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Abstract

Accurate RNA structure modeling is an important, incompletely solved, challenge. Single-

nucleotide resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension)

yields an experimental measurement of local nucleotide flexibility that can be incorporated as

pseudo-free energy change constraints to direct secondary structure predictions. Prior work from

our laboratory has emphasized both the overall accuracy of this approach and the need for nuanced

interpretation of some apparent discrepancies between modeled and accepted structures. Recent

studies by Das and colleagues [Kladwang et al., Biochemistry 50:8049 (2011) and Nat. Chem.

3:954 (2011)], focused on analyzing six small RNAs, yielded poorer RNA secondary structure

predictions than expected based on prior benchmarking efforts. To understand the features that led

to these divergent results, we re-examined four RNAs yielding the poorest results in this recent

work – tRNAPhe, the adenine and cyclic-di-GMP riboswitches, and 5S rRNA. Most of the errors

reported by Das and colleagues reflected non-standard experiment and data processing choices,

and selective scoring rules. For two RNAs, tRNAPhe and the adenine riboswitch, secondary

structure predictions are nearly perfect if no experimental information is included but were

rendered inaccurate by the Das and colleagues SHAPE data. When best practices were used,

single-sequence SHAPE-directed secondary structure modeling recovered ~93% of individual

base pairs and greater than 90% of helices in the four RNAs, essentially indistinguishable from the

mutate-and-map approach with the exception of a single helix in the 5S rRNA. The field of

experimentally-directed RNA secondary structure prediction is entering a phase focused on the

most difficult prediction challenges. We outline five constructive principles for guiding this field

forward.
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Introduction

The functions of most RNA molecules are critically dependent on their structures, which are

difficult to predict from first principles. A critical first step in characterizing an RNA

structure is to develop an accurate view of the pattern of base pairing or secondary structure.

Recent work has emphasized that incorporation of nucleotide-resolution structural

information obtained from chemical probing experiments dramatically improves the

accuracy of secondary structure prediction.1–4

SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) is a chemical

probing technology that measures local nucleotide flexibility in RNA as the ability of the

ubiquitous 2'-hydroxyl group to form covalent adducts with electrophilic reagents.5 SHAPE

reagents react similarly with the four RNA nucleotides6 and in a way that is strongly

correlated with model-free measurements of molecular order.7,8 Interactions that constrain

nucleotide dynamics, including base pair formation, reduce reactivity of the 2'-hydroxyl, and

SHAPE reactivities are thus roughly inversely proportional to the probability that a

nucleotide forms a base pair. It is possible to devise a pseudo-free energy change term,

ΔGSHAPE,4,9 that in conjunction with nearest-neighbor and other free energy terms10 can be

used to direct prediction of RNA secondary structures. Overall, SHAPE-directed prediction

has proven to yield significant improvements in RNA secondary structure prediction.

The field of experimentally-directed RNA structure prediction is undergoing rapid advances

and it is important to benchmark these emerging methods using diverse and structurally

challenging RNAs. Recent work by Das and colleagues evaluated SHAPE-directed

secondary structure prediction using six small RNAs and also proposed a bootstrapping

approach for the de novo identification of highly probable individual helices in the context

of a larger structure prediction.11 There are serious difficulties with both analyses.

Bootstrapping entails resampling a given set of data with replacement and generally requires

each data element to be independent of its order. For SHAPE data, both the measured

reactivities and their correct nucleotide positions are required for secondary structure

modeling. Bootstrapping is thus inherently unsuitable for estimating helix-by-helix

confidences for SHAPE (or any chemical probing) data.12 In this communication, we

examine the importance of experimental practices, data processing pipeline, and the need for

consistent standards in evaluating RNA structure prediction. We conclude by outlining five

principles that should guide future work designed to evaluate high-content, experimentally-

directed RNA secondary structure prediction.

Experimental

RNA synthesis

All RNAs were synthesized from double-stranded DNAs generated by PCR using single-

stranded DNA templates (IDT) spanning the full length of the transcript, preceded by a 17-nt

T7 promoter and a 14-nt 5' cassette sequence, followed by a 43-nt reverse transcription

primer binding site.13 RNAs were transcribed in 80 mM Hepes (pH 8.0), 40 mM DTT, 20

mM MgCl2, 2 mM spermidine, 0.01% Triton X-100, 2 mM dNTP, 0.1 mg/mL T7

polymerase at 37 °C for 3 hr. Transcript RNA was precipitated and purified on 8%

denaturing Tris-borate gels. Bands were visualized by UV shadowing, and RNAs were

eluted overnight into water at 4 °C. Concentrations were calculated from absorbance at 260

nm measured using a Nanodrop 2000c spectrophotometer.

RNA constructs

Five RNAs were examined. We analyzed two variations of the V. cholera cyclic-di-GMP

riboswitch RNA, a "short P1" RNA corresponding to the RNA in the 3iwn crystal
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structure14 and a "long P1" that both extends the P1 helix by two base pairs and truncates the

U1A protein-binding site. The latter was the same sequence as the construct selectively used

by Das and colleagues to evaluate the mutate-and-map method.15 Sequences of E. coli

tRNAPhe, the V. vulnificus adenine riboswitch, and E. coli 5S rRNA corresponded to those

evaluated in crystallographic studies16,17 and used by Kladwang et al.11

SHAPE experiments

Experiments with tRNAPhe were carried out using the folding buffer, SHAPE reagent

concentrations, and other experimental conditions exactly as described by Kladwang et al.11

or as outlined in standard SHAPE approaches.9,13,18 For the Das and coworkers approach, 2

pmol RNA was denatured by heating 95 °C for 1 min, snap cooled on ice, then refolded in

50 mM Hepes (pH 8.0), 10 mM MgCl2 for 30 min at 37 °C (labeled Buffer A in Figure 1).

We then added 20 µL refolded RNA to the following volumes and concentrations of SHAPE

reagents freshly dissolved in dry DMSO: 5 µL 135 mM NMIA (Invitrogen, M25), 5 µL or 2

µL 30 mM NMIA, or 5 µL or 2 µL 30 mM 1M7. Reactions were performed at 24 °C and at

37 °C with reaction times of 30 min for NMIA and 3 min for 1M7. No-reagent control

reactions were performed identically, using neat DMSO rather than a reagent solution. For

standard SHAPE experiments, the same RNA denaturing and refolding reactions were

performed in 50 mM Hepes (pH 8.0), 200 mM potassium acetate (pH 7.7), 3 mM MgCl2
(labeled Buffer B in Figure 1). Reactions were performed at 24 °C and at 37 °C by adding

10 µL RNA to 1 µL of 30 mM 1M7 and incubating for 3 min. Reactions with the adenine

and c-di-GMP riboswitches contained 5 µM adenine or 10 µM cyclic-di-GMP (Biolog

C057-01), respectively, and were initiated adding 10 µL refolded RNA to 1 µL 30 mM 1M7;

reactions were incubated for 3 min at 37 °C. In all cases, RNAs were recovered by the

addition of 15 µL water, 4 µL of 5 M NaCl, and 120 µL of 100% ethanol, followed by

incubation at −80 °C for 10 min and centrifugation (14K rpm in a microfuge at 4 °C for 15

min). RNA was then resuspended in 10 µL water. All RNAs were probed in 2–4 fully

independent replicate experiments, in some cases performed months apart. Structure

annotations shown in the individual figures correspond to single datasets but all

independently analyzed datasets yielded identical lowest free energy structures. Data for the

specificity domain of B. subtilis RNase P were reported previously.3

Primer extension

Reverse transcription reactions were prepared with the addition of 5 µL 0.5 µM FAM-

labeled (SHAPE-modified RNA trace) or JOE-labeled (sequencing trace) reverse

transcription primer, as appropriate, to 10 µL RNA solution. Primers were annealed by

incubation at 65 °C for 3 min and at 42 °C for 2 min. Primer extension reactions were

performed exactly as described9,18 using SuperScript III (Invitrogen). Reverse transcription

proceeded with incubation at 52 °C for 5 min, then at 65 °C for 5 min. SHAPE-modified

samples were combined with sequencing reactions, precipitated with ethanol, resuspended in

10 µL Hi-Di formamide (Applied Biosystems), heated with tube cap open at 95 °C for 3

min, and resolved on an Applied Biosystems 3500 Genetic Analyzer capillary

electrophoresis instrument.

Data analysis and SHAPE-directed RNA structure modeling

Raw capillary electrophoresis traces were processed using ShapeFinder19 or a new custom

software, QuShape (manuscript submitted; software is available immediately at:

www.chem.unc.edu/rna/qushape). Structure predictions were identical for data processed by

either approach. We attempted to process our experiments using HiTRACE20 but were

unable to run the publicly available version of the software; multiple attempts to solicit

assistance from the authors were unsuccessful. RNA structure prediction was performed

using RNAstructure21 versions 5.2–5.4 under either Mac OS 10.6.× or Unix following box-
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plot normalization, exactly as described.4 ΔGSHAPE parameters were 2.6 and −0.8 kcal/mol,

the current default values in RNAstructure. We report the single lowest free energy structure

output by RNAstructure in each case. All datasets generated in this work are available at the

SNRNASM community structure probing database.22 SHAPE data reported by Kladwang et

al.11 were obtained from the RMDB (http://rmdb.stanford.edu) and normalized by the box-

plot approach.4 As reported,11 we also could not identify an alternative mathematical

manipulation that could convert the Das and colleagues data into a form that would yield a

fully correct secondary structure prediction for tRNAPhe. RNA circle graphs were generated

using CircleCompare, available as part of the RNAstructure package.

Results and Discussion

In their evaluation of SHAPE-directed structure modeling, Das and colleagues reported an

overall sensitivity (percentage of known base pairs predicted) for six small RNAs of 83%

with a positive predictive value (percentage of predicted pairs in the accepted structure) of

~80%.11 Although these values represented substantial improvement over predictions

achieved in the absence of SHAPE data (62 and 55%, respectively), we were surprised by

these results because they were comparable to the very poorest predictions that we have

obtained in extensive analyses focused on highly challenging RNAs. In addition, relatively

poor SHAPE-directed predictions were reported for E. coli tRNAPhe and the V. vulnificus

adenine riboswitch RNA even though, in our experience, the structures of RNAs with

similar (simple) topologies are accurately predicted when SHAPE data are used to direct

structure modeling.

We therefore performed SHAPE and used our data to direct secondary structure prediction

for the four RNAs whose structures were predicted especially poorly.11 We will emphasize

the predicted lowest free energy structure in each case. Throughout this work, structure

predictions are presented in the form of RNA circle graphs.21,23 In these plots, the RNA

sequence is displayed around the circumference of a circle. If SHAPE data were used to

direct the secondary structure prediction, the letters corresponding to each nucleotide are

colored by their SHAPE reactivity (Figure 1). Base pairs are drawn as arcs; a series of

parallel arcs indicates a helix. Base pairs and helices that are correct relative to the accepted

structure are shown in green, whereas missed (false negative) and incorrectly predicted

(false positive) base pairs are shown in red and magenta, respectively. A fully correct

structure would therefore have only green arcs.

Case I: tRNAPhe and the adenine riboswitch

tRNAPhe and the adenine riboswitch will be discussed as a single case as similar issues were

identified in structure prediction for both RNAs. If the sequence of tRNAPhe is submitted to

the RNAstructure program (version 5.2 or 5.3) using default parameters and no experimental

data, then the lowest free energy predicted structure conforms almost exactly to the accepted

structure with the exception of a single missed base pair (Figure 1, solid box). If the SHAPE

data obtained by Das and colleagues are used to direct folding, one of the four helices in this

RNA is missed (Figure 1, dashed box).11 We obtained a similar result in our analysis of the

structure of the adenine riboswitch. This structure is predicted perfectly without data. Use of

the data generated by Das and colleagues reduced the prediction accuracy and yielded one

false positive helix (Supporting Figure 1).

These initial results were striking at two levels. First, these two RNAs have relatively simple

topologies and are the kinds of RNA that are usually predicted with high accuracy by

SHAPE-directed modeling. Second, to the best of our knowledge, these are unique examples

in which the addition of nucleotide-resolution chemical probing information caused RNA

secondary structure predictions to become less accurate.
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We then performed SHAPE on tRNAPhe using the standard approach developed by our

laboratory.4,9,13,18,19,24 When these SHAPE data were used to direct structure prediction,

the lowest free energy structure for tRNAPhe coincided exactly with the accepted structure

(Figure 1, lowest row). We therefore explored the differences between the standard SHAPE

approach and the version used by Das and colleagues.

The experimental procedure used by Das and colleagues differed from our published

approach in at least four ways: (1) Probing experiments were performed at 24 °C. At this

temperature the thermodynamic parameters for RNA loops and junctions are less accurate

than at the standard 37 °C temperature.25 (2) The N-methylisatoic anhydride (NMIA)

SHAPE reagent was used at a final concentration of 4.8 mg/mL. NMIA is not fully soluble

at this concentration and forms a visible precipitate during the reaction. In addition, NMIA

reactivity is sensitive to the specific ion environment3 and preferentially reacts with

nucleotides experiencing slow dynamics.26,27 In our experience 1-methyl-7-nitroisatoic

anhydride (1M7)3 is the probe of choice for this type of analysis; 1M7 yields more

quantitatively accurate RNA structural information than NMIA. (3) Experiments were

performed in 20% (vol/vol) DMSO co-solvent. DMSO denatures some nucleic acid

structures at this concentration.28,29 (4) Experiments were performed in a buffer different

from that initially used for SHAPE-directed structure probing; however, especially with the

1M7 reagent,3 we did not expect this to significantly change the quality of RNA structure

prediction.

We systematically varied these parameters to understand the large differences in SHAPE-

directed secondary structure prediction obtained by the two laboratories. Consistent with the

known lower accuracy of current thermodynamic rules at temperatures other than 37 °C, the

nodata prediction accuracy for tRNAPhe was notably poorer at 24 °C than at 37 °C (Figure 1,

first line, compare boxed and unboxed structures). We then performed SHAPE experiments

under exactly the conditions reported by Das and colleagues, including the high

concentration of NMIA, 20% DMSO, and at 24 °C. The SHAPE reactivity patterns had a

notably higher fraction of moderately and highly reactive nucleotides than those obtained

under our standard conditions (Figure 1, yellow and red positions, in row 3). Nevertheless,

this SHAPE data resulted in a predicted RNA secondary structure that agreed with the

accepted model. SHAPE data obtained under both standard and the Das and colleagues

conditions for the adenine riboswitch also resulted in a structure that agreed with the

accepted model (Supporting Figure 1).

Although we strongly recommend the use of the 1M7 reagent, use of fully soluble reagent

concentrations, and maintaining organic co-solvent concentrations below 10%, at least in the

cases of tRNAPhe and the adenine riboswitch, SHAPE-directed RNA secondary structure

prediction proved robust under these experimental conditions. In sum, formally identical

experiments in our lab could not reproduce the poor secondary structure predictions reported

by Das and colleagues.

This analysis of tRNAPhe and the adenine riboswitch RNAs suggests that differences in

SHAPE-directed secondary structure modeling accuracy reflected differences in data

processing approaches. The Das lab used the program HiTRACE,20 which appears to under-

correct for background and assumes that signal decay in the primer extension step is the

same for all RNAs, which is unlikely. The approach implemented in HiTRACE ultimately

yielded over-reactive SHAPE profiles with few or no unreactive positions (Figure 1, dashed

box; and Supporting Figure 2) and disrupted the otherwise strong relationship between

SHAPE reactivity and the probability that a nucleotide is base paired.
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Case II: Cyclic-di-GMP riboswitch

One of the objectives of the analysis of RNA secondary structure modeling undertaken by

Das and colleagues was to compare single-sequence SHAPE-directed prediction to an

information-rich mutate-and-map approach in which SHAPE data are collected for a large

group of sequence variants in which all possible nucleotides in a given RNA are mutated at

least once.15,30 Das and colleagues used different RNA constructs for the cyclic-di-GMP (c-

di-GMP) riboswitch to evaluate single-sequence SHAPE-directed structure prediction and

the mutate-and-map approach. These constructs differed in the length of their P1 helices.

The first construct corresponded closely to that used in two independent crystallographic

studies14,31 and featured a short, bulged P1 helix of four base pairs (Figure 2, P1 is

emphasized with brackets). In both crystals, the P1 helix forms extensive crystal contacts

with the net effect of substantially stabilizing this helix; the adjacent CAC bulge also forms

crystal contacts that ultimately define its local conformation. As noted by the authors of one

of the crystallographic studies, these features, shared between two distinct crystal structures,

“are indicative of a helix that possesses some measure of instability … consistent with its

anticipated function as a molecular switch.”32 In evaluating the mutate-and-map approach,

Das and colleagues used a different c-di-GMP RNA in which the P1 helix was extended by

two base pairs to yield a much more stable six base pair helix. This change from a short to a

long P1 helix has a dramatic effect on the structure of the RNA and increases affinity for the

c-di-GMP ligand by a large factor.32

In the absence of SHAPE data, the structures of both short and long P1 forms of the c-di-

GMP riboswitch RNA are predicted fairly well with the exception of the region at or near

P1; prediction sensitivities are ~81 and 75%, respectively (Figure 2, line 1). We analyzed

both the short and long P1 variants by SHAPE and used our data to guide RNA secondary

structure prediction. In the case of the short P1 variant, incorporation of SHAPE data

modestly improved the accuracy relative to the no-data case. Most nucleotides whose

pairing partners were predicted incorrectly are involved in the likely dynamic P1 helix.

When SHAPE data were used to direct folding of the more stable RNA containing the

longer P1 helix, the resulting lowest free energy structure has an overall sensitivity of 89%,

mispairs three base pairs in P1, and is exactly the same as predicted by the Das group using

the mutate-and-map approach (Figure 2, line 2).

These results emphasize that differences in RNA sequence outside the core region of interest

can have large effects on the stability of a given structure, its fundamental SHAPE

reactivity, and the resulting secondary structure prediction. In sum, for the c-di-GMP RNA,

single-sequence SHAPE-directed structure prediction and mutate-and-map modeling – the

latter requiring two orders of magnitude greater number of distinct probing experiments –

yielded identical secondary structure predictions if the same RNAs and same scoring rules

were used.

Case III: B. subtilis RNase P specificity domain and E. coli 5S rRNAs

SHAPE-directed RNA secondary structure prediction yields highly successful predictions in

many cases, including for the 1542-nt E. coli 16S rRNA4 and for tRNAPhe and the adenine

and cdi- GMP riboswitch RNAs as described here (Figures 1, 2 and S1). However, there are

a few RNAs that remain refractory to concise SHAPE-directed prediction.4,5,9 To date and

in ongoing work, we have evaluated dozens of RNAs spanning thousands of nucleotides.

Our two consistently poorest predictions are those for the RNase P specificity domain3,9 and

for the E. coli 5S rRNA (Figure 3).

In the absence of experimental data, the RNAstructure algorithm predicts the structures of

these two RNAs with sensitivities of 52 and 26%, respectively. Our SHAPE-directed
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prediction yielded substantial improvements, resulting in sensitivities of 78% for the RNase

P domain and 86% for the 5S rRNA (Figure 3). The SHAPE-directed models for the RNase

P and 5S rRNA thus represent large improvements but, in strong contrast to the small errors

observed for many other RNAs, prediction errors are significant. In both cases, the major

prediction error stems from mis-assignment of a single helix (Figure 3, row 2, emphasized

with asterisks). Incorrect prediction of one helix causes errors that propagate throughout

each structure. Both of these RNAs function only in the context of binding by obligate

protein cofactors and the RNase P domain required 80 mM SrCl2 to form crystals,33 features

that may partially explain the challenge of predicting structures for these RNAs. In both

cases at least one strand of the mis-assigned helix contains nucleotides with relatively high

SHAPE reactivities, suggestive of semistable or mixture of conformations. These two RNAs

thus represent challenges to SHAPE-directed secondary structure modeling but, notably,

involve significant extenuating circumstances.

Case IV: Small training sets

All approaches for using experimental information to direct RNA secondary structure

modeling require some kind of parametrization of the experimental data. In our experience,

almost any RNA can be induced to fold properly with appropriate parameter choices. Thus,

it is critical to guard against over-optimization. Das and colleagues have focused on and

drawn strong conclusions from a small dataset of six RNAs.11,34 We therefore examined the

role that optimization over a small dataset might have on prediction accuracies.

Our first-generation parameters were optimized using ~2,500 nts in the E. coli 23S rRNA

and generally work well for many different classes of RNA, including the 1,542-nt E. coli

16S rRNA4 and diverse small RNAs (Table 1, compare ‘No data’ and ‘Global parameters’

columns). We used a leave-one-out jackknife approach to optimize parameters for a group

of five RNAs that include 4 of the 6 RNAs in the Das training set, plus the bI3 P546 domain

in place of the Tetrahymena example. We readily obtained a set of parameters that yielded

near-perfect predictions for all five RNAs (Table 1, see ‘Small training set’ columns). The

near-perfect predictions include those for the cyclic-di-GMP riboswitch and 5S rRNAs, for

which we report errors (Figures 2 and 3).

In sum, the conclusions of recent papers11,15,34 comparing SHAPE-directed modeling with

other approaches would have been different if higher quality data had been obtained and if

parameters for the SHAPE approach had been obtained using the same small dataset

approach used to optimize the mutate-and-map11,15 or DMS34 methods. In fact, this

exploratory analysis (Table 1) suggests single-sequence SHAPE would have outperformed

both mutate-and-map and DMS mapping.

Addendum

Das and colleagues recently published new data for SHAPE analyses of small RNAs, in

which they have dramatically improved their workflow for processing capillary

electrophoresis data.34 Inspection of the new data shows that both background subtraction

and signal decay corrections have been improved. Das and colleagues now report recovery

of greater than 90% of all accepted base pairs for the same set of RNAs,34 a substantial

improvement. For example, with a more accurate data analysis pipeline, Das and colleagues

now predict the structure of tRNAPhe nearly perfectly (Figure 4), corroborating the

conclusions outlined above.
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Perspective

Status of RNA secondary structure prediction

Experimentally-directed secondary structure prediction is emerging as a powerful approach

for accurately modeling many RNA secondary structures, at least given the current,

relatively small database of RNAs with well-defined structures. When single-nucleotide

resolution SHAPE data, in conjunction with nearest neighbor and other thermodynamic

parameters, are used to drive secondary structure prediction, the median recovery of

accepted base pairs exceeds 90% (Refs. 4 and 5 and Figures 1–3 and S1). However, a few

RNAs remain challenging to single-sequence prediction, including the B. subtilis RNase P

specificity domain and E. coli 5S rRNA, and there are specific classes of important RNAs,

including very highly structured RNAs and large RNAs containing pseudoknots, for which

additional refinements to current algorithms are required to achieve accurate predictions.4,9

A high degree of nuance and care are required to fully analyze, understand, and minimize

potential errors in secondary structure modeling.5,35 In particular, choice of experimental

conditions, accurate data processing, and identical scoring rules are crucial (Figures 1–4 and

S1 and Refs. 11, 15). In some cases, differences observed between an experimentally-

supported model and an accepted structure may, in fact, reflect bona fide structural

differences reflecting thermodynamically accessible states, crystallization conditions, and

contributions of (missing) protein cofactors.

Principles to guide evaluations of secondary structure modeling

The field of experimentally-directed RNA secondary structure modeling is entering a phase

focused on refining structures for especially challenging targets. Current frontier challenges

include independent benchmarking of RNAs with well-defined accepted structures, the

potential for a priori identification of those helices that are the most well defined by a given

set of experimental information, and accurate modeling of long and full-length RNA

transcripts. The following principles should be emphasized as the field of experimentally-

directed RNA secondary structure prediction focuses on addressing the remaining

challenges in modeling "hard" RNAs.

1. Do no harm. RNA structure modeling is sensitive to the precise sequence, specific

solution environment, and data analysis pipeline. Many experimental details are

likely to be important and data need to be of high quality and processed well. There

is often a trade-off between high throughput and structural accuracy. Any new

experimentally-directed prediction approach should be compared with folding

analyses performed both in the absence of data and with conventional, more highly

curated methods. The observation that prediction quality decreases with the use of

experimental information or upon changes to the data analysis pipeline provides a

strong cautionary signal.

2. Evaluate others as you would have others evaluate you. Comparisons between

evolving modeling methods are important and appropriate; however, the same

RNA sequences and the same scoring rules should be used in each case. Using less

stable RNAs, more stringent rules, or inaccurate data processing when evaluating

different algorithms and modeling approaches will not provide the information

needed to advance RNA secondary structure prediction.

3. Value concision. One of the most important recent insights in RNA secondary (and

tertiary) structure modeling is that addition of experimental information can

dramatically improve the quality of the resulting structure predictions. There is a

critical balance to be struck between creating experimental approaches that are

information-rich yet remain tractable and readily implementable by non-expert
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laboratories. High value should be placed on methods that scale gracefully to large

RNAs and that can interrogate authentic biological transcripts.

4. Recognize that all that glitters (structurally) is not gold. Ideally, there would

exist a large database of complex RNAs of diverse lengths, whose in-solution

structures were well-established. Unfortunately, there are very few accepted RNA

secondary structures that meet this criterion. Every high-resolution RNA structure

is the product of careful sequence selection and intense experimental optimization,

and there is abundant evidence that conditions used in high-resolution

crystallography and NMR studies impose large constraints on RNA structure,

ultimately stabilizing some local conformations that may not be dominant in

solution and limiting the classes of RNA amenable to study.32,36–39 In some cases,

an RNA may exist in an equilibrium between multiple structures and it is an

oversimplification to focus on a single low free energy structure. Ultimately,

nuance is required to evaluate the final (often few) distinctions between modeled

and accepted structures in complex RNAs.

5. Appreciate the size of the RNA world. RNAs with higher-order structure likely

span a broad continuum. Some structures are compact, involve many non-canonical

tertiary interactions, and are highly stable. Most high-resolution structures in

current databases fall into this category. Many complex RNAs – with significant

underlying structure that affects many biological functions40,41 – are not amenable

to current high-resolution structure determination approaches, however. Accurate

refinement of secondary structure models for these dynamic, but clearly structured,

RNAs is important. This critical goal will only be met by including both diverse

classes of RNAs and, especially, large RNAs in the training sets used to develop

structure-modeling algorithms. Structures of large messenger and non-coding

RNAs are unlikely to be as well defined as those of RNAs that can be studied by

atomic resolution approaches and, again, nuance will be required to interpret the

successes and limitation of large-scale modeling approaches.
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Figure 1.

Evaluation of thermodynamically based and experimentally directed secondary structure

modeling for tRNAPhe. Secondary structure predictions were performed using

RNAstructure21 without experimental data (line 1) or with SHAPE data acquired as a

function of experimental conditions. Experimental conditions were based either on those

reported by Kladwang et al.11,15 or on those developed by our laboratory.9,13,18

Experimental variations included reagent (NMIA or 1M7), concentration of NMIA (either

~27 or 3 mM, indicated with superscripts of 27 and 3, respectively; the 27 mM condition

results in formation of visible precipitate), percentage of DMSO co-solvent (10 or 20%), and

solution buffer conditions (buffers A and B are reported in Refs. 11 and 13, respectively).
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Kladwang et al. data, obtained from the RMDB, were processed with HiTRACE.20 If

SHAPE data were used in the secondary structure prediction, nucleotides are colored by

reactivity: low, medium, and high reactivities are indicated in black, yellow, and red,

respectively. Sensitivity (sens) and positive predictive value (ppv) are indicated for

representative structures.
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Figure 2.

SHAPE-directed secondary structure modeling for the c-di-GMP riboswitch as a function of

the length of the P1 helix. The position of the P1 helix is emphasized with brackets.
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Figure 3.

SHAPE-directed modeling for two highly challenging RNAs, the specificity domain of

RNase P and E. coli 5S rRNA. The single helix, whose mis-prediction dominates modeling

errors in each case, is highlighted with an asterisk.
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Figure 4.

Comparison of SHAPE-directed modeling of tRNAPhe, as published by Das and colleagues

in September and December 201111,15 (left) versus submitted July 201234 (right). Models

are annotated using the scheme in Figure 1.
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