Principles of Graph Drawing

David Eppstein

Univ. of California, Irvine
Computer Science Department

Graph drawing is...

... about combinatorial, not numerical data

A graph

Not a graph

Graph drawing is...

... about combinatorial, not numerical data
... a way to communicate specific graphs to others

Vertices = hexagon triangulations
Edges $=$ flips between triangulations

Graph drawing is...

... about combinatorial, not numerical data
... a way to communicate specific graphs to others

The 13 possible weak orderings on a set of three elements

Graph drawing is...

... about combinatorial, not numerical data
... a way to communicate specific graphs to others

The three-dimensional binary De Bruijn graph

Graph drawing is...

... about combinatorial, not numerical data
... a way to communicate specific graphs to others

5	3			7	6		2	9
1	2	6	3	9		5	7	
	7	9	5	2			6	3
2	6	3		5		9	4	7
7			2		9	3	5	6
9	4	5	7	6	3	2	8	1
3		4	6	8	5	7	9	2
6	9	7	4	3	2			5
	5	2	9	1	7	6	3	

A graph in which each edge connects the only two cells that can hold a given digit in some row, column, or 3×3 block of a Sudoku puzzle

Graph drawing is...

... about combinatorial, not numerical data
... a way to communicate specific graphs to others
... a collection of knowledge, algorithms, and software for efficiently and robustly finding legible layouts of graphs

\square

About

News
Gallery
Documentation
Theory
Bugs
MailingList
License
Resources
Credits

Graphviz - Graph Visualization Software

Graph Visualization

Graph visualization is a way of representing structural information as diagrams of abstract graphs and networks. Automatic graph drawing has many important applications in software engineering, database and web design, networking, and in visual interfaces for many other domains.

Graphviz is open source graph visualization software. It has several main graph layout programs. See the gallery for some sample layouts. It also has web and interactive graphical interfaces, and auxiliary tools, libraries, and language bindings.

The Mac OS X edition of Graphviz, by Glen Low, won two 2004 Apple Design Awards.
The Graphviz layout programs take descriptions of graphs in a simple text language, and make diagrams in several useful formats such as images and SVG for web pages, Postscript for inclusion in PDF or other documents; or display in an interactive graph browser. (Graphviz also supports GXL, an XML dialect.)

Graphviz has many useful features for concrete diagrams, such as options for colors, fonts, tabular node layouts, line styles, hyperlinks, and custom shapes.

Graph drawing is.

... about combinatorial, not numerical data
... a way to communicate specific graphs to others
... a collection of knowledge, algorithms, and software for efficiently and robustly finding legible layouts of graphs
... an active and welcoming international research community with a 15-year-old annual peer-reviewed research conference

Graph Drawing 2008 Heraklion, Crete September 21-24
http://www.gd2008.org/

Submission deadline May 31

Topics include

- Human legibility of drawings
- Algorithms for making drawings
- Graph drawing software systems
- Application areas (e.g. social nets, bioinformatics) - Mathematics of graph embeddings

Graph Drawing 2009 will be in Chicago (I am program co-chair)

The $16^{\text {th }}$ International Symposium on Graph Drawing
21-24 September 2008 - Heraklion, Crete, Greece
http://www.gd2008.org

IMPORTANT DATES

Submission Deadline: May 31, 2008

- Notification of Acceptance: July 15, 2008
- Poster Submissions: July 31, 2008
- Graph Drawing Contest Submissions: September 15, 2008
- Symposium on Graph Drawing: September 21-24, 2008

PROGRAM COMMITTEE

Ulrik Brandes	Univ. of Konstanz, GERMANY
Walter Didimo	Univ. Perugia, ITALY
Peter Eades	NICTA, Univ. of Sydney, AUSTRALIA
David Eppstein	UC Irvine, USA
Robert Gentleman	FHCRC, USA
Seok-Hee Hong	NICTA, Univ. of Sydney, AUSTRALIA
Michael Kaufmann	Univ. Tubingen, GERMANY
Stephen Kobourov	Univ, Arizona, USA
Yehuda Koren	AT\&T Labs, USA
Jan Kratochvil	Charles University, CZECH REPUBLIC
Kwan-Liu Ma	Univ. of Califomia-Davis, USA
Henk Meijer	Roosevelt Academy, NETHERLANDS
Kazuyuki Miura	Fukushima Univ., JAPAN
Tamara Munzner	Univ. of British Columbia, CANADA
Janos Pach	City College and Courant Institute, USA
Maurizio Patrignani	Univ. Roma III, ITALY
Natasa Przulj	UC Irvine, USA
Antonios Symvonis	Nat. Tech. Univ. Athens, GREECE
loannis G. Tollis	FORTH-ICS and Univ. of Crete, GREECE, (ca
Stephen Wismath	Univ. of Lethbridge, CANADA
GOLD SPONSOR	SILVER SPONSORS

INVITED SPEAKER
Roberto Tamassia Brown Univ., USA
ORGANIZING COMMITTEE
Theano Apostolidi FORTH-ICS, GREECE
Emilio Di Giacomo Univ. Perugia, ITALY, (publicity chair)
Kiriaki Kaiserli FORTH-ICS, GREECE
Maurizio Patrignani Univ, Roma III, ITALY, (co-chair) $\begin{array}{ll}\text { Maria Prevelianaki } & \text { FORTH-ICS, GREECE } \\ \text { loannis G. Tollis } & \text { FORTH-HCS and Univ. of Crete, GREECE, (} 0 \text {-chair) }\end{array}$ Vassilis Tsiaras FORTH-ICS and Univ. of Crete, GREECE

I. Different drawings of the same graph will communicate different things about it

Example:
Graph with 24 vertices, describing the different ways of choosing a sequence of three out of four items

$$
\begin{array}{llllll}
(1,2,3) & (1,2,4) & (1,3,4) & (1,3,2) & (1,4,2) & (1,4,3) \\
(2,1,3) & (2,1,4) & (2,3,1) & (2,3,4) & (2,4,1) & (2,4,3) \\
(3,1,2) & (3,1,4) & (3,2,1) & (3,2,4) & (3,4,1) & (3,4,2) \\
(4,1,2) & (4,1,3) & (4,2,1) & (4,2,3) & (4,3,1) & (4,3,2)
\end{array}
$$

36 edges, connecting pairs that differ in a single position

$$
(1,2,3)-(1,2,4) \quad(1,2,3)-(1,4,3)(1,2,3)-(4,2,3) \text { etc. }
$$

Drawing 1: Use triples as spatial coordinates, project onto the plane

Direction of edge: which position of 3 -tuple changes

Length of edge: which two values of 3-tuple change

Shows plenty of symmetry
Has a natural embedding onto a 3d grid, edges are axis-parallel
("The Topology of Bendless Three-Dimensional Orthogonal Graph Drawing", E 2008, submitted)

Drawing 2: All edges unit length, 120 degree angles Direction of edge set by the changed pair of values (not their positions!)

Forms an infinite repeating pattern in the plane

Small hexagonal cycles form a larger repeating hexagonal tile

Highly symmetric

Topologically, gluing opposite edges of a hexagon forms a torus

Can we embed this torus into 3d space?

Drawings 3-4: Two different 3d torus embeddings

Closer connection to hexagonal tiling of the plane

More symmetric, shows decomposition into two 12-cycles

Drawing 5: Second torus, back into the plane

Generalized Petersen graph (outer cycle connected to inner star, Watkins 1969)

12-fold rotational symmetry
To walk around a 12-cycle: replace 3-tuple positions 1-2-3-1-2-3-1-2-3-1-2-3

Two obvious 12-cycles
Four other 12-cycles cover the rest of the graph

Drawings 6-7: Six 12-cycles form an abstract topological surface with 4 handles

As an infinitely repeated tiling of the hyperbolic plane

Rough mockup of a 3d embedding (six vertices per outer cube, three edges per connecting arm)

Drawing 8: Group together 3-tuples that are cyclic rotations of each other

Triple cover of a cube

12-cycles collapse to cube faces

Drawing 9: Hamiltonian cycle (attributed by Coxeter to Tutte)

Drawing 10: Projective configuration (Zacharias 1941)
12 points (outer triangle, 2 inner triangles where outer trisectors meet, 3 centers of perspective of pairs of triangles)

12 lines (3 trisectors, 9 lines through corresponding points of two triangles)
Graph with 24 vertices (one per point or line), 36 vertices (point-line incidences)

II. Special families of graphs should be drawn using a drawing style specific to that graph family

E.g., planar graphs should be drawn without crossings

Trees should be drawn so that they don't separate the plane
Symmetric graphs should be drawn symmetrically

If it's important that a graph has certain properties, it's important to communicate those properties in a drawing, and use a drawing style from which they are easily seen to hold

What happens when you use a general-purpose graph drawing technique on a graph with some special structure?

Same graph as before
Uses algorithm for drawing any graph with degree ≤ 4 in two non-crossing layers [Duncan, E., Kobourov 2004]

Very legible, but looks like any other similar size 3 -regular graph

No symmetry or other structure is visible

Example (related to joint work with Jean-Claude Falmagne): two-dimensional learning spaces

Consider a set S of concepts that a human learner might learn Some concepts may not be learnable until some prerequisites known

Initially given two different orderings by which all concepts can eventually be learned (any prefix is a feasible state of knowledge)
(two textbooks, learner might read part of one then stop)
Form other states by unions of prefixes from both sequences
(read one text, stop, switch to other text)

Graph:
vertices $=$ feasible states of knowledge edges $=$ two states that differ in a single concept

Example (related to joint work with Jean-Claude Falmagne): two-dimensional learning spaces (continued)

Two initial learning sequences:

$$
\begin{aligned}
& \text { a-b-c-d-e-f } \\
& \text { d-b-f-c-b-e }
\end{aligned}
$$

All others formed by union of prefixes of the two e.g. $\{a, b, d, f\}=\{a, b\} u\{d, b, f\}$

Example (related to joint work with Jean-Claude Falmagne): two-dimensional learning spaces (continued)

Theorem:

G is the graph of a learning space formed from two learning sequences

> if and only if

G has a planar drawing in which

- all faces are convex quadrilaterals
- each quad has axis-aligned bottom and left sides
- the drawing has a single top right vertex and a single bottom left vertex
[E, Graph Drawing 2006; J. Graph
Algorithms \& Applications, to appear]

Proof sketch:

Show drawing of this type must correspond to a learning space via arrangements of quadrants:

Translate copies of the negative quadrant

No two translates share a boundary line

Adjacency of regions = graph of upright-quad drawing = two-sequence learning space

From arrangements to upright-quad drawings

Represent each region by its maximal point
(for the unbounded region, choose a point dominating all other chosen points)

Connect points representing adjacent regions

Result has all faces convex quadrilaterals, bottom \& left axis-aligned

From upright-quad drawings to arrangements

Define zone = set of cells sharing bottom-top, left-right, or top-right edges
Each face belongs to two zones
Cover by quadrant containing all lower left vertices (w/tie break rules)

From two-sequence learning spaces to upright-quad drawings

x-coordinate of set $S=$ position of first unknown concept in first sequence
y-coordinate of set $S=$ position of first unknown concept in second sequence

The states from the two sequences form the lower left and upper right boundaries of the drawing
(Plus additional optimizations to allow states to share coordinate values creating a more compact drawing)

a not in S b not in $S c \operatorname{not} \operatorname{in} S$ dnot in S e not in S f not in S

From arrangements to two-sequence learning spaces
Form one concept per quadrant
First sequence =
order of quadrants along bottom of arrangement drawing

Second sequence = order of quadrants along left of arrangement drawing

Region corresponds to the set of quadrants below or to the right of it

Quadrants to right = prefix of first seq Quadrants below = prefix of second seq

So regions correspond with all possible unions of prefixes of the sequences

III. Free parameters of a drawing style should be identified and optimized for legibility and aesthetics

Typical parameters include:
vertex position
vertex size and shape
bends (if allowed) or curves in the edges
vertex color
edge color over/undercrossing choice
label placement, font, size

Using edge color to avoid crossings

"Geometric thickness": min number of colors needed in a straight-line drawing such that each color forms a planar subgraph
[Dillencourt, E., Hirschberg, Graph Drawing 1998 \& JGAA 2000; various other papers]

Using vertex color to enhance contrast between adjacent regions

[Dillencourt, E., Goodrich, Graph Drawing 2006]

Goals:

- Show (possibly disconnected) regions of partition
- All regions should have distinctive colors
- Adjacent regions should be highly contrasting

Using vertex color to enhance contrast between adjacent regions

[Dillencourt, E., Goodrich, Graph Drawing 2006]

Method:

- Form a graph representing regions and adjacencies
- Place vertices in 3d color space (LAB used so that geometric distance correlates to human visual distinctiveness)
- Simulate spring system to spread vertices from each other
- Use stronger spring force for adjacent vertex pairs
visualization of partitioned data matrix for a distributed computing application

Using vertex color to enhance contrast between adjacent regions

[Dillencourt, E., Goodrich, Graph Drawing 2006]

visualization of partitioned data matrix for a distributed computing application

Random sRGB colors

Optimized LAB colors

Optimal angular resolution for tree drawings

[Carlson, E., Graph Drawing 2006]
"Angular resolution": sharpest angle between adjacent edges in a drawing
Tree drawings in which any leaf-leaf chain spans ≤ 180 degrees (so extending the leaf edges to infinity partitions the plane into convex cells)

IV. When free parameters can be used to convey useful information, do so

For tree drawing with optimal angular resolution, any choice of edge length leads to optimal drawing
E.g., choose edge length to show distance from center:

Conclusions

A picture is worth 1000 words:
Graph drawing is an important mode of communication for the graphs arising in your work (social networks, learning spaces, etc)

Application specific knowledge leads to better graph drawings:
To make good drawings, you need to understand what structure in the graph you want to convey and what kind of drawing will best convey it

To do my graph drawing research well, I need to understand what types of graphs come up in your applications, what you want to communicate about them, and what kinds of drawings you have difficulty creating

