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INTRODUCTION

In the most general sense, biomineralization is a process by which organisms 
produce materials solutions for their own functional requirements. Because so many 
biomineral products are derived from an initial solution phase and are either completely 
crystalline or include crystalline components, an understanding of the physical principles 
of crystallization from solutions is an important tool for students of biomineralization. 
However, crystal growth is a science of great breadth and depth, about which many 
extensive texts have been written. In addition, there are already other thorough reviews 
that specifically address the crystal growth field of study as it relates to biomineral 
formation. Consequently, the goals of this chapter are both modest and specific. It is 
intended to provide: 1) a simple narrative explaining the physical principles behind 
crystallization for those who are completely new to the topic, 2) a few basic equations 
governing nucleation and growth for those who wish to apply those principles—at least 
in a semi-quantitative fashion—to experimental observations of mineralization, and 3) an 
overview of some recent molecular-scale studies that have revealed new insights into the 
control of crystal growth by small molecules, both organic and inorganic. 

This last topic gets to the heart of what makes crystallization in biological systems 
unique. Every day, many tons of crystals are produced synthetically in non-biological 
processes, but by-and-large, the degree of control over nucleation and growth achieved 
by deterministic additions of growth modifiers or the presence of a controlling matrix is 
very minor. More commonly, crystal growers view modifying agents as unwanted 
impurities and work extremely hard to eliminate them from the starting materials. Indeed, 
the degree to which living organisms are able to control the crystallization process is 
most striking when contrasted to the products of such synthetic crystallization processes. 
This contrast applies to both the compositional differences that result (e.g., Weiner and 
Dove 2003) and the external morphology. Figure 1a shows a typical photomicrograph of 
a crystal of calcium carbonate grown in a closed beaker from a pure solution. It has a 
simple rhombohedral shape and consists of calcite, the most stable form of calcium 
carbonate. Moreover, crystals grown in this way tend to nucleate randomly throughout 
the beaker or on its surfaces with no preferred orientation and grow at a rate determined 
by the solution conditions as well as various inherent materials parameters. Figure 1b-d 
shows examples of biological calcite in the form of shaped single crystals, intricate 
crystal composites, and regular crystal laminates. The calcite crystals, as coccolith plates 
(Fig. 1b), lie in specific locations and are oriented with respect to the crystallographic 
axes of calcite; whereas the mollusk shell crystallites (Fig. 1c) are aragonite, which in 
standard laboratory conditions is a less stable form of calcium carbonate than is calcite. 
The calcite crystals from the human inner ear (Fig. 1d) exhibit a spindle-like shape that is 

33



58 De Yoreo & Vekilov 

quite different from that of synthetic calcite. These examples demonstrate that organisms 
are able to control the location and crystallographic orientation of nucleation, the shape of 
the growing crystallites, and even the phase of the resulting material. 

One of the major challenges in crystal growth science today is to understand the 
physical mechanisms by which this level of control is achieved. A very general and 
useful construct for thinking about the problem is the “energy landscape,” illustrated in 
Figure 2. This landscape highlights the fact that crystallization is, first and foremost, a 
phase transition through which matter is transformed from a state of high free energy in a 
solvated state to one of low free energy in the crystal lattice. All aspects of a crystal, 
including its phase, habit, and growth rate, are determined by the shape of this landscape. 
Equilibrium crystal habit and phase are controlled by the depths and shapes of the energy 
minima. By varying the heights of the barriers, the growth kinetics can be controlled, and 
non-equilibrium final or intermediate states can be selected. It stands to reason that living 
organisms modulate crystal growth by manipulating the energy landscapes. A complete 
physical picture of biomineral growth requires a description of the geometry and 
stereochemistry of the interaction between the crystal lattice and the organic modifiers, 
the magnitude of the interaction energy, the effect of that interaction on the energy 
landscape, and the impact of the change in the landscape on crystallization. 

Finally, we note that this physiochemical picture provides only a small piece to the 

Figure 1. Scanning electron micrographs of (A) synthetic calcite, (B) Coccolithophorid, Emiliania 
huxleyi (from International Nannoplankton Association website), (C) Aragonitic layers from Mollusc 
shell (From Calvert 1992 with permission from Materials Research Society), and (D) calcite crystals 
from the human inner ear (From Mann 2001 with permission from Oxford University Press).
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puzzle of biomineralization. As Figure 3 illustrates, there are many levels of regulation at 
work that influence these physical processes (Mann 2001). While they include other 
physical parameters such as spatial constraints and controls over ion fluxes, these are, in 
turn, influenced by a myriad of biological machines that shuttle reactants and products to 
desired locations, undoubtedly utilizing biochemical feedback. These processes are 
further influenced by a combination of genetic and environmental factors. 

CRYSTAL NUCLEATION VS. CRYSTAL GROWTH

The association of organic compounds with biomineralized structures (Wada and 
Fujinuki 1976; Crenshaw 1972; Collins et al. 1992) and their observed effect on 
crystallization kinetics (Sikes et al. 1990; Wheeler et al. 1990) strongly suggest that these 
compounds modify the growth stage of minerals. This conclusion is reinforced by 
observations of faceted crystal surfaces in a number of cases, including the calcite 
crystals shown in Figure 1d as well as numerous examples of calcium oxalate 
monohydrate crystals, both functional—as in plants—and pathogenic—as in humans 
(Fig. 4). On the other hand, many biomineralized structures in nature suggest that organic 
components also control nucleation. In particular, the growth of biominerals in precise 
locations within complex crystal composites and the generation of crystallites with 
specific crystallographic orientations are difficult to explain without appealing to active 
controls during the nucleation stage. Moreover, there is a substantial body of evidence to 
suggest that proteins and other organic molecules serve as “templates,” providing 
preferential sites for nucleation and controlling the orientation of the resulting crystals. 
Many organic-inorganic composites, including the shells of birds’ eggs (Fink et al. 1992) 
and mollusks (Calvert 1992), exhibit a layered structure in which the inorganic 
component grows at the organic-solution interface. One of the most remarkable examples 
is that of bone. The carbonated apatite crystals that give bone its stiffness grow amongst  

Figure 2. Schematic of (a) physical landscape and (b) energy landscape seen by a solute molecule as it 
becomes part of the crystal. The vertical axis in (b) can either refer to the actual potential energy if tied 
directly to the physical landscape, or the free energy if referring to processes encountered in the 
transformation to the solid state, such as dehydration or incorporation.
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Figure 3. Levels of regulation in biomineralization. (from Dove et al. 2004, based on Mann 2001).

Figure 4. Scanning electron micrographs of calcium oxalate crystals. (A-C) Crystals isolated from 
selected plants. Scale bar = 5 µm. (A) Twinned, prismatic crystals from the seed coat of bean 
(Phaseolus vulgaris). (B) Druse crystals isolated from velvet leaf (Abutilon theophrasti), a common 
weed. (C) Isolated bundle of raphides, needle-shaped crystals, from leaves of grape (Vitis labrusca).
(From Webb 1999 with permission from the American Society of Plant Biologists.) (D) Crystals grown 
in vivo on uretal stent. Crystals are about 50 mm in size. (Used with kind permission of Professor 
Heywood). 
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molecular fibers of collagen. But the location and orientation of the crystallites is not 
random. The collagen fibers are believed to pack into bundles with a periodicity that 
leaves rows of small gaps known as “hole zones” 40 nm in length and 5 nm in width, 
each of which provides an identical molecular-scale environment for mineralization, as 
illustrated in Figure 5 (Katz and Li 1973; Miller 1984; Mann 2001). The crystallites 
themselves grow with a specific geometric relationship between the crystal lattice and the 
collagen fibers, with the {001} axis lying along the length of the fiber and the {110} axis 
pointing along the rows of hole zones. This implies molecular-scale control by the 
collagen molecules over both the orientation and location of the crystal nuclei. 

THERMODYNAMIC DRIVERS OF CRYSTALLIZATION 

Whether considering nucleation or growth, the reason for the transformation from 
solution to solid is the same, namely the free energy of the initial solution phase is greater 
than the sum of the free energies of the crystalline phase plus the final solution phase 
(Gibbs 1876, 1878). In terms of solution activities (which are often well approximated by 
solution concentrations), an equivalent statement is that the actual activity product of the 
reactants, AP, exceeds the equilibrium activity product of those reactants, the latter being 
simply the equilibrium constant, KBsp B. In cases where a single chemical component 
crystallizes, the driving force has been expressed not in terms of total free energy change 
during crystallization, but rather as the change in chemical potential of the crystallizing 
species, ∆µ. This ∆µ measures the free energy response to molecules transferring from 
one phase to the other. The larger ∆µ becomes, the greater is the driving force for 
crystallization (Mullin 1992). 

Not surprisingly, both the change in free energy and the change in chemical potential 
are directly related to the activity products (Johnson 1982). For the precipitation reaction: 

aA + bB + … + nN → ABa BBBb B···NBnB (1) 

the activity product of the reactants, AP, and the value of KBsp B are given by: 

AP = [A]P

a
P[B]P

b
P[C]P

c
P···[N]P

n
P (2) 

KBsp B = [A]BePB

a
P[B]BePB

b
P[C]BePB

c
P···[N]BePB

n
P (3) 

Figure 5. Schematic of collagen 
fibrils showing the stagger of the 
hole zones and the size and 
orientation of the carbonated 
hydroxyapatite crystals relative to 
the fibril direction. (Based on Mann 
2001). 
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where the subscript “e” refers to the activity at equilibrium. In turn, the free energy of 
solution per molecule, ∆gBsol B, and the change in chemical potential are: 

∆gBsol B = −kBB BTlnKBsp B (4) 

∆µ = k BB BTlnAP – ∆gBsol B (5a) 

  = k BB BTln(AP/KBsp B) (5b) 

where kBBB is the Boltzmann constant, and T is the absolute temperature. Rather than use ∆µ,
most crystal growth analyses refer to the supersaturation, σ, which is related to ∆µ by: 

∆µ = k BB BTlnσ (6)

 σ  ln{AP/KBsp B} (7) 

Readers may often see σ  defined as (AP/KBsp B) – 1 or even (C/CBeB) – 1 where C and C Be B

are the equilibrium reactant concentrations. These are referred to as absolute 
supersaturations. They are valid approximations only at small values of σ and, in the case 
of the expression that utilizes concentrations, only useful when either the activity 
coefficients, χ = [N]/C and χ BeB = [NBeB]/CBeB for the reactants are close to unity, or when 
χ = χBeB. Nonetheless the absolute supersaturation is important when considering the 
kinetics of growth. This will become clear later in the chapter. 

In the sections that follow, the way in which σ and (AP − KBsp B) influence nucleation 
and growth will be presented in detail, but it is instructive at this point to discuss, in a 
general sense, the external factors that can influence these parameters, since crystal 
growth can be modulated through their manipulation. The values of KBsp B and CBeB depend on 
solution composition and temperature as, to some extent, do the values of the activity 
coefficients, but presumably temperature variation is not an important tool for biological 
systems. Consequently, in order to manipulate these parameters, organisms must rely 
primarily on variations in solution chemistry, including ionic strength, pH, and impurity 
content, whether inorganic or organic. 

One other important factor worth discussing is the role of water. It has recently been 
realized that the structuring of water molecules around ions, molecules, and colloid-sized
particles in dissolved state is an important factor in the thermodynamics of phase 
transitions in solution. In some cases, it was found that the structured water molecules are 
released when the ions or molecules join a growing crystal (Yau et al. 2000a), while in 
other cases, additional water molecules are trapped during crystal formation (Vekilov et 
al. 2002a). The release or trapping of water molecules has significant enthalpic and 
entropic consequences. The enthalpy effect depends on the strength of the bonds between 
water and solute molecules and the strength of the bonds forming in the crystals. Hence, 
it varies significantly from system to system. The entropy effect, however, appears to be 
consistently ~20 J KP

−1
P per mole of water released or trapped, with a positive sign in the 

cases of release and negative sign in the cases of trapping. Not surprisingly, the 
magnitude of the entropy effect above is comparable to the entropy loss upon freezing of 
water (Tanford 1994; Dunitz 1994).

Especially with larger species such as proteins, the entropy contribution due to 
solvent trapping or release can be very significant and can even be the determinant of the 
free energy change for crystallization. For example, it was found that the enthalpy effect 
of crystallization of the protein apoferritin is negligible, and crystallization occurs only 
because of the significant entropy gain due to the release of just one or two water 
molecules in each of the 12 intermolecular contacts in the crystal (Yau et al. 2000a). This 
entropy gain adds up to positive (+160 J KP

−1
P) per mole of apoferritin, with a free energy 
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contribution of about –47 kJ mol P

−1
P. An even more striking example is the human mutant 

hemoglobin C, which has a significant positive enthalpy of crystallization of 160 kJ 
mol P

−1
P, i.e., crystallization is only possible because of the release of about 10 water 

molecules when a crystal contact is formed. In this case, the total entropy gain due to this 
release is about 600 J KP

−1
P per mole of hemoglobin, and its contribution to the free energy 

of crystallization is –180 kJ molP

−1
P, making the net gain of free energy upon crystallization 

about –20 kJ molP

−1
P (Vekilov et al. 2002a). 

Note that this discussion of the effects of water structuring focuses only on the 
contributions to the initial and final states on the free energy landscape. As discussed 
below in relation to the kinetics of crystallization, water structuring is also the most 
important contributor to the free energy barrier for crystallization, and the kinetics of 
restructuring of the water associated with a solute molecule seems to determine the 
overall crystallization rate. 

NUCLEATION 

Nucleation is one of the two major mechanisms of the first order phase transition, the 
process of generating a new phase from an old phase whose free energy has become higher 
than that of the emerging new phase (Hohenberg and Halperin 1977; Chaikin and 
Lubensky 1995). Nucleation occurs via the formation of small embryos of the new phase 
inside the large volume of the old phase. Another prominent feature of nucleation is 
metastability of the old phase, i.e., the transformation requires passage over a free energy 
barrier (Kashchiev 1999). This is easily understood by considering the free energy changes 
associated with the formation of the nucleus. The statement that the free energy per 
molecule of the new phase is less than that of the solvated phase only applies to the bulk of 
the new phase. The surface is a different matter. Because the surface molecules are less 
well bound to their neighbors than are those in the bulk, their contribution to the free 
energy of the new phase is greater. The difference between the free energy per molecule of 
the bulk and that of the surface is referred to as the interfacial free energy. (It is sometimes 
called the surface free energy, but, strictly speaking, this term should be reserved for 
surfaces in contact with vacuum.) The interfacial free energy is always a positive term and 
acts to destabilize the nucleus. As a consequence, at very small size when many of the 
molecules reside at the surface, the nucleus is unstable. Adding even one more molecule 
just increases the free energy of the system. On average, such a nucleus will dissolve rather 
than grow. But once the nucleus gets large enough, the drop in free energy associated with 
formation of the bulk phase becomes sufficiently high that the surface free energy is 
unimportant, and every addition of a molecule to the lattice lowers the free energy of the 
system. There is an intermediate size at which the free energy of the system is decreased 
whether the nucleus grows or dissolves, and this is known as the critical size. This 
phenomenon is referred to as the Gibbs-Thomson effect. Of course, if the supersaturation is 
high enough, the critical size can be reduced to less than one growth unit. Then the barrier 
vanishes and the old phase becomes unstable so that an infinitesimal fluctuation of an order 
parameter, such as density, can lead to the appearance of the new phase. The rate of 
generation and growth of the new phase is then only limited by the rate of transport of mass 
or energy. This second process is referred to as spinodal decomposition, and the boundary 
between the regions of metastability and instability of the old phase is called a spinodal line 
(Binder and Fratzl 2001; Kashchiev 2003). 

The existence of a critical size has a number of implications. First and foremost, 
because nucleation of the new phase is the result of fluctuations that bring together 
sufficient numbers of molecules to exceed the critical size, the probability of nucleation 
will be strongly affected by the value of the critical size. This means that nucleation can 
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be controlled, to some extent, by modulating the critical size, which is in turn a function 
of the interfacial energy. The smaller the interfacial energy, the smaller the critical size 
and the more likely nucleation becomes for any given supersaturation. As a consequence, 
by varying either the solution composition or the supersaturation, the probability of 
nucleation can be manipulated. 

Nucleation on foreign surfaces 

The presence of a foreign surface can be used to exert even greater control over 
nucleation because, quite often, the interfacial energy between a crystal nucleus and a 
solid substrate is lower than that of the crystal in contact with the solution (Neilsen 1964; 
Abraham 1974; Chernov 1984; Mullin 1992; Mutaftschiev 1993). This is because the 
molecules in the crystal can form bonds with those in the substrate that are stronger than 
the bonds of solvation. Because the enthalpic contribution to the free energy comes 
primarily from chemical bonding, stronger bonds lead to a smaller interfacial free energy. 
This may well be the key physical phenomenon that allows living organisms to delineate 
both location and orientation of crystallites. Clearly, the strength of bonding at the 
interface is strongly dependent on the structure and chemistry of the substrate surface. If 
the atomic structure of the substrate surface closely matches a particular plane of the 
nucleating phase so that lattice strain is minimized and, in addition, the substrate presents 
a set of chemical functionalities that promote strong bonding to the nucleus, then the 
enthalpic contribution to the interfacial free energy becomes small, and nucleation occurs 
preferentially on that crystal plane. 

As discussed in the introduction, many lines of evidence suggest that organisms 
utilize this principle to control the location and orientation of nuclei. In addition, several 
experimental studies (Mann et al 1992; Heywood and Mann 1994; Wong et al. 1994; 
Berman et al. 1995; Archibald et al. 1996; Addadi et al. 1998; Aizenberg et al. 1999a,b, 
2003; Travaille et al. 2002) have used successfully used organic films to mimic the 
process. For example, Addadi et al. (1997) showed that β-sheet polyaspartate adsorbed 
onto sulfonated polystyrene substrates induced nucleation of (001) oriented calcite 
crystals. Acidic glycoproteins from mollusk shells had similar effects in vitro. Aizenberg 
et al. (1999a,b) showed that varying the structure of terminal groups on self-assembled 
monolayers (SAMs) of alkane thiols on gold precisely controlled the plane of nucleation 
of calcite and Travaille et al. (2002) demonstrated a 1:1 relationship between the 
underlying gold structure and the in-plane calcite orientation. Based on the above 
discussion, it is difficult to interpret these observations in any way other than the result of 
varying the interfacial energy. Nonetheless, little or no work has been done to quantify 
the relative importance of thermodynamic control through variations in interfacial 
energy, local increases in supersaturation due to changes in pH or ion concentration near 
the surface films, or even kinetic controls on adsorption/desorption rates that affect 
surface adsorption lifetimes and thus rates of nucleation. 

We can quantify these concepts by considering the dependence of the change in free 
energy during precipitation on the size of the nucleus (Kashchiev 1999; Mullin 1992). 
For simplicity, we consider a spherical nucleus of radius r, as illustrated in Figure 6a, 
nucleating within the bulk solution. (This is referred to as homogeneous nucleation.) The 
free energy change per molecule ( g) is given by the sum of bulk ( gBbB) and surface terms 
( gBs B), namely: 

g = gBb B + gBs B (8a) 

  = − {[(4/3)πr P

3
P]/Ω} µ + 4πr P

2
Pα (8b) 

where Ω is the volume per molecule, and α is the interfacial free energy. The first term is 
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negative and varies as the cube of r, while the second term is positive and varying as r P

2
P.

As shown in Figure 6b, the sum of the two terms has a maximum that occurs when 
d g/dr = 0. The value of r at this point can be found by taking the derivative of (8b) and 
setting it equal to zero. This is known as the critical radius, r BcB, and is given by: 

r BcB = 2Ωα/ µ (9a)

  = 2Ωα/kTσ (9b)

The same analysis can be performed for heterogeneous nucleation, i.e., nucleation at a 
foreign surface. There are now two interfacial energies to consider, one between the 
crystal and solution and the other between the crystal and the substrate, as illustrated in 
Figure 6c. If we assume, for simplicity, that the nucleus is a hemisphere of radius r, we 
have:

g = − {[(2/3)πr P

3
P]/Ω} µ +  πr P

2
P(2αBlcB + αBsc B − αBls B) (10) 

where the subscripts “sc”, “lc”, and “ls” refer to substrate-crystal, liquid-crystal, and 
liquid-substrate respectively. The new expression for r BcB becomes: 

r BcB = 2ΩαP

P/kBB BTσ (11a) 

αP

P = αBlcB{1−(αBls B − αBsc B)/2αBlcB} (11b) 

The term in the brackets is always less than one, provided the free energy of the crystal-
substrate interface is less than that of the substrate-liquid interface. Thus the value of r BcB at 
the substrate is reduced below that for nucleation in free solution. Figure 7 shows an 
example of the control over nucleation by surface structure in case of calcite nucleation 
on alkane thiol self-assembled monolayers. 

Figure 6. (a) Formation of a spherical nucleus of radius r from a solution leads to the free energy 
changes shown in (b). The cross-over of the bulk and surface terms combined with their opposing signs 
leads to a free energy barrier. (c) Heterogeneous formation of a hemispherical nucleus at a foreign 
substrate.
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Nucleation pathways and Ostwald’s Law of phases 

If a solution is supersaturated, then regardless of the critical size or the presence of a 
foreign surface, the solution will eventually crystallize. What is significant about the 
critical size is that it controls the probability of a nucleus forming on any given timescale. 
In other words, it determines the kinetics of nucleation. To understand and quantify this, 
again consider Figure 6b. It shows that along with a critical nucleus size comes a 
nucleation barrier whose magnitude, gBn B can be determined by substituting (9b) or (11a) 
into (8b) to get: 

gBn B = (16/3)παP

3
P(Ω/kBB BTσ) P

2
P (12a) 

P P∝ αP

3
P/σ P

2
P (12b) 

It is this barrier that determines the kinetics of nucleation. As with any kinetically-limited 
chemical process, the nucleation probability is proportional to the exponential of the 
barrier height divided by kBB BT. Thus the nucleation rate (Neilsen 1964; Abraham 1974) is 
given by: 

J BnB = Aexp(− gBn B/kBB BT) (13) 

where A is a factor that depends on many parameters. Substituting in the expression for 
gBn B from (12) gives: 

J BnB = Aexp(−BαP

3
P/σP

2
P) (14) 

where we have grouped all of the factors other than interfacial energy and supersaturation 
into the coefficient B. Equation (14) shows just how strongly the nucleation rate depends 
on the supersaturation and the interfacial energy. They come in as the 2P

nd
P and 3 P

rd
P powers 

respectively in the argument of an exponential! Figure 8 illustrates how strongly this 
function varies with supersaturation by showing the reciprocal of J Bn B,B Bwhich is a measure 
of the induction time until nucleation at any given supersaturation.B

An inherent assumption in the above discussion is that the pathway of nucleation 
goes directly from the solution to the formation of nuclei with ordered crystalline 
structure identical to that of the eventual bulk crystal. When the main concepts 
concerning equilibrium between large and small phases and the generation of nuclei of a 
new phase from an old were introduced by J.W. Gibbs, he was careful to point out that 
the composition of the “globulae,” as he called them (i.e., the nuclei), would likely differ 

Figure 7. Nucleation of calcite on a template. 
The substrate consists of gold-coated mica which 
has been patterned with mercaptohexadecanoic 
acid (MHA)—a carboxyl terminated alkane 
thiol—using a micro-stamping method. The 
surrounding region was then coated with 
octadecane thiol. The crystals all nucleated on the 
MHA terminated regions and almost always with 
the (012) face as the plane of nucleation. 
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from the composition of a large sample of the new phase (i.e., the bulk) (Gibbs 1876, 
1878). Since the surface tension of the “globulae,” the main factor that determines the 
height of the barrier for nucleation, is not necessarily related to the surface tension of the 
interface between bulk samples of the two phases and cannot be measured independently, 
Gibbs stated that surface tension should be viewed as an adjustable parameter.  

In further developments, some of the Gibbs’s assumptions regarding the 
thermodynamics of nucleation of a fluid phase were transferred to the nucleation of 
ordered solids, such as crystals, from dilute or condensed fluids or from other solid states 
(Katz and Ostermier 1967; Neilsen 1967; Kahlweit 1969; Walton 1969). The classical 
nucleation theory emerged, in which the so called “capillary approximation” was widely 
used. In application to crystals, the approximation means that the molecular arrangement 
in a crystal’s embryo is identical to that in a large crystal and hence, the surface free 
energy of the nuclei will equal the one of the crystal interface. However, there are many 
instances in which this is unlikely to be the case, simply because the energy barrier 
leading to a more disordered, less stable state is less than the one leading to the most 
stable state. This is the basis of the Ostwald-Lussac law of phases, which maintains that 
the pathway to the final crystalline state will pass through all less stable states in order of 
increasing stability (Nancollas 1982). If this law were strictly true, then, for example, the 
crystallization of CaCOB3 B at room temperature from a pure solution would proceed by 
nucleation of amorphous material, which would then transform into vaterite, then 
aragonite, and finally calcite. Indeed, new evidence shows some calcitic biominerals 
begin as an amorphous calcium carbonate precursor that later transforms to its lower 
energy crystalline counterpart (Addadi et al. 2003).

Whether or not the Ostwald-Lussac law generally holds is unknown, as nucleation 
events are so difficult to study, both because they occur spontaneously and because the 
critical nucleus size is very small, typically in the 1 to 100 nm range. Nonetheless, one 
can construct a reasonable physical basis for the law. Taking Equation (14) as the rate of 
nucleation of a given phase, the only way a less stable phase can nucleate more rapidly 
than the most stable phase is if αP

3
P/σ P

2
P is reduced by nucleating the less stable phase. But 

to say that this phase is less stable implies that the KBsp B is larger, which in turn implies that 
σ  is smaller. This means that, in order for the ratio αP

3
P/σP

2
PB

Bto become smaller, α must be 
reduced by an even greater factor for the less stable phase. Recall that α is proportional to 

Figure 8. The induction time for nucleation 
is a strong function of supersaturation.
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the difference between the change in free energy in forming a crystal with a surface (∆g)
and that of forming an infinite crystal (∆gBb B). In fact, starting with Equations (8a) and (8b), 
we have 

α = (∆g − ∆gBb B)/4πrP

2
P (15a) 

    = ∆gBs B/4πr P

2
P (15b) 

The free energy terms, ∆gBi B, are themselves comprised of two terms: the change in 
enthalpy, ∆hBi B, and the change in entropy, ∆s Bi B, i.e., ∆gBi B = ∆hBi B – T∆s Bi B). Now let’s examine 
each of the terms. The statement that a phase is less stable is equivalent to one stating that 
∆gBb B is smaller. That this should be so makes sense because the poorer bonding of the 
more disordered phase ensures that ∆hBb B will be smaller for its formation, and the higher 
level of disorder has the same impact on ∆s Bb B, as illustrated in Figure 9. Therefore, the 
only way that α can become smaller is for the total change of free energy to decrease by 
even more, i.e., ∆gBs B must decrease as well. Equation (15b) reflects this. As with the bulk, 
since the surface of the less stable phase is likely to be more disordered than the surface 
of the most stable phase, both ∆hBs B and ∆s Bs B are likely to be smaller. Nonetheless, this is not 
a proof, and the Ostwald-Lussac law of phases should only be viewed as a guiding 
principle rather than a statement of fact. 

The nucleus shape 

Equations (8)−(14) above were derived under the assumption of a spherical shape of 
the nucleus. If the nucleus has any other shape, obviously, the coefficients included in the 
parameters A and B in Equation (14) will take different values, but the overall 
conclusions on nucleation kinetics, it appears, will not change significantly. There is an 
important caveat in the latter statement, and it is in the assumption that we have a means 
to predict the nucleus shape in advance. In some cases, this is indeed so. Thus, thinking 
of a fluid phase nucleating within another fluid, Gibbs suggested that the shape of the 
nuclei is the one ensuring the lowest free energy of the nuclei, i.e., the sphere (Gibbs 
1876, 1878). Accounting for crystal anisotropy and applying the free energy 
minimization selection criterion, one comes up with cubic or other faceted shapes and 
only slight modifications to Equations (8)−(14).

Figure 9. Schematic illustrating the 
relative contributions of enthalpy and 
entropy changes to the free energy 
change upon crystallization into the 
most stable and a less stable phase.
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However, free energy minimization is not an absolute criterion for nucleus shape 
selection. In the simple model system considered by Gibbs, minimal free energy of the 
nucleus provides for a minimal free energy barrier for nucleation and, hence, for a 
nucleation pathway of fastest kinetics. Thinking of formation of structured crystalline 
nuclei, one is forced to realize that the one-dimensional picture, with the nucleus size as 
the only variable, is perhaps oversimplified. The free energy landscape then appears as a 
surface in a multi-dimensional space. In this space, multiple pathways exist between the 
initial state, that of single molecules suspended in the solvent, and the final state, crystals 
of sizes larger than the critical that grow, driven by ∆µ. Obviously, the observed rate of 
nucleation depends on the pathway that was selected or, in other words, we only see the 
products of the fastest nucleation pathway. Thus, we come up with a more general 
criterion for nucleus shape selection—which ensures the fastest nucleation rate.  

With this in mind, one can understand the two experimental observations of 
crystalline nuclei that have yielded shapes far from the expected compact, smooth and 
polyhedral. It was found that the nuclei of the protein apoferritin are raft-like and consist 
of several rows of molecules in a single crystalline layer as shown in Figure 10 (Yau and 
Vekilov 2000, 2001). Obviously, due to the low number of intermolecular contacts this 
shape has a free energy significantly higher than a conceivable compact shape. However, 
it was found that for this protein, the formation of intermolecular contacts is significantly 
hampered (Chen and Vekilov 2002; Petsev et al. 2003) by a free energy barrier linked to 
the water structuring around the polar surface residues (see Figs. 11 and 12) (Petsev and 
Vekilov 2000a,b). It has been suggested that the quasi-planar shape ensures faster  

Figure 10. AFM images of sub-critical, near-critical clusters, and super-critical crystallites in the 
nucleation pathway of the apoferritin crystals. (a) A cluster consisting of two molecules with apoferritin 
concentration, C = 0.23 mg/mL and σ = 2.3. (b) A cluster consisting of six molecules in two rods with 
four and two molecules in each of the rods with C = 0.04 mg/mL and σ = 0.5. In both (a) and (b), the 
clusters have landed on the bottom of an AFM cell covered with a single layer of apoferritin molecules. 
(c) A near critical cluster that has landed on the (111) face of a apoferritin crystal at σ = 1.1. (d) A 
crystallite of ~ 150−180 molecules on a large crystal at σ = 1.1. 
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Figure 11. (a) The potential of pair interactions between apoferritin molecules. Dashed line:  in the 
presence of [Na P

+
P] = 0.20 M according to a hydration force model. Solid line:  schematic representation 

of the interaction potential after the addition of CdP

2+
P. (b) Schematic representation of the build-up of 

counterions at the surface of the protein molecules that leads to the hydration repulsion reflected in (a).  

Figure 12. Schematic of formation of a trimer of molecules with an interaction potential consisting of 
long-range repulsion and short-range attraction, highlighted on U(r) plot at far right. Contours around 
zoomed-in dimer represent repulsive potential lines in the plane of the image.
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kinetics of nucleation because of the low number of intermolecular contacts that have to 
form and the low number of barriers that have to be overcome (Vekilov and Chernov 
2002). Note that the presence of similar free energy barriers for the formation of 
crystalline contacts cannot be excluded for any material crystallizing from solution. 
Hence, non-equilibrium nucleus shapes maybe the rule, rather than the exception, for 
solution-grown crystals.

Another example of nucleus visualization comes from studies of a crystallizing 
suspension of colloid particles in a specially selected organic solvent (Gasser et al. 2001). 
At the relatively low supersaturations involved, the nuclei were quite large, consisting of 
around 100 particles, and had the shape of oblate ellipsoids. This shape deviates from the 
expected sphere and the surface was found to be rough, with many protrusions of three or 
four particles. The surface roughness is associated with high surface free energy, and a 
likely explanation for its presence is that it facilitates the attachment of particles to the 
nucleus and in this way contributes to faster kinetics of nucleation. 

Crystal growth kinetics 

Figure 13a schematically illustrates atomic processes occurring at a crystal surface. 
The surface consists of flat regions called terraces and raised partial layers called steps 
(Chernov 1961, 1984, 1989). The steps themselves are also incomplete, containing kinks. 
The kink sites are very important because molecules that attach there make more bonds to 
neighboring molecules than the ones that attach to the terraces or to flat step edges. 
Consequently they are more likely to stick. Conversely, when molecules leave the crystal, 
they can do so more easily by detaching from kinks than from either complete step edges 

Figure 13. (a) Illustration of the atomic processes during crystal growth. Solute molecules enter kinks 
either directly from solution or after adsorbing and diffusing across terraces. Islands can nucleate on the 
terraces provided they overcome the free energy barrier to 2D nucleation illustrated in (b). (c) shows the 
geometry of a dislocation hillock. The existence of a critical size leads to the formation of the spiral 
structure, since the new segment of the step cannot move until it reaches that size.
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or from embedded sites in the terraces. As a result, the rate at which molecules can be 
added to a crystal, for a given solute concentration, scales with the kink density. This 
means that the growth rates of crystals can be altered by either blocking kink sites or by 
roughening steps. We will come back to this later. 

Even at equilibrium, the steps have kinks due to thermally activated detachment of 
molecules from the steps onto either the step edges or the terraces or even back into 
solution (Frenkel 1932; Burton et al. 1951; Chernov 1984). Consequently the step edges 
are not static; molecules are constantly attaching and detaching, even at equilibrium 
(Williams and Bartelt 1991; Barabasi and Stanley 1996). Figure 14a shows an example of 
a step edge at high resolution showing how this process makes the edge “fuzzy.” If the 
crystal has weak bonds in all directions (think of non-interacting colloids as an extreme 
example), the step is perfectly rough and has an equilibrium kink density of about 1/2, 
i.e., every other site is a kink. Of course in most crystals, the bonds are anisotropic with 
some strong and some weak. The strengths of the bonds and the anisotropy in bonding 
determine the equilibrium kink density. For example, if a crystal possesses strong bonds 
parallel to a step edge but weak bonds perpendicular to the edge, the energy penalty for 
creating kinks is large, and the step will have a low kink density. If the converse is true, 
then the energy penalty is small, and the step will have a high kink density. All other 
factors being equal, these two types of steps will advance at very different rates. Figure 
14b shows an example of steps on a crystal that has high anisotropy in bonding and 
exhibits rough steps in one direction and smooth steps in the other. Not surprisingly, at 

Figure 14. AFM images of (a) a step on a crystal of the protein canavalin showing the fuzziness of 
the step due to attachment and detachment of molecules, and (b) two types of steps on the surface of 
a glycine derivative of diketopiperazine (Gly-DKP) along with the packing geometry of the Gly-DKP 
molecules. The strong amine bonds along one axis and weak inter-ring bonds perpendicular to the 
plane of the rings leads to smooth steps along the strong-bonding direction and rough steps along the 
other.



 Principles of Crystal Nucleation & Growth 73

the same supersaturation, the rate at which the rough step advances is ten times the rate 
for the smooth steps. 

Growth from a supersaturated solution occurs because the flux of molecules 
attaching to the crystal surface exceeds the flux of molecules detaching from the surface. 
The probability that a molecule will detach from the crystal is solely determined by the 
strength of its bonds to its neighbors. Since the strength of bonding is a function of 
temperature rather than the flux to the surface, the total flux from the surface is nearly 
independent of concentration. In contrast, the flux to the surface is proportional to the 
bathing concentration. The solubility is then the concentration at which the two fluxes are 
equal. This raises an important aspect of crystal growth kinetics. Since the flux of 
molecules to the surface depends on the actual solute concentration (or activity), then, 
other factors being equal, highly soluble crystals will grow faster than sparingly soluble 
crystals, even at equivalent supersaturations. Shifting the solubility automatically 
changes the growth kinetics, providing yet another means of altering crystal growth rates 
(Davis et al. 2000). 

The kinetics of the attachment and detachment processes at step edges are 
determined by the energy barriers seen by the molecules. It has been suggested that the 
barrier to desolvation, i.e., the breaking of bonds to solvent molecules, is the dominant 
barrier to attachment of a solute molecule to the step (Chernov 1961, 1984). While the 
basic idea that the solvation water is a major part of the barrier seems to have withstood 
the tests of time, recent simulations and modeling have modified the original scenario. 
Thus molecular dynamics simulations have shown that the life time of the hydrogen 
bonds in the structured water layer on the surface of protein molecules is of the order of 
nanoseconds (Makarov et al. 2000, 2002)—many orders of magnitude shorter than the 
characteristic time scales of the molecular attachment. In other words, the bonds between 
solvent molecules are broken and restored many times while a molecule is en route to an 
incorporation site, and the breaking of such a bond cannot be the rate-limiting stage. 
While an exact picture of the rearrangement of the water structure upon incorporation is 
still missing, there is significant evidence that the kinetic barrier is related to the energy 
characteristics of this rearrangement, and the rate of molecular attachment is determined 
by its rate (Petsev et al. 2003).

Clearly, all processes related to the solvent structure are influenced by solution 
composition. In particular, pH and ionic strength strongly influence step advancement 
rates. As an example, the dependence of step advancement rates on solute concentration 
at three different pH values for crystals of the protein canavalin is shown in Figure 15 
(Land et al. 1997). 

The primary barrier to detaching a molecule from a step are its bonds to adjacent 
molecules in the crystal. These barriers are difficult to influence just by altering solution 
composition because they are controlled by the crystal itself. However, introduction of 
impurities that incorporate into the crystal at sufficiently high concentrations can alter 
these detachment rates. As an example, Figure 16 shows the dependence of step 
advancement rates on CaP

2+
P activity for calcite grown in the presence of magnesium 

(Davis et al. 2000). With increasing magnesium levels, the activity at which the step 
speed goes to zero moves to higher values, i.e., the solubility increases, and, as discussed 
above, the solubility is a direct measure of equilibrium detachment rates. 

The equations that govern growth kinetics depend on many assumptions about the 
pathways of mass transfer, but a very general set of considerations leads to some useful 
results. Since growth occurs on steps, for now we will ignore the source of the steps and 
just analyze the step kinetics. We will assume that the steps are rough and that the  



74 De Yoreo & Vekilov 

concentration and activity are equal. The step advancement rate, RBs B, is given by the 
difference between the attachment rate, RBaB and detachment rate, RBdB, (in numbers of 
molecules per unit of time). The step speed is just RBs Bb where b is the depth of a kink 
(units of length). The attachment rate is given by the flux, F, of molecules to the step, 
times the area, ch, of a site on the step, times the probability of attachment, PBaB, where c is 
the distance between molecules along the step and h is the step height. The detachment 

Figure 15. Dependence of step speed 
on concentration as a function of pH 
for the protein canavalin (From Land 
et al. 1997 with permission of 
Elsevier).

Figure 16. Measured dependence of step velocity on CaP

2+
P, activity, aBCa2+ B as a function of MgP

2+
P

concentration. The solubility shifts to higher activities, while the kinetic coefficient remains roughly 
constant. The solution activity of magnesium is expressed in a shorthand form where 320×Mg = 
4.81×10P

−4
P M (Modified after Davis et al. 2000).
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rate from any given site is the attempt frequency, v, times the probability of detachment, 
PBd B. In the case of attachment, we will assume that the attachment probability is controlled 
by the interaction with the surrounding solvent and ignore site-to-site differences. 
However, because different kinds of sites have very different detachment rates, we must 
sum over the detachment probabilities for each type of site. The step speed becomes: 

v/b = RBaB − RBd B(16c)

  = chFPBaB − v ΣnBi BPBd,i B (16b) 

The flux is proportional to the concentration, and the detachment probability for a given 
site is exp(−EBi B/kT). Equation (16) becomes: 

v/b = chBC − v ΣnBi B exp(−EBi B/kT) (17) 

where B is a concentration-independent coefficient that contains geometric factors, 
temperature, and mass terms describing the dynamics of solute diffusion near the surface. 
Also, in the rough step limit, the second term is independent of concentration. At 
equilibrium v is zero and C = CBeB; consequently, we can replace the detachment term with 
chBCBeB. Now the step speed becomes: 

v = cbhB(C − CBeB) (18a) 

  = Ωβ(C − CBeB) (18b) 

where Ω is the volume per molecule. The parameter β is commonly referred to as the 
kinetic coefficient (Chernov 1961, 1984). Table 1 gives derived kinetic coefficients for a 
number of crystal systems and shows that it has an inverse scaling with molecular size 
(Land and De Yoreo 1999; Vekilov 2003). 

The above expression for the rate of the step propagation as the product of molecular 
size, kink density and net flux into a kink has been subjected to critical tests. Not 
surprisingly—it is essentially a reformulation of the mass preservation law—it was found 
to be exactly followed during growth of ferritin and apoferritin crystals (Yau et al. 
2000a,b; Chen and Vekilov 2002; Petsev et al. 2003). 

UUTable 1. Measured kinetic coefficients normalized
by molecular size 

System β (cm/s) b(Å) P

c
P β/b (rows/s)

Calcite 0.3−0.5 3.2 0.9−2×10P

7
P

KHB2BPOB4B 0.1−0.4 3.7 2−8×10P

6
P

CdIB2 B 9×10P

−3
P 4.2 2.1×10P

5
P

Brushite 1.8×10P

−2
P 5.8 3.1×10P

5
P

GlyDKP P

a
P 3×10P

−3
P 3.98 7.5×10P

4
P

canavalin 1.2×10P

−3
P 83 1.4×10P

3
P

thaumatin 2.4×10P

−4
P 58.6 4.1×10P

2
P

catalase 3.2×10P

−5
P 87.8 3.6×10P

1
P

STMV P

b
P 4×10P

−6
P 160 2.5×10P

0
P

Notes:

a glycine derivative of diketopiperazine 

b Satellite Tobacco Mosaic Virus 

c kink depth 
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Derivation of the step speed dependence on concentration under many different 
assumptions leads to a similar relationship, the difference lying in the physical 
parameters of which β  is comprised. One important exception is in the case of smooth 
steps. Then the density of kink sites depends on concentration increasing as (C/CBeB) P

1/2
P for 

sufficiently small σ and one can no longer replace the expression for the detachment rate 
with the equilibrium expression. Then Equation (18) becomes: 

v = Ω β[(C − CBeB) − CBeBf(nB1 B)] (19) 

where nB1B is the density of nucleated kinks on a step edge and the function f(nB1 B) rises 
linearly at low σ and approaches a constant at high concentrations. In other words, the 
step speed is non-linear at low concentrations, but becomes linear at high concentrations 
and then just looks like the rough limit with a lateral offset, as shown in Figure 17. Note 
the similarity of v vs. C for the smooth limit to the data on calcite shown in Figure 16. 

One of the important consequences of Equations (18) and (19) is that the step speed 
scales with the UabsoluteU supersaturation, not the UactualU supersaturation. This means that if 
two types of crystals are placed in solutions of the same supersaturation, the crystal that is 
more soluble will grow faster than the other, simply because there is a larger flux of 
molecules to the surface. In other words, step speed scales with solubility and one cannot 
assume that faster growth rates imply faster kinetics at the kink sites. 

Step generation: 2D nucleation vs. growth at dislocations 

So far we have assumed that steps are pre-existing on a crystal surface. But without a 
new source of steps, any pre-existing steps would rapidly grow out to the edge of the 
crystal leaving a featureless terrace and no source for growth (For a demonstration of this 
phenomenon see Rashkovich 1991). One way to generate new steps is to generate two-
dimensional islands of molecules that then spread outward (see Fig. 13a). But as in the 
case of three-dimensional nucleation, there is a critical size and a free energy barrier 
associated with this process, although in this case they are due to the excess free energy 
of creation of the new step edge rather than creation of a new surface (see Fig. 13b). (We 
will derive the equivalent 2D nucleation expressions later.) As Figure 18 shows, at 
sufficiently high supersaturations, crystal surfaces do grow from solutions by this 
mechanism (Teng et al. 2000; Land et al. 1997; Land and De Yoreo 1999). (Table 2 

Figure 17. Dependence of step speed on 
concentration in the rough limit (Eqn. 18) 
and when steps are smooth due to low kink 
density (Eqn. 19). 
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shows the supersaturation at which 2D nucleation is observed and the critical size at that 
supersaturation, based on measured step edge energies.) But at low supersaturations, the 
critical size is large and the probability of achieving it becomes prohibitively small. As an 
example, the critical island size for KHB2 BPOB4 B—the canonical solution-grown crystal—at 
an absolute supersaturation of 5% is about 10 nm or roughly 10,000 KH B2 BPOB4 B molecules. 
The odds of obtaining an island of this size through a fluctuation that moves up a free 
energy gradient are understandably small. (In fact, when nucleation theory was applied to 
the growth of crystal surfaces back in the 1950’s, researchers quickly realized that at the 
low supersaturations often used in crystal growth, 2D nucleation could never account for 
the observed growth rates.) 

Fortunately, crystals are not perfect. They contain dislocations, i.e., breaks in the 
crystal lattice that generate permanent sources of steps (Frank 1949). Figure 13c shows a 
schematic of a step generated at a dislocation, and Figure 19 shows some examples of 
dislocation growth sources on crystal surfaces. Of course one is immediately struck by 
the fact that all of these sources generate spiral arrangements of steps. These features are 
referred to as dislocation spirals or dislocation hillocks or just growth hillocks. Besides 
the step speed, which we discussed above, the characteristics of the growth spiral are the 
distance between steps (i.e., terrace width) and shape. The terrace width, W is important 
in determining the growth rate, RBfB, of a crystal face. As Figure 13c shows, RBf B is equal to 

Table 2. Measured step edge energies and critical sizes

System γ ·a (ergs) P

a
P σB2DB P

b
P NBc B P

c
P

KHB2BPOB4B 4.2×10P

−14
P σ 0.1 650 

Catalase 4.2×10P

−14
P σ<0.2 <2000 

Thaumatin 1.3×10P

−13
P σ 0.2 800 

CaCO B3 B 1.3×10P

−12
P σ<3 <600 

Canavalin 1.5×10P

−12
P σ 2.5 800 

Notes:

a where a equals the lattice spacing 

b the supersaturation at which 2D nucleation was observed. 

c number of molecules in the critical island at σB2DB

Figure 18. AFM images showing examples of 2D nucleation at high supersaturation for (a) calcite and 
(b) canavalin. N - locations where islands have nucleated on top of other islands.
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the hillock slope, p, times the step speed, v. But the hillock slope is just h/W where h is 
the step height, which is fixed by the crystal structure. So controls on terrace width are 
also important factors in determining growth rates (Burton et al. 1951). 

To quantify growth on dislocation hillocks, we use the example of calcite (Teng et 
al. 1998, 2000). Growth of calcite on the {104} faces occurs on 3.1 Å monomolecular 
steps generated by dislocations. The advance of these steps leads to the formation of 
polygonal growth hillocks with steps parallel to the < 481 > and < 441> directions as 
illustrated in Figure 19a. The presence of a c-glide plane generates two distinct pairs of 
crystallographically identical steps denoted as the positive and negative steps due to the 
angles that the step risers make with the terraces (Paquette and Reeder 1995). The terrace 
widths of the two step types, WB±B are related to the step speeds, v B±B through W B+B/WB−B = v B+B/v B−B.

The birth of a new spiral segment is shown in Figure 20. If this new step segment 
remains in equilibrium with the adjacent reservoir of growth units, then it will only 
advance when the change in free energy, g, associated with the addition of a new row of 
growth units is negative. Taking into account the anisotropy in calcite step structure, one 
can show that g for a straight step is: 

gB±B = −(L/b) µ + 2c<γ> B±PB

 
P(20a)  

<γ> B+B=(1/4)[2(γB+B+γB−B)+(γB++B+γB+−B)] (20b) 

<γ> B−B=(1/4)[2(γB+B+γB−B)+(γB−−B+γB+−B)] (20c) 

Figure 19. AFM images of dislocation hillocks on (a) calcite, (b) canavalin (c) brushite and (d) calcium 
oxalate monohydrate.
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where L is the length of the step, b is the 6.4 Å intermolecular distance along the step, c is 
the 3.1 Å distance between rows, γB+B and γB−B are the step edge free energies along the + and 
− steps,  and γB++B, γB−−PB

 
Pand γB+−PB

 
P are contributions to the step edge free energy from the corner 

sites as illustrated in Figure 1c. (When step curvature is included, the terms on the right 
hand side of Eqns. 20b and 20c become integrals of γB±B as a function of orientation.) 
Setting ∆g to zero and substituting kTσ for ∆µ shows that free energy only decreases if 
the length of the step exceeds a critical value, LBcB, given by: 

LBc±B = 2bc<γ> B±B/kBb BTσ (21) 

Alternatively, setting ∆g = 0 for a step of arbitrary length gives the length dependent 
equilibrium activity, aBeB(L):

aBeB(L) = aBe, Bexp(2bc<γ>/Lk Bb BT) (22a) 

 = aBe, Bexp(σLBcB/L) (22b) 

where the subscript  refers to the infinitely long step and a and aBe, B are related by a = 
aBe, Bexp(σ). Equations (22a) and (22b) are statements of the Gibbs-Thomson effect. It 
predicts that, even for the growth spiral, the critical length should scale inversely with the 
supersaturation as in Equation (21). Figure 21 shows that the results for calcite agree with 
the predicted dependence. The slopes of the lines give the values of <γ> B±B.

Figure 21 also shows that LBc±B vs. 1/σ exhibits a non-zero intercept. It marks the 
supersaturation, σBc±B where LBc±B goes to zero. For σ > σBc±B, 1D nucleation along the step edge 
lowers the free energy of the steps. This supersaturation gives the approximate free energy 
barrier, gB1D±B, to formation of a stable dimer on the step edge through gB1D±B = kTσBc±B (Chernov 
1998). 

The Gibbs-Thomson effect also affects step speeds for short step segments. 
Combining Equations (6), (18), and (22) leads to a length dependent step speed: 

v B±B(L) = vB± B{1−[e P

(σLc±/L)
P−1]/[e P

σ
P−1]} (23) 

where vB± B is given by Equation (18) for aBeB(L→ ). When σ << 1, Equation (23) reduces 
to a commonly used approximation: v = vB B(1−LBcB/L) (Rashkovich, 1991). Unfortunately, 
in the few cases that have been investigated, the prediction of Equation (23) has turned 
out to be incorrect (See for example, Teng et al. 1998). Figure 22 shows the predicted 
dependence of vP

+
P/v B B on L/LBcB for calcite along with the measured dependence. The 

measured speed is independent of supersaturation or step direction and rises much more 
rapidly than that predicted by Equation (23). 

Figure 20. AFM images showing the birth of a new step segment on calcite. In (a), the smallest step is 
below the critical length and is not moving. In (b) it has exceed the critical length and begun to move. A 
new sub-critical step segment now appears. (Modified after Teng et al. 1998)
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Figure 21. Dependence of critical length on supersaturation for calcite based on images like that in 
Figure 20. (Modified from Teng et al. 1998) 

Figure 22. Dependence of step speed on step length for calcite showing the strong deviation from that 
expected based on the Gibbs-Thomson effect. (Modified from Teng et al. 1998)
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Equation (23) was originally derived for spirals with isotropic step edge energies and 
kinetics, and assumes a high kink site density such that the rate of attachment is not 
limited by the availability of kinks. Voronkov (1973) proposed that for highly 
polygonized spirals, the distance between kink sites along a step is large so that the 
attachment rate is limited by their availability. He pointed out that the equilibrium shape 
of a step should be curved towards the corners and that the straight, central portion—
which determines the speed—comprises only a small fraction of the step. (This prediction 
of step shape is verified in Fig. 20.) When the neighboring step advances, there is a rapid 
increase in the relative size of the straight portion and hence in the number of available 
kink sites. As a result, when L exceeds LBcB, the step speed rises rapidly to its limiting value 
as its length increases from LBcB to a length L’ whose order of magnitude is given by LBcB + 
2Ω/chσ. Substituting in the constants of Ω, h and c specific to calcite (see Teng et al. 
1998), we obtain L /LBc B~ 1.1, a prediction which is consistent with the results in Figure 22. 
This result calls into question the use of data like those of Figure 21 to derive step edge 
energies by applying the Gibbs-Thomson formalism. Unfortunately, this is currently an 
unresolved area of crystal growth science. 

Both the existence of a critical length and the length dependence of the step speed 
impact the terrace width and hence the growth rate. Consider an isotropic square spiral. If 
the step speed is zero for L < LBc Band jumps discontinuously to its maximum step speed, vB B

at L = LBc,B then the terrace width would be given by 4LBcB (Burton et al. 1951; Rashkovich 
1991). However, because the step speed rises gradually from zero to vB B, the terrace width is 
larger by a factor that we will refer to as the Gibbs factor, G. Equation (23) leads to G = 2.4 
for small σ, giving a terrace width of 9.6LBcB, which decreases to G = 1 in the limit of large σ.

For the rhombohedral spiral of calcite, the terrace widths for the two step directions 
become: 

W B+B = 2G(1+B)<LBcB>/sinθ (24a)

W B− B= 2G(1+1/B)<LBcB>/sinθ (24b)

where B is vP

+
P/v P

−
P, <LBcB> is the average value of LBcB for the two step directions and θ is the 

angle between adjacent turns of the spiral. Figure 23 shows the measured dependence of 
W B±B on σ as well as W = 9.6<LBcB> obtained using Equation (24) at small σ. As predicted, 
the terrace widths scale inversely with σ, but due to the anomalously rapid rise in v(L), 
the measured G factor is close to one. As a consequence, the growth rate of the calcite 
surface is about 2.5 times that predicted from classical growth theory (Burton et al. 1951; 
Chernov 1961). 

MODIFYING THE SHAPES OF GROWTH 
HILLOCKS AND CRYSTALS 

The shapes of crystals are controlled by a combination of energetic and kinetic 
factors (Burton et al. 1951; Chernov 1961). The equilibrium shape is that which 
minimizes the total surface free energy of the crystal, which is in turn the sum of the 
individual products of surface area times interfacial energy (see Fig. 24a). Thus low 
energy faces are preferentially expressed. On the other hand, crystal shape is rarely 
achieved by equilibration in a solution at equilibrium conditions, but rather during 
exposure to growth conditions. The slowest growing faces become the largest, and 
rapidly growing faces either become small or disappear altogether. Not surprisingly, the 
faces which are the low energy faces tend to also be those that grow slowly. Thus faces 
expressed during growth tend to be those expressed at equilibrium as well, although the 
sizes of the faces depend more critically on kinetic factors as well as the details of the 
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growth sources, such as the number steps generated at a dislocation source. Because the 
chemical and structural factors that lead to low energy faces are also present at the step 
edges, the shapes of growth hillocks as well as the equilibrium shapes of the critical 
nucleus also tend to mimic the shapes of the growth faces, although, once again, kinetic 
factors lead to preferential expression of certain steps. Strictly speaking, the orientation 
dependence of the step edge energy, which is what determines the equilibrium step shape, 
is not the same as that of the surface energy in the same plane. For one thing, crystal 
facets are the result of true cusps in the dependence of surface energy on orientation, 
which is a 2D feature (Herring 1951; Chernov 1961). In contrast, while the minima in the 
dependence of step edge energy on orientation lead to the preferential expression of 
certain step directions, due to the presence of kinks, in 1D there are no true cusps (see 
Fig. 24b) (Chernov 1961, 1984). Calcite again provides an excellent example. As Figure 
25 shows, the shape of the crystal face mimics the hillock shape, which in turn mimics 
the shape of the critical step segment.  

Figure 24. Schematic illustrating the relationship between (a) interfacial free energy and crystal shape, 
and (b) step edge free energy and step shape for simple cases.

Figure 23. Dependence of terrace width on supersaturation on calcite. The solid and open symbols are 
the measured values. The solid line fit to those values is just four times the measured critical length. 
The crosses give the prediction using the Gibbs-Thomson equation and the fit is just 9.6 times the 
measured critical length. (Modified from Teng et al. 1998)
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As a result of these relationships, it is possible to modify the shapes of crystals by 
introducing ions or molecules that alter the shapes of growth hillocks through interactions 
with the step edges. These growth modifiers can be organic and include both peptides and 
large proteins, but even small inorganic modifiers may play a role in this process, given 
their presence in naturally occurring waters and cellular fluids (Weiner and Dove 2003). 
There are four mechanisms by which ions or molecules can modify growth hillocks, 
either by changing the step speed or by altering the step edge energy. They are:  1) step 
pinning, 2) incorporation, 3) kink blocking, and 4) step edge adsorption. Each of these 
major mechanisms for growth inhibition exhibits a characteristic dependence of step 
speed on supersaturation and impurity concentration as illustrated in Figure 26 (Dove et 
al. 2004).

1) Step pinning:  Certain types of impurities block the attachment of molecules to 
the step edges (see Fig. 26a). The only way the step can continue to advance is by 
growing around those blocking sites (Cabrera and Vermileya 1958). As long as the 
average spacing between the impurities is much greater than the critical radius of 
curvature for the step, the step can continue to advance unimpeded. But when the spacing 
becomes comparable to the critical curvature, once again the Gibbs-Thomson effect  

Figure 25. For many systems, there is a close similarity between step shape, hillock shape and facet 
shape. This example is from calcite.
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influences growth. Moreover, if the average impurity spacing becomes so small that the 
step curvature must exceed the critical radius in order to pass between them, the step 
stops moving altogether. Although the step kinetics appear to be altered, this is actually a 
thermodynamic effect. It isn’t the impurity per se that stops the step, but rather the fact 
that, according to the Gibbs-Thomson equation, the true supersaturation is a function of 
curvature and goes to zero at the critical curvature. If the radius of curvature should fall 
below rBcB due, for example, to step fluctuations, the solution actually becomes 
undersaturated and the step retreats until the radius of curvature increases to rBcB. In terms 
of supersaturation, for a given impurity content, there is a critical supersaturation, σ Bd B

below which the crystal surface enters a so-called “dead zone” where no growth occurs 
(Cabrera and Vermileya 1958; Chernov 1961, 1984; Rashkovich 1991; Voronkov and 
Rashkovich 1994). As the supersaturation is increased, the crystal begins to grow with a 
speed given by Equation (23), with LBcB and L replaced by rBcB and r, eventually recovering 
the speed of the step in pure solution as shown in Figure 26a. Because the average 
impurity spacing decreases as the impurity level increases, the value of σBd B and width of 
the dead zone both become larger.  

The relationship between σBd B and the impurity concentration can be derived by 
comparing the average impurity spacing with the critical radius (Cabrera and Vermileya 
1958; Potapenko 1993; van Enckevort and van der Berg 1998). If the solution impurity 
concentration is CBi B, then the surface density is nBi B = ΓCBi B where Γ is derived from the 
Langmuir isotherm for the impurity. The average impurity spacing is equal to 1/(κnBi PB

0.5
P)

where κ is a number of order unity that depends on the lattice geometry. Equating this to 
twice the critical radius at σBd B leads to:

 1/(κnBi PB

0.5
P) = 2r BcB = 2Ωα/kTσ Bd 25a

Rearranging gives the result that σBd B ∝ CBi PB

0.5
P. Specifically, 

σ BdB = (2κΩα)nBi PB

0.5
P = (2κΓΩα)CBi PB

0.5
P 25b 

σ BdB ∝ CBi PB

0.5
PB 25c

Interestingly, one example for which the data clearly demonstrates this square root 
dependence is the growth of ice in the presence of antifreeze proteins. Other systems 
spectacularly fail to display this behavior. In some cases, the reason for the discrepancy is 
clear (Land et al. 1999), while in other highly relevant cases for biomineralization, such 
as calcite growing in the presence of Sr P

3+
P, the source of the observed anomalous 

dependence is unknown (Wilson et al. 2002). 

Step pinning is highly dependent upon the details of the impurity-step interactions. 
Consequently, the same impurities that may block one type of step can leave steps on 
adjacent faces—or even other types of steps on the same face—unimpeded. In this way 
step pinning generally leads to a change in hillock and crystal shape (For examples, see 
De Yoreo et al. 2002 and Qiu et al. 2003). Figure 27 shows the example of the growth of 
calcium oxalate monohydrate (COM), the main mineral forming phase of kidney stones, 
in the presence of citrate, a naturally occurring modulator of stone formation (Qiu et al. 
2003). The images were collected in the regime just above σBdB. Citrate has no effect on the 
{010} face but dramatically slows growth on the {101}  face. In fact, one particular step 
(the [101]) is most strongly affected. In pure solution, its speed is more than an order of 
magnitude higher than that of the adjacent [120] steps. But at the citrate level used in this 
experiment, it slows by a factor of 12 and loses lateral stability, while the <120> steps 
only slow by a factor of two and becomes rough and rounded. The result is that the step 
speed on that face is nearly isotropic, and the hillocks become rounded. The crystal shape 
reflects these changes. Crystals become rounded plates with large{101} faces. Molecular 
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simulations provide an explanation for these observations by predicting citrate-step binding 
energies that scale with the observed impacts on step propagation. The naturally occurring 
protein osteopontin has the inverse effect:  it pins steps on the {010} face but not the {101}  
face. In combination, the two modifiers can poison growth on both sets of faces.  

2) Incorporation: Impurity incorporation occurs when foreign ions or molecules 
become captured by advancing steps or otherwise incorporate at kink sites along a step 
edge to become part of the growing crystal. Typically the impurity molecules distort the 
crystal structure, thereby increasing the internal energy of the solid through an enthalpic 
contribution (van Enckevort and van der Berg 1998; Davis et al. 2000). The resulting 
increase in free energy is manifested as an increase in the solubility (KBsp B) of the crystal, 
leading to a lower effective supersaturation. Since σ is defined as the natural logarithm of 
the ion activity product divided by the solubility constant, an increase in the solubility of 
the crystal reduces the effective supersaturation (σBeffB). As shown in Figure 26b, this result 
shifts step velocity curves to higher equilibrium activities, resulting in what appears as a 
dead zone at low supersaturation (σ<σBd B). But this is a misinterpretation, because the 
supersaturation needs to be recalculated using the value of KBsp B for the impurity-bearing 
phase. Above σBd B, the linear relationship between step velocity and concentration 
characteristic of the pure system is regained. However, the absolute magnitude of the step 
velocity always remains below that of the pure system at the same supersaturation. 
Moreover the slope of v versus C remains unchanged. Recalling from Equation (18) that 
dv/dC gives the kinetic coefficient, β this implies that there is no impact on kinetics of 
attachment processes at the step edges. The example of Mg incorporation in calcite was 
shown in Figure 16. 

There is an important caveat to discuss here. Incorporation does not have to result in 
decreasing growth rates and can even increase the growth rate at sufficiently low 
impurity concentrations. This is because the incorporation of the impurity always
increases the entropy of the solid, making it more stable and decreasing its solubility 

Figure 27. Example of a system that exhibits step pinning. AFM images of growth hillocks on calcium 
oxalate monohydrate growing (a) pure solution and (b) solution containing sodium citrate. The lower 
insets show the resulting crystal morphologies.
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(Astilleros et al. 2002). This type of behavior is seen for low Sr concentrations in calcite 
(Wilson et al. 2003). 

Incorporation mechanisms can also change crystal shape. In particular, when the 
impurities incorporate at different rates into adjacent steps, the result is a crystal with 
sharp changes in impurity content near the boundaries of the two step directions (e.g., the 
positive and negative step directions in calcite). Those spatial variations lead to strain 
near the boundary, which lowers the supersaturation and inhibits growth. In calcite grown 
with Mg, this effect has been proposed as the source of crystal elongation along the 
{001} axis (Davis et al. 2003). 

3) Kink blocking: When impurities adsorb to kink sites for very short residence 
times, they lead to an effective reduction in kink site density (Bliznakow 1958; Chernov 
1961), with or without incorporation. That is not to say that they permanently block step 
advancement at that site, just kink propagation. Thus there is no dead zone, and the 
solubility is unaffected. Instead, the kinetic coefficient—and hence the slope of v vs. C is 
reduced as shown in Figure 26c. As with step pinning, because this effect is highly 
dependent on specific impurity-step interactions, kink blocking can result in a change in 
crystal shape. Figure 28 shows an example of a system that appears to exhibit this 
behavior, though the only proof is the kinetic data presented in the figure, along with the 
observation that the steps, though roughened slightly, do not change shape. 

4) Surfactants:  Impurities that lower the interfacial energy by adsorbing to surfaces 
modify many aspects of the surface dynamics and are known as surfactants. Impurities that 
adsorb to step edges can have similar effects, modifying growth by lowering the step edge 
energy. Although there are a number of variants on this process, here we consider the end-
member situation whereby the modification is a purely thermodynamic effect that changes 
the orientation dependence of the step edge energy, γ. As a result, the minimum energy step 
shape undergoes a transition to a new lowest energy form when the impurity concentration 
exceeds a threshold value. Figure 26d illustrates this evolution by a “2D Wulff 
construction” of step edge free energy for the case of a growth hillock that develops in a 
pure and impurity-modified system. The concepts behind this type of impurity modification 
were worked out for changes in 3D crystal shape due to true 2D surfactants (Hartman and 
Kern 1964; Kern 1969), but the extension to 1D is straightforward. 

Evidence for this type of impurity effect comes from changes in microscopic (step 
edge direction) and macroscopic (expression of crystal facets) morphology in the absence 
of a kinetic effect. Indeed, impurity interactions by step edge adsorption are unique 
because step flow rates can exhibit little deviation from the pure system. As an example 
of this type of behavior, we again look to the calcite system. Figure 29 shows the effect 
of right-handed and left-handed aspartic acid on the shapes of growth hillocks and the 
resulting macroscopic crystals (Orme et al. 2001). The steps do not exhibit the pinning 
observed for citrate on COM, yet the shapes of the hillocks are dramatically altered. 
Moreover, the symmetry about the calcite glide plane is broken such that L-aspartic acid 
gives one chirality while D-aspartic acid gives the opposite chirality. There are new step 
directions that switch from one side of the glide plane to the other when the amino acid 
enantiomer is switched from L to D. These shapes were analyzed in terms of changes in 
step edge energetics with the modifier acting as a 1D surfactant. In fact, the overall 
reduction in terrace width demonstrates a true reduction in average step edge energy. But 
the relative degree to which the orientation dependence of step edge free energy is 
changed compared to the kinetic coefficient is unclear. What is clear from these 
experiments, however, is that, as in the case of COM with citrate and calcite with Mg, the 
overall shapes of the resulting crystals are being controlled by the shapes of the growth 
hillocks on existing faces. 
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Figure 29. Example of system that exhibits behavior expected for addition of a surfactant. AFM images of 
calcite grown in (a) pure solution, (b) Solution containing D-aspartic acid and (c) solution containing L-
aspartic acid. The shape changes dramatically and even shows a left-right shape dependence that 
corresponds to that of the additive. (d-f) show that the resulting crystal shape reflects these changes. (After 
Orme et al. 2001). 

Figure 28. Example of system 
that exhibits behavior expected 
for kink blocking. AFM image 
and dependence of step speed on 
concentration for potassium acid 
phthalate with and without the 
organic dye, erioglaucine. The 
steps roughen slightly and the 
kinetic coefficient is reduced, but 
there is no dead zone, little or no 
shift in equilibrium solubility, 
and no change in shape.
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CONCLUSION 

The physical processes of nucleation and crystal growth are inherent to the 
biological process of mineralization. Deciphering the control mechanisms exerted by 
organisms over nucleation and growth is one of the central challenges facing us as we try 
to understand how biominerals are formed. The concept of the energy landscape, though 
quite detached from the biology, provides a framework for relating the interactions
between the controlling agents and the physical changes in shape, structure, and phase, 
regardless of whether those agents act as members of solid molecular scaffolds or ions in 
solutions. In this chapter, we have attempted to show how the principles of crystallization 
relate to these physical properties. 

The single most important concept for understanding nucleation is that of the critical 
size and its relationship to the main external control parameter, the supersaturation, and 
the primary materials control parameter, the interfacial energy. Most importantly, the 
magnitude of the interfacial energy depends on the atomic-scale at the interface and, 
consequently, surfaces can be used by organisms to control both the location and 
orientation of biominerals. Secondarily, the details of the free energy landscape that 
separates the solvated phase from the final bulk crystal has a large impact on the pathway 
of nucleation and its manipulation may allow organisms to precipitate inorganic 
compounds into an easily shaped but metastable amorphous phase, which is then driven 
to convert to the final crystalline phase. Unfortunately, while these concepts are based on 
a firm physical foundation, clear and quantifiable links to real systems have yet to be 
established.

Critical size and free energy barriers continue to be central concepts during the 
growth phase of crystals, but the potential mechanisms for controlling the process appear 
to be greater in number and diversity. The critical parameters continue to include 
supersaturation and free energy, but the free energy of the interface is supplanted by that 
of the step. Moreover, the kinetics of attachment and detachment become of equal 
importance in determining growth rates and crystal shapes. These processes are typically 
quantified by a single parameter, the kinetic coefficient, which unfortunately masks the 
physics behind solute incorporation. Surprisingly, while many processes including 
desolvation, adsorption, surface diffusion, chemical reaction, and eventual incorporation 
can, in principle, both impact this coefficient and depend on the details of system 
chemistry, AFM studies of recent years are pointing towards rearrangement of waters to 
allow the solute to access the surface as the dominant factor. Consequently, the kinetic 
coefficient shows a clear scaling with molecular size. Once size is taken into account, the 
apparent energy barrier to step motion is surprisingly similar for all systems analyzed. 

Due to the combined importance of both the thermodynamics of the step edge and 
the kinetics of solute attachment and detachment, there are a number of opportunities for 
organisms to modulate the growth phase. Unlike the situation with nucleation of 
biominerals, a widely accepted model for shape modification has been developed based 
on the concept of stereochemical recognition. Within this model, the modulators of 
growth exhibit stereochemical recognition for otherwise unexpressed faces of the 
mineral. Attachment to those faces then stabilizes them, producing a new crystal habit. 
Proposed examples include calcium oxalate monohydrate with citrate, ice with anti-
freeze glycoproteins, and calcite with inorganic impurities such as Li and Mg, as well as 
organic modifiers containing carboxyl groups such as aspartic acid, glutamic acid, and 
acidic peptides. In principle, this mechanism can and probably does occur for some 
systems. However, as shown in this chapter, many of the classic systems for which this 
model was proposed clearly display behavior better explained through specific impurity-
step interactions on existing faces. The differences between these two models of shape 
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modification have yet to be reconciled and highlight an inescapable conclusion:  While 
the past century has led to a deep understanding of the physical principles of nucleation 
and growth, we are far from understanding how living organisms utilize those principles 
to control the formation of biomineral structures. 
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