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Genome wide association studies (GWAS) have identified more than 200 mostly new
common low-penetrance susceptibility loci for cancers. The predicted risk associated with
each locus is generally modest (with a per-allele odds ratio typically less than 2) and so,
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presumably, are the functional effects of individual genetic variants conferring disease
susceptibility. Perhaps the greatest challenge in the ‘post-GWAS’ era is to understand the
functional consequences of these loci. Biological insights can then be translated to clinical
benefits, including reliable biomarkers and effective strategies for screening and disease
prevention. The purpose of this article is to propose principles for the initial functional
characterization of cancer risk loci, with a focus on non-coding variants, and to define ‘post-
GWAS’ functional characterization.

By December 2010, there were 1,212 published GWAS studies1 reporting significant (P < 5
× 10−8) associations for 210 traits (Table 1), and the Catalog of Published GWAS states that
by March 2011, 812 publications reported 3,977 SNP associations1. This is likely a small
fraction of the common susceptibility loci of low penetrance that will eventually be
identified. Despite these successes in identifying risk loci, the causal variant and/or the
molecular basis of risk etiology has been determined for only a small fraction of these
associations2–4. Plausible candidate genes can be based on proximity to risk loci, but few
have so far been defined in a more systematic manner (Supplementary Table 1).

Increased investment in post-GWAS functional characterization of risk loci5 has now been
advocated across diseases and for cardiovascular disease and diabetes6. For cancer biology,
the complex interplay between genetics and the environment in many cancers poses a
particularly exciting challenge for post-GWAS research. Here we suggest a systematic
strategy for understanding how cancer-associated variants exert their effects. We mostly
refer to SNPs throughout the paper, but we recognize that other types of common genetic
(for example, copy number variants) or epigenetic variation may influence risk.

Our understanding of the way in which a risk variant initiates disease pathogenesis
progresses from statistical association between genetic variation and trait or disease
variation to functionality and causality. The functional consequences of variants in protein-
coding regions causing most monogenic disorders are more readily interpreted because we
know the genetic code. For non-Mendelian or multifactorial traits, most of the common
DNA variants have so far mapped to non-protein–coding regions2, where our understanding
of functional consequences and causality is more rudimentary.

Our hypothesis is that the trait-associated alleles exert their effects by influencing
transcriptional output (such as transcript levels and splicing) through multiple mechanisms.
We emphasize appropriate assays and models to test the functional effects of both SNPs and
genes mapping to cancer predisposition loci. Although much of what is written is applicable
to alleles discovered for any trait, the section on modeling gene effects will emphasize
measuring cancer-related phenotypes.

At some loci, multiple, independently associated risk alleles rather than single risk alleles
may be functionally responsible for the occurrence of disease. Genotyping susceptibility loci
(and their correlated variants) in multiple populations with different linkage disequilibrium
(LD) structures may prove effective in substantially reducing the number of potentially
causative variants (that is, the same causal variant may segregate in multiple populations), as
shown for the FGFR2 locus in breast cancer7, but for most loci there will remain a set of
potentially causative variants that cannot be separated at the statistical level from case-
control genotype data.

A susceptibility locus should be re-sequenced to ascertain all genetic variation, identifying
candidate functional or causal variants and identifying candidate causal genes. Ideally, the
identification of a causal SNP would be the next step to reveal the molecular mechanisms of
risk modification. Practically, however, it is unclear what the criteria for causality should be,
particularly in non-protein–coding regions. Thus, although we propose a framework set of
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analyses (Box 1), we acknowledge that the techniques and methods will continue to evolve
with the field.

Box 1

Strategies to progress from tag SNP to mechanism

1. Target resequencing efforts using linkage disequilibrium (LD) structure.

2. Use other populations to refine LD regions (for example African ancestry with
shorter LD and more heterogeneity).

3. Determine expression levels of nearby genes as a function of genotype at each
locus (eQTL).

4. Characterize gene regulatory regions by multiple empirical techniques bearing
in mind that these are tissue and context specific.

5. Combine regulatory regions with risk loci using coordinates from multiple
reference genomes to capture all variation within the shorter regulatory regions
that correlates with the tag SNP at each locus.

6. Multiple experimental manipulations in model systems are needed to
progressively implicate transcription units (genes) in mechanisms relevant to the
associated loci:

i. Knockouts of regulatory regions in animal (difficult and may be limited
by functional redundancy, but new targeting methods in rat are
promising) models followed by genome-wide expression analysis.

ii. Use chromatin association methods (3C, CHIA-PET) of regulatory
regions to determine the identity of target genes (compare with eQTL
data).

iii. Targeted gene perturbations in somatic cell models.

iv. Explore fully genome-wide eQTL and miRNA quantitative variation
correlation in relevant tissues and cells.

7. Explore epigenetic mechanisms in the context of genome-wide genetic
polymorphism.

8. Employ cell models and tissue reconstructions to evaluate mechanisms using
gene perturbations and polymorphic variants. The human cancer cell xenograft
has re-emerged as a minimal in vivo validation of these models.

9. Above all, resist the temptation to equate any partial functional evidence as
sufficient. Published claims of functional relevance should be fully evaluated
using the steps detailed above.

Fine mapping
Most GWAS identify an association between the disease trait and a surrogate marker (tag
SNP) rather than a causal variant because SNP arrays were designed using SNPs chosen to
capture LD structure rather than functional variants. To get to the underlying biology, a
comprehensive understanding of the genetic variation of the associated regions will be
necessary, starting with the most common SNPs.
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The ongoing 1000 Genomes Project seeks to capture common (>5%) and less common (1–
5%) variant information8 in diverse ethnic populations using a combination of low-coverage
whole-genome sequencing and deeper coverage exome sequencing. However, it remains to
be determined whether it provides complete SNP coverage across the entire genome,
including intergenic regions and gene deserts where the majority of the GWAS associations
have been mapped. This suggests that for at least some loci, targeted sequencing remains a
necessity.

The goal of targeted sequencing is to capture the causal SNP(s) that is in LD with the
associated SNP(s) (assuming that the causal SNP is not the associated SNP). The likelihood
of identifying the causal SNP will be affected by both how the boundaries of the region to be
sequenced are defined as well as the depth of sequence coverage across the region.

The region to be sequenced can be guided by LD structure, but there are challenges to this
approach, as the strength of the correlation between the associated SNP and the causal SNP
may be low, suggesting that a correlation r2 threshold value of 0.2 or even less may be
needed. Incorporating GWAS information from non-European populations, such as those of
African descent, could potentially reduce the target region if a similar association was found
in this population, as the African-American population generally has smaller LD block
structure than the European population9. Alternatively, LD structure can be ignored and
arbitrary physical limits can be set to define boundaries, for example, by choosing to
sequence 1 Mb across the risk allele. The region can be further narrowed through
incorporation of biological information for the presence of a compelling candidate gene or
transcript. However, note that relying on biological assumptions undermines the agnostic
approach of GWAS.

The depth of coverage and the number of subjects to be sequenced are important
considerations. Current targeted enrichment technologies yield non-uniform sequencing
coverage, which could increase the heterozygote false-negative rate. Sequencing coverage of
25× or greater may be required, especially if sequencing-based genotyping and not just
variant discovery is a goal. The likelihood of identifying less common variants is also
dependent upon the number of subjects sequenced, and often DNA from several hundreds of
subjects is needed. In summary, because of the fact that both the size of the region and the
number of individuals to be sequenced influence cost, the final design will likely be a
compromise. Costs can be offset to some extent with the use of molecular barcoding, when
individual genotypes are important, and DNA pooling, when variant discovery is important.

Annotating variable regulatory elements
Characterizing the regulatory landscape of susceptibility regions is an important step in
understanding how risk alleles affect function. The most abundant of these regulatory
sequences are enhancers, but other regulators such as promoters, insulators and silencers
may also be susceptibility targets. Unlike core promoters (at transcription start sites of
genes), distal regulatory sequences such as enhancers are often cell-type specific10 and thus
may explain the tissue- and disease-specific nature of common susceptibility alleles.
Studying histone modifications or DNase sensitivity (or hypersensitivity) has proven to be a
powerful approach in annotating tissue-specific regulatory elements11,12 and is more
informative than studying sequence conservation, as regulatory elements may be
unconstrained across mammalian evolution13–15. Using chromatin annotations to identify
putative functional SNPs within regulatory sequences at known susceptibility loci has
recently been proposed16. More precise demarcation of such regulatory regions may be
achieved by assessing the association of candidate transcription factors with response
elements. Both histone modifications and transcription-factor–occupied regions are currently
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identified using chromatin immunoprecipitation sequencing (ChIP-Seq) methodologies, and
signals yield short DNA stretches (typically <1 kb) amenable to detailed analyses. Enhancer
activity in such regulatory regions can be assayed using reporter genes in vitro4 and/or in
vivo11.

Integrating knowledge of regulatory sequences at risk loci with catalogs of risk-associated
SNPs at these loci may be an efficient approach to prioritizing both candidate regulatory
sites and the most likely functional variants. This concept is illustrated by work on 8q24 risk
loci. Two functional SNPs at chromosome 8q24 have been associated with prostate and
colorectal cancer, respectively. Several transcriptional enhancers were identified at 8q24.
Two of them, in a prostate cancer risk region, were occupied by the androgen receptor and
responded to androgen treatment, with one containing a SNP within a FoxA1 binding site4.
The prostate cancer risk allele facilitated both stronger FoxA1 binding and stronger
androgen responsiveness. In a separate study, an 8q24 SNP in colorectal cancer was also
found situated within a transcriptional enhancer, and the enhancer activity was affected by
the SNP17. In addition, the SNP was shown to physically interact with the MYC proto-
oncogene, with allele-dependent binding of transcription factor 7-like 2 (TCF7L2). More
detailed functional follow up of these SNPs can then be performed using biochemical
approaches to study differential transcription factor binding and activity (for example, ChIP
or electrophoretic mobility shift assay (EMSA)). Regulatory sequences containing
functional SNPs determined in this way can then be matched to their physiological target
genes (see below).

After generating data that implicate a functional mechanism, the next challenge will be to
identify genes that are regulated by these elements. Possible approaches for identifying
targets of regulatory sequences include: first, knocking out regulatory sequences in mouse
models followed by genome-wide gene expression analyses after knockout to identify
candidate targets; second, using the regulatory sequences as baits in chromatin conformation
capture-based studies18,19, including genome-wide chromatin conformation capture-based
methods; third, targeted editing using somatic cell knock-in technology; for example, allelic
series in isogenic settings may be created and gene expression differences measured, either
in naturally growing cells or in cells that are perturbed (for example, by radiation or
hormones); and finally, identifying correlations between the different genotypes of trait-
associated SNPs and variations in the transcript abundance of candidate genes at those loci.
Of these, the last approach represents a straightforward method to identify putative target
genes.

Epigenetic regulation of gene expression
Promoter methylation, histone tail modifications and altered expression of non-coding
RNAs, such as the large intergenic noncoding RNAs (lincRNAs)20,21, which associate with
chromatin-modifying complexes, also contribute to gene regulation and are obvious
candidate targets of functional genetic associations22. Epigenetic silencing has been shown
to be the predominant mechanism of gene silencing during tumor development for a subset
of genes23. For other genes, a combination of genetic and epigenetic mechanisms can
contribute to tumor suppressor gene activation24. Epigenetic mechanisms also play an
important role in mediating environmental influences on gene expression25. At susceptibility
loci, the key questions are: first, do common genetic variants influence the epigenetic
landscape to increase disease susceptibility, and second, do susceptibility variants within the
epigenetic landscape affect the likelihood of gene silencing during tumor development?

The ability to perform such studies has been made possible through the development of
platforms that enable high throughput DNA methylation profiling at single CpG
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resolution26. Studies of hereditary non-polyposis colorectal cancer (Lynch syndrome)
suggest that germline genetic variation may affect epigenetic marks, resulting in cancer
predisposition27,28. These changes in CpG methylation may be a consequence of cis- or
trans-acting genetic variants29. For example, Kerkel et al. have shown sequence-dependent
allele-specific methylation and that cis-regulatory variants control gene expression and
affect chromatin states30. Further epigenetic mechanisms that modulate gene expression
include microRNAs (miRNAs) and miRNA binding sites, which can be directly affected by
SNPs31, and tandem repeats that can impact gene expression by, for example, altering
transcription factor binding sites but also by affecting chromatin structure (reviewed in fc
ref. 32).

Risk SNPs may also be tagging variants affecting the chromatin regulation of the nucleus.
Chromatin fibers dynamically explore the nuclear space to establish meta-stable, long-range
interactions with other chromatin fibers33. The functional outcome of such interactions is
largely unknown, but it has been shown that they are capable of transferring epigenetic
marks to modulate transcriptional processes both in cis34 and in trans35,36. In this way,
chromosome crosstalk sets the stage for the spreading and propagation of pleiotropic
epigenetic effects in a manner that reflects the topology of the network involved33. Sequence
variants can influence communication between different parts of the genome37, and so SNPs
can probably influence chromatin networks in a genotype-specific manner. For example,
single SNPs or combinations of SNPs may confer disease susceptibility by promoting or
antagonizing the formation of chromatin networks. The functional annotation of
susceptibility loci with respect to chromatin or chromosomal networks may therefore
provide important insights into the function of germline genetic variants.

Inherited variation and gene expression
Both empirical and computational data support the notion that a considerable proportion of
trait-associated loci will harbor variants that influence the abundance of specific transcripts.
These variants are often referred to as expression quantitative trait loci (eQTLs)38–42.
Several landmark studies have unequivocally shown that many transcripts in the human
genome are influenced by inherited variation43–47. Studying the associations between
genetic variation and gene expression offers a straightforward way to begin the complicated
task of connecting risk variants to their putative target genes or transcripts. Importantly, and
as is the case in GWAS, an agnostic approach can be taken to these analyses, which does not
require the disease-causing allele to be known.

eQTLs can be located either near the gene they regulate or at considerable distances away
from it. The distinction between local and distant is often arbitrary, however, as in most
studies, local has often been defined as being within 1 Mb of the variant under
consideration. ‘Distant’ can involve interactions between an eQTL and a gene located on
different non-homologous chromosomes. The terminology of local and distant in this
context is preferred to cis and trans, which connote mechanism48. It should be noted that not
only mRNA transcripts but also miRNA and non-coding RNA (ncRNA) transcripts should
be considered as candidates.

Certain principles have emerged from eQTL studies: first, eQTLs tend to explain a greater
proportion of trait variance than is typically seen for risk alleles and clinical traits; this
observation translates into the ability to perform an eQTL study with smaller sample sizes
than association studies for clinical traits (such as disease risk). Second, local eQTLs tend to
have larger effects on gene expression than distant eQTLs and are therefore easier to
discover. Third, there are likely to be a larger number of distant than local eQTLs49.

Freedman et al. Page 6

Nat Genet. Author manuscript; available in PMC 2012 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Many of the initial successful eQTL studies relied on available lymphoblastoid cell
lines39,50. More recently, eQTL studies have been performed in primary human tissues and
have shown that at least some associations are tissue specific40,42,51. Although large sample
sizes are needed in order to achieve sufficient power to detect eQTL associations, they are
typically smaller than those used in GWAS to identify risk alleles. Consequently,
comprehensive biobanks of normal tissues will need to be established to evaluate expression
differences between the different alleles of a SNP. Establishing such biobanks will be a
major part of the challenge; whereas extensive efforts within the cancer research community
have established tumor tissue biorepositories, it has been less common to do so for normal
tissues from the cells representing the origin of cancers. This issue is particularly
problematic for tumor subtypes in which the cell of origin is still debated. This challenge is
now being recognized and addressed through funding initiatives such as the ‘Genotype-
Tissue Expression (GTEx)’ supported by the US National Institutes of Health Common
Fund.

A complementary and powerful approach to defining local eQTLs is to measure allelic
imbalance (also called allele-specific gene expression) in individuals that are heterozygous
for a risk allele. Any transcript with a deviation from a 1:1 ratio (as typically measured by a
transcribed heterozygous marker) becomes a strong candidate gene52–54. It is critical to note
that even if a transcript is associated with a risk allele, it does not necessarily mean that the
gene is definitively involved in the trait of interest; functional follow up with assays relevant
to the trait are still needed to show that a gene is directly involved with disease development.

False negatives (where the risk-associated allele is not associated with an expression trait)
can occur because gene expression varies in time and space. Therefore, the developmental
time point and/or the tissue being studied may not be appropriate. Effects on transcript
abundance may be subtle and therefore below the sensitivity threshold of a particular
platform, and/or sample size may not be adequate. In addition, transcript abundance is
usually evaluated under steady-state conditions. Also, effects may only be revealed in
certain contexts, such as perturbation of a particular pathway, and may occur through
changes in gene transcripts mediated by alterations in microRNAs or non-coding RNAs
rather than through direct effects on genes. In these cases, alternative assays will be required
to implicate these genes.

Future areas of exploration for the field include: first, defining the appropriate target tissues
to examine. Risk alleles may act in a non-cell or non-tissue autonomous fashion and
therefore may exert their effect through other cell types that act upon the target tissue under
consideration. Second, defining the importance of eQTL analysis in tumor as well as normal
tissue. We advocate that both tissue states should be studied until a clearer picture of the
relationship between the two emerges. Third, using higher order computational methods,
such as network analysis using risk variant and gene expression data to dissect the pathways
driving disease pathogenesis. This ranges from transcriptomic analysis to predict the
regulatory influence of transcription factors over gene network dependency using tools such
as ARACNE55 to Bayesian network approaches to identify predictive relationships between
genes from a combination of expression and eQTL data56. Although these tools are elegant,
the ability to translate their outputs into biological importance is heavily dependent on the
availability of manipulable and relevant model systems with which to test the predicted
connectivity. These and many other approaches clearly pose validation challenges for many
diseases, however, the field of computational biology is a powerful and essential catalyst for
post-GWAS studies.
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Cell and tissue models
Once there is sufficient evidence in support of a candidate susceptibility gene, more detailed
functional studies will be required to characterize the gene’s role in the pathogenesis of the
trait under consideration. Gaining a better understanding of the biological mechanisms of
cancer development often relies on the analysis of models that reflect the human disease and
the application of technologies that facilitate the analysis of these models (Supplementary
Table 2). It is likely that establishing a functional rationale underlying the importance of
allelic variation and candidate genes at common low penetrance susceptibility loci in
biologically relevant disease models will become a major component of following up the
genes emerging from GWAS. Disease models can be based on either the in vitro
characterization of human tissues (primary tissues or cells in culture) or in vivo models of
disease development.

Human in vitro cancer models are the most accessible way to test the function of candidate
genes at susceptibility loci in tumor development, but functional effects may be masked by
an aberrant genetic background. Most GWAS to date have focused on genetic susceptibility
to disease, and so the greatest functional impact may be observed in an essentially healthy,
non-aberrant tissue or background. This is perhaps the hardest context to replicate and
maintain in a laboratory situation, meaning that there will be a continuous drive for
improvements in the models used.

Progress in establishing suitable in vitro models of normal tissues has been hampered by
difficulties in accessing specimens and the challenges of culturing primary cells. For
example, prostate epithelial cells are dependent on the presence of a co-cultured stromal
component for establishing the secretory cell phenotype and functional differentiation. For
the normal colon, most commercially available normal epithelial cell lines are fetal in origin,
and differences in fetal and adult cell biology limits the translational potential of work using
fetal cells to model adult epithelial cancer genesis. There are exceptions: in breast, well-
characterized commercially available cell lines exist that are good models of normal breast
tissue (for example, MCF10A cells and immortalized HMECs). Three-dimensional cultures
of MCF10As form polarized cystic structures that closely reflect the architecture and
molecular features of breast acini in vivo. Using this system, a link between loss of BRCA1
function and impaired luminal differentiation of mammary epithelia was established57; this
link has been further highlighted by Proia et al.58. By using such three-dimensional models,
it is therefore possible to dissect subtle phenotypes, such as changes associated with gene
dosage.

As a first step, we recommend measuring cancer related traits in these more ‘traditional’
models. Targeting genes under the control of functional- SNP–containing regulatory regions
may have important roles in characteristics of developing cancer phenotypes such as
proliferation, migration and apoptosis. Endpoints of the cancer phenotype, such as cell
division, migration and apoptosis rates and protease secretion may be measured in cultured
cells and mouse xenografts after the overexpression of the genes of interest or their selected
small interfering RNA or short hairpin RNA knockdown.

The GWAS community has arrived at an important crossroads. As resources are limited and
as the variants found so far operate within their genotypic context, the debate revolves
around whether enough progress has been made toward identifying the variants that are
likely to contribute most to disease causation to invest in functional follow up. As
sequencing technologies become cheaper and more accessible and as datasets expand, we
argue that this will evolve rapidly and will afford greater certainty in defining both the
spectrum of inherited variation and the LD structure within the regions in which they lie.

Freedman et al. Page 8

Nat Genet. Author manuscript; available in PMC 2012 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



This will require a detailed mapping and annotation of epigenetic and transcriptomic
landscapes within which a major limiting factor may prove to be the sample collections
themselves. While this progresses, it is vital that proof-of-principle studies develop the
methodologies and take forward the strongest candidate SNPs identified so far, not
necessarily to test their causative association with disease but to understand their functional
impact. ‘Strong’ candidate SNPs are those that show significant associations with transcript
expression (eQTL analysis and chromosome conformation capture), tissue specificity and
the phenotypic impacts of these transcript associations on model systems in downstream
experiments. It is therefore far too soon in this emerging field to make definitive
recommendations of what unequivocally proves a correlation between genotype and
phenotype at common low penetrance susceptibility loci. Successfully making the transition
to progress experimentally through this process will require collective thinking at a consortia
or multi-group level, just as effective international collaborations led to the identification of
susceptibility loci through GWAS. It is essential for the field that this overrides the
temptation to publish fragmentary work capturing only sub-steps in this sequence. Over
time, integration of the re-sequenced, epigenetic and molecular-epidemiological data within
different populations (and thus within different linkage disequilibrium structures) will help
localize causal variants. If we begin considering how to explore the functional impact of
variants now, we will, as a community, be well positioned to rise to the challenge of testing
causation in the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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(http://www.wikigenes.org/e/pub/e/84.html). We hope that this will be the first of many
valuable examples of increased engagement with scientists through these avenues.
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Table 1

The genomic context in which a variant is found can be used as preliminary functional analysis

Classification Approximate percentagesa Approximate numbersa

Intronic 40 1,047

Intergenic 32 838

Within non-coding sequence of a gene 10 262

Upstream 8 210

Downstream 4 105

Non-synonymous coding 3 79

3′ untranslated region ~1 26

Synonymous coding ~1 26

5′ untranslated region

Regulatory region

Nonsense-mediated decay transcript

Unknown ~1 26

Splice site

Gained stop codon

Frameshift in a coding sequence

The table broadly summarizes the genomic context of disease- and trait-associated SNPs annotated in the Catalog of Genome-Wide Association

Studies (http://www.genome.gov/gwastudies/) as of December 9th, 2010: 1,212 published genome-wide associations with P < 5 × 10−8 for 210
traits totaling 2,619 SNPs. Most of the SNPs are located in intergenic and intronic positions, but a small percentage are located upstream and
downstream of genes, as well as in regulatory regions and splice sites. SNPs in these locations can be analyzed in more detail using more specific
bioinformatics tools.

a
Values are indicative and dependent on genomic boundaries used.
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