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The persistence of ecological systems in changing environments requires energy,

materials, and information. Although the importance of information to ecological function

has been widely recognized, the fundamental principles of ecological science as

commonly expressed do not reflect this central role of information processing. We

articulate five fundamental principles of ecology that integrate information with energy

and material constraints across scales of organization in living systems. We show how

these principles outline new theoretical and empirical research challenges, and offer

one novel attempt to incorporate them in a theoretical model. To provide adequate

background for the principles, we review major concepts and identify common themes

and key differences in information theories spanning physics, biology and semiotics.

We structured our review around a series of questions about the role information

may play in ecological systems: (i) what is information? (ii) how is information related

to uncertainty? (iii) what is information processing? (iv) does information processing

link ecological systems across scales? We highlight two aspects of information that

capture its dual roles: syntactic information defining the processes that encode, filter and

process information stored in biological structure and semiotic information associated

with structures and their context. We argue that the principles of information in living

systems promote a unified approach to understanding living systems in terms of first

principles of biology and physics, and promote much needed theoretical and empirical

advances in ecological research to unify understanding across disciplines and scales.
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PRINCIPLES OF ECOLOGY, REVISITED

Information is fundamental to life and living systems, from
subcellular processes to the biosphere (Gatlin, 1972; Davies and
Walker, 2016; Tkačik and Bialek, 2016). Information is contained
in the improbable organization and configuration of flows of
matter and energy arising from activities and interactions of
assemblages of atoms, molecules, cells or organisms (MacArthur,
1955; Ulanowicz et al., 2009; Frank, 2012; Kempes et al., 2017). All
these structures—their composition and configuration—can be
described using information measures, but some structures also
carry, or encode, information that is interpreted and processed
(Patten, 1959; Odum, 1988; Ulanowicz et al., 2006; Harte, 2011;
Kempes et al., 2017). Information processing affects population
dynamics (Donaldson-Matasci et al., 2010; Battesti et al., 2015;
Fronhofer et al., 2017; Gil et al., 2018) and evolutionary processes
(Ulanowicz, 1997; Giraldeau and Caraco, 2000; Dall et al.,
2005; Frank, 2008; Ulanowicz et al., 2009; Schmidt et al., 2010;
Wagner, 2017), and is part of every aspect of ecological change
and human interactions with rest of the biosphere (Munday
et al., 2009; van der Sluijs et al., 2010; Rossi-Santos, 2015;
Altermatt and Ebert, 2016; Goldstein and Kopin, 2017; Gordon
et al., 2018). Therefore, ecological science has much to gain
by incorporating the fundamentals of information theories and
information processing to understand and describe our changing
world (Wicken, 1987; Schneider and Kay, 1994; Holt, 2007;
Farnsworth, 2013).

Despite evidence that information plays fundamental

roles in ecological systems, information does not yet feature
prominently in the ecological principles at the center of
our textbooks and theories (Appendix 1). This omission is

problematic and isolating for ecology from other scientific
disciplines (Schneider and Kay, 1994). Advances in other
realms of science including physics, molecular biology and

astrobiology increasingly recognize information, energy and
material as the joint pillars of living systems (Frank, 2012;
Woods and Wilson, 2013; Davies and Walker, 2016; Walker
et al., 2016; Kempes et al., 2017; Wagner, 2017). Ecology,
however, tends to emphasize organisms as fundamental
units, and traits, environmental conditions and contingencies
as fundamental concepts (Appendix 1). In expressions of
ecological principles, energy and materials play important roles
in explaining resource supply or environmental conditions,
and information is rarely mentioned. Information processing is
included by acknowledging evolution as an ecological principle
(Appendix 1), but evolution is only one of many examples of
information processing in ecological systems.

The costs of omitting something as fundamental as
information from our general, mainstream scientific models
are great. For example, ecologists have failed to anticipate
the effects of environmental change on population dynamics
mediated by disruptions in information processing. Studies
showing that environmental change (e.g., ocean acidification)
alters organisms’ abilities to sense their environment and to act
appropriately on environmental information such as cues for
the seasonal events they use to find food or mates (Munday
et al., 2009; Martín and López, 2013; Gordon et al., 2018) are

often presented as surprising. A greater acceptance of the role
information flow plays in population dynamics might lead to
ecological theory to accommodate these effects, and deepen our
understanding of the ecological consequences of disruptions of
information (Schneider and Kay, 1994; Gil et al., 2018).

Another blind spot in ecological understanding concerns the
roles of information flow in networks and organization. Social
information (Gil et al., 2018), social learning systems (Aplin
et al., 2015) and other forms of information can be central to
the organization and stability of symbioses (Davy et al., 2012),
social groups (Flack et al., 2006), and other living systems. The
stabilizing and organizing consequences of information networks
(MacArthur, 1955; Jorgensen et al., 2000; Ulanowicz et al., 2009;
Babikova et al., 2013; Sentis et al., 2015; Lee et al., 2016) would be
missed from a perspective of ecology that exclusively focuses on
energy andmaterial relations among individual organisms, or the
interaction between an organism and its environment. Human
activities may destroy the integrity of information networks
and their adaptive capacities before they are ever known to
science. Finally, biodiversity is a form of information; it is
information stored in genes, morphologies, traits and behaviors
that reflect the ecological and evolutionary history of life on earth.
Ecological science is still ill-equipped to fully understand the
consequences of this information (biodiversity) loss for future
information processing, and flows of energy andmaterials. While
concepts relating biodiversity and ecosystem functions have been
developed (Loreau), they have not yet been grounded in the more
general relationships between information and energy flows,
though similar efforts have been made in information theories
(Schneider and Kay, 1994; Ulanowicz et al., 2009; Coscieme et al.,
2013; Norton and Ulanowicz, 2017). Thus, though it is well
accepted that biodiversity is being lost at an alarming rate on
the planetary scale, we do not have first principles to guide our
understanding of the consequences of this information crisis.

We aim to fill the gap between information theories
and modern ecological thinking by articulating principles for
ecological systems that are consistent with our understanding
of the role played by information in the structure and
function of living systems (Box 1). We seek principles that
are consistent with broader scientific knowledge and might,
with additional theoretical development, allow unification of
ecological theories and concepts that share a conceptual
foundation (Margalef, 1963; Schneider and Kay, 1994; Jorgensen
et al., 2000; Scheiner and Willig, 2008; Patten et al., 2011;
Marquet et al., 2014; Patten, 2014).

Here, we review major concepts in the information theories
that lead to these ecological principles. We structured our review
around a series of questions about the role information may
play in ecological systems: (i) what is information? (ii) how
is information related to uncertainty? (iii) what is information
processing? (iv) how does information processing link ecological
systems across scales? Answers to these questions draw upon
literatures as diverse as thermodynamics to cybernetics, statistics
to evolution, behavioral ecology to semiotics (Boxes 2–4). As a
consequence of seeking common ground and intellectual themes
across such diverse literatures, we take care to define terms and
introduce concepts that might be elemental in one literature
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Box 1 | Five principles that integrate information in ecological understanding.

Drawing upon multiple research themes with domains spanning physics, information theory, ecology, evolution and semiotics, we identified a set of principles that

integrate information and information processing into our understanding of ecological systems. These principles rest on the success of many decades of scientific

knowledge development, but also represent the first step from this point forward to a more unified understanding of ecological systems. This is not an exhaustive set

of principles for ecology, we have not considered principles of energy and matter other than how they interact with information. The principles presented here address

two main concepts: the fundamental nature of information and its dual relationship with thermodynamic entropy and uncertainty (Information is Fundamental to Living

Systems), and the multiscale causes and consequences of information processing (How is Information a Dynamic Part of Living Systems?). We use the term living

system to include any energy-matter-fluxing life form, or aggregate of life forms, so it includes the smallest living organism up to the entire biosphere. It does not

assume a priori an organism-centered, perspective on ecological systems that is typical of modern Darwinian approaches, but our concept of living systems is also

not incompatible with assuming organisms are the fundamental unit of living system. These principles are not themselves a framework or research guide, but rather

the minimum set of statements about nature that are the basis for theory and knowledge gain. We illustrate how a canonical model of eco-evolutionary dynamics can

be modified to be consistent with these 5 principles (Box 5). Development of theories founded on these principles should lead to the development of hypotheses for

how ecological systems across scales of organization grow, change and persist.

Principle 1: Information is a fundamental feature of living systems, and therefore also of all ecological systems. Syntactic and semiotic information (Table 1)

constitute the two fundamental forms of information, and each is essential to the structure and function of living systems, from molecular systems to the biosphere.

Consequently, some information within ecological systems is directly related to energetics in terms of thermodynamic entropy (Uncertainty and Entropy), while other

aspects of information define sign systems that interact with energetics to produce life processes (Figure 1A).

Principle 2: Syntactic and semiotic information interact in feedbacks, with energetic processes and material cycles, to influence structure, function and organization

in ecological systems. Ecological systems use semiotic information to structure how they expend energy for work (e.g., growth, reproduction, and consumption).

(Figure 1) ecological processes are partly responsible for syntactic information (nonrandom distribution of matter on the Earth’s surface). For example, reproduction

represents the replication and transmission of information as encoded genetically within and across generations. Reproduction requires energy and resources, which

are allocated to somatic growth or reproductive effort by information processes within the organism or between the organism and its environment.

Principle 3: Information processing requires energy and materials, therefore supply of energy and materials and thermodynamic constraints can limit information

processing. The infrastructure for storing, transmitting, receiving and using information requires energy and materials (Figure 2), consequently the supply and physical

constraints on the efficiency of energy and material systems may affect how much and how quickly information may be processed. These constraints are expected

to lead to evolution of information systems that balance energetic and material efficiency, stability and durability with information processing capacity and reliability.

Principle 4: Information processing allows components of living systems to measure the environment and their own state and to measure the relationship between

their state and past and expected environments. Subsets of information processing systems (cells, organs, individuals, etc.) receive and use cues and signals in the

context of their environment (Figure 2). Organisms use evolved information processing systems to relate measurements of their current environment to expectations

of their future environment [anticipation sensu (Rosen, 1985)]. This measurement combined with processing permits goal directed agency in living systems.

Principle 5: Information processing systems are linked within and across scales of biological organization. Strong positive feedbacks in information processing can

define or reinforce levels of organization—from a cell to an individual to symbioses all the way to an ecosystem and the biosphere (Figures 1, 2). Information stored

at higher order levels of organization, such as social groups, communities or ecosystems, can be used by lower level systems, such as individual organisms and

cells. In this way, information processing occurs across scales of space and time, and can create and maintain physical or energetic structures.

but foreign to another (Table 1). We then consider briefly how
ecological science might proceed to test, refine and build upon
these principles This review and synthesis is intended to explain
and justify our proposed set of fundamental principles for
ecology (Box 1), and provide common conceptual ground for
further scientific exploration of the role information plays in
ecological systems.

INFORMATION IS FUNDAMENTAL TO
LIVING SYSTEMS

What Is Information?
A basic definition of information is the difference between
a set of realized events relative to the possible sets of those
events (Table 1; Figure 1 and Box 3). Defining “what is possible”
is not always easy, and entails a judgment by an observer.
Sometimes “possible” is considered a random state, other times,
it is considered a perfectly ordered state, or a known state (see
Reference States for more explanation of reference states). The set
of differences that constitutes information contains consequences
of historical events that shaped the arrangement of elements
in a living system. For example, the distribution, arrangement
and structure of nucleic acids in a DNA molecule differs from
a randomly assembled set (or any other arrangement) of the

same nucleic acids. The difference between the arrangement of

nucleic acids in the DNA strand and a random assemblage of the

same set of nucleic acids reflects the recent history of those
molecules and their translation within the ribosome, as well as

the longer-term history of evolutionary processes that resulted
in that particular allele’s structure. We can also consider the
information in the difference between two DNA molecules,
identical except for a single nucleic acid. Again, the difference
between the two DNA molecules reflects their shared (or
different) histories of evolution and recent synthesis. But the
consequence of the small differences for subsequent protein
synthesis and biological function may be great. These DNA
molecules, and their differences, contain syntactic information

(Table 1). Syntactic information exists in any spatial or temporal
arrangement of events or objects, including the species or
functional diversity of a set of interacting species (Pielou,
1967; Jost, 2006), the notes and rhythms in a bird’s song
(Farina and Belgrano, 2006; Sánchez-García et al., 2017), or
temporal pattern of sunrise and sunset (Edgar et al., 2012;
Kinmonth-Schultz et al., 2013).

Information contained in structure, reflecting the structure’s
history, can (but does not need to) represent signs or symbols
that convey meaning as interpreted by an observer (semantic

information, Table 1). Semiotic information is the content and
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Box 2 | Timeline of selected milestones of information science.

Concepts of thermodynamic entropy and surprise emerged in the

Twentieth century, setting the stage for later developments in concepts

of entropy and information. But it was with Schroedinger’s argument

that information is central to life, followed closely by Shannon’s

insight that information can be considered as a quantifiable capacity

for communication, that initiated a scientific revolution around

information. Information has emerged in ecological thinking across

scales since Shannon’s work and we highlight some of these

contributions to illustrate the breadth and progression of these concepts.

Year Milestone

1925 Introduction of information in statistical inference (Fisher, 1925)

1929 Information could be included in the second law of

thermodynamics (partially resolving the problem posed by

Maxwell’s demon) (Szilard, 1929; Parrondo et al., 2015)

1945 Information (negative entropy) is fundamental to life

(Schrodinger, 1944)

1948 Introduction of the concept of cybernetics and communication

control systems in biology and in machines (Wiener, 1948)

1948 Shannon information, a non-thermodynamic entropy measure,

is introduced as an expected value that expresses the

information content of a message (Shannon, 1948)

1953 First edited volume on information in biology, including attempts

to quantify information in living structures (Quastler, 1953)

1955 Shannon index introduced to ecology to estimate energy flow

among species (MacArthur, 1955)

1956 The distinction is made between information content in

structure, and the subset of information transferred in

observations; the term “negentropy” is coined (Brillouin, 1956)

1957 Maximum entropy principle (MEP) is published (Jaynes, 1957);

Information theory is connected to ecological diversity indices

and community structure (Margalef, 1957)

1959 Calls for a cybernetic approach to ecosystems; first empirical

estimate of the information flow (consumption) of Silver Springs

FL ecosystem from Odum’s 1957 work (Patten, 1959). Brillouin

derived a relationship between the energy required by Maxwell’s

Demon to acquire 1 bit of information, thereby relating

information and energy in the context of thermodynamics.

1970 Progress in biological information theory in biology is reviewed,

and qualitative information concept is proposed, along with the

idea of closed biological systems for conservation laws

(Johnson, 1970)

1972 Information theory is used to argue that “living is computing”,

and new theory for biology is introduced (Gatlin, 1972)

1972 Information is described as “a difference that makes a

difference”, and argued to be fundamental to human culture as

well as ecology (Bateson, 1972)

1981 Debate in ecology about whether ecosystems are cybernetic

systems abates, limited by methods (Patten and Odum, 1981)

1986

1987

Publication of Evolution as entropy: toward a unified theory of

biology (Brooks and Wiley, 1988) Wicken synthesizes, reviews

and critiques information and entropy concepts, bring some

semantic clarity to these terms in the literature

1997 A new perspective on ecosystem as ascendant information

systems is introduced (Ulanowicz, 1997)

2000 Calls to consider the importance of information in biology and

evolution are renewed (Maynard Smith, 2000; Szathmáry and

Smith, 2002)

2015 Renewed interest in information as fundamental to the origin of

life (Davies and Walker, 2016; Davies et al., 2017)

2017 Information theory is mainstream in molecular biology (Sherwin

et al., 2017; Wagner, 2017).

Box 3 | Information theory and statistical inference.

For many ecologists and evolutionary biologists, the most common

application of information theory is probably as a tool for statistical inference.

The Akaike Information Criterion (AIC; Akaike, 1974), Bayesian Information

Criteria (BIC; Schwarz, 1978), and related measures have become so familiar

to ecologists as model selection procedures (Burnham and Anderson, 2002)

that the philosophical and conceptual underpinnings are rarely given a second

thought. For example, we use AIC to compare the relative performance of a

candidate set of models, where we measure performance as the balance

between fit (likelihood, L, of the data given the model) and the number of

parameters k (AIC = −2 ln(L) + 2k). Rather remarkably, the AIC computed

for a model is proportional to the amount of information lost—measured as

the Kullbeck-Leibler divergence, DKL—in using a given statistical model p to

approximate the true model that actually generated the data p∗. For discrete

distributions the divergence is equal to

DKL = −
∑

i=1
p∗(xi ) log

(

p∗(xi )

p(xi )

)

Even though we do not know the true model, the AIC values from several

candidate models can be compared. Similarly maximum entropy methods

(Jaynes, 1957), which make use of information theoretic principles have been

widely used to fit Species Distribution Models to location data (Phillips et al.,

2006; Phillips and Dudik, 2008) and in the Maximum Entropy Theory of

Ecology to estimate the parameters of macroecological distributions (Harte

et al., 2008; Harte, 2011).

In one sense, the use of information theoretic principles in model selection

and estimation is deeply related to the quantities we discuss throughout

the manuscript: it is the structure inherent in ecological systems (i.e., their

information content) that allows us to make inferences about the processes

that might have generated the data we observe and predictions about

that which we have not. On the other hand, such inference requires both

an observer (i.e., us) and a theory about how the world works (i.e., a

mathematical model) and in this article, we are concerned primarily with how

information structures ecological systems, even when no one is looking.

the quality of semantic information as it is carried by signs
(Sebeok and Umiker-Sebeok, 1992; Kull, 1999; Dall et al., 2005;
Barbieri, 2008; Schmidt et al., 2010). Semiotic information is
central to interactions amongmolecules (proteins, enzymes, etc.),
cells, physiological systems and organisms, and has long been
recognized as important to ecological and evolutionary dynamics
(von Uexkull, 1992). General sign theory was developed by
Pierce (Atkin, 2006), and emphasized the triad of signs, objects
and interpretants, highlighting how meaning in information
requires not only an object and a sign that may represent
it, but also an interpretation of that sign that associates
the sign with the object (Atkin, 2006). Biosemiotic theories
of ecology (Farina, 2008, 2011; Hoffmeyer, 2009) build on
Peirce’s triadic theory of signs (Atkin, 2006). The interpretant
is often associated with an organism in which case this
topic is the purview of the fields of behavioral ecology (e.g.,
evolution of signals and communication), chemical ecology and
cognitive ecology. Biosemiotics, therefore, brings to ecology an
understanding of information as signification and representation
in ecological interactions, and its consequences are often
considered in terms of fitness. For example, predators associate
coloration with toxicity and avoid eating prey that exhibit
these signs (Stevens and Ruxton, 2011). Another example is

Frontiers in Ecology and Evolution | www.frontiersin.org 4 June 2019 | Volume 7 | Article 219

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


O’Connor et al. Principles of Ecology and Information

Box 4 | Relationships between common information terms and concepts through a single information definition.

phenological cues associated with day length that many taxa
use as signs of future favorable environmental conditions; these
environmental cues have meaning because of regular variation in
the environment (Helm et al., 2013).

Semiotic information plays an important role in ecological
systems. In birdsong, the temporal structure of sounds carries
information (and energy) imparted to it by the singing individual.
The information may or may not be a reliable cue of its state;
the bird’s song also signifies semantic information to other
birds that interpret the song. The information in a bird’s song
may even signify its fitness and an expectation of its own
future—its likelihood of finding a mate or defending its territory,
perhaps. The pattern of sounds in birdsong has meaning to
other organisms, and that meaning depends on the receiver—
e.g., the species or individual—and the context (Farina and
Belgrano, 2006; Pijanowski et al., 2011). Even the aggregate
biophony—the collective sound that vocalizing animals create
in an environment—of a landscape’s acoustic diversity presents
a community-level semiotic context for the actions and ecology
of any individual bird (Farina, 2008; Pijanowski et al., 2011)
(Figure 1B). Semiotic information is important, even when signs
are interpreted by biological systems that are not organisms.

In the DNA example, the interpretant may be associated with
a ribosome or protein, as the “observer” of the sign. The
syntactic information of a gene is received by ribosomes’
structure, and ribosomes encode and transcribe the information
in a gene if the information matches what the ribosomes
can interpret.

These two concepts—syntactic and semiotic—capture the
dual nature of information (Figure 1). On the one hand,
information is defined as signals sent and received by the
individuals participating in the system. Their use of semiotic
information drives ecological and evolutionary dynamics within
the system (Patten, 1959; Gatlin, 1972; Giraldeau and Caraco,
2000; Ulanowicz et al., 2009; Gil et al., 2018) (Figure 1). On
the other hand, information influences dynamics in ways not
driven by individual organisms or mediated by communication;
some forms of information stored in biological structures
have energetic value (Parrondo et al., 2015), decay (Tkačik
and Bialek, 2016), and constrain future possible states of a
system (Shannon, 1948; Ulanowicz et al., 2009; Davies and
Walker, 2016). The difference between a set of realized events
relative to the possible sets of those events can be framed and
measured in both senses we describe here. An ecological science
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TABLE 1 | Glossary for general terms and concepts.

Term Definition and context

Information theory The study of flow, utilization and storage; also described as the study of coding and transmission of information. Often abbreviated IT.

Information The reduction in uncertainty associated with the difference between two states of a system. Example units: bits. Does not consider any

meaning or interpretation of the information. Also called: potential information (Farina and Pieretti, 2013), intrinsic information (Wiener,

1948), physical information (Farnsworth, 2013) and syntactic information (Schmidt et al., 2010). See Figure 1 for specific examples.

Functional information Many have argued that syntactic information concepts alone are insufficient to describe information in biology. Functional information is

defined by a structure’s ultimate function and probability of a set of units to achieve that function (Szostak, 2003). Others have defined

functional information as the part of a structure (e.g., a genome) that is the minimum required to reconstruct the organism (Johnson, 1970;

Jiang and Xu, 2010; Farnsworth et al., 2012). Johnson (1970) referred to it as the information that once lost cannot be regained.

Entropy The smallest possible average size of lossless encoding of messages sent from a source to a destination (Shannon, 1948). Also called:

uncertainty, equiprobability, indeterminacy, complexity.

Epistemological uncertainty Uncertainty in the knowledge of a process, due to data or model limitations.

State of a system A particular spatial or temporal arrangement of elements, for example, atoms in a molecule, individuals in a habitat, relative abundances of

species, or pathways of energy flow in a network

Cybernetics The study of biological systems with feedback.

Observer The object or system measuring the difference between the two states in the information measurement.

Reference state A benchmark state with which to compare another state, such as an observed state. Examples include: maximum entropy, full

information, thermodynamic zero; or, other observed states.

Thermodynamics The science dealing with energy and relations among different kinds of energy, and relations among energy and properties of matter.

Entropy A measure of the irreversibility of a process in the context of the number of possible processes for using energy. Example units: J/Kelvin

Information Negative entropy or organization, taking a value explicitly convertible or comparable to energy. Example unit: bits.

Observer The observer of the two states in question (see Wicken, 1987 for a critical review of observers and information in thermodynamics).

Biosemiotic theory Study of the communication of information in living organisms.

Semantic information Signs or symbols that convey meaning as interpreted by an observer.

Semiotic information The content and quality of semantic information as it is carried by signs.

Interpretant The understanding an observer has of the relationship between a sign and an object (Pierce/Atkin, 2006). Pierce and others developed

this idea further so that the interpretant is considered a translation of the original sign. Thus, the interpretant is not the observer, per se

(Atkin, 2006).

Sign Along with object and interpretant, one of the three inter-related elements of a sign in Pierce’s sign theory (a leading semiotic theory). In

ecology, we often use the word “cue” as synonymous with “sign.”

For specific models and technical definitions, see Boxes 3, 4 and Figure 2.

that fully includes information will need to integrate syntactic
and semiotic information (Bridging Syntactic and Semiotic
Information; Box 1).

For many ecologists, the vast and varied literature on
information, the related concepts of entropy, and their role
in living systems is uncharted territory. This literature dates
back at least a century in ecology and complex systems
science (Box 2). It is a rich literature in which terms such as
information and entropy are used with a plurality of definitions,
meanings, and contexts (Wicken, 1987; Schneider and Kay, 1994;
Gatenby and Frieden, 2006). To facilitate progress toward an
ecological science that more effectively integrates information,
we highlight some of the major concepts of information and
their relationships to each other (Table 1). We present a
brief review of thermodynamic entropy and information, and
then proceed with greater emphasis on information theoretic
concepts, though we highlight the continued need to bridge
these gaps.

How Is Information Measured?
In ecology, as in any science, measurements are central to howwe
learn about our subjects, and how we visualize and operationalize

theories. Measuring information and information flow in living
systems is done in several ways (Figure 1). To understand which
information measures or concepts are appropriate for a given
context, and how metrics may or may not be comparable,
we consider how information concepts are related to entropy,
energy, cues and communication (Table 1).

Information can be measured in the context of information
theory as the reduction in uncertainty of a system when
comparing two (realized vs. possible) states of that system
(Box 3, Figure 1, Table 1). We can measure information by
comparing the entropy or uncertainty of an observed state
relative to another state or states—a previous observation, a
theoretical possible state (or set of states) such as a random
state or thermodynamically dead or maximally entropic state
(Box 4). In a thermodynamic context, information can be
measured as negative entropy (Table 1), taking a value explicitly
convertible or comparable to energy (Gatenby and Frieden, 2006;
Schneider, 2010; Kempes et al., 2017). The unit of the measured
information (bit, Hartley, etc.) depends on the configuration
of the equation in Box 4, the reference states used or implied
(Reference States), the base of the logarithm and the value
of k. In the context of biosemiotics, information is measured
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FIGURE 1 | Information takes a variety of forms in ecological systems. (A) In an ecological system such as a simple aquatic food chain (center circle), information is

present as latent information, semiotic information, and information change as states change. This living system dissipates energy, and therefore has entropy. (B) In an

(Continued)
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FIGURE 1 | example aquatic system, information has been measured and reported at many levels of ecological scale, from transcription binding factors to food webs.

Examples of syntactic information ( ) contained in structures such as genes, cells, viruses, networks, and communities. Information is also contained in differences or

changes in structure. Semiotic information ( ), such as frog calls, kairomones from dragonfly larvae to daphnia, or use of cues and signals among organisms

mediates ecological and evolutionary processes. Information can be measured using theory and equations in Box 4.

in a different way, typically by comparing the results of the
information for fitness. For example, syntactic information in
the DNA and birdsong examples can be quantified using a
Shannon index for allele diversity, or spectral analysis on bird
song, and the semiotic information in these structures can be
quantified in terms of the fitness of individuals who carry the
allele or can act on the message in the song to find a fit mate
(Figure 1). Measurements of information—by a scientist, or an
organism or other participant in the ecological system—therefore
involve assumptions or specifications about signs, observers
and reference states that require consideration of fundamental
aspects of the system, such as entropy (Erill, 2012).

Uncertainty and Entropy
Information is most generally considered to be a reduction
in uncertainty. Uncertainty is sometimes used as a measure
or synonym of entropy. There are two distinct uses of
the term “entropy” in the context of information—one
associated with information theory (likened to uncertainty),
and another associated with thermodynamics (Table 1). Both
entropy concepts can be expressed with the same equation
(Box 3), though the terms and their relationships are interpreted
differently depending on whether the context is thermodynamics
or information theory (Table 1). Though the same word
“entropy” is used for these two entropy concepts, they are actually
distinct ideas and are not fully and directly interchangeable or
convertible (Wicken, 1987).

Thermodynamic entropy
Living systems take energy and process it to produce more
organized systems with lower entropy (Schrodinger, 1944;
Schneider and Kay, 1994; Jorgensen et al., 2000) (Table 1).
Understanding ecological systems in terms of thermodynamic
entropy has played an important role in theories of ecosystem
services, human-nature interactions, and systems ecology
(Odum, 1988; Jorgensen et al., 2000; Coscieme et al., 2013).
The reduction in entropy associated with processing energy
has been related to information (Patten, 1959; Margalef, 1985).
This form of information is explicitly related to the energy
required to obtain or produce the information, in a famous
solution to the physics problem of Maxwell’s daemon (Wicken,
1987; Parrondo et al., 2015). The thermodynamic concept of
entropy and information predates, and has been distinct from,
the information theoretic concepts (Wicken, 1987) (Table 1).
Work focused on understanding ecological systems in terms
of thermodynamics of non-equilibrium (living) systems has
moved away from using information in this context and instead
emphasizes self-organization and entropy reduction (Wicken,
1987; Schneider and Kay, 1994) (Table 1).

Information theoretic entropy
Information has also been defined relative to a concept of entropy
in information theory (Table 1, Box 4). This entropy is the
information theoretic entropy introduced by Shannon when the
parameter k= 1 (Box 4) (Shannon, 1948). The Shannon equation
can be used to estimate information by calculating the entropy
(H) of two states of a system (an observed state 1 and a reference
state R), and taking the difference in entropies:

I = HR −H1 (1)

Uncertainty is maximized, and information is minimized, when
the probability of the observed state of a system may be drawn
from a uniform distribution of possibilities (one in which any
state of the system is equally probable).

Though Shannon introduced his concept of syntactic
information using the term entropy, and the use of the term
entropy in this context does still persist (Jost, 2006; Sherwin et al.,
2017; Gaggiotti et al., 2018), information theoretic entropy is
not explicitly related to thermodynamic entropy (see Wicken,
1987 for an explanation of some of the core differences). Instead,
information theoretic entropy is often related to the concept of
equiprobability or disorder (without any explicit thermodynamic
value to disorder). However, somewhat conversely to the
trajectory of terminology in thermodynamics, the term entropy
in information theory has in many cases been replaced by
synonyms uncertainty (Dall et al., 2005; Gatenby and Frieden,
2006), indeterminacy (Ulanowicz et al., 2009), or complexity
(Wicken, 1987).

Reference States
Information is a reduction in uncertainty between two states of
the same system (Box 4). Central to this concept is the question,
which two states are being compared? These two states may be
defined in several ways. How they are defined influences how the
observer interprets the information measured—how it may be
related to energy, entropy and how it may be compared to other
estimates of information.

There are absolute reference states. For a change in
thermodynamic entropy, one reference state is thermodynamic
zero (no entropy) (Jorgensen et al., 2000; Kempes et al., 2017).
In early efforts, several researchers estimated the information
content in cells based on the number of binary steps required
to construct a biological structure from an unstructured
arrangement of elements. They then verified these estimates
using energetic methods, assuming that the information content
of the structure was convertible to energy content via its inverse
relationship to thermodynamic entropy. For example,Morowitz’s
estimate of 2 × 1011 bits in an Escherichia coli cell generally
matched estimates based on calorimetric analyses (Morowitz,
1955). For non-thermodynamic entropy, maximum entropy is
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another absolute reference state. Full information may also be
an absolute reference state. Full information is a known set of
all possible states of a system and their probability of occurrence
(Parrondo et al., 2015), but this one requires knowing the system.
Pioneering attempts to integrate information theory into ecology
drew on this idea of quantifying information by estimating
all binary differences in a realized biological or ecosystem
structure relative to all possible differences (Margalef, 1957, 1985;
Patten, 1959). However, it was recognized relatively early on that
knowing all possible states of an ecosystem was prohibitively
difficult (Patten and Odum, 1981), and that thermodynamic zero
is not always the most relevant reference state for comparing
information between different life forms far from equilibrium.
Approaches to estimate information in energetic terms had to
make assumptions about these probabilities (Patten, 1959).

When observers (scientists, or participants in systems) define
reference states other than absolute reference states, the accuracy
of an absolute estimate of information depends on how well
observers know (have a model) of the set of possible events
and their relative probabilities—the set of possible nucleic
acids, species, or letters in an alphabet. For entropy defined
in terms of any value of k other than the Boltzmann constant
in Equation 1 (Box 4), there is no explicit reference state to
ground comparisons of states of a system. Any reference state
can be specified by the recipient or user of the information
(Boxes 3, 4). The reference state could be another known state
of the system. For example, Jiang and Xu (2010) used the
Shannon entropy index and data on genome size to estimate the
information content of viruses and a variety of prokaryote and
eukaryotic cells by estimating all the binary differences between
their DNA structure (b = 2, Box 4), minus “junk DNA,” and the
reference state of a completely disordered arrangement of base
pairs but respecting the known probabilities of occurrence. They
calculated information values ranging between 3K and 340K
bits in viruses, 3.2 × 106 to 1.2 × 107 bits in bacteria taxa, and
1.5 × 107 to 8.4 × 108 bits in eukaryotes (Figure 1). Foraging
animals use internally defined reference states based on their
recent experiences of their environment and foraging activities
when they use Bayesian updating processes to forage or choose
mates in a dynamic environment (Dall et al., 2005; Valone, 2006).
Erill (2012) argued that evolution acts as the informed observer
for genetic information processes underlying evolution.

Examples of Information Measures in
Ecological Studies
The earliest major effort to take an information theoretic
perspective on ecological systems was Robert MacArthur’s
1955 paper on diversity and stability (MacArthur, 1955). He
introduced the Shannon entropy index to ecology to quantify
uncertainty in how energy might flow through a community
based on the number of possible energy flow pathways. In this
example, MacArthur was exploring the idea that uncertainty is
an attribute of the ecological system, in this case, a food web.
Within a food web, he considered a probabilistic “indeterminacy”
regarding the pathway in the network that energy might travel
between two nodes. He used the Shannon index to model p(xi)

(the central term, Box 4) as the proportion of energy flow
through a particular node in the food web (not the proportion
of individuals comprising that node, as we do today when we
apply the Shannon index to describe diversity in ecological
communities). His reference state was a uniform distribution
(maximum uncertainty). The advantage of using the concept of
entropy is that he did not need to know the exact energy flow
pathways at any given time, or even which is most probable.
He simply needed to know that the energy flow pathways are
indeterminate; that there is an entropy of the network. Stability
in a food web energy-flow network arises from indeterminacy
in energy flow (Ulanowicz, 2001), or in other words, from
uncertainty within the system about which pathway energy
will flow through. This approach considers indeterminacy is an
attribute of the network, not an attribute of an observer’s (the
scientist’s) knowledge of the network.

Since this initial pioneering use of information theory to
gain new insight in ecology, the Shannon index has been used
extensively to estimate diversity in ecological systems (Pielou,
1967; Jost, 2006). The conventional definition of Shannon
diversity (H’) based on individuals of different species in a species
assemblage is attributed to (Margalef, 1957, 1961; Ulanowicz,
2002). Estimates of diversity using Shannon or Simpson indices
are examples of the use of an information theoretic measure
of diversity, and these are applied to genetic systems or species
assemblages (Jost, 2006; Sherwin et al., 2017; Gaggiotti et al.,
2018). In fact, the development of metrics to measure diversity
as information using entropy-based measures (Hill numbers) has
played a key role in unifying understanding of diversity across
ecological and evolutionary paradigms (Gaggiotti et al., 2018).
Recent developments in the theory of using information metrics
for diversity estimates of biological systems allow comparison
of diversity across levels of an ecological system (e.g., genetic
diversity and species diversity for a single species assemblage)
(Gaggiotti et al., 2018).

Structural information has been an influential concept in
community, ecosystem, and systems ecology (Patten, 1959;
Margalef, 1985; Ulanowicz, 1997), in molecular biology (Gatenby
and Frieden, 2006; Erill, 2012; Sherwin et al., 2017), and
biodiversity science (MacArthur, 1955; Jost, 2006; Sherwin
et al., 2017). For example, research on non-equilibrium
thermodynamics has developed an understanding of ecosystem
services, and even information in human societies (Odum,
1988) that is explicitly related to thermodynamic entropy and
its related information (Jorgensen et al., 2000). Extensive work
has employed structural information concepts and theory to
understandmacrostates in biological and ecological systems (Sole
et al., 1996; Harte, 2011; Seoane and Solé, 2018).

Semiotic information is typically quantified in terms of the
outcomes of situations in which living systems are exposed to
sources of information that vary in their semantic content and
context. These procedures are common in chemical ecology,
where semiochemicals, such as pheromones and kairomones,
can elicit many direct and indirect effects on development
and survival within and among species. These effects can
cascade up to higher levels of ecological organization. For
example, predator kairomones can trigger cascading effects on
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the structure and functioning of aquatic food webs (Marino et al.,
2015), or pheromones in insect pest outbreaks affecting primary
production across large geographic areas. This information
science has advanced to application with the development
of databases of semiochemicals (http://www.pherobase.com/)
for arthropod pest management, among other uses. Other
approaches are used to assess the presence and importance
of semiotic information as it mediates behavior, demography,
and evolution (Dall et al., 2005; Schmidt et al., 2010). For
example, the empirical studies of the role semiotic information
plays in evolutionary or ecological processes have measured
the consequences of information processing for the state of a
receiving organism (Schmidt et al., 2010) such as its fitness at
individual (Mery and Kawecki, 2005; Donaldson-Matasci et al.,
2010) and population levels (Clobert et al., 2009; Fronhofer et al.,
2017; Jacob et al., 2017).

Bridging Syntactic and Semiotic
Information
Despite proliferation of information theory in several areas in
ecology, an empirical synthesis of information stocks and flows
is still elusive because different uses of information definitions
and reference states makes it impossible to compare many
estimates of entropy across systems. One issue is that the term
p(xi) can take a variety of values that impart distinct meanings
or interpretations on the resulting estimates of information.
For example, when applying Shannon information to estimate
the information contained in a genome or gene, the possible
elements (nucleic acids) are finite and known (now), and their
relative probabilities can be estimated (Jiang and Xu, 2010;
Sherwin et al., 2017). This allows for the definition of a standard
reference state for estimation of information in genetic systems
for which these probabilities are already known. For a given
species pool or sample, information theoretic methods now
allow comparison and quantification of diversity across levels
of biological organization (Gaggiotti et al., 2018). However,
even with these advances, the values of these estimates do
not constitute comparable estimates of information contained
in biodiversity, in the sense of syntactic information that we
are using here; a meta-analysis or synthetic assessment of
information contained in would be un-interpretable diverse
systems by comparing Shannon or Simpson measures. The
reason for this incomparability is that entropy measured using
the Shannon index depends on the estimate set of possible
species, and this depends on the completeness of sampling or
knowledge of the possibilities (e.g., species) in a system. Usually,
this information is lacking; the choice of possible species and
their relative probabilities is arbitrary because species pools are
difficult to establish and are scale dependent (Jost, 2006; Gaggiotti
et al., 2018). Approaches to estimating the full species pool
are rarely reported or standardized. Thus, it is rarely possible
to meaningfully compare reported values of Shannon diversity
among different communities (Jost, 2006).

Bridging the gap between modes of studying and measuring
syntactic and semiotic information also remains a major
challenge (Adams, 2003). We still lack the ecological theory to

relate the different measures and concepts of information to
each other; we cannot track or account for information stocks
and fluxes across studies or systems. For example, estimates of
Shannon diversity usingHill numbers are not clearly comparable,
in terms of information theories, to absolute references states that
might allow a test of their relationship to energetics (Ulanowicz
et al., 2009; Harte, 2011; Wagner, 2017; Hansen et al., 2018).
The two entropy concepts that underlie thermodynamic and
information theoretic definitions of information are not fully
and directly interchangeable (Wicken, 1987). We should not
view this gap to be a dead end; a similar situation occurs for
energy, which also takes a variety of forms (e.g., radiant, thermal,
chemical) that are difficult to quantify exactly and interconvert
in living systems. Yet, we use energy and energetic models
throughout ecological disciplines. As we have done with energetic
models, we must explore relationships between different forms of
information in nature. By attempting to understand the multiple
information processes in ecological systems, we may overcome
come of the challenges associated with diverse concepts and
connect information use and its consequences in living systems.

Ecological systems integrate structural and syntactic
information (Figure 1), just as they comprise multiple forms
of energy and material. In fact, the way we understand
ecological and evolutionary processes begins to bridge the gap
between semiotic and syntactic information concepts. Two of
the principles we propose for ecological knowledge explicitly
recognize information of both kinds as fundamental to ecological
systems (Box 1). We can continue to use thermodynamic,
information theoretic and biosemiotic theories to gain insight
about nature, and consistent with these principles (Box 4), do
so in research that allows us to explore relationships between
these information concepts. We believe such an approach
may lead to deeper understanding of the extent and nature
of relationships among the ways we observe and measure
information in different contexts for different reasons. To
help integrate information concepts with how we understand
ecological systems, we can consider how information flows and
accumulates in ecological systems. We refer to the flowing and
accummulation of information as “information processing.”

HOW IS INFORMATION A DYNAMIC PART
OF LIVING SYSTEMS?

What Is Information Processing?
Information is a dynamic feature of living systems because it is
stored, transmitted, received, and used (Gatenby and Frieden,
2006; Erill, 2012) (Figure 2). In other words, living systems
process information by combining semiotic and syntactic facets
of information that we have reviewed so far (Gatlin, 1972;
Maynard Smith, 2000; Farnsworth, 2013; Davies and Walker,
2016). Storage occurs in material or energy structures that
reflect the events that created those structures. Structure
stores information, thereby providing memory, about past
events. Neural networks, social structures, morphologies, and
learned behaviors are all examples of information storage,
and therefore subject to general properties and constraints
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FIGURE 2 | Four steps of information processing. (A) Information processing can occur within a closed feedback loop (a -> b -> c-> d), or by accepting information

from outside the loop (e -> a-> b -> c…) and can lead to information that is used by the processing systems outside the focal system (e.g., c -> h or c->g).

Information processing requires an observer, which often constitutes the reception and use of information. Inputs to any processing system may be information

instantiated in chemical, electrical, energetic, or material structures. (B) Coral reef fish use olfactory (Osterhinchus doederleini) (Gerlach et al., 2007) and auditory

(Gordon et al., 2018) information to relocate their home reef. The information stored in the sound or chemical patterns in the water are received by fish sensory

systems—themselves information systems—and used to guide behavioral responses such as swimming to the reef and remaining there, and the recruitment of fish to

these reefs contributes to structure at population and community levels.

of information systems. Transmission occurs when stored
information influences some informational, energetic or material
process. Reception is the decoding and integration of the
transmitted information in the receiving system or observer;
reception of semiotic information involves a decoding process
in which the state and previous information of the decoder
is relevant. Reception is the physical receipt of information
interacting with the state of the recipient. Use is the consequence

in terms of what is done with the information received.
Examples of information use include conversion of received
information to stored information (e.g., observation to memory),
and conversion of received information to work or function
(observation to use) (Gatenby and Frieden, 2006) (refs in
Figure 2). Transmission and reception are subjects of much
of information theory and the literature on their role in
communication and biology is vast (Dall et al., 2005; Chaine
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et al., 2013; Tkačik and Bialek, 2016). In this view, information
transmission occurs through “channels,” and the information
transmitted depends on the ability of the channel to transmit,
and the receiver to receive, a signal relative to noise. Information
transmission and reception can be modeled quantitatively using
equations relating the probability of information received relative
to what was possible based on a reference state (e.g., the
properties of the transmitting channel, the expectation of the
receiver, the context, etc.) (Figure 1).

When we consider information processing in living systems,
we can quantify syntactic information stored, transmitted and
received in objectively quantifiable units (Box 4). For example,
the potential information stored in the action potentials that
constitute neuronal communication (Tkačik and Bialek, 2016)
(Figure 1) and the amount transmitted by neurons in flies (de
Ruyter van Steveninck et al., 1997) has been estimated in bits,
and even compared to the amount of information encoded by
someone typing on a keyboard (Bergstrom and Rosvall, 2009).
The amount of information associated with a particular ATP-
binding phenotype is quantifiable (36.6 bits), and comparable
to the amount of information needed for any single amino acid
sequence [estimated at 345.8 bits; (Wagner, 2017)]. However,
these quantitative measures of information processing fail to
capture the content of information or the consequences of
information processing, which are more often measured in
terms of changes in the state or behavior of the user of the
information (Figure 2).

Information processing systems confer general attributes
and properties upon biological systems. These attributes
include plasticity, memory, self-regulation, amplification,
anticipation, cross-scale connections, and dependence upon
energy and materials. The same information content can
be stored in different structures and processed in different
ways at different stages of an information processing system
(Figure 2A). This property allows transfer of information among
entirely different material or energetic systems, allowing the
structure and materials of information processing systems to
be plastic without necessarily compromising information flow.
Information processing systems are typically characterized by
indeterminacy in channels, and plasticity in the particular flows
of information confer stability on the processing network (Patten
and Odum, 1981; Flack et al., 2006; Moses et al., 2016), much
as MacArthur showed in his idealized food web (MacArthur,
1955). Information processing systems can adapt to changing
conditions, often reversing structural patterns in ecological
networks (MacArthur, 1955; Ulanowicz, 2001; Flack et al., 2006;
Ulanowicz et al., 2009; Valdovinos et al., 2016). For example,
organismal processing systems such as visual or olfactory systems
allow organisms to sense their environment, and based on a
comparison of detected information with a reference state, act
on that information (Figure 2).

Information processing systems relate past experiences and
current conditions to anticipate likely future conditions so
that the processing system (e.g., an organism or physiological
system) can act accordingly (Rosen, 1985; Helm et al., 2013;
Kinmonth-Schultz et al., 2013). Plasticity allows information
processing systems to update, taking in new information

from the environment or about the state of the processing
system itself (Valone, 2006). For example, Fronhofer et al.
(2017) and Jacob et al. (2017) have recently demonstrated
experimentally that microbial organisms’ abilities to sense their
environment and select habitats where they are likely to perform
well affects movement of individuals in ways that facilitates
species’ range expansion dynamics and local adaptation, thereby
enhancing persistence in a changing environment. Many diverse
information processing systems have evolved to allow organisms
to perceive their environment and act upon that information.
These evolved systems allow organisms or groups of organisms
to use predictable environmental temporal patterns in day
length or temperature to anticipate changing environmental
conditions and to trigger developmental processes or other life
history events. The genetic underpinnings—though diverse—
of phenology and circadian rhythms constitute a memory of
past successes associated with regularly occurring environmental
conditions (Edgar et al., 2012; Kinmonth-Schultz et al., 2013).
Another example of anticipation is the case when trees release
and exchange infochemicals, often via mycorrhizal networks in
the soil, and used by other individuals to infer, for example, the
occurrence elsewhere of plant-insect interactions (especially pest
insects) to change physiologically to minimize a likely future pest
or disease attack (Barto et al., 2012).

The study of control and communication is the focus of
the field of cybernetics. Self-regulation of a system’s state
through feedbacks is another attribute characteristic of the
many information processing systems in ecology (Wiener, 1948;
Patten and Odum, 1981; Farnsworth, 2013; Krakauer et al.,
2014). For example, a self-regulating system is the physiological
maintenance of thermal homeostasis in mammals (Woods
and Wilson, 2013). Relevant to this review is the distinction
between first- and second-order cybernetics as, respectively,
the cybernetics of observed systems and the cybernetics of
observing systems (von Foerster, 1974; Scott, 2004). Self-
regulation in observing systems (e.g., organisms and their
aggregates) requires information processing and an internal
model of the world and of self to relate outputs to inputs
and maintain feedbacks among sets of distinct steps; cybernetic
systems also allow amplification of information as it is processed.
Low or trace elements of chemicals (e.g., kairomones produced
by predators) can elicit large behavioral, evolutionary and
demographic responses in prey as that information is processed
through physiological, neurological and genetic systems. Then,
indirectly, population dynamics and even trophic cascades may
be affected.

Information and the dynamics it elicits in ecological systems
result in its inter-dependence on energy and material systems.
The relationships between information and energy take a variety
of forms. Information is carried by variations in the spectra of
electromagnetic fields (e.g., light andmagnetism) that are directly
controlled by energy demanding organs of communicating
organisms. Information processing requires energy andmaterials
and is thereby subjected to physical and chemical constraints
(Odum, 1988; Laughlin et al., 1998; Parrondo et al., 2015;
Tkačik and Bialek, 2016; Kempes et al., 2017). Energy is
required to create, maintain, and operate infrastructure to
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process information. This need for energy and materials has
been considered as a “cost” of information. Information storage
infrastructure, such as a brain or a gene, can be metabolically and
materially expensive to build and maintain. The energetic and
material requirements to maintain an information processing
system may lead to changes in the network structure and
its information processing over time, particularly as the
external environment changes. Cyberneticmodels of information
highlight relationships between information processing and
system stability and energy fluxes in ways that are grounded
in first principles of physics (O’Neill et al., 1986; Parrondo
et al., 2015; Davies and Walker, 2016). In another approach,
emphasizing semiotic information, behavioral ecologists have
developed theoretical frameworks that relate use of private and
social information (Danchin et al., 2004; Gil et al., 2018) to
increased success in resource foraging and acquisition, suggesting
that energetic and material costs of information processing
systems may be balanced by resource gains. These examples
illustrate how information-energy relationships have emerged
as important in ecological studies; yet, as with other questions
concerning information and energy, fully understanding how
these different relationships fit together remains an important
challenge for research, both in ecology and in physics.

Information processing systems occur within traditional levels
of the ecological hierarchy (cells, organisms, populations), but
also across levels, thereby linking ecological and evolutionary
dynamics in what Koestler (1967) called a holarchy (Box 5).
Holarchic systems are hierarchies where there is not a strict
top-down flow of cause and effect; information flows up and
down across levels mediating the dynamics of a system (Kay,
1999). The holarchic nature of information processing networks
allows information to be stored and accessed at different levels of
organization than the level at which it used. For example, genetic
information in interaction with the environment may mediate
phenotypic variation in physiology, communication, and species’
interactions, with the emergent outcome that in turn affects
patterns of selection and evolution. Eco-evolutionary processes
are the direction expression of different modes of information
flow in holarchic structured ecosystems.

Information processing networks also have the capacity to
perform computations at the local level that have far-reaching
consequences at the macroscopic level. For example, insect
societies are able to perform complex behaviors, including
possibly computations, even though individual behaviors
are simple, and these society-level behaviors produce and
store information with emergence properties of long-range
order (Solé et al., 2016). Though many apparent examples of
information processing center on organisms and how they
receive external signals and act on them, information processing
also occurs within genetic, physiological, and neurological
systems process information using analogous processing systems
(Laughlin et al., 1998; Maynard Smith, 2000; Woods and Wilson,
2013; Tkačik and Bialek, 2016; Wagner, 2017) (Figure 2).
Information is also processed at levels of organization above
individuals (Frank, 2008) such as within social networks (Flack
et al., 2006; Aplin et al., 2015), and even in non-Darwinian
units such as communities (Gerlach et al., 2007; Farina, 2008;

Gordon et al., 2018) and ecosystems (Patten, 1959; Odum,
1988) (Figure 1B). A cybernetic perspective, in particular a
second-order perspective, challenges the heavily reductionist,
mechanistic view of ecology because it demonstrates that flows
of information among levels of organization mediate a living
system’s dynamics (Ulanowicz, 1997; Jablonka and Szathmary,
2004; Ulanowicz et al., 2006; Davies and Walker, 2016).

Are Organisms Causes or Consequences
of Information Processing?
Taking a synthetic perspective on information in ecological
systems reveals an additional duality: individual organisms are
drivers of information processing, but organisms and other
biological structures can be seen as emergent to the process
of information processing (Davies and Walker, 2016). Much of
mainstream ecological theory (e.g., Appendix 1) is predicated
on the view that organisms are the fundamental agent of
information processing and the consequences of information
processing are behavioral, fitness, and population outcomes
(Dall et al., 2005; Schmidt et al., 2010; Burns et al., 2011;
Gil et al., 2018). However, another theme in how information
theory has been used in biology, specifically to better understand
the origin of life, suggests that organisms, like other levels
of organization, may be emergent properties of information
processing systems (Schrodinger, 1944; Schneider and Kay,
1994; Kay, 1999; Krakauer et al., 2014; Marshall et al., 2017).
The information processing systems that allow organisms (or
agents) to emerge and persist are not restricted to any particular
biological scale. Therefore, there may be no reason to think that
information processing and the stability and evolvability that
comes with it are restricted to what we traditionally perceive
as an “organism,” based on physical attributes of organisms.
Indeed, recent discoveries on the holobiont (host-symbiont, host-
parasite relationships) nature of the organism blurs our notions
of individuality. There is substantial evidence for information
processing to have cross-scale consequences and connections,
and we will review these in the next section.

Together, the perspective that organisms are fundamental
units in ecological systems, combined with the view that
organisms are emergent properties of ecological information
processing systems, suggests that there are feedbacks between
information use and processing across scales of ecological
organization (Ulanowicz, 1997). This dual relationship between
information processing and the individual has been argued
to underlie major evolutionary transitions from unicellular
organisms to multicellular organisms as evolutionary units
(Szathmáry and Smith, 2002; Jablonka and Szathmary, 2004;
Jablonka and Lamb, 2005). In this way, information dynamics
and the informational, material and energetic efficiency and
stability they confer appear to have shifted the way evolutionary
biology recognizes elements of living systems as “organisms” in
recent decades. Some have extended the concepts of fundamental
units of selection even further, based on information processing
dynamics, to include kin, social groups, symbioses and even some
species associations (Ehrlich and Raven, 1964; Szathmáry and
Smith, 2002; Guimarães et al., 2011).
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Box 5 | Eco-evolutionary model of information use processing.

Here we outline a model taking into account the fitness consequences of the information acquisition, storage, communication, and use. We first introduce the maximal

information in an ecosystem accounting for the fitness of information traits of all phenotypes. In the second part of the box, we connect our maximal information

criteria into a quantitative trait dynamics model. From first principles of thermodynamics an important reference point of interest is the maximum entropy, and around

this point is a distribution of possible thermodynamic states (Table 1). For a living system defined by phenotypes with fitness, an analogously important reference

point is that all phenotypes have equal frequency and equal fitness, and we assume this holds maximal information in the ecosystem. Around this point, there is a

distribution of possible configurations of the ecosystem, with units of fitness. These distributions are intimately connected (Principle 2), but the former is abstracted

in the following model derivation of information processing.

Information processing ecosystems are comprised of traits that influence a component of fitness variation, particularly those involved in information acquisition,

storage, communication, and use (i.e., decision making) (Figure 2A). These we refer to as information processing traits, and as with other evolving traits, they are

involved in tradeoffs among one another and with traits associated with energy (e.g., metabolic traits) and materials (e.g., resource acquisition traits) (Principle 3).

The relationships among information traits, including the covariance matrix and the trait hierarchy taking into account processes across biological levels (Melián et al.,

2018), define the occurrence and nature of these tradeoffs (Jablonka and Lamb, 2005). Information processing traits have cost functions. For example, acquiring

and storing information about past environmental conditions and trait distributions could be adaptive during decision making (e.g., information usage), but there are

likely significant energy costs associated with gathering social, habitat or species interactions information (e.g. movement across a landscape) and storing it for later

use (e.g., metabolic costs of memory) (Giraldeau and Caraco, 2000).

Consider a population characterized by individuals each containing four information traits (acquisition, za, storage, zs, communication, zc, and use, zu), where the

mean trait value of the information traits contained in each individual zi at time t in site x is given by:

Ztix =
1

4
[za ← exp(caT )⊕ zs ← exp(cs9)⊕ zc ← exp(cc�)⊕ zu ← exp(cuϒ )], (1)

where ca, cs, cc, and cu represent the information cost of acquisition, storage, communication and use, respectively, and T , Ψ , �, and ϒ represent information

from past environmental conditions, storage energy cost, the cost of gathering social and habitat information, and information usage cost, respectively.

In this example, perhaps the metabolic cost of memory increases exponentially with the total amount of information stored over the lifetime of an organism, including

information acquired via movement through space and stored over time. These cost functions vary among traits, organisms types, individuals and development. Most

individuals will use information from the most recent and spatially restricted state, with the variance depending on the cost of each information trait. In the canonical

model of evolution, individuals use no information from previous states (i.e., strong costs), thus excluding adaptive strategies that involve information processing from

prior states.

We consider the fitness function of each individual as the sum of information processing traits and other traits that underlie fitness variation. We can build a fitness

functions based on these two components. For the non-information traits, fitness is often calculated from how well it matches a fitness optimum determined by

the environment, specifically an environment that is determined by trade-offs associated with energy and material traits. For the information traits there is also an

information environment, and we propose that its relationship between information processing traits, can also be a significant component of fitness variation (Principle

4). For example, individuals acquire information from their surroundings, and the canonical model does not incorporate how that information might be shared among

individuals in a way that could influence both individual and population mean fitness. The adaptive use of information might build over time in a population and become

a significant component of the fitness function (Principle 4). The fitness of individual i accounting for these two components can be expressed as:

Wt
ix =

1

2
[exp(−α(Ztix − θ tIx )

2
)+ exp(−γ (Ytix − θEx )

2
)] (2)

where Zt
ix
is the information trait value of individual i in time t and site x (Equation 1), θ t

Ix
is a measure of the optimal information content obtained from the population

at time t, Yt
ix
, is the non-information trait value of individual i in site x and θEx is the optimum determined by the environment. α and γ determine the interaction

sensitivity to deviations from the information content optimum and from the environmental optimum, respectively. The effects of information and non-information trait

correlations on fitness of each phenotype can be included by adding the covariance matrix with a multivariate fitness optimum (Melo and Marroig, 2015).

Modeling these two fitness components is a useful distinction and expansion of the canonical model. First, it adds more realism because information traits are

now explicit in the evolutionary process alongside other evolving traits (Principle 1). Second, it allows us to contrast models of evolution with and without evolving

information traits. This could also include models where the feedback between trait and the environment vary among traits. Information traits might have a more

explicit feedback or feedforward relationship with the environment than other traits. Third, it is possible that information traits are evolving differently from other traits

and experience different tradeoffs, such that modeling them separate from other traits might be a useful starting point. For example, information processing traits

likely arise from different hierarchical levels of biological organization (Principle 5). In a plant- pollinator system, for example, the interactions in a typical evolutionary

model do not incorporate the abilities of pollinator to acquire, access, and use prior foraging experience to make local decisions about which flowers to interact with.

As such, there is no variation in the population with respect to decision making based on individual memory and learning potential (Watson et al., 2016). We posit

that including such semiotic information into models of evolution will reveal new insights about natural populations, species interactions and the stability of ecological

communities. The model outlined above can be run for many generations and for each time step, the phenotypes after selection and changes driven by structural

modifications or plasticity in the information and the non-information traits can be used to update the fitness values (Melo and Marroig, 2015; DeLong and Gibert,

2016; de Andreazzi et al., 2018). Fitness will then determine the ecological dynamics and the total information content in the ecosystem. This total information content

for each scenario can be compared with our reference point with all types having both equal frequency and equal fitness (i.e., maximal information in the system).

An information theory perspective suggests that Darwinian
evolution is one fundamental form of information processing
that produces structure and persistence in living systems (Gatlin,
1972; Maynard Smith, 2000; Frank, 2012; Wagner, 2017). But,

evolution is not the only form of information processing
prevalent or necessary for ecological systems—evolution at levels
of organization other than the genetic population would be
consistent with information processing, by cellular structure and
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contents, by mixed species communities and social systems,
social learning, and thermodynamic information conversion to
energy (Margalef, 1957; Wicken, 1987; Odum, 1988; Ulanowicz,
1997; Farnsworth, 2013; Kempes et al., 2017). From the
perspective of life as non-equilibrium thermodynamic systems,
ecosystems are considered holarchic systems that grow and
accumulate information and organization over time (Schneider
and Kay, 1994; Kay, 1999; Jorgensen et al., 2000); evolution
is one mode of information accumulation, but not the only
mode. This fact has profound implications for how we
approach understanding ecology at this time becausemainstream
ecological theory is predominantly based on Darwinian models,
assumptions and concepts, resulting in a strong emphasis in
ecological theories on evolvable “Darwinian” units—individuals,
symbioses, etc. (Szathmáry and Smith, 2002; Jablonka and
Szathmary, 2004; Jablonka and Lamb, 2005). Taking the
perspective that information and information processing is
fundamental, and evolution is one manifestation of it, opens
up additional perspectives on how living systems grow, change,
and persist (Wicken, 1987; Ulanowicz, 1997; Frank, 2008;
Farnsworth, 2013).

ADVANCING THE ROLE OF INFORMATION
IN ECOLOGICAL UNDERSTANDING:
CHALLENGES AND OPPORTUNITIES

We have outlined five fundamental principles for ecological
science that integrate information and its role in living systems
(Box 1). The five principles provide a foundation upon which
new theories may be developed (or existing concepts and
theories rooted). To build a theory for how ecological systems
process information, conceptual and theoretical models need
to be articulated (we offer one such approach in Box 5), and
experiments will be needed to test their assumptions and
derived hypotheses and predictions. Building this theory is a
major challenge for ecological and evolutionary science. It will
require synthesis of existing frameworks in molecular ecology
and evolution, (semio)chemical ecology, behavioral ecology,
physiology, systems ecology, and thermodynamics (to name a
few). To inform this new direction, we can begin by drawing
upon the rich theoretical and empirical literature on the role
of information in evolution, behavioral ecology, and molecular
biology (Dall et al., 2005; Ulanowicz et al., 2009; Schmidt et al.,
2010; Farnsworth, 2013; Gil et al., 2018). We highlight two
immediate challenges here.

Develop and Employ Empirical Approaches
for Quantifying Information and Its Flow in
Ecological Systems at Multiple Scales
The five principles capture the importance of information
and its relationships with energy and materials. Yet,
studying information empirically has been extremely
difficult historically. Estimates of information content in
cells, organisms, communities, and ecosystems were in the
past severely constrained by infrastructure for measuring or
observing structural information or behaviors associated with

communication (Patten and Odum, 1981). Now, existing
approaches allow information to be estimated in quantifiable and
comparable terms (e.g., Jiang and Xu, 2010; Kempes et al., 2017)
(Figure 1). Using physics concepts and models (Kempes et al.,
2017), have recently estimated the thermodynamic information
content of the biosphere based on estimates of the information
content in cells. These approaches could be further developed
and adapted to quantify information in communities and
ecosystems, allowing tests of hypotheses related to principle 2.
Other approaches we now have that were not available until
recently were the computational and technological infrastructure
to sample sounds, colors, and chemicals in the environment, and
to analyze their possibilities and probabilities to then estimate
information. Expanding the use of these approaches to generate
estimates of information processing in living systems is an
essential next step to understanding how information processing
is driven by and changes energy and material processes as
outlined by principles 3 and 4. These can be used to quantify
information in ecological systems under different conditions
and to further develop empirical knowledge of where and when
information is processed.

An empirical, data-rich body of knowledge is essential to
produce a more general and testable theory of ecology. Theory
(Develop and Apply New Ecological Theory of Information) is
also essential, because even though it is possible to assemble more
and new kinds of data, we still face basic challenges comparing
these measurements. In some ways the capacity to measure
information (e.g., eDNA or remotely sensed observations) has
outpaced our ecological theory for how to use these observations
of information to understand ecological and evolutionary
dynamics. For example, for a freshwater planktonic food web,
it is possible estimate information content of the genomes of
Daphnia and its phytoplankton prey, of the kairomone chemical
indicator of a predator, of the interaction network and diversity
of the community (Figure 1). However, it is not yet clear how to
compare these to track information in the system over time or in
response to environmental change. Yet another challenge arises
when we consider the question, if information is defined by the
sender and receiver, how is a third party to find meaning in it?
This was precisely the problem faced by code breakers in World
War II. It was from this challenge that a solution was found to
objectively quantify information—this is was Claude Shannon’s
contribution, published in 1948. To build a more complete set
of observations of information and information processing in
ecological systems, we require newmethods and theories to guide
and interpret those methods.

Develop and Apply New Ecological Theory
of Information
Calls for the integration of information theories with ecological
theories have drawn on information concepts with distinct
historical roots: semiotic information (Barbieri, 2008; Schmidt
et al., 2010; Farina, 2011), structural information (Gatenby and
Frieden, 2006; Tkačik and Bialek, 2016) and genetic information
(Maynard Smith, 2000; Frank, 2008), and information criteria
to support inference (Harte, 2011). This duality of syntactic
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vs. semiotic is a basic dichotomy in the literature that needs
resolving if we are to develop an integrated theory of information
for ecological systems. More explicit consideration of the
interpretant—the scientist as the user of information, the
relational roles of living systems as they use information—may
bridge these information concepts (Atkin, 2006). Theories that
admit semiotic information, syntactic information and the role
of interpretants will integrate information approaches based on
entropy measures of the structure and flows in communities and
ecosystems (MacArthur, 1955; Margalef, 1957, 1985; Patten and
Odum, 1981; Ulanowicz, 1997), with approaches in behavioral
ecology and evolution (Maynard Smith, 2000; Dall et al., 2005;
Farina, 2008; Frank, 2008; Schmidt et al., 2010; Pijanowski et al.,
2011) that emphasize how organisms gather and use information
to mediate their development, and their interactions with the
environment that mediate their fitness (Holt, 2007). This joint
description of ecological information dynamics will capture
the principles outlined above and allow exploration of their
consequences for the ecological patterns and processes we study.
Resolving these gaps in information theory would then allow
other theoretical advances to model dynamics of information in
ecological systems (Gatenby and Frieden, 2006). Ultimately, this
theory will allow us to interpret information flows across scales
and how they map to fluxes of energy and materials and in so
doing connect behavioral and cognitive ecology with community
ecology and biogeography.

CONCLUSION

Ecological systems integrate information in multiple forms—
syntactic and semiotic—with diverse relationships to energy and
materials. We reviewed fundamental concepts in information
theories, distinguishing between syntactic information and
semiotic information. Information processing links these two
forms in living systems, connecting processes across scales in
holarchies. Taking this perspective on ecological systems may
advance efforts to unify understanding across scales of life by
drawing on knowledge systems related to different scientific
disciplines. This unification brings challenges—understanding
the relationships between different forms of information and
energy, and developing methods for observing, quantifying
and tracking information remain the focus of research efforts
across disciplines.

Understanding ecology in terms of information and its links
with energetic andmaterial processesmay help to bridge complex
ideas and literatures in ecology and information sciences. To
encourage such synthesis, we have articulated five principles for

ecological systems that integrate diverse concepts of information
in living systems (Box 1). Relating ecological ideas and questions
to these principles to build a more coherent understanding of life
is possible, and these principles lead to operational statements
and empirical testable hypotheses.

Scientific and philosophical thinking andwork has now placed
information firmly “as one of three elemental components of
existence (along with space/time and energy/matter)” (Atmar,
2001) in living and non-living systems, though this perspective
is only just re-emerging in ecological thinking. A synthesis
of information concepts in ecology is not that farfetched.
It is well underway and operational in molecular biology,
physiology and physics. Ecology has the opportunity to draw
from these recent advances, and see our world from a
new perspective.

A more robust and complete understanding of nature that
is not restricted to a single research paradigm or scale of
nature is not only an essential goal of science, but also critical
to understanding how our world is changing. Harries-Jones
(2009), drawing on the work of Douglas Bateson (Bateson,
1972), argued that the collapse of ecosystems follows the more
subtle collapse of communicative order. This is a plausible
hypothesis. Yet, modern ecological science is simply not
equipped—theoretically or methodologically—to even test this
hypothesis, nevermind to dismiss it. But we can remedy that,
with rapid growth in an integrated science of the dynamics
of information, energy, and materials in ecological systems. A
synthesis in ecology could begin with explorations and tests
of existing hypotheses about the role of information in living
systems. A more unified and multi-scale ecological science that
integrates information dynamics is not only possible but essential
to pursue.
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APPENDIX 1. EXISTING
ECOLOGICAL PRINCIPLES

Fundamental principles are broad statements about empirical
patterns and the processes that operate to create patterns
(Scheiner and Willig, 2008) that are central to any scientific
understanding expressed by theory. Fundamental principles are
not novel statements but instead are true and foundational
for modern accepted theories of ecology, often invoked to
understand new problems or to organize or synthesize diverse
ideas (Margalef, 1963; Allen and Gillooly, 2009; Gurevitch et al.,
2011). Here we present a few examples of recently published
principles of ecological science. These sets of principles are taken
to be uncontroversial and consistent with any basic ecological
text or training. Scheiner and Willig offer these 7 principles
as central to a general and broad theory of ecology. The
other two sets illustrate how ecological principles are typically
referenced as starting points to understand a more specific, novel
or applied subject. We find these are not foundational for an
ecological science for the future, changing world, because they
do not adequately reflect information processes that define living
systems and the relationships they mediate between information,
and energy and material flows.

7 Principles of the Theory of Ecology (Scheiner and Willig,
2008), articulated after an extensive review of recent progress in
ecological understanding:

1. Organisms are distributed in space and time in a
heterogeneous matter

2. Organisms interact with their abiotic and biotic
environment environments

3. The distributions of organisms and their interactions depend
on contingencies

4. Environmental conditions are heterogeneous in space
and time

5. Resources are finite and heterogeneous in space and time
6. All organisms are mortal
7. The ecological properties of species are the result of evolution

Principles of Conservation Biology cites these as the shared
principles with ecology (Groom et al., 2005).

1. Evolution is the basic axiom that unites all biology
2. The ecological world is dynamic and largely non-equilibrial
3. Human presence must be included in conservation planning

Three basic principles of ecology invoked to understand
ecogeoscience research (Allen et al., 2014)

1. Biological traits exist in a distribution due to species diversity
2. Biological traits are adaptable and dynamic

through time
3. Dynamically coupled relationships between species

and their environments create biotic-abiotic
feedback cycles.
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