
Principles of Adaptive Sorting Revealed by In Silico Evolution

Jean-Benoı̂t Lalanne and Paul François

Physics Department, McGill University, Montreal, Quebec, Canada H3A 2T8
(Received 8 February 2013; published 21 May 2013)

Many biological networks have to filter out useful information from a vast excess of spurious

interactions. In this Letter, we use computational evolution to predict design features of networks

processing ligand categorization. The important problem of early immune response is considered as a

case study. Rounds of evolution with different constraints uncover elaborations of the same network motif

we name ‘‘adaptive sorting.’’ Corresponding network substructures can be identified in current models of

immune recognition. Our work draws a deep analogy between immune recognition and biochemical

adaptation.
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Information processing in biology often relies on

complex out-of-equilibrium physical processes ensuring

efficiency [1]. The paradigmatic example is kinetic proof-

reading (KPR), first proposed to explain low spurious base-

pair interactions during DNA replication [2,3]. KPR

originated in a context with comparable concentrations of

correct and spurious substrates. If the spurious substrate

has similar characteristics and is orders of magnitude

higher in concentration than the correct one, alternative

strategies are needed.

An important instance of this problem is immune rec-

ognition by T cells. T cells constantly scan antigen pre-

senting cells (APCs) in their environment, via the binding

of their T cell receptors (TCRs) to the presented pMHC

ligands. T cells perform a sorting process based on inter-

action with self (nonagonist) or foreign (agonist) ligands at

the surface of APCs: if foreign ligands are detected, then

the immune response is triggered. Following the ‘‘life-

time’’ dogma [4], one of the main determinants for distin-

guishing self from foreign is the unbinding time of the

pMHC ligand to the TCR. Ligands up to a critical binding

time of �c ’ 3 s do not elicit response while foreign

ligands bound for a longer time (�f > �c) do. Self-ligands

dissociate rapidly (typically for �s & 0:1 s).

The sorting process is extremely sensitive: response is

triggered in the presence of minute concentrations of for-

eign ligands (&10 ligands per cell [5,6]). Sorting is spe-

cific: although foreign (�f) and critical ligands (�c) have

similar binding times, an arbitrary concentration of critical

ligands does not elicit response [7]. These requirements are

summarized in Fig. 1. McKeithan [8] proposed first that T

cells harness the amplifying properties of KPR to solve the

recognition problem between few foreign ligands and

vastly numerous self-ligands. However, this model cannot

account for sharp thresholding required for sensitivity and

specificity [7]. Other control structures must exist.

In this Letter, we use computational evolution [9] to

ask the related ‘‘inverse problem’’ question: How can a

network categorize sharply two ligands with similar affinity

irrespective of their concentrations? We discover and study

analytically a new network module that we name ‘‘adaptive

sorting.’’ Extensive simulations show how it is improved to

solve the related recognition problem of parallel sorting of

foreign ligands within a sea of self-ligands. We expect the

principles presented here to have broader relevance for

biological recognition systems where specific signals

must be extracted from a high number of weak spurious

interactions.

Methods.—The algorithm we use to generate biochemi-

cal networks is essentially the same as in [10] with a

biochemical grammar adapted to the problem of immune

ligand recognition. Following [7], we limit possible inter-

actions to phosphorylations or dephosphorylations with

rates linear in enzyme concentrations. Ligands bind

TCRs outside the cell, resulting in the activation of the

internal part of the receptor [denoted by C0, see Figs. 1(a)

and 1(b)]. The algorithm then proceeds to add or remove

kinases or phosphatases to evolve cascades of reactions

downstream of C0. We make the classical hypothesis

underlying KPR models [8] that when a ligand dissociates

FIG. 1 (color online). Problem setup. (a) Few foreign ligand

(�f > 10 s) trigger response. (b) Arbitrary large concentrations

of critical agonist (�c ¼ 3 s) ligands do not trigger response.

(c) Idealization of the number of pMHC ligands required to

trigger response as a function of pMHC-TCR binding time.

Shaded region corresponds to conditions for which the immune

response is triggered.
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from a receptor, the receptor’s internal part gets quickly

dephosphorylated, an assumption consistent with the

‘‘kinetic segregation’’ mechanism [11] (see details in

[12]). We assume that a single species in the network plays

the role of the output of the system and triggers immune

response in a binary way via a thresholding mechanism.

The nature of the output is under selective pressure and can

be changed by the algorithm.

The goal here is to discriminate between two kinds of

ligands with identical on-rate (denoted by �) but different
binding times (foreign: �f ¼ 10 s, critical: �c ¼ 3 s; we

checked that the results presented are independent of spe-

cific �s as long as �f=�c is not too big). For pure KPR [8],

the concentration of the output is linear in ligand concen-

tration. Thus, as shown in Fig. 2(a), ligands with similar

binding times are distinguished by a thresholding mecha-

nism only over a limited range of concentration, even for a

large number of proofreading steps [7]. In contrast, if the

steady state output concentration is almost flat in ligand

concentration due to some control mechanism, e.g., in

Fig. 2(b), then ligands can be categorized by thresholding

nearly irrespective of their concentration.

To select for networks producing almost flat ligand de-

pendency, we sample logarithmically the range of allowed

ligand concentration. Steady state outputs are computed for

sampled ligand concentrations and binned for the two bind-

ing times considered [Fig. 2(c) shows the binned outputs

corresponding to Fig. 2(b)]. We then consider the histo-

grams of output for different �’s as an effective probability

distribution function. A natural measure of performance

(‘‘fitness’’) selecting for networks with behavior similar

to Fig. 2(b) is then the mutual information, IðO; � ¼

f�c; �fgÞ [13], between the output value and the dissocia-

tion time. A network for which IðO; �Þ ¼ Imaxð¼ 1 bitÞ
has its output distributions for �f and �c disjoint, corre-

sponding to a perfect discrimination. We take this as our

fitness function. More details on the evolutionary simula-

tions are given in [12].

Simple adaptive sorting.—We run our simulations with

deterministic integration of network equations. Figure 2(d)

presents a typical network topology we obtain, with the

corresponding distribution of outputs on Fig. 2(e).

Distributions corresponding to the two binding times are

clearly separated. In this network, C0 is phosphorylated to

C1 by kinaseK.K is itself phosphorylated by C0, making it

inactive. C1 is the output. Calling R, L, and KT the total

concentration of receptors, ligands, and kinase, respec-

tively, equations for this network are

_C0 ¼ �RfreeLfree � ð�K þ ��1ÞC0 þ bC1; (1)

_C1 ¼ �KC0 � ð��1 þ bÞC1; (2)

_K ¼ ��C0K þ �ðKT � KÞ: (3)

Rfree ¼ R�
P

1
i¼0 Ci and Lfree ¼ L�

P

1
i¼0 Ci are the

concentrations of free receptors and ligands. Assuming

receptors are in excess (Rfree ’ R), the steady state con-

centration of output variable C1 can be computed.

We get C1 ¼ �ð�ÞC0=ðC0 þ C�Þ where �ð�Þ ¼ �KTC�=
ðbþ ��1Þ, C� ¼ ���1.

For large L, C0 / L. In particular, as C0 � C�, C1 ’
�ð�Þ. It is also clear that even for small L, C1 will be a pure

function of � independent from L if C� is small enough. To

discriminate between two ligands with binding times �1
and �2, one then simply needs to assume response is

activated for a C1 threshold value � 2 ½�ð�1Þ; �ð�2Þ�.
Figure 2(f) illustrates the range in ligand concentration

leading to a response with such a thresholding process

for the present network. The network shows both

extremely good sensitivity and specificity [cf. Fig. 1(c)].

This situation is reminiscent of biochemical adaptation,

where one variable returns to the same steady state value

irrespective of ligand concentration. Indeed, the motif dis-

played on Fig. 2(c) implements an ‘‘incoherent feedfor-

ward loop’’ as observed in adaptive systems [10,14,15]:

C0 feeds negatively into kinase K, and both C0 and K feed

positively into output C1. The overall influence of C0

(and of L) is a balance between two opposite effects which
cancel out. One significant difference from classical

adaptation is that the steady state concentration of C1 is

now a function of the extra parameter �, the ligand disso-

ciation time. Discrimination of ligands based on the value

of the output becomes possible irrespective of the ligand

concentrations.

FIG. 2 (color online). (a) The KPR scheme has discrimination

abilities over a limited range of ligand concentration. (b)Output vs

ligand for �f ¼ 10 s and �c ¼ 3 s. (c) Histogram of outputs from

(b) illustrating effective probability distribution. (d) Adaptive

sorting network. Arrows with no specified enzyme represent

unregulated reactions. The output is circled.We keep conventions

throughout. (e) Output vs ligand and histogram of output for

adaptive sorting (� ¼ 10�4, R ¼ 104, � ¼ 1, � ¼ 1, � ¼ 3�
10�4, b ¼ 0, and KT ¼ 103). (f) Minimum ligand concentration

triggering response for different binding times for adaptive sorting

in (e). Threshold taken to be �ð�cÞ.
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This process can be generalized to other adaptive net-

works based on ligand-receptor interactions, as long as one

kinetic parameter is ligand specific. For instance, ligand-

receptor networks evolved in [10] can be modified to have

a steady state concentration depending on ligand nature.

Call I the input, R the receptor, and C the resulting com-

plex. The adaptive system _R¼��IR and _C ¼ IR� C=�I
stabilizes to a steady state concentration C ¼ ��I, which
depends only on �I irrespective of input value. Such

combination of biochemical adaptation with a kinetic pa-

rameter dependency could potentially be observed in

a wide variety of biochemical networks. We call it

adaptive sorting.

Parallel adaptive sorting.—Adaptive sorting by itself is

efficient to discriminate independently critical from for-

eign ligands, but its performance is degraded when cells

are exposed at the same time to foreign ligands (concen-

tration Lf) and a huge excess of self-ligands (concentration

Ls), as illustrated in Fig. 3(a). This phenomenon is called

antagonism [7]. Performance is degraded because the two

different kinds of ligands are coupled through the common

kinase used in the feedforward motif [dashed arrows in

Fig. 3(b)]. Precisely, denoting the complexes arising from

the binding of foreign and self-ligands by Ci and Di

respectively, the total output concentration is

C1 þD1 ’ C1 ¼
�ð�fÞC0

C0 þD0 þ C�

; (4)

which still tends to �ð�fÞ at large Lf. We can neglectD1 in

the output because �ð�Þ / � and so �ð�sÞ � �ð�fÞ. To

reach the adaptive regime, we now have the requirement

that C0 � D0. For large Ls, D0 � D1 and we have that

D0 � D0 þD1 ¼ �R�sð1þ �R�sÞ
�1Ls. Similarly, C0 ’

�R�fð1þ �R�fÞ
�1Lf. Thus C1 ’ �ð�fÞ for

Lf �

�

1þ �R�f

1þ �R�s

��

�s
�f

�

Ls � �R�sLs: (5)

With �R�f � 1, Ls � 105, and �R�s � 0:1, self-

ligands annihilate the simple adaptive sorting motif’s

sensitivity.

To solve this problem, we rerun evolutionary simula-

tions with the constraint that discrimination between �f
and �c should happen even in the massive presence of self-

ligands (�s ¼ 0:05 s), as sketched in Fig. 3(c). A represen-

tative result of this computational evolution is presented in

Figs. 3(d) and 3(e) for output and network topology,

respectively. The networks found look very similar to

adaptive sorting, except that the incoherent feedforward

module is sometimes implemented via activation of a

phosphatase, instead of deactivation of a kinase [16]. A

full cascade of KPR also evolves. Notably, in all working

networks there is an important difference with the previous

case: activation of the enzyme in the adaptive sorting

module is rewired downstream in the first step of the

KPR cascade [dashed circles in Fig. 3(e)].

This can be understood analytically by considering an

idealized network such as the one in Fig. 4(a) which is

compared to the actual network implicated in immune

response [7,17] in Fig. 4(b). Our idealization consists in

an adaptive sorting module with upstream and downstream

steps of KPR [N steps in total, adaptive module activated

by complex m, mþ 2 	 N, Fig. 4(a)]. In such networks,

assuming no dephosphorylation down the cascade (b ¼ 0),

the output takes the form [12]

CN þDN ’ CN ¼
�0ð�fÞC0

Cm þDm þ C�ð1þ �KT�fÞ
; (6)

where Cm ¼ 	m
f C0 and Dm ¼ 	m

s D0, with 	i ¼ 
�ið1þ


�iÞ
�1. 
 denotes the unregulated phosphorylation rate

in the cascade. �0ð�Þ is a function of �, and like before

�0ð�sÞ � �0ð�fÞ so that we can neglect the contribution of

DN in the output. Even in the presence of many self-ligands

Ls, we have an output independent of Lf for C0 �

	�m
f 	m

s D0 (m ¼ 0 is simple adaptive sorting). Since 
�

��1
f for a sensitive network [12], 	s	

�1
f is small; thus, any

m> 1makes 	�m
f 	m

s even smaller. So this upstream proof-

reading cascade ensures that Cm � Dm and the adaptive

sorting module is only triggered by foreign ligands. As for

simple adaptive sorting, we have thatC0 / Lf andD0 / Ls

although the prefactors differ [12]. In the end, CN is a pure

function of �f for

FIG. 3 (color online). (a) Effect of self-ligands on the adaptive

sorting module from Fig. 2(e), taking ½CN� þ ½DN� as an output.

Full lines: Ls ¼ 0. Dashed line: Ls ¼ 104. �L quantifies nega-

tive effect of self-ligands on sensitivity. We compare �f with

Ls > 0 to �c with Ls ¼ 0 as a worst case scenario. (b) Coupling

(dashed arrows) between two different types of ligands through

kinase K for adaptive sorting. (c) Schematic illustration of new

constraint of parallel sorting. Squares represent self-ligands

(�s ¼ 0:05 s). (d) Example of evolved output vs ligand relation-

ship with Ls ¼ 0 (full lines) and Ls ¼ 105 (dashed line). Loss in

sensitivity is now small. (e) Schematic of network corresponding

to (d). Complexes Ci’s are understood to decay to Rfree and Lfree

(same convention in Fig. 4). Parameters are given in [12].
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Lf �

�

1þ �R�f

1þ �R�s

��

	s

	f

�

mþ1

Ls (7)

so that the right-hand side is small compared to Eq. (5) for

m> 0. Self-influence is consequently almost abolished.

It must be emphasized that the solutions displayed in

Figs. 3(e) and 4(a) require more than one kinase or phos-

phatase: generic enzymes are shared by most of the proof-

reading steps, while a specific enzyme accounts for the

adaptive sorting module [star in Fig. 4(a)]. This is of

biological importance since it is not clear that biochemistry

would allow fine-tuned specificity to a single step in the

cascade. Interestingly, alternative solutions also evolve

where kinases and phosphatases are not specific to a given

proofreading step [12]. For these networks, discrimination

is still possible, but loss of biochemical specificity

degrades the adaptive properties. One observes a nonmo-

notonic behavior, approximately flattened out over the

range of input ligand considered, as seen in [17].

Dealing with low numbers of molecules.—Immune cells

perform efficient sorting of different ligand types for as

little as�10 foreign ligands. A low number of molecules is

potentially problematic because adaptive sorting shows a

trade-off between specificity and sensitivity. In the simpler

scheme [Fig. 2(c)], perfect adaptation occurs for all L if

C� ! 0, but the adaptive output value is C1 ¼ �ð�Þ /
C� ! 0 so that discrimination becomes impossible.

Increasing N actually softens the constraint: downstream

KPR steps [Fig. 4(a)] add a geometric dependency in � to

CN (specificity) even for low C� (sensitivity) [12].

A related problem is fluctuations at low ligand numbers.

In the immune context, phosphorylated tails of receptors

(corresponding to CN) slowly phosphorylate abundant

(>104) downstream targets. Following [17], we pose a

variable A (slow downstream species) obeying _A ¼
�CN � T�1A. For T � �, A effectively time averages

the output CN , thereby smoothing out fluctuations. A can

realistically be assumed deterministic as long as� is large:

the only A stochasticity comes from CN . We assume

thresholding is then made on A, leading to a binary irre-

versible decision [18]. We take T ¼ 60 s, as response

occurs on the order of minutes [7].

Simulations of this process using the Gillespie algorithm

[19] are presented in Figs. 4(c) and 4(d), with samples

of trajectories and the fraction of activated cells as a

function of time. Results are in very good agreement

with a simple linear noise approximation onCN (see details

and assumptions in [12]). Ligands at �c essentially never

cross the threshold for the considered time window, while

for ligands at �f, almost all cells eventually respond for

Lf & 10. Finally, the model’s half population response

time [Fig. 4(d)] is consistent with experiments [7,12,17]

and decreases down to less than oneminute asLf increases.

So, although we cannot exclude that other noise-resistance

mechanisms are possible [20], adaptive sorting coupled to a

slow downstream cascade has discrimination capabilities

compatible with experimental data.

Our final model is summarized in Fig. 4(a) and shares

many similarities with network features of the immune

system Fig. 4(b) [17]. In our framework, immune recog-

nition corresponds to an optimal solution with nonspecific

enzymes. Adaptive sorting manifests itself through non-

linear dependency of response on input concentration,

which is observed in a wide range of signalling networks

(e.g., endocrine signalling [21]), and could lie at the core of

such signalling processes as well as others.
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