
Review article

Metin Uengoer*, Silke Lissek, Martin Tegenthoff, Denise Manahan-Vaughan and
Harald Lachnit

Principles of extinction learning of nonaversive
experience

https://doi.org/10.1515/nf-2020-0013

Abstract: This review outlines behavioral and neurobiolog-

ical aspects of extinction learning,with a focus onnonaversive

experience. The extinction of acquired behavior is crucial for

readaptation to our environment and plays a central role in

therapeutic interventions. However, behavior that has been

extinguished can reappear owing to context changes. In the

first part of the article, we examine experimental strategies

aimed at reducing behavioral recovery after extinction of

nonaversive experience, focusing on extinction learning in

multiple contexts, reminder cues, and the informational value

of contexts. In the secondpart, we report findings fromhuman

imaging studies and studies with rodents on the neural cor-

relates of extinction and response recovery in nonaversive

learning, with a focus on ventromedial prefrontal cortex, hip-

pocampus, and neurotransmitter systems.
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Zusammenfassung: Dieser Artikel gibt einen Überblick

über verhaltens- und neurobiologische Aspekte der

Verhaltenslöschung (Extinktion) mit einem Schwerpunkt

auf nicht-aversive Lernerfahrungen. Die Löschung

gelernten Verhaltens ist entscheidend für Wieder-

anpassungsleistungen an unsere Umwelt und spielt

eine zentrale Rolle bei therapeutischen Interventionen.

Gelöschtes Verhalten kann jedoch aufgrund von Kon-

textänderungen wieder auftreten. Im ersten Teil des Arti-

kels stellen wir experimentelle Strategien vor, die darauf

abzielen, das Wiedererstarken gelöschten Verhaltens zu

reduzieren. Dabei stehen im Mittelpunkt die Extinktion in

multiplen Kontexten, Erinnerungsreize und der Informa-

tionswert von Kontexten. Der zweite Teil liefert eine

Übersicht über unsere Erkenntnisse zu neuronalen Kor-

relaten von Extinktion und Reaktionserholung, welche

auf Studien zur Bildgebung beim Menschen und Studien

mit Nagetieren beruhen. Hierbei liegt unser Schwerpunkt

auf dem ventromedialen präfrontalen Kortex, dem Hip-

pocampus und verschiedenenNeurotransmittersystemen.

Schlüsselwörter: Assoziatives Lernen; Kontext;

Erneuerungseffekt.

Extinction and the role of context

Our environment is usually quite predictable: it does not

rain when there is a cloudless sky; tasting your morning

coffee is preceded by visual and olfactory perceptions of

the beverage. Thus, certain events are related and often

occur in a particular order. Humans and other animals are

able to learn about event relationships, which allows us to

predict future events based on the presence of preceding

stimuli or actions (Lachnit et al., 2004; Melchers et al.,

2005). This ability for associative learning is a considerable

advantage for adaption and survival.

Classical conditioning and instrumental conditioning

are two basic forms of associative learning. In classical

conditioning (Pavlov, 1927), a neutral stimulus is repeatedly

presented before a motivationally relevant outcome. As a

result of these pairings, the neutral stimulus comes to elicit a

response that indicatesanticipationof theoutcome. Consider

Pavlov’s dog who salivated when hearing a bell that had

been repeatedly presented before feeding. Instrumental

conditioning (Skinner, 1938) reflects our ability to learn

about the consequences of our actions. Reward or punish-

ment that follows a behavior increases or decreases the

probability with which that behavior will occur in the future.

Classical conditioning and instrumental conditioning

are crucial for successful interactionswith our environment.
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However, they are also involved in the development of

maladaptive behavior. Both forms of associative learning

play key roles for a variety of psychopathological disorders,

including phobias, eating disorders, and drug abuse. Many

therapeutic treatments aimed at overcoming maladaptive

behavior are based on the principle of extinction learning

(Craske et al., 2014; Podlesnik et al., 2017). When a stimulus

or an action is no longer followed by the expected outcome,

we will cease the acquired behavior: Pavlov’s dog will

eventually stop salivating in response to the bell when

subsequent feeding is repeatedly omitted; a patient’s fear of

spiders will decrease significantlywhen repeatedly exposed

to spiders in the absence of actual danger.

However, extinction of acquired behavior does not al-

ways endure. Rather, acquired responses have beenobserved

to reappear after extinction under various conditions (Bou-

ton, 1993; Bouton et al., 2012). An intriguing example is the

renewal effect, which refers to the finding that changing the

context in which a behavior was extinguished can restore

(renew) the original response. In a typical renewal experi-

ment, the conditioned response is first established in a

particular context. Then, the acquired behavior is extin-

guished in a different context. During a final test, it has been

observed that the original response reoccurs either when the

individual is shifted to the context of initial conditioning or

when the individual is exposed to a third, novel context

(Bouton and Bolles, 1979). Renewal has also been observed

when behavioral acquisition and extinction take place in the

samecontext, but testingoccurs inadifferent context (Bouton

and Ricker, 1994). Analogous results have been reported for

human associative learning with motivationally insignificant

stimuli (Rosas and Callejas-Aguilera, 2006; Üngör and

Lachnit, 2006, 2008). Thus, the absence of the context of

extinction learning appears to be sufficient to induce a re-

covery of acquired behavior.

The renewal effect has rather challenging implications

for therapeutic treatments involving extinction learning. It

suggests that full expression of therapeutic success may be

limited to the therapeutic environment: the likelihood of

relapse increases outside the therapeutic setting.

Basic research has revealed several experimental stra-

tegies that reduce or even prevent the renewal effect. These

findings may provide important insights for improving the

long-term success of therapeutic interventions. One experi-

mental strategy that has received considerable attention

comprises extinction learning in multiple contexts (Craske

et al., 2014; Laborda et al., 2011). However, experiments

involving human associative learning (Bustamante et al.,

2016b) and instrumental conditioning in rats (Bernal-Gam-

boa et al., 2017) have indicated that the impact of this strat-

egymaydependon the typeof renewalprocedure: extinction

in multiple contexts resulted in weaker response recovery

than extinction in a single context, when testing for renewal

occurred in a novel context. However, when the test took

place in the context in which the response had been origi-

nally acquired, extinction in multiple contexts exerted no

attenuating effect on renewal (Bernal-Gamboa et al., 2017;

Bustamante et al., 2016b).

Another experimental strategy aimed to counter the

renewal effect is the application of so-called reminder cues,

which refer to discrete stimuli that are repeatedly pre-

sented during the extinction of a response. Using visual

reminder cues in human associative learning (Bustamante

et al., 2016a) and auditory reminder cues in instrumental

conditioning with rats (Nieto et al., 2020), experiments

have shown that the application of reminder cues during

renewal testing in a novel context completely prevented

the recovery of acquired responding. Although this level of

effectiveness is not reached when testing occurs in the

context of initial acquisition, reminder cues weaken the

degree of response recovery in this test situation (Nieto

et al., 2017).

The renewal effect is also influenced by experimental

manipulations that target the informational value of con-

texts. For many cases, contexts have low informational

value, in the sense that theyare irrelevant for the relationship

betweenevents– the delicious taste after biting into anapple

occurs regardless of whether you are at home or in your

workplace. However, in other cases, the relationship be-

tween events varies across contexts – having a lively con-

versation is welcomed at a party, but the same behavior is

considered inappropriate in a library. Thus, contexts can

carry relevant information about the current relationship

between events. Studies of human associative learning have

revealed that response recovery after extinction is weaker

when initial acquisition (Lucke et al., 2013) or extinction

(Lucke et al., 2014) was conducted in a context that had been

trained as being irrelevant for other stimulus-outcome re-

lationships, compared with a context trained as being rele-

vant. Measures of eye-gaze behavior (Lucke et al., 2013) and

other experimental approaches (Uengoeret al., 2018) suggest

that the impact of context information on context-dependent

learning is based on processes of selective attention.

Brain regions involved in extinction

and renewal of nonaversive

experience

Extinction learning can comprise aversive/maladaptive

(fear, phobias, addiction) or benign/appetitive elements.
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Extinction of aversive and maladaptive behavior has

received the greatest degree of scrutiny to date, and it has

become apparent that structures such as the amygdala,

prefrontal cortex, and hippocampus play important roles

in the processing of context in human subjects and in ro-

dents during extinction of fear responses (Kalisch, 2006;

Lang et al., 2009; Lingawi et al., 2019; Marek et al., 2019;

Milad et al., 2007) and in fear renewal (Hermann et al.,

2016). Extinction of appetitive, or nonaversive, learning in

humans (Lissek et al., 2013) and rodents (Mendez-Couz

et al., 2019) also involves the hippocampus.

Imaging studies investigating extinction related to

nonaversive learning in humans (Figure 1) have demon-

strated that the hippocampus and ventromedial prefron-

tal cortex (vmPFC) mediate renewal of acquired behavior

(Lissek et al., 2013). Both regions showed higher activa-

tion in participants who exhibited renewal than in those

who did not: the hippocampus encoded context infor-

mation during extinction, displaying even higher activa-

tion in response to a stimulus presented in a novel

context, while the vmPFC retrieved this information dur-

ing renewal testing to decide upon response recovery.

Recent studies on rats have demonstrated that informa-

tion processing in discrete hippocampal subfields

contribute to specific elements of context-dependent

acquisition, extinction, and renewal in an appetitive

spatial learning task (Mendez-Couz et al., 2019; see

Figure 1), indicating that the hippocampus may be

intrinsically involved in determining the specificity of the

learned response.

Figure 1: Paradigms for the study of

extinction learning in humans or in

rodents. A. In this paradigm, human

subjects are presented with a sequence of

trials each showing a compound of a food

item (cue) and the name of a restaurant

(context; e.g. “ZumKrug”). Each compound

is associated with a specific outcome.

Following an intertrial interval of 5–9 s, one

cue/context compound is presented for 3 s.

Then, a question appears asking the

participant to predict whether

consumption of the food in the restaurant

will cause stomachache in a hypothetical

patient, followed by a response period of

maximally 4 s. Feedback, providing the

correct answer, is then shown for 2 s

(Golisch et al., 2017). B. The task comprises

three phases: acquisition, extinction, and

test. In the AAA condition, all phases occur

in the same context, while in the ABA

condition, the extinction context differs.

During the test in both conditions, cues are

presented in the same context as during

acquisition (Golisch et al., 2017). C.

Examples of food images used in the task

(Golisch et al., 2017). D/E. In rodents,

nonaversive extinction learning can be

studied by examining associative spatial

learning and memory. Over a period of

days, rodents learn that a food reward can

be found (with low probability) at a specific

end of a T-Maze arm. The T-Maze has a

specific floor pattern, and a mild odor is

present at the endof both T-Maze arms and visuospatial cues are placedoutside of the T-maze, in visible range. The food reward is hidden in an

indentation in the floor near the end of the target arm. One day after the animals have reached at least 80% arm-choice accuracy, extinction

learning is examined either in the presence (D) or absence (E) of a context change. Here, the floor pattern, odor cues, and distal visuospatial

cues are changed. During extinction learning trials, no food reward is present. Renewal is assessed in the ABA paradigm (D) by returning the

animals to the original context. In the AAA paradigm (E), animals are simply reexposed to the same context (André et al., 2015b; Mendez-Couz

et al., 2019; Wiescholleck et al. 2014).
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In line with this, individuals with, and without, a

propensity for renewal differ in context-related hippo-

campal activation not only during extinction but also

during initial acquisition, where context is irrelevant (Lis-

sek et al., 2016). All individuals – regardless of their pro-

pensity for renewal – showed increased activation of the

posterior hippocampus in a novelty response to the pre-

sentation of only the context. However, only those partic-

ipants with a propensity for renewal maintained this

hippocampal activation when a cue was added to the

context, indicating processing of the context/cue

compound.

While the amygdala is consistently active during

extinction of fear responses (Hermann et al., 2020;Merz et al.,

2013), it is also active in extinction related to nonaversive

experience (Lissek et al., 2013). The finding supports a pro-

posedbroader role of the amygdala in aversive andappetitive

learning (Everitt et al., 2003; Knapska et al., 2006). Other

regions previously shown to be involved in fear extinction

(Sehlmeyer et al., 2009) that are regularly found to be active

during nonaversive extinction learning comprise the anterior

cingulate cortex (ACC) and insula, which exhibited higher

activity in participants with a propensity for renewal (Lissek

et al., 2013). This increased activity indicates that attentional

processing mediated by the ACC and processing of salient

events by the insula (Menon and Uddin, 2010) are more

pronounced in these participants.

Neurotransmitter systems involved

in extinction and renewal of

nonaversive experience

The creation of associative memories depends on cortical

and hippocampal plasticity processes that in turn critically

depend on the activation and regulation of neurotrans-

mitter receptor systems including glutamatergic N-methyl-

D-aspartate (NMDA) receptors (Hansen et al., 2017), gamma

aminobutyric acid (GABA) receptors (Swanson and Maffei,

2019), and catecholaminergic receptors (Hagena et al., 2016;

Hansen and Manahan-Vaughan, 2014). Although studies of

nonaversive extinction learning are less numerous than the

wealth of data availablewith regard to extinction of aversive

learning, it is apparent that neurotransmitter receptors that

are essential for cortical and synaptic plasticity serve to

modulate the efficacy of extinction of nonaversive learning

(Table 1).

Pharmacological manipulation of NMDA receptors

modulated extinction related to nonaversive learning in

human subjects when conducted within the same context

as for initial acquisition: strikingly both the NMDA receptor

agonist, D-cycloserine, DCS, (Klass et al., 2017) and the

NMDA receptor antagonist, memantine (Golisch et al.,

2017), enhanced extinction learning. This latter finding,

which was associated with dose-related effects of mem-

antine modulated by body mass index, suggests that fine-

tuning of the degree of activation of NMDA receptors is a

key facet of effective extinction learning. This may relate to

a possible differential regulation, by the ligands used in

these studies, of GluN2A- or GluN2B-containing NMDA re-

ceptors, which determine, in turn, the amplitude and

persistency of synaptic plasticity (Ballesteros et al., 2016).

Research on extinction and renewal related to non-

aversive learning in humans demonstrated a specific role

for dopamine (DA) receptors for extinction learning in a

novel context, whereas the DA antagonist, tiapride, when

administered as a single dose before the extinction phase,

impaired performance (Lissek et al., 2015b), and the DA

agonist, bromocriptine, enhanced extinction learning,

particularly in those individuals with a propensity for

renewal (Lissek et al., 2018). The role of specific DA re-

ceptors was scrutinized in rodent experiments: Studies of

extinction learning using a spatial appetitive task in rats

demonstrated that dopamine acting on the D1/D5 receptor

modulates both the acquisition and the consolidation of

Table : Overview of the effect of treatment with neurotransmitter receptor ligands on nonaversive extinction learning.

Ligand Human Rodent Reference

NMDAR agonist enhances n.t. Golisch et al., ; Klass et al., 

NMDAR antagonist enhances impairs Goodmann et al., 

DA agonist enhances no effect Andr�e and Manahan-Vaughan, ; Lissek et al., 

DA antagonist impairs D/D enhances Andr�e and Manahan-Vaughan, ; Lissek et al., b

D/D no effect

NA agonist enhances enhances Janak and Corbit, ; Lissek et al., a

NA antagonist n.t. no effect Andr�e et al., 

GABA agonist impairs impairs Corcoran, ; Corcoran and Maren, ; Lissek et al., a, 

Note: DA: dopamine, GABA: gamma amino-butyric acid, NA: noradrenaline, NMDAR: N-methyl-D-aspartate receptor, n.t.: not tested.

154 M. Uengoer et al.: Extinction learning of nonaversive experience



extinction learning. D2 receptors modulated context-

independent aspects of extinction learning (André and

Manahan-Vaughan, 2016).

The noradrenergic system also contributes to extinc-

tion learning. Administration of the noradrenaline reup-

take inhibitor, atomoxetine, to human subjects (Lissek

et al., 2015a) or to rats (Janak and Corbit, 2011) enhanced

extinction in nonaversive or appetitive tasks. In rats,

extinction learning within a spatial appetitive task was

unaffected by antagonism of beta-adrenergic receptors

(André et al., 2015), however, suggesting that either this

process is supported by alpha-adrenergic receptors or

attentional demand is a determinant of the involvement of

the noradrenergic system in extinction learning. Consistent

with the latter possibility, activation of beta-adrenergic

receptors is required for extinction learning in the absence

of a context change (André et al., 2015a). This latter process

is also supported by metabotropic glutamate receptors

(mGluR; André et al., 2015b).

Extinction related to nonaversive learning in human

subjects was impaired by pharmacological activation of

GABA receptors with the agonist lorazepam, irrespective of

the context in which extinction occurred (Lissek et al.,

2015a, 2017). These results correspond to animal studies

reporting impairments of extinction learning by local hip-

pocampal GABA receptor agonism (Corcoran, 2005; Cor-

coran and Maren, 2001).

Consistent with the likelihood that extinction learning

involves de novo encoding of associative experience

(Mendez-Couz et al., 2019), enhanced hippocampal acti-

vation during extinction learning and renewal testing was

observed after stimulation of noradrenergic, dopami-

nergic, or glutamatergic NMDA receptors in human sub-

jects before extinction training. In contrast, hippocampal

activity was reduced by dopaminergic antagonism and

GABA agonism (Lissek et al., 2015a, 2015b, 2017). Activa-

tion of the vmPFC was enhanced by noradrenergic stimu-

lation during extinction learning and by GABA agonism

during renewal testing and reduced by DA antagonism

during extinction in the acquisition context, but not in a

novel one. NMDA or noradrenergic receptor activation

increased activation of the dorsolateral prefrontal cortex

and inferior frontal gyrus, whereas the DA receptor

antagonism, GABA receptor activation, and NMDA recep-

tor antagonism reduced activation. In addition, both

noradrenergic and NMDA receptor stimulation increased

ACC and insula activation in extinction and renewal

testing, while GABA receptor agonism and the DA receptor

antagonism reduced activation in these regions (Lissek

et al., 2015a, 2015b; Klass et al., 2017).

Taken together, results obtained in pharmacological

studies on humans and rodents indicate that during extinc-

tion learning, dopamine, acting in the prefrontal cortex and

hippocampus, is involved in readjusting the cue-outcome

relationship in the presence of a novel context. Hippocampal

dopamine is important for the encoding and provision of

context information and is, thus, essentially involved in the

renewal effect. In contrast, prefrontal and hippocampal

NMDA receptors appear to be specifically involved in the

modification of established stimulus-outcome associations

in the context of initial acquisition. Moreover, the norad-

renergic system is involved in themodificationof established

associations during extinction learning, regardless of

context, underlining the supposed importance of attentional

processes in extinction learning.

Catecholaminergic, GABAergic, and glutamatergic

regulation of extinction learning is not restricted to non-

aversive experience. Noradrenaline acting on beta-

adrenergic receptors in the amygdala impairs extinction of

fear, whereas noradrenaline acting on alpha-adrenergic re-

ceptors in the prefrontal cortex enhances it (Likhtik and

Johansen, 2019). Furthermore, the robustness of fear mem-

ory and consequently the effectiveness of extinction

learning is regulated by dopamine release from the central

tegmental area acting on key brain circuitry such as the

hippocampus, prefrontal cortex, and amygdala (Likhtik and

Johansen, 2019). GABAergic transmission and mGluR and

NMDA receptor activity in these structures also modulate

fearmemory and fear extinction (Courtin et al., 2014; Kaplan

andMoore, 2011;Myers et al., 2001;Walker andDavis, 2002).

In conclusion, despite their clear differences in terms

of behavior and cognition, extinction learning of aversive

and nonaversive experience shares many functional

similarities in terms of the brain regions that are engaged

by these processes and the neurotransmitter receptors

that mediate the behavioral outcome. This suggests that

knowledge gained through studies of processes that

optimize extinction learning in an experimental setting

harbors significant potential in translation into thera-

peutic strategies for maladaptive behavior.
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