur in the current trace (it is
fresh). Nonces can be checked, (keys used) only if they are available in the environment, and once

3 With one exception (cf. rule AUTHENTICATION 2 ).

11



a nonce is checked (a key used) the corresponding event is discarded from the environment (but not
from the trace) and hence it is never available again for checking (usage).

We proceed with the description of the deduction rules.
Rule (EMPTY) is the only axiom. It is used to guarantee that every derivation (hence execution)

starts with an empty set of already generated nonces and session keys: nonces and sessions keys must
be generated during the protocol runs. (NEW) formalizes nonce/key creation. The notation V fresh in
σ indicates that there is no I such that new � I � N � � σ: in other words, V must be fresh with respect to
all the previous protocol runs. As we mentioned above, (and as we shall prove) the deduction rules
guarantee that fresh keys are used (and nonces are checked) at most once.

(PRINCIPLE 1) formalizes the principle of direct authentication. A sends an authentication block
with A as Claimant to B. This is the start of an authentication session, which is marked by the inclusion
of run ��� ��� � � A � B � in the current trace. (PRINCIPLE 2 ) is similar. Only, it marks the start of the authen-
tication session with run ���
	�� � � A � B � and represents the start of an authentication session through a TTP.
In both cases, A may be running other authentication sessions, provided that they are all marked with
either run ��� ��� � or run ���
	�� � . (PRINCIPLE 3 ) and (PRINCIPLE 4 ) formalize the two principles of au-
thentication forwarding: the former formalizes verified forwarding, by checking the nonce, the latter
unverified forwarding. In particular, to guarantee that N is never used again in the execution, (PRINCI-
PLE 3 ) discards the event new � S � N � from Γ. In (PRINCIPLE 5 ) the server S distributes a fresh session
key to the two parties A and B. The event new � S � K � is discarded from Γ to ensure that K is never used
again in the current session. (PRINCIPLE 6 ) allows A to send a message encrypted with a session key
K. The condition I �

� �
� � ��� � B � N �
K � KAS

�
σ binds K to the principal which shares K.

Two rules formalize the conditions for accepting authentication requests. They reflect the two way
to accept authentication presented earlier in Definitions 2 and 3. A further remark is in order for the
side-condition I

�� B in (AUTHENTICATION 2 ). Here we are assuming that B, which is committing
(hence completing the authentication session) has the ability to tell that he is not the originator of the
ciphertext

�
M � K . This is can easily be accomplished as done in the Amended Needham Schroeder

Shared-Key Protocol [19].

3.3 Safety

The purpose of the deduction rules is to generate safe traces, that is traces that provide the intended au-
thentication guarantees for a protocol session. We formulate these guarantees as a safety property for
traces following the idea of correspondence between actions of the participants [27, 16]. Intuitively,
a trace is safe if every commit � A � B � in the trace is preceded by a corresponding run � B � A � action.
Formally:

Definition 5 (Safety). A trace σ is safe if and only if whenever σ � σ1 :: commit � B � A � :: σ2, one has
σ1

� σ
�

1 :: run � A � B � :: σ
� �

1 , and σ
�

1 :: σ
� �

1 :: σ2 is safe.

We conclude with the main result of this section, stating that protocol protocols designed according
to our principles do indeed achieve authentication. Formally, we have:

Theorem 1 (Safety). If Γ
�

σ then σ is safe.

Proof. Follows as a corollary of Theorem 2 (in Section 4).

12



Table 2 Derivation Rules

Principles
EMPTY

/0 � ε

NEW
Γ � σ V fresh in σ V � K � N

new � I � V � � Γ � σ :: new � I � V �
PRINCIPLE 1

Γ � σ runR � A � B ��� σ � R ����� 	�

�

Γ � σ :: run ��� ��� � � A � B � :: A ��� ��� 	�

� � A � N � KAB

PRINCIPLE 2
Γ � σ runR � A � B ��� σ � R ��������
 �

Γ � σ :: run ����� � � � A � B � :: A � � ������
 � � B � N � KAS

PRINCIPLE 3
new � S � N � � Γ � σ I ��� ��� �!
 � � B � N � KAS

� σ
Γ � σ :: check � S � N � :: S � � ��� 	�

� � A � NA � KBS

PRINCIPLE 4
Γ � σ I ��� ������
 � � B � N � KAS

� σ
Γ � σ :: S ��� ��� 	�

� � A � N � KBS

PRINCIPLE 5
Γ � new � S � K �"� σ

Γ � σ :: S ���$#&%(' ��� � A � NA � K � KBS
:: S ���$#)%*' ��� � B � NB � K � KAS

PRINCIPLE 6
Γ � σ I � �!#)%*' ��� � B � N � K � KAS

� σ runR � A � B ��� σ � R � #)%*' ���

Γ � σ :: run +-,".��/� � A � B � :: A �	� M 
 K

Authentication Guarantees

AUTHENTICATION 1
new � B � N � � Γ � σ J � � ��� 	�

� � A � N � KIB

� σ I � � S � A 

Γ � σ :: check � B � N � :: commit � B � A �

AUTHENTICATION 2
new � B � N � � Γ � σ I ���$#&%(' ��� � A � N � K � KSB

� σ J �	� M 
 K � σ J �� B

Γ � σ :: check � B � N � :: commit � B � A �

4 Principles at work: an example

The Needham-Schroeder protocol [21, 19, 9] achieves mutual authentication with session key ex-
change based on a TTP named S:

1) A � B : A
2) B � A :

�
A
�
N0

B � KBS

3) A � S : A
�
B
�
NA

� �
A
�
N0

B � KBS

4) S � A :
�
B
�
Ks

�
NA

� �
A
�
Ks

�
N0

B � KBS � KAS

5) A � B :
�
A
�
Ks

�
N0

B � KBS

6) B � A :
�
NB � Ks

7) A � B :
�
NB 0 1 � Ks

The logic of the protocol can be expressed in terms of our principles as follows. Consider Message 4
first. The authentication blocks corresponding to the two encryptions are:

� ��������� � B � NA
�
Ks � KAS

and� �
� � ��� � A � N0
B

�
Ks � KBS

Now, B and A after checking the respective nonces may, by virtue of Principle

13



6, generate messages 6 and 7, respectively. Mutual authentication is provided by two applications of
the authentication guarantee of Definition 3 4.

As a further remark, note that the identifier A in the ciphertext
�
A
�
N 0

B � KBS of Messages 2 and 3,
represents the intended verifier of the authentication run between B and A. The authentication block
corresponding to the message is thus

� ������� � � A � N0
B � KBS

. Notice that this block is not necessary to prove
authentication. This suggests that such an encryption could be safely eliminated to obtain a protocol
which is very similar to Carlsen’s Secret Protocol [8, 9].

1) A � B : A
2) B � A : A

�
N0

B
3) A � S : A

�
B
�
NA

�
N0

B
4) S � A :

�
B
�
Ks

�
NA

� �
A
�
Ks

�
N0

B � KBS � KAS

5) A � B :
�
A
�
Ks

�
N0

B � KBS

6) B � A :
�
NB � Ks

7) A � B :
�
NB 0 1 � Ks

Now we can show the trace observed at the end of the protocol in which were envolved two
principals, A and B, and a trusted third party S.

/0
�

new � B � NB � :: new � A � NA � :: S �
� ����� ��� � B � NA

�
Ks � KAS

:: S �
� �
������� � A � N0

B

�
Ks � KBS

:: run �����
�
	�� B � A � ::
B �

�
M � Ks :: check � A � NA � :: commit � A � B � :: run �����
� 	 � A � B � :: A �

�
M � Ks :: check � B � NB � ::COMMIT � B � A �

Note that we can’t deal with nested authentication blocks. So the nested ciphertexts of the fourth
message exchange are translated into two distinct authentication blocks. In this protocol the nested
ciphertext of message 4 assures B of the presence of A, but it doesn’t involve any guarantee on the
authentication intention of A. In our opinion it’s necessary considering that A could send such a ci-
phertext even if the label B, of message 4, doesn’t correspond to its intended verifier. Note also that
the presence of A is assured by the seventh message exchange. Such considerations lead us to ignore
nested ciphertexts by coding them into distinct authentication blocks.

Below, we discuss two variants that result from an application of our principles.
First note that, as observed in Remark 1 (on page 9) it is safe to overlap the ��� ����	 and ����� ���

roles if we need to say that “A recently plays the ��� ���
	 role and possesses the fresh key Ks”. This can
be formalized by adding the two new deduction rules of Table 3.

Table 3 Derived Proof Rules

PRINCIPLE 5’
new � S � K � � new � S � N � � Γ � σ I � � ������
 � � B � N � KAS

� σ
Γ � σ :: check � N � :: S ��� ��� 	�

� � A � NA � K � KBS

:: S ���$#&%(' ��� � B � NB � K � KAS

PRINCIPLE 5”
new � S � K � � Γ � σ I ��� ������
 � � B � N � KAS

� σ
Γ � σ :: S ��� ��� 	�

� � A � N � K � KBS

:: S ���$#)%*' ��� � B � NB � K � KAS

(PRINCIPLE 5’ ) and (PRINCIPLE 5” ) differ from the previous (PRINCIPLE 5 ) by considering
that an entity label can be used with two roles, either claimant or key owner. S sends one of the two

4 Recall that we are assuming that encrypted messages have enough redundancy to allow to detect the success of a decryp-
tion with a given key

14



authentication blocks with the idea of ensuring B that A is the claimant of the current session and
that it shares with A a session key K. PRINCIPLE 5’ uses, to assign to A the ��� ����	 role, the same
hypotheses used in PRINCIPLE 3 . Similarly PRINCIPLE 5” uses the hypotheses of PRINCIPLE 4 .

The safety theorem still holds if we add these two new inference rules. In fact, we have:

Theorem 2 (Safety). Extending the deduction system with (PRINCIPLE 5’ ) and (PRINCIPLE 5” ) we
still have that if Γ

�
σ then σ is safe.

Proof. In Appendix A.

An application of (PRINCIPLE 5’ ) enables the following optimized variant of the Needham-Schroeder
Shared-Key Protocol5:

1) A � B : A
�
NA

2) B � A :
�
A
�
N0

B

�
NA � KBS

3) A � S : A
�
B
� �

A
�
N0

B

�
NA � KBS

4) S � A :
�
NA

�
B
�
Ks

� �
Ks

�
A
�
N0

B � KBS � KAS

5) A � B :
�
Ks

�
N0

B

�
A � KBS ,

�
NB � Ks

The only difference with respect to the original version is the presence of the nonce NA which is sent
by A as cleartext to B who inserts it in the encrypted message

�
A
�
N 0

B

�
NA � KBS .

The identifier A in the ciphertext
�
A
�
N0

B

�
NA � KBS of Messages 2 and 3, represents the intended ver-

ifier of the authentication run between B and A. A possible authentication block corresponding to the
message is

� ������� � � A � NA � KBS
. By applying (PRINCIPLE 5’ ) we obtain the two blocks of authentica-

tions:
� ��� ����	 �

B
�
NA

�
Ks � KAS

and
� �
� � ��� � A � N0

B

�
Ks � KBS

. Differently from the previous protocol, here we
obtain that B besides to owning the session key, is also playing the ��� ����	 role. This allows to obtain
the authentication of B with respect to A by applying the authentication guarantee of definition 2. The
mutual authentication is obtained as before through the last encrypted message

�
NB � Ks .

A further optimized variant for this protocol can be derived by applying (PRINCIPLE 5” ).

1) A � S : A
�
B

2) S � B : A
�
B
�
NS

3) B � A :
�
A
�
NS � KBS

�
N0

B
4) A � S : A

�
B
�
NA

� �
A
�
N0

B

�
NS � KBS

5) S � A :
�
NA

�
B
�
Ks

� �
Ks

�
A
�
N0

B � KBS � KAS

6) A � B :
�
Ks

�
N0

B

�
A � KBS ,

�
NB � Ks

In this variant S sends a nonce to B to check the freshness of the authentication request of B. The
identifier A in the ciphertext

�
A
�
N0

B

�
NS � KBS represents again the intended verifier of the authentication

run between B and A. A possible corresponding block of authentication is
� � ����� � � A � NS � KBS

.
The authentication blocks corresponding to

�
NA

�
B
�
Ks

� �
Ks

�
A
�
N0

B � KBS � KAS are build by applying
(PRINCIPLE 5” ) and they are:

� ��� ���
	 �
B
�
NA

�
Ks � and

� �
������� � A � N0
B

�
Ks �

Again B is playing the ��� ����	 role. As in the previous variant, after the sixth message exchange,
the goals of mutual entity authentication are achieved.

5 Note that the protocol looks like a correct version of the Yahalom Protocol

15



5 Conclusions

We have studied a natural, role-based interpretation of message components in cryptographic proto-
cols, and we have shown that this interpretation contributes to the task achieving entity authentication.

The notion of authentication block we have proposed is interesting in two respects. First, it pro-
vides a flexible formal tool for reasoning on different protocols in uniform ways. Secondly, it enables
the extraction of few fundamental mechanisms to be combined in the design of provably correct au-
thentication protocols.

The formal model we have developed appears to be fairly general, but a number of extensions
would be desirable to capture a wider class of protocols. We are currently studying the extensions
needed to handle protocols that rely on nested encryption, and asymmetric keys.

Also, it would be interesting to develop methods for the static analysis of protocols based on our
principles. As a prerequisite for that, is to re-cast our current development on existing operational
models for cryptographic protocols like Strand Spaces [25, 23], spi calculus [1], CCS and CSP based
models [10, 17]. Finally, relationships with approaches based on type systems [11, 2, 12, 2, 3], and
logics [7, 24] deserve to be made.

References

1. M. Abadi and A. D. Gordon. “A Calculus for Cryptographic Protocols: The Spi Calculus”. Information and Computa-
tion, 148(1):1–70, 1999.

2. Martín Abadi and Bruno Blanchet. Secrecy types for asymmetric communication. In Foundations of Software Science
and Computation Structures (FoSSaCS’01), volume 2030 of Lecture Notes in Computer Science. Springer-Verlag, April
2001.

3. Martín Abadi and Bruno Blanchet. Analyzing Security Protocols with Secrecy Types and Logic Programs. In 29th
Annual ACM SIGPLAN - SIGACT Symposium on Principles of Programming Languages (POPL 2002), pages 33–44,
Portland, Oregon, January 2002. ACM Press.

4. Martín Abadi and Roger Needham. Prudent engineering practice for cryptographic protocols. IEEE Transactions on
Software Engineering, 22(1):6–15, 1996.

5. P.C. van Oorschot A.J.Menezes and S.A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.
6. Ross Anderson and Roger Needham. Programming satan’s computer. In Jan van Leeuwen, editor, Computer Science

Today — Recent Trends and Developments, volume 1000 of ln-cs, pages 426–440. 1995.
7. M. Burrows, M. Abadi, and R. Needham. “A Logic of Authentication”. Proceedings of the Royal Society of London,

426(1871):233–271, 1989.
8. U. Carlsen. Generating formal cryptographic protocol specifications. In IEEE Symposium on Research in Security and

Privacy, pages 137–146. IEEE Computer Society, 1994.
9. John A. Clark and Jeremy L. Jacob. A survey of authentication protocol literature. Technical Report 1.0, 1997.

10. R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of cryptographic protocols. In Proceedings
of ICALP’00, pages 354–372. Springer LNCS 1853, July 2000.

11. A. Gordon and A. Jeffrey. Authenticity by typing for security protocols, 2001.
12. Andrew D. Gordon and Alan Jeffrey. Types and effects for asymmetric cryptographic protocols. In 15th IEEE Computer

Security Foundations Workshop — CSFW’01, pages 77–91, Cape Breton, Canada, 24–26 June 2002. IEEE Computer
Society Press.

13. James Heather, Gavin Lowe, and Steve Schneider. How to prevent type flaw attacks on security protocols. In 13th
IEEE Computer Security Foundations Workshop — CSFW’00, pages 255–268, Cambridge, UK, 3–5 July 2000. IEEE
Computer Society Press.

14. ISO/IEC. Information Technology-Security Tecniques-Entity Authentication Mechanisms, Part 1:General Model. 1991.
15. ISO/IEC. Information Technology-Security Tecniques-Entity Authentication Mechanisms, Part 2:Entity Authentication

using Simmetric Tecniques. 1993.
16. G. Lowe. “A Hierarchy of Authentication Specification”. In Proceedings of the 10th Computer Security Foundation

Workshop. IEEE press, 1997.
17. G. Lowe. “CASPER: A Compiler for the Analysis of the security protocols”. Journal of Computer Security, 6:53–84,

1998.

16



18. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 1055, pages 147–166. Springer-Verlag, Berlin Germany,
1996.

19. R M Needham and M D Schroeder. Authentication revisited. ACM SIGOPS Operating Systems Review, 21(1):7–7,
1987.

20. Lawrence C. Paulson. Relations between secrets: Two formal analyses of the yahalom protocol. Journal of Computer
Security, 9(3):197–216, 2001.

21. M.D. Schroeder R.M. Needham. Using encryption for authentication in large networks of computers. ACM Communi-
cation, 21(12):993–999, 1978.

22. S. Schneider. Formal analysis of a non-repudiation protocol. In Proceedings of CSFW’98, pages 54–65. IEEE Press,
1998.

23. P. Syverson. Towards a strand semantics for authentication logics, 1999.
24. Paul Syverson and Iliano Cervesato. The logic of authentication protocols. Lecture Notes in Computer Science, 2171,

2001.
25. J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Proving security protocols correct, 1999.
26. Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems, from computer, january, 1992. In

William Stallings, Practical Cryptography for Data Internetworks, IEEE Computer Society Press, 1992. 1992.
27. T.Y.C. Woo and S.S. Lam. “A Semantic Model for Authentication Protocols”. In Proceedings of 1993 IEEE Symposium

on Security and Privacy, pages 178–194, 1993.
28. J. Zhou and D. Gollman. A fair non-repudiation protocol. In Proc. of Symposium in Research in Security and Privacy,

pages 55–61. IEEE Press, 1996.

A Proof of Safety

We first introduce some preliminary lemmas and notation. The prefix relation over traces is denoted�
, and we write σ1 � σ2 for the trace obtained from σ1 by dropping the actions in σ2. Also, since all

the derivation rules have just one judgment in their premise, we find it convenient to write them as
rewrite rules: Γ1

�
σ1 0 � Γ2

�
σ2. Further, we let ��� denote the reflexive and transitive closure

of 0 � . Finally, we sometime write Γ1
�

σ1
Ξ��� Γn

�
σn to state that Ξ is a (multistep) derivation

from Γ1
�

σ1 to Γn
�

σn.

Lemma 1 (Traces and Environments). Let e be an event, and let Γ
�

σ with e
�

Γ. Then e
�

σ

Proof. By induction on the derivation of Γ
�

σ. The base case, when the judgement is derived by
(EMPTY), follows vacuously. For the inductive case, let Γ

� �
σ

�

0 � Γ
�

σ be the last step in the
derivation. By induction hypothesis, we know that e

�
σ

�

for every e
�

Γ
�

. We proceed by a case
analysis on the rule applied in this step. First we observe that for all the derivation rules one has
σ � σ

�

:: ρ for a suitable trace ρ. Thus, the proof follows trivially for all the rules such that Γ � Γ
�

. In
the only remaining case, (NEW), the proofs follows directly by an inspection of the rule. ��
Lemma 2 (Environments). Assume Γ

�
σ. Then Γ contains no pair of events built on the same (nonce

or key) V .

Proof. By induction on the derivation of Γ
�

σ. The base case follows trivially, Γ being the empty set.
For the inductive case, we proceed by a case analysis on the last rule in the derivation. If this rule is
(NEW), Γ

�
σ is of the form Γ

� �
new � I � V � � σ

�

:: new � I � V � , with V fresh in σ
�

. By Lemma 1, we know
that new � I � V � �� Γ

�

. Then the proof follows by the induction hypothesis. ��

Lemma 3. Assume Γ1
�
new � I � N � � σ1

��� Γ2
�

σ2
Ξ��� Γ3

�
σ3. If new � I � N � � Γ3 then new � I � N � �

Γ2

17



Proof. By induction on the number n of steps in Ξ. If n � 0 the proof follows trivially from the
hypothesis, as Γ3

� Γ2. For the inductive case, let Γ
�

σ 0 � Γ3
�

σ3 be the last derivation step in
Ξ. By Lemma1,we know that new � I � N � � σ1. Further, an inspection of the derivation rules shows that
σ1

� σ2
� σ. Next, we analyze the transition Γ

�
σ 0 � Γ3

�
σ3. If Γ3 � Γ the proof follows by

the induction hypothesis. If instead Γ � Γ3, the transition must have been derived by (NEW). Hence
Γ3

� Γ
�
new � I � �

V � , and σ3
� σ :: new � I � �

V � , with V fresh in σ. By Lemma 1, we thus know that V
�� N:

then, new � I � N � � Γ3 implies new � I � N � � Γ and the proof follows again by the induction hypothesis.
��

Lemma 4 (Nonce check). Assume Γ
�

σ1 :: check � I � N � :: σ2 :: check � I � �
N

� � :: σ3. Then N
�� N

�

.

Proof. An inspection of the deduction rules shows that the marker check � I � N � is only introduced in a
trace contextually to the event new � I � N � being discarded from the environment. Hence, by Lemma 3,
each nonce may be checked at most once in a trace. ��
Lemma 5 (Nonces and Keys). Assume Γ

�
new � I � V � � σ1 :: new � I � V � :: σ2. Then Γ

�
σ1 :: σ2.

Proof. From the hypothesis, it follows that Γ1
�

σ1 for some Γ1. Furthermore, an inspection of the
derivation rules shows that the derivation of the judgment in the hypothesis must have the following
form:

Γ1
�

σ1 0 � Γ1
�
new � I � V � � σ1 :: new � I � V � Ξ��� Γ

�
new � I � V � � σ1 :: new � I � V � :: σ2

We prove the claim by induction on the number n of steps that it takes to generate σ2 (i.e., on the
length of the derivation Ξ). If n � 0, then σ2

� ε, and the claim follows from our observation that
Γ1

�
σ1 is derivable. For the inductive case, let

Γ
� �

new � I � V � � σ1 :: new � I � V � :: σ
�

2 0 � Γ
�
new � I � V � � σ1 :: new � I � V � :: σ

�

2 :: ρ

denote the last step in Ξ (that the premise of this step has the format shown above follows from Lemma
3). By induction hypothesis, we know that Γ

� �
σ1 :: σ

�

2. We need to show that Γ
�

σ1 :: σ
�

2 :: ρ. We
proceed by a case analysis on the derivation rule rule applied at the (last) step in question. We give
only a few cases as representatives.

– Case (NEW) Then Γ � Γ
� �

new � I � �
V

� � , and ρ � new � I � �
V

� � , with V
�

fresh in σ1 :: new � I � V � :: σ
�

2.
But then V

�

is also fresh in σ1 :: σ
�

2: hence, from Γ
� �

σ1 :: σ
�

2, by (NEW), we derive Γ
� �

new � I � �
V

� � �
σ1 :: σ

�

2 :: ρ, i.e. Γ
�

σ1 :: σ
�

2 :: ρ, as desired.
– Case (PRINCIPLE 1) Then Γ � Γ

�

, ρ � run ��� ��� � :: A �
� ��� ����	 �

A
�
N � K , and the only occurrences

of runR � A � B � in σ1 :: new � I � V � :: σ
�

2 must have R � ��� ����	 . Clearly, the same is true of the trace
σ1 :: σ

�

2, and then Γ
�

σ1 :: σ
�

2 :: ρ, derives from Γ
�

σ1 :: σ
�

2 by an application of (PRINCIPLE 1).
– Case(PRINCIPLE 2 ) Then Γ � Γ

�

, ρ � run ���
	�� � � A � B � :: A �
� � ����� � � B � N � KAS

, and the only occur-
rences of runR � A � B � in σ1 :: new � I � V � :: σ

�

2 must have R � � ����� � . The same is true in in the trace
σ1 :: σ

�

2 and then Γ
�

σ1 :: σ
�

2 :: ρ, derives from Γ
�

σ1 :: σ
�

2 by an application of (PRINCIPLE 2 ).
– Case(PRINCIPLE 3 ) Then Γ � Γ

� � newS
�
N with N

�� V (by Lemma 4).ρischeck � S � N � :: S �
� ��� ����	 �

A
�
N

� � KBS
.

Then clearly Γ
�

σ1 :: σ
�

2 :: ρ follows by an application of (PRINCIPLE 3 ).
– Case(PRINCIPLE 4 ) Then Γ � Γ

�

, ρ � S �
� ��� ���
	 �

A
�
N � KAS

. The reasoning doesn’t differ if N � V
or N

�� V . Γ
�

σ1 :: σ
�

2 :: ρ, derives from Γ
�

σ1 :: σ
�

2 by an application of (PRINCIPLE 4 ).
– Case(PRINCIPLE 5 ) Then Γ � Γ

� � new � S � K � and obviously K
�� V . Then Γ

�
σ1 :: σ

�

2 :: ρ, derives
from Γ

� �
σ1 :: σ

�

2 by an application of (PRINCIPLE 5 ).

18



– Case(PRINCIPLE 6 )Then Γ � Γ
�

, ρ � run ����� �
	 :: A �
�
M � K and Γ

�
σ1 :: σ

�

2 :: ρ derives from
Γ
�

σ1 :: σ
�

2 by an application of (PRINCIPLE 6 ).
– Case(PRINCIPLE 5’ ) Then Γ � Γ

� � new � S � N � � new � S � K � with N
�
K
�� V (by Lemma 4).ρ is check � S � N � ::

S �
� ��� ����	 �

A
�
N

� �
K � KBS

. Then clearly Γ
�

σ1 :: σ
�

2 :: ρ follows by an application of (PRINCIPLE 5’
).

– Case(PRINCIPLE 5” ) Then Γ � Γ
� � new � S � K � with K

�� V (by Lemma 4).ρ is S �
� ��� ����	 �

A
�
N
�
K � KBS

.
Then clearly Γ

�
σ1 :: σ

�

2 :: ρ follows by an application of (PRINCIPLE 5” ).
– Case (AUTHENTICATION 1 ) Then ρ � check � B � N � :: commit � B � A � , and Γ � Γ

� � �
new � B � N � � ,

with N
�� V . The proof follows by the induction hypothesis and an application of (AUTHENTICA-

TION 1 ).
– Case(AUTHENTICATION 2 ) Then ρ � check � B � N � :: commit � B � A � , and Γ � Γ

� � �
new � B � N � � ,

with N
�� V . The proof follows by the induction hypothesis and an application of (AUTHENTICA-

TION 2 ).

The cases (PRINCIPLE 2 ), (PRINCIPLE 6 ) and (PRINCIPLE 4 ) follow exactly as case (PRINCIPLE

1). All the remaining cases follow as case (AUTHENTICATION 1 ). ��
Lemma 6 (Claimant). If Γ

�
σ1 :: run ��� ��� � � A � B � :: A �

� ��� ����	 �
A
�
N � K :: σ2 with new � I � N � �� Γ, and

check � J � N � �� σ2, then Γ
�

σ1 :: σ2.

Proof. By induction on the derivation of the judgment in the hypothesis. The proof is obvious by an
inspection of the hypotheses of the rules and, for (AUTHENTICATION 1 ), remembering Lemma 4. ��
Lemma 7 (Verifier). If Γ

�
σ1 :: run ���
	�� � � A � B � :: A �

� � ����� � � B � N � KAS
:: σ2 with new � I � N � ��

Γ and
check � J � N � ��

σ2, then there exists Γ � and σ �2 such that Γ �
�

σ1 :: σ �2 , where Γ � � Γ, σ �2 is a subtrace
of σ2, and the following conditions are satisfied (for N

�� N
�

):

– I �
� ��� ����	 �

I1
�
N

� � K �
�

σ2 implies I �
� ��� ���
	 �

I1
�
N

� � K �
�

σ �2
– new � I � N � � � Γ implies new � I � N � � � Γ �
– A �

� � ����� � � B � N � � KAS

�
σ2 implies A �

� ����� � � � B � N � � KAS

�
σ �2

– S �
� ����� ��� � A � N � � �

K � KBS

�
σ2 � σ �2 implies S �

� �
� � ��� � B � N � � � �
K � KAS

��
σ �2

– σ2 � σ �2 is safe.

Proof. From the hypothesis we know that Γ1
�

σ1 :: run ��� 	 � � � A � B � :: A �
� ������� � � B � N � KAS

for some Γ1.
We proceed by induction on the length of the derivation

Γ1
�

σ1 :: run ��� 	 � � � A � B � :: A �
� � ����� � � B � N � KAS

��� Γ
�

σ1 :: run ���
	�� � � A � B � :: A �
� � ����� � � B � N � KAS

:: σ2

If the length is 0 then σ �2
� ε � σ2 and Γ � � Γ and the thesis holds. For the inductive case, let

Γ
� �

σ1 :: run ��� 	 � � � A � B � :: A �
� � ����� � � B � N � KAS

:: σ
�

2

0 � Γ
�

σ1 :: run ���
	�� � � A � B � :: A �
� ����� � � � B � N � KAS

:: σ
�

2 :: ρ

be the last derivation step, with σ2
� σ

�

2 :: ρ. By induction hypothesis there exist Γ
�

� � Γ
�

and σ
�

�2
subtrace of σ

�

2 such that Γ
�

�
�

σ1 :: σ
�

�2 (and the conditions listed above are satisfied). We proceed by
cases on the rule applied in the last step.

– Case (AUTHENTICATION 1 ) Then ρ=check � B � N � � :: commit � B � A � and N
� �� N. An inspection of

the rule (AUTHENTICATION 1 ) shows that new � B � N � � � Γ
�

and S �
� ��� ���
	 �

A
�
N

� � KBS

�
σ

�

2. By
induction hypothesis, we know that new � B � N � � � Γ

�

� and S �
� ��� ����	 �

A
�
N

� � KBS

�
σ

�

�2 . By an appli-
cation of (AUTHENTICATION 1 ), we then have Γ

�

� � �
new � B � N � � � �

σ1 :: σ
�

�2 :: ρ. Now the proof
follows by taking Γ � � Γ

�

� � �
new � B � N � � � (and noting that new � B � N � � ��

Γ).

19



– Case (AUTHENTICATION 2 ) Then ρ is check � B � N � � :: commit � B � A � . If both A �
�
M � K and S �� ����� ��� � A � N � �

K � BS are in σ1 :: σ
�

�2 then Γ � �
new � B � N � � � �

σ1 :: σ
�

�2 :: ρ and the theorem holds.
Now assume S �

� ��������� � A � N � �
K � KBS

��
σ1 :: σ

�

�2 . Then S �
� ��������� � B � N � � �

K � KAS

��
σ1 :: σ

�

�2 , hence
also run �����
� 	 � A � B � :: A �

�
M � K

��
σ1 :: σ

�

�2 . Thus Γ
�

�
�

σ1 :: σ
�

�2 and, by Lemma 2, σ2 � σ
�

�2 is safe.
If A �

�
M � K

��
σ1 :: σ

�

�2 then clearly run �����
�
	 � A � B � :: A �
�
M � K

��
σ1 :: σ

�

�2 . Thus Γ
�

�
�

σ1 :: σ
�

�2 and,
by Lemma 2, σ2 � σ

�

�2 is safe.
– Case (NEW) Then ρ is new � I � V � . Of course V is fresh in σ1 :: σ

�

�2 . Then Γ
�

�
�

σ1 :: σ
�

�2 :: ρ.
– Case (PRINCIPLE 1) Then ρ is run ��� ��� � � A � B � :: A �

� ��� ����	 �
A
�
N

� � . By an application of (PRINCI-
PLE 1) we have Γ

�

�
�

σ1 :: σ
�

�2 :: ρ. Obviously the theorem holds.
– Case (PRINCIPLE 2 ) Then ρ is run ���
	�� � � A � B � :: A �

� ������� � � B � N � � . By an application of (PRINCIPLE

2 ) we have Γ
�

�
�

σ1 :: σ
�

�2 :: ρ.
– Case (PRINCIPLE 3 ) Then ρ is check � S � N � � :: S �

� ��� ����	 �
A
�
N

� � � KBS
and N

� �� N. An inspection of
the rule proves Γ

�

� � �
new � S � N � � � �

σ1 :: σ
�

�2 :: ρ.
– Case (PRINCIPLE 4 ) Then ρ is S �

� ��� ���
	 �
A
�
N

� � KBS
. If N

� �� N, then clearly Γ
�

�
�

σ1 :: σ
�

�2 :: ρ.
Instead, if N

� � N one has Γ
�

�
�

σ1 :: σ
�

�2 and again the thesis of the theorem holds.
– Case(PRINCIPLE 5 ) Then ρ is S �

� ����� ��� � A � N � �
K � KBS

:: S �
� �
������� � B � N � � �

K � KAS
. Γ � new � S � K � �

σ1 :: σ
�

2 :: ρ, derives from Γ
�

�
�

σ1 :: σ
�

2 by an application of (PRINCIPLE 5 ).
– Case (PRINCIPLE 5’ ) Then ρ is check � S � N � � :: S �

� ��� ����	 �
A
�
N

� � �
K � KBS

:: S �
� �
� � ��� � B � N � � � �

K � KAS

and N
� �� N. Then Γ

�

� � �
new � S � N � � � �

σ1 :: σ
�

�2 :: ρ as desired.
– Case (PRINCIPLE 5” ) Then ρ is S �

� ��� ����	 �
A
�
N

� �
K � KBS

:: S �
� �
� � ��� � B � N � � �

K � KAS
. By hypothesis

we have new � S � K � � Γ
�

� . If N
� �� N, then Γ

�

� � �
new � S � K � � �

σ1 :: σ
�

�2 :: ρ. Otherwise Γ
��� �

σ1 :: σ
�

�2 ,
and the theorem follows.

– Case(PRINCIPLE 6 ) Then ρ is run �����
� 	 � A � B � :: A �
�
M � K . If S �

� ����� ��� � B � N � �
K � AS

�
σ1 :: σ

�

�2
then Γ

�

�
�

σ1 :: σ
�

�2 :: ρ. Otherwise Γ
�

�
�

σ1 :: σ
�

�2 and in both cases the theorem holds.
��

Lemma 8 (Owner). If Γ
�

σ1 :: S �
� �
������� � B � N � �

K
� � KAS

:: S �
� ����� ��� � A � N � � �

K
� � KBS

:: σ2, new � I � K � � ��

Γ, new � I � N � � ��
Γ,new � I � N � � � ��

Γ then there exist Γ � and σ �2 such that Γ �
�

σ1 :: σ �2 , where Γ � � Γ,σ �2
is a sublist of σ2. In addition, the Γ � and σ �2 satisfy the following conditions (with N

�� N
� �

N
� �

and
K

�� K
�

):

– I �
� ��� ����	 �

I1
�
N � K �

�
σ2 implies I �

� ��� ����	 �
I1
�
N � K �

�
σ �2

– new � I � N � � Γ implies new � I � N � inΓ �
– A �

� � ����� � � B � N � KAS

�
σ2 implies A �

� � ����� � � B � N � KAS

�
σ �2

– new � A � K � � Γ implies new � A � K � � Γ �
– S �

� ����� ��� � A � N �
K � KBS

�
σ2 � σ �2 S �

� ����� ��� � B � N � � � �
K � KAS

��
σ �2

– σ2 � σ �2 is safe.

Proof. From the hypothesis we know that Γ1
�

σ1 :: S �
� ����� ��� � B � N � �

K
� � KAS

:: S �
� �
������� � A � N � � �

K
� � KBS

for some Γ1. We proceed by induction on the length of the derivation

Γ1
�

σ1 :: S �
� ��������� � B � N � �

K
� � KAS

:: S �
� �
������� � A � N � � �

K
� � KBS� � Γ

�
σ1 :: S �

� �
� � ��� � B � N � �
K

� � KAS
:: S �

� �
� � ��� � A � N � � �
K

� � KBS
:: σ2

If the length is 0 then σ �2
� ε � σ2 and Γ � � Γ and the thesis holds. For the inductive case, let

Γ
� �

σ1 :: S �
� ����� ��� � B � N � �

K
� � KAS

:: S �
� �
������� � A � N � � �

K
� � KBS

:: σ
�

2
R

0 � Γ
�

σ1 :: S �
� �
������� � B � N � �

K
� � KAS

:: S �
� �
� � ��� � A � N � � �

K
� � KBS

:: σ
�

2 :: ρ

be the last rule in the derivation, for σ2
� σ

�

2 :: ρ. By hypothesis
�

Γ
�

� � Γ
�

and σ
�

�2 sublist of σ
�

2 such
that Γ

�

�
�

σ1 :: σ
�

�2 . We reason on the last rule R:

20



– Case (NEW) Then ρ is new � I � V � . Of course V is fresh also in σ1 :: σ
�

�2 . Thus we have new � I � V � � Γ �

�
�

σ1 :: σ
�

�2 :: ρ. And this proves the thesis in this case.
– Case (PRINCIPLE 1) Then ρ is run ��� ��� � � A � B � :: A �

� ��� ���
	 �
A
�
N � . We have Γ

�

�
�

σ1 :: σ
�

�2 :: ρ by a
simple application of (PRINCIPLE 1).

– Case (PRINCIPLE 2 ) Then ρ is run ���
	�� � � A � B � :: A �
� � ����� � � B � N � . By an application of (PRINCIPLE

2 ) we have Γ
�

�
�

σ1 :: σ
�

�2 :: ρ.
– Case (PRINCIPLE 3 ) Then ρ is check � S � N � :: S �

� ��� ���
	 �
A
�
N

� � � � KBS
An inspection of the rule

proves Γ
�

� � �
new � S � N � � � �

σ1 :: σ
�

�2 :: ρ.
– Case(PRINCIPLE 4 ) Then Γ � Γ

�

, ρ � S �
� ��� ����	 �

A
�
N � KAS

. Γ
�

σ1 :: σ
�

2 :: ρ derives from Γ
�

σ1 ::
σ

�

2 by an application of (PRINCIPLE 4 ).
– Case(PRINCIPLE 5 ) Then ρ is S �

� ��������� � A � N �
K � KBS

:: S �
� �
������� � B � N � � � �

K � KAS
. Γ � new � S � K � �

σ1 :: σ
�

2 :: ρ, derives from Γ
�

�
�

σ1 :: σ
�

2 by an application of (PRINCIPLE 5 ).
– Case(PRINCIPLE 5’ ) Then ρ is check � S � N � :: S �

� ��� ����	 �
A
�
N

� � � � �
K � KBS

:: S �
� ����� ��� � B � N � � � �

K � KAS
.

A simple application of (PRINCIPLE 5’ ) leads us to Γ
�

� � �
new � S � N � � � �

σ1 :: σ
�

�2 :: ρ as desired.
– Case(PRINCIPLE 5” ) Then ρ is S �

� ��� ���
	 �
A
�
N
�
K � KBS

:: S �
� �
������� � B � N � � � �

K � KAS
. A simple ap-

plication of (PRINCIPLE 5” ) leads us to Γ
�

�
�

σ1 :: σ
�

�2 :: ρ as desired.
– Case(PRINCIPLE 6 ) Then ρ is run �����
�
	�� A � B � :: A �

�
M � K By inductive hypothesis we don’t know

if S �
� ����� ��� � B � N �

K � AS

�
σ1 :: σ

�

�2 . If it’s so then Γ
�

�
�

σ1 :: σ
�

�2 :: ρ, otherwise Γ
�

�
�

σ1 :: σ
�

�2 . In
both cases the theorem holds.

– Case (AUTHENTICATION 1 ) ρ is check � B � N � � :: commit � B � A � . By hypotheses we have J �
� ��� ����	 �

A
�
N � KBS

�

sigma1 :: σ
�

�2 . An application of (AUTHENTICATION 1 ) leads us to Γ
�

� � �
new � B � N � � � �

σ1 :: σ
�

�2 ::
ρ.

– Case (AUTHENTICATION 2 ) Then ρ is check � B � N � � :: commit � B � A � . If both A �
�
M � K and S �� ����� ��� � A � N � �

K � BS are in σ1 :: σ
�

�2 then Γ
�

� � �
new � B � N � � � �

σ1 :: σ
�

�2 :: ρ and the theorem holds.
Now, assume that S �

� �
� � ��� � A � N � �
K � BS

��
σ

�

�2 . Then S �
� ��������� � B � N � � �

K � KAS

��
σ

�

�2 , hence also
run ����� �
	 � A � B � :: A �

�
M � K

��
σ

�

�2 . Thus Γ
�

�
�

σ1 :: σ
�

�2 and by Lemma 2 σ2 � σ
�

�2 is safe.
If A �

�
M � K

��
σ

�

�2 then obviously run �����
�
	�� A � B � :: A �
�
M � K

��
σ

�

�2 . Thus Γ �
�

σ1 :: σ
�

�2 and, by
Lemma 2, σ2 � σ

�

�2 is safe .
��

We are now ready to prove the safety theorem: we use the following, obvious, fact about safe traces.

Lemma 9. If σ :: α :: σ
�

is safe then so is σ :: σ
�

provided that α
�� run � A � B � .

Theorem 3 (Safety). Assume Γ
�

σ. Then σ is safe.

Proof. By induction on the length of σ. The base case is when σ � ε, which is vacuously safe. For the
inductive case, we only look at the case when σ is concluded by a commit action. Let then σ � σ

�

::
check � B � N � :: commit � B � A � . We now proceed by a case analysis on the last rule in the derivation of
Γ
�

σ. We only have two cases:

– Case (AUTHENTICATION 1 ). We further distinguish two sub-cases, depending on the premise of
the rule.

I �
� ��� ����	 �

A
�
N � KAB

�
σ

�

. An inspection of the derivation rules shows that this action must have
been generated by an application of (PRINCIPLE 1), in a derivation of the following shape (where

21



σ
�

1
� σ1 :: new � I � N � and σ

�

2
� σ2 :: run ��� ��� � � A � B � :: A �

� ��� ���
	 �
A
�
N � KAB

).

Γ1
�

σ1 0 � Γ1
�
new � I � N � � σ1 :: new � I � N �

��� Γ2
�

σ
�

1 :: σ2

0 � Γ2
�

σ
�

1 :: σ2 :: run ��� ��� � � A � B � :: A �
� ��� ���
	 �

A
�
N � KAB

��� Γ
�
new � I � N � � σ

�

1 :: σ
�

2 :: σ3

0 � Γ
�

σ
�

1 :: σ
�

2 :: σ3 :: check � B � N � :: commit � B � A �

By Lemma 4, we know that N is not checked in σ3. Then, from Γ
�
new � I � N � � σ

�

1 :: σ
�

2 :: σ3, by
Lemma 5 and Lemma 6, we know that Γ

�
σ1 :: σ2 :: σ3 is derivable. Thus, by induction hypothesis,

σ1 :: σ2 :: σ3 is safe.

If instead I �
� ��� ����	 �

A
�
N � KSB

�
σ

�

, then we need to consider several sub-cases, depending on the
principle that generated I �

� ��� ����	 �
A
�
N � KSB

.

� Case PRINCIPLE 3 . In the premises we have I �
� � ����� � � B � N � � KAS

�
σ”, which must have been

generated by PRINCIPLE 2 . Thus the derivation must have the folloiwng shape

Γ1
�

σ1 � new � S � N � � Γ1
�

σ �1
� ��� �

σ1 :: new � S � N �
��� Γ2

�
σ

�

1 :: σ2

� Γ2
�

σ
�

1 ::

σ �2
� ��� �

σ2 :: runV � A � B � :: A �
� � ����� � � B � N � KAS��� Γ3

�
σ

�

1 :: σ
�

2 :: σ3

� new � B � N � � � Γ3
�

σ
�

1 :: σ
�

2 ::

σ �3
� ��� �

σ3 :: new � B � N � �
��� new � S � N � � Γ4

�
σ

�

1 :: σ
�

2 :: σ
�

3 :: σ4

� Γ4
�

σ
�

1 :: σ
�

2 :: σ
�

3 ::

σ �4
� ��� �

σ4 :: check � S � N � :: S �
� ��� ����	 �

A
�
N

� � KBS��� new � B � N � � � Γ5
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ5

� Γ5
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 ::

σ �5
� ��� �

σ5 :: check � B � N � � :: commit � B � A �
We would like to show that σ

� � � σ1 :: σ2 :: σ3 :: σ4 :: σ5 is a trace. The reasoning is similar
to previous case. σ1 is a trace. Also σ1 :: σ2 is a trace by Lemma 5. By Lemma 7, there exists
σ �3 such that σ1 :: σ2 :: σ �3 is a trace. By Lemma 5 and Lemma 7 we can build a trace sigma

� �

�
subtrace of σ

� �

. By inductive hypothesis σ
� �

� is safe and by construction so is σ
� �

is safe. Hence,
σ also is safe.

� Case PRINCIPLE 4 . The derivation has the following shape:

22



Γ1
�

σ1 � new � B � N � � Γ1
�

σ �1
� ��� �

σ1 :: new � B � N �
��� Γ2

�
σ

�

1 :: σ2

� Γ2
�

σ
�

1 ::

σ �2
� ��� �

σ2 :: runV � A � B � :: A �
� � ����� � � B � N � KAS��� Γ3

�
σ

�

1 :: σ
�

2 :: σ3

� Γ3
�

σ
�

1 :: σ
�

2 ::

σ �3
� ��� �

σ3 :: S �
� ��� ����	 �

A
�
N � KBS��� new � B � N � � Γ4

�
σ

�

1 :: σ
�

2 :: σ
�

3 :: σ4

� Γ4
�

σ
�

1 :: σ
�

2 :: σ
�

3 ::

σ �4
� ��� �

σ4 :: check � B � N � :: commit � B � A �

Here we can drop the above listed actions out of σ by, respectively, Lemma 5, Lemma 7,
Lemma 6. Thus also in this case σ is safe.

� Case PRINCIPLE 5’ . The derivation has the following shape.

Γ1
�

σ1 � new � S � N � � Γ1
�

σ �1
� ��� �

σ1 :: new � S � N �
��� Γ2

�
σ

�

1 :: σ2

� Γ2
�

σ
�

1 ::

σ �2
� ��� �

σ2 :: runV � A � B � :: A �
� � ����� � � B � N � KAS��� Γ3

�
σ

�

1 :: σ
�

2 :: σ3

� new � B � N � � � Γ3
�

σ
�

1 :: σ
�

2 ::

σ �3
� ��� �

σ3 :: new � B � N � �
��� Γ4

�
σ

�

1 :: σ
�

2 :: σ
�

3 :: σ4

� new � S � K � � Γ4
�

σ
�

1 :: σ
�

2 :: σ
�

3 ::

σ �4
� ��� �

σ4 :: new � S � K �
��� new � S � N � � new � S � K � � Γ5

�
σ1234

� ��� �

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ5

� Γ5
�

σ
�

1234 ::

σ �5
� ��� �

σ5 :: check � S � N � :: S �
� ��� ����	 �

A
�
N

� �
K � KBS

:: S �
� �
������� � B � N � � �

K � KAS��� new � B � N � � � Γ6
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ6

� Γ6
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 ::

σ �6
� ��� �

σ6 :: check � B � N � � :: commit � B � A �

In order to discard the above listed actions from σ, one can use, respectively, Lemma 5, Lemma
7, Lemma 5 again, Lemma 5 and finally Lemma 8 and Lemma 6.

� Case PRINCIPLE 5” . The derivation has the following shape:

23



Γ1
�

σ1 � new � B � N � � Γ1
�

σ �1
� ��� �

σ1 :: new � B � N �
��� Γ2

�
σ

�

1 :: σ2

� Γ2
�

σ
�

1 ::

σ �2
� ��� �

σ2 :: runV � A � B � :: A �
� � ����� � � B � N � KAS��� Γ3

�
σ

�

1 :: σ
�

2 :: σ3

� new � S � K � � Γ3
�

σ �3
� ��� �

σ
�

1
�
σ

�

2
�
σ3 :: new � S � K �

��� new � S � K � � Γ4
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ4

� Γ4
�

σ
�

1 :: σ
�

2 :: σ
�

3 ::

σ �4
� ��� �

σ4 :: S �
� ��� ���
	 �

A
�
N
�
K � KBS

:: S �
� �
������� � B � N � �

K � KAS
�

��� new � B � N � � Γ5
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ5

� Γ5
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 ::

σ �4
� ��� �

σ5 :: check � B � N � :: commit � B � A �
As usual, you can drop the above listed actions by Lemma 5, Lemma 7, Lemma 5 and finally
Lemma 7(Case PRINCIPLE 5” ).

– Case (AUTHENTICATION 2 ) We distinguish several subcases, depending on the premises of the
rule I �

� �
������� � A � N �
K � KSB

�
σ

�

and A �
�
M � K

�
σ

�

.

� Let A �
�
M � K be generated by PRINCIPLE 6 and I �

� �
� � ��� � A � N �
K � KSB

by PRINCIPLE 5 . The
derivation has the following shape:

Γ1
�

σ1 � new � S � K � � Γ1
�

σ �1
� ��� �

σ1 :: new � S � K �
��� Γ2

�
σ

�

1 :: σ2

� new � B � N � � Γ2
�

σ
�

1 ::

σ �2
� ��� �

σ2 :: new � B � N �
��� new � S � K � � Γ3

�
σ

�

1 :: σ
�

2 :: σ3

� Γ3
�

σ
�

1 :: σ
�

2 ::

σ �3
� ��� �

σ3 :: S �
� �
� � ��� � A � N �

K � KBS
:: S �

� ����� ��� � B � N � �
K � KAS��� Γ4

�
σ

�

1 :: σ
�

2 :: σ
�

3 :: σ4

� Γ4
�

σ
�

1 :: σ
�

2 :: σ
�

3 ::

σ �4
� ��� �

σ4 :: runK � A � B � :: A �
�
M

� � K��� new � B � N � � Γ5
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ5

� Γ5
�

σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 ::

σ �5
� ��� �

σ5 :: check � B � N � :: commit � B � A �
This time to discard the above listed actions from σ, we use Lemma 5 twice, Lemma 8 and
finally Lemma 8 (Case PRINCIPLE 6 ).

� Let A �
�
M � K be generated by PRINCIPLE 6 and I �

� �
� � ��� � A � N �
K � KSB

by PRINCIPLE 5’ .
The derivation has the following shape:

24



Γ1 � σ1
� new � S � N � � Γ1 �

σ �1� ��� �

σ1 :: new � S � N �� � Γ2 � σ
�

1 :: σ2

� Γ2 � σ
�

1 ::

σ �2� ��� �

σ2 :: runV � B � A � :: B ��� ��� �!
 � � A � N � KBS� � Γ3 � σ
�

1 :: σ
�

2 :: σ3

� new � B � N � � � � Γ3 � σ
�

1 :: σ
�

2 ::

σ �3
� ��� �

σ3 :: new � B � N � � �� � Γ4 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ4

� new � S � K � � Γ4 � σ
�

1 :: σ
�

2 :: σ
�

3 ::

σ �4� ��� �

σ4 :: new � S � K �� � Γ5 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ5

� new � A � N � � � Γ5 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 ::

σ �5
� ��� �

σ5 :: new � A � N � �� � new � S � N � � Γ6 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ6

� Γ6 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 ::

σ �6
� ��� �

σ6 :: check � S � N � :: S � � � � 	�
 � � A � N � � � K � KBS
:: S � �!#)%*' ��� � B � N � � K � KAS� � Γ7 � σ

�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ
�

6 :: σ7

� Γ7 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ
�

6 ::

σ �7� ��� �

σ7 :: runK � A � B � :: A �	� M 
 K� � new � B � N � � � � Γ8 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ
�

6 :: σ
�

7 :: σ8

� Γ8 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ
�

6 :: σ
�

7 ::

σ �8
� ��� �

σ8 :: check � B � N � � � :: commit � B � A �

Here we can drop the displayed actions out of σ by using Lemma 5, Lemma 7, Lemma 5 three
times, 6 and 8.

� Let A �
�
M � K be generated by PRINCIPLE 6 and I �

� ����� ��� � A � N �
K � KSB

by PRINCIPLE 5” .
The derivation has the following shape:

Γ1 � σ1
� new � B � N � � Γ1 �

σ �1� ��� �

σ1 :: new � B � N �� � Γ2 � σ
�

1 :: σ2

� Γ2 � σ
�

1 ::

σ �2� ��� �

σ2 :: runV � B � A � :: B ��� ��� �!
 � � A � N � KBS� � Γ3 � σ
�

1 :: σ
�

2 :: σ3

� new � S � K � � Γ3 � σ
�

1 :: σ
�

2 ::

σ �3
� ��� �

σ3 :: new � S � K �� � Γ4 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ4

� new � A � N � � � Γ4 � σ
�

1 :: σ
�

2 :: σ
�

3 ::

σ �4� ��� �

σ4 :: new � A � N � �� � Γ5 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ5

� Γ5 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 ::

σ �5
� ��� �

σ5 :: S ��� ��� 	�

� � A � N � K � KBS
:: S ���$#&%(' ��� � B � N � � K � KAS� � Γ6 � σ

�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ6

� Γ6 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 ::

σ �6
� ��� �

σ6 :: runK � A � B � :: A � � M 
 K� � new � B � N � � � � Γ7 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ
�

6 :: σ7

� Γ7 � σ
�

1 :: σ
�

2 :: σ
�

3 :: σ
�

4 :: σ
�

5 :: σ
�

6 ::

σ �7
� ��� �

σ7 :: check � B � N � :: commit � B � A �

25



α is safe and the reasoning is clearly the same as previous case and it uses Lemma 7(Case
PRINCIPLE 5” ).

26


