
Principles of Constraint Programming

Krzysztof R. Apt

CWI, Amsterdam, The Netherlands



published by the press syndicate of the university of cambridge

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

cambridge university press

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011–4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

c© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Computer Modern 10/13pt System LATEX2ε

A catalogue record for this book is available from the British Library

ISBN 0 521 82583 0 hardback



Contents

Acknowledgements page xi

1 Introduction 1
1.1 Basic characteristics of constraint programming 1
1.2 Applications of constraint programming 3
1.3 A very short history of the subject 5
1.4 Our approach 6
1.5 Organisation of the book 6

2 Constraint satisfaction problems: examples 8
2.1 Basic concepts 9
2.2 Constraint satisfaction problems on integers 11
2.3 Constraint satisfaction problems on reals 16
2.4 Boolean constraint satisfaction problems 19
2.5 Symbolic constraint satisfaction problems 21
2.6 Constrained optimization problems 43
2.7 Summary 47
2.8 Exercises 48
2.9 Bibliographic remarks 51
2.10 References 52

3 Constraint programming in a nutshell 54
3.1 Equivalence of CSPs 55
3.2 Basic framework for constraint programming 58
3.2.1 Preprocess 59
3.2.2 Happy 60
3.2.3 Atomic 61
3.2.4 Split 61
3.2.5 Proceed by Cases 64
3.2.6 Constraint Propagation 66

v



vi Contents

3.2.7 Constraint propagation algorithms 70
3.3 Example: Boolean constraints 71
3.4 Example: polynomial constraints on integer intervals 74
3.5 Summary 80
3.6 Bibliographic remarks 81

4 Some complete constraint solvers 82
4.1 A proof theoretical framework 83
4.1.1 Proof rules 84
4.1.2 Derivations 87
4.2 Term equations 92
4.2.1 Terms 93
4.2.2 Substitutions 94
4.2.3 Unifiers and mgus 95
4.2.4 Unification problem and solving of CSPs 98
4.2.5 The UNIF proof system 99
4.2.6 The Martelli–Montanari algorithm 103
4.3 Linear equations over reals 107
4.3.1 Linear expressions and linear equations 107
4.3.2 Substitutions, unifiers and mgus 110
4.3.3 Linear equations and CSPs 111
4.3.4 The LIN proof system 112
4.3.5 The Gauss–Jordan Elimination algorithm 115
4.3.6 The Gaussian Elimination algorithm 118
4.4 Linear inequalities over reals 121
4.4.1 Syntax 121
4.4.2 Linear inequalities and CSPs 122
4.4.3 The INEQ proof system 123
4.4.4 The Fourier–Motzkin Elimination algorithm 124
4.5 Summary 131
4.6 Exercises 131
4.7 Bibliographic remarks 132
4.8 References 133

5 Local consistency notions 135
5.1 Node consistency 136
5.2 Arc consistency 138
5.3 Hyper-arc consistency 143
5.4 Directional arc consistency 144
5.5 Path consistency 147
5.6 Directional path consistency 155



Contents vii

5.7 k-consistency 157
5.8 Strong k-consistency 164
5.9 Relational consistency 166
5.10 Graphs and CSPs 170
5.11 Summary 175
5.12 Exercises 175
5.13 Bibliographic remarks 176
5.14 References 176

6 Some incomplete constraint solvers 178
6.1 A useful lemma 180
6.2 Equality and disequality constraints 181
6.3 Boolean constraints 184
6.3.1 Transformation rules 185
6.3.2 Domain reduction rules 186
6.3.3 Example: full adder circuit 188
6.3.4 A characterisation of the system BOOL 191
6.4 Linear constraints on integer intervals 192
6.4.1 Domain reduction rules for inequality constraints 194
6.4.2 Domain reduction rules for equality constraints 196
6.4.3 Rules for disequality constraints 199
6.4.4 Rules for strict inequality constraints 200
6.4.5 Shifting from intervals to finite domains 200
6.4.6 Example: the SEND + MORE = MONEY puzzle 201
6.4.7 Bounds consistency 202
6.4.8 A characterisation of the LINEAR EQUALITY rule 206
6.5 Arithmetic constraints on integer intervals 211
6.5.1 Domain reduction rules: first approach 211
6.5.2 Domain reduction rules: second approach 213
6.5.3 Domain reduction rules: third approach 217
6.5.4 Implementation of the third approach 221
6.5.5 Shifting from intervals to finite domains 223
6.6 Arithmetic constraints on reals 224
6.6.1 Interval arithmetic 226
6.6.2 Domain reduction rules 227
6.6.3 Implementation issues 233
6.6.4 Using floating-point intervals 236
6.6.5 Correctness and efficiency issues 238
6.7 Arithmetic equations over reals 242
6.8 Summary 245



viii Contents

6.9 Exercises 245
6.10 Bibliographic remarks 248
6.11 References 251

7 Constraint propagation algorithms 254
7.1 Generic iteration algorithms 256
7.1.1 Iterations 256
7.1.2 Algorithms for arbitrary partial orderings 261
7.1.3 Algorithms for cartesian products of partial orderings 264
7.2 From partial orderings to CSPs 268
7.3 A node consistency algorithm 269
7.4 An arc consistency algorithm 271
7.5 A hyper-arc consistency algorithm 273
7.6 A directional arc consistency algorithm 275
7.7 A path consistency algorithm 277
7.8 A directional path consistency algorithm 281
7.9 A k-consistency algorithm 283
7.10 A relational consistency algorithm 286
7.11 Implementations of incomplete constraint solvers 287
7.12 Summary 290
7.13 Exercises 291
7.14 Bibliographic remarks 295
7.15 References 297

8 Search 299
8.1 Search trees 301
8.2 Labeling trees 303
8.2.1 Complete labeling trees 304
8.2.2 Reduced labeling trees 308
8.2.3 prop labeling trees 310
8.3 An example: SEND + MORE = MONEY 313
8.4 Instances of prop labeling trees 315
8.4.1 Forward checking 315
8.4.2 Partial look ahead 319
8.4.3 Maintaining arc consistency (MAC) 321
8.5 Search algorithms for the labeling trees 324
8.5.1 Backtrack-free search 325
8.5.2 Backtrack-free search with constraint propagation 327
8.5.3 Backtracking 329
8.5.4 Backtracking with constraint propagation 330
8.6 Instances of backtracking with constraint propagation 332



Contents ix

8.6.1 Forward checking 332
8.6.2 Partial look ahead 333
8.6.3 Maintaining arc consistency (MAC) 334
8.6.4 Searching for all solutions 335
8.7 Search algorithms for finite constrained optimization problems 335
8.7.1 Branch and bound 337
8.7.2 Branch and bound with constraint propagation 339
8.7.3 Branch and bound with constraint propagation and cost

constraint 339
8.8 Heuristics for search algorithms 341
8.8.1 Variable selection 341
8.8.2 Value selection 343
8.9 An abstract branch and bound algorithm 344
8.10 Summary 347
8.11 Exercises 347
8.12 Bibliographic remarks 348
8.13 References 349

9 Issues in constraint programming 351
9.1 Modeling 352
9.1.1 Choosing the right variables 352
9.1.2 Choosing the right constraints 353
9.1.3 Choosing the right representation 356
9.1.4 Global constraints 358
9.2 Constraint programming languages 359
9.2.1 Constraint logic programming 360
9.2.2 ILOG solver 362
9.2.3 Generation of constraints 363
9.3 Constraint propagation 364
9.4 Constraint solvers 366
9.4.1 Building constraint solvers 366
9.4.2 Incrementality 367
9.4.3 Simplification of constraints 368
9.5 Search 369
9.5.1 Search in modeling languages 369
9.5.2 Depth-first search: backtracking and branch and bound 370
9.5.3 Breadth-first search and limited discrepancy search 371
9.5.4 Local search 372
9.5.5 Search in constraint programming languages 375
9.5.6 Biology-inspired approaches 378



x Contents

9.6 Over-constrained problems 379
9.6.1 Partial, weighted and fuzzy CSPs 380
9.6.2 Constraint hierarchies 381
9.6.3 Generalisations 383
9.6.4 Reified constraints 383
9.7 Summary 384
9.8 Bibliographic remarks 384
Bibliography 387
Author index 401
Subject index 404



1

Introduction

1.1 Basic characteristics of constraint programming 1
1.2 Applications of constraint programming 3
1.3 A very short history of the subject 5
1.4 Our approach 6
1.5 Organisation of the book 6

1.1 Basic characteristics of constraint programming

T HIS BOOK IS about constraint programming , an alternative ap-
proach to programming which relies on a combination of techniques
that deal with reasoning and computing . It has been successfully

applied in a number of fields including molecular biology, electrical engineer-
ing, operations research and numerical analysis. The central notion is that
of a constraint. Informally, a constraint on a sequence of variables is a re-
lation on their domains. It can be viewed as a requirement that states which
combinations of values from the variable domains are admitted. In turn, a
constraint satisfaction problem consists of a finite set of constraints,
each on a subsequence of a given sequence of variables.
To solve a given problem by means of constraint programming we first

formulate it as a constraint satisfaction problem. To this end we

• introduce some variables ranging over specific domains and constraints
over these variables;

• choose some language in which the constraints are expressed (usually a
small subset of first-order logic).

This part of the problem solving is called modeling . In general, more than

1



2 Introduction

one representation of a problem as a constraint satisfaction problem exists.
Then to solve the chosen representation we use either

• domain specific methods,

or

• general methods,

or a combination of both.
The domain specific methods are usually provided in the form of im-

plementations special purpose algorithms. Typical examples are:

• a program that solves systems of linear equations,
• a package for linear programming,
• an implementation of the unification algorithm, a cornerstone of auto-
mated theorem proving.

In turn, the general methods are concerned with the ways of reducing
the search space and with specific search methods. The algorithms that
deal with the search space reduction are usually called constraint propaga-

tion algorithms, though several other names have been often used. These
algorithms maintain equivalence while simplifying the considered problem.
They achieve various forms of local consistency that attempt to approx-
imate the notion of (global) consistency. The (top down) search methods
combine various forms of constraint propagation with the customary back-
track and branch and bound search.
The definition of constraint programming is so general that it embodies

such diverse areas as Linear Algebra, Global Optimization, Linear and In-
teger Programming, etc. Therefore we should stress one essential point. If
domain specific methods are available they should be applied instead of the
general methods. For example, when dealing with systems of linear equa-
tions, the well-known linear algebra algorithms are readily available and it
does not make sense to apply to these equations the general methods.
In fact, one of the aims of constraint programming is to look for efficient

domain specific methods that can be used instead of the general methods
and to incorporate them in a seamless way into a general framework. Such
a framework usually supports

• domain specific methods by means of specialised packages, often called
constraint solvers,

• general methods by means of various built-ins that in particular ensure
or facilitate the use of the appropriate constraint propagation algorithms
and support various search methods.



1.2 Applications of constraint programming 3

Once we represent a problem as a constraint satisfaction problem we need
to solve it. In practice we are interested in:

• determining whether the chosen representation has a solution (is consis-
tent),

• finding a solution, respectively, all solutions,
• finding an optimal solution, respectively, all optimal solutions w.r.t. some
quality measure.

After this short preview we can formulate the following basic characteris-
tics of constraint programming:

Two Phases Approach: The programming process consists of two phases:
a generation of a problem representation by means of constraints and
a solution of it. In practice, both phases consist of several smaller
steps that can be interleaved.

Flexibility: The representation of a problem by means of constraints is very
flexible because the constraints can be added, removed or modified.
This flexibility is inherited by constraint programming.

Presence of Built-ins: To support this approach to programming several
built-in methods are available. They deal with specific constraint
solvers, constraint propagation algorithms and search methods.

An additional aspect brought in by constraint programming is that model-
ing by means of constraints leads to a representation of a problem by means
of relations. This bears some resemblance to database systems, for instance
relational databases. In fact, constraints are also studied in the context of
database systems. They are useful in situations where some information, for
instance the definition of a region of a map, needs to be provided implicitly,
by means of constraints on reals.
The difference is that in the context of database systems the task consists

of efficiently querying the considered relations, independently on whether
they are defined explicitly (for instance by means of tables) or implicitly (for
example by means of recursion or inequalities). In contrast, in constraint
programming the considered relations are usually defined implicitly and the
task consists of solving them or determining that no solution exists. This
leads to different methods and different techniques.

1.2 Applications of constraint programming

Problems that can be best solved by means of constraint programming are
usually those that can be naturally formulated in terms of requirements,



4 Introduction

general properties, or laws, and for which domain specific methods lead to
overly complex formalisations. Constraint programming has already been
successfully applied in numerous domains including:

• interactive graphic systems (to express geometric coherence in the case of
scene analysis),

• operations research problems (various optimization problems, in particu-
lar scheduling problems),

• molecular biology (DNA sequencing, construction of 3D models of pro-
teins),

• business applications (option trading),

• electrical engineering (location of faults in the circuits, computing the
circuit layouts, testing and verification of the design),

• numerical computation (solving polynomial constraints with guaranteed
precision),

• natural language processing (construction of efficient parsers),

• computer algebra (solving and/or simplifying equations over various al-
gebraic structures).

More recent applications of constraints involve generation of coherent mu-
sic radio programs, software engineering applications (design recovery and
code optimization) and selection and scheduling of observations performed
by satellites. Also, constraint programming proved itself a viable approach
to tackle certain computationally intractable problems.
While an account of most of these applications cannot be fit into an in-

troductory book, like this one, an interested reader can easily study the
research papers on the above topics, after having acquainted himself/herself
with the methods explained in this book.
The growing importance of this area can be witnessed by the fact that

there are now annual conferences and workshops on constraint programming
and its applications that consistently attract more than one hundred (oc-
casionally two hundred) participants. Further, in 1996 an (unfortunately
expensive) journal called ‘Constraints’ was launched. Also, several special
issues of computer science journals devoted to the subject of constraints
have appeared. But the field is still young and only a couple of books on
this subject have appeared so far. This led us to writing this book.



1.3 A very short history of the subject 5

1.3 A very short history of the subject

Before we engage in our presentation of constraint programming, let us
briefly summarise the history of this subject. It will allow us to better
understand the direction the field is heading.

The concept of a constraint was used already in 1963 in an early work
of I. Sutherland on an interactive drawing system SKETCHPAD. In the
seventies various experimental languages were proposed that used the notion
of constraints and relied on the concept of constraint solving.

The concept of a constraint satisfaction problem was also formulated in the
seventies by researchers in the artificial intelligence (AI). They also identified
the main notions of local consistency and the algorithms that allow us to
achieve them. Independently, various search methods were defined. Some of
them, like backtracking can be traced back to the nineteenth century, while
others, like branch and bound, were defined in the context of combinatorial
optimization. The contribution of constraint programming was to identify
various new forms of search that combine the known techniques with various
constraint propagation algorithms. Some specific combinations were already
studied in the area of combinatorial optimization.

In the eighties the first constraint programming languages of importance
were proposed and implemented. The most significant were the languages
based on the logic programming paradigm. This led to a development of
constraint logic programming , an extension of logic programming by
the notion of constraints. The programming view that emerged led to an
identification of constraint store as a central concept. Constraint propa-
gation and various forms of search are usually available in these languages
in the form of built-ins.

In the late eighties and the nineties a form of synthesis between these
two developments took place. The researchers found various new applica-
tions of constraint programming, most notably in the fields of operations
research and numerical analysis. The progress was often achieved by iden-
tifying important new types of constraints and new constraint propagation
algorithms. One also realised that further progress may depend on a com-
bination of techniques from AI, operations research, computer algebra and
mathematical logic. This turned constraint programming into an interesting
hybrid area, in which theoretical work is often driven by applications and
in turn applications lead to new challenges concerning implementations of
constraint programming.



6 Introduction

1.4 Our approach

In our presentation of the basic concepts and techniques of constraint pro-
gramming we strive at a streamlined presentation in which we clarify the
nature of these techniques and their interrelationship. To this end we or-
ganised the presentation around a number of simple principles.

Principle 1: Constraint programming is about a formulation of the prob-
lem as a constraint satisfaction problem and about solving it by
means of domain specific or general methods.
This explains our focus on the constraint satisfaction problems

and constraint solvers.
Principle 2: Many constraint solvers can be naturally explained using a

rule-based framework. The constraint solver consists then of a set
of rules that specify its behaviour and a scheduler. This viewpoint
stresses the connections between rule-based programming and con-
straint programming.
This explain our decision to specify the constraint solvers by means

of proof rules that transform constraint satisfaction problems.
Principle 3: The constraint propagation algorithms can be naturally ex-

plained as instances of simple generic iteration algorithms.
This view allows us to clarify the nature of the constraint prop-

agation algorithms. Also, it provides us with a natural method for
implementing the discussed constraint solvers, since a rule scheduler
is just another instance of a generic iteration algorithm.

Principle 4: (Top down) search techniques can be conceptually viewed as
traversal algorithms of the search trees.
This explains why we organised the chapter on search around the

slogan:
Search Algorithm = Search Tree + Traversal Algorithm,

and why we explained the resulting algorithms in the form of suc-
cessive reformulations.

1.5 Organisation of the book

The above explained principles lead to a natural organisation of the material.
Here is a short preview of the remaining chapters. In Chapter 2 we discuss
several examples of constraint satisfaction problems. We stress there that in
many situations several natural representations are possible. In Chapter
3 we introduce a general framework that allows us to explain the basics
of constraints programming. We identify there natural ingredients of this



1.5 Organisation of the book 7

framework. This makes it easier to understand the subject of the subsequent
chapters.
Then, in Chapter 4, we provide three well-known examples of com-

plete constraint solvers. They deal, respectively, with solving equations
over terms, linear equations over reals and linear inequalities over reals. In
turn, in Chapter 5 we introduce several notions of local consistency and
characterise them in the form of proof rules. These notions allow us to study
in Chapter 6 in more detail a number of incomplete constraint solvers that
involve Boolean constraints and linear and arithmetic constraints on integers
and reals.
In Chapter 7 we study the constraint propagation algorithms that allow

us achieve the forms of local consistency discussed in Chapter 5. The char-
acterisation of these notions in the form of proof rules allows us to provide a
uniform presentation of these algorithms as instances of simple generic itera-
tion algorithms. Next, in Chapter 8, we discuss various (top down) search
algorithms. We present them in such a way that one can see how these
algorithms are related to each other. Finally, in Chapter 9, we provide a
short overview of the research directions in constraint programming.
Those interested in using this book for teaching may find it helpful to

use the transparencies that can be downloaded from the following website:
http://www.cwi.nl/~apt/pcp.


