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Abstract—This paper treats the subject of fundamental
guidance principles related to motion behaviour in a 2D plane
and a 3D space. In this context, the concept of guidance-based
path following is defined and elaborated upon. Its specifics
are contrasted towards the already established concept of
trajectory tracking. Specifically, guidance laws are developed
at an ideal, dynamics-independent level to yield generally valid
laws uninfluenced by the particularities of any specific dynamics
case. These laws can subsequently be tailored to actual target
systems like e.g. watercraft or spacecraft, for instance in
a cascaded setting. The approach renders all regular paths
feasible. Possible applications and extensions to the guidance-
based path following scheme are also briefly suggested.

I. INTRODUCTION

The ability to maneuver an actual target system like a
watercraft or a spacecraft accurately along a desired geo-
metric path is a primary objective for most applications.
An objective like satisfying some desired dynamic behaviour
while traversing the path would consequently be viewed upon
as secondary. If given the freedom to construct a desired
geometric path for an actual system to converge to and
follow, the choice of a solution strategy to fulfill the task
at hand would traditionally stand between the concepts of
trajectory tracking (TT) and path following (PF).
To illustrate the difference between these two schemes,

we will employ the notion of an actual particle and a path
particle. An actual particle is a position variable belonging
to an actual system. It represents the position variable whose
goal is to converge to and follow the desired geometric path.
A path particle, on the other hand, is a position variable
belonging to the desired geometric path, restricted to move
along it at all times.
The TT scheme entails the simultaneous construction of

the geometric path and the dynamic behaviour of the path
particle. Hence, it inherently mixes the space and time
assignments into one single assignment, demanding that any
actual target system is located at a specific point in space at
a specific, pre-assigned instant in time. Since the dynamic
assignment is usually based on some a priori assumptions

1This work was supported by the Research Council of Norway through
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of the actual system capabilities to ensure its feasibility, it
must be manually reparametrized if something should occur
that would render the actual system incapable of satisfying
it. And if no such tedious reparametrization is performed,
the path particle is essentially left to propagate on its own,
rendering the path system oblivious to the status of the actual
system. As such, the TT scheme represents a feedforward,
open loop type of solution at the path system-actual system
interaction level.
The PF strategy, on the other hand, involves the sepa-

rate construction of the geometric path and the dynamic
assignment; emphasizing spatial localization as a primary
task objective, while considering the dynamic aspect to be of
secondary importance, sacrificable if necessary. This clearly
represents a more flexible and robust alternative than the TT
scheme. Specifically, this paper treats a PF concept where
the dynamic assignment is associated with the actual particle,
and where the path particle is designed to evolve according
to the actual particle. Thus, the path particle can never leave
the actual particle behind. This entails a closed loop type
of solution to the problem at hand, with the path system
adjusting itself to the actual system. This type of scheme
requires that guidance laws are applied to guide the actual
particle towards the geometric path, stemming from the fact
that the path system now lacks a self-propelled attractor as in
TT. Consequently, the term guidance-based path following
is chosen to describe the concept. The guidance laws should
also ensure that the convergence behaviour of the actual
particle towards the path becomes elegant and natural, which
is usually not the case when applying a traditional TT
scheme. This is especially relevant for mechanical vehicle
systems.

A. Previous Work

Pioneering work on the type of path following scheme un-
der consideration can be found in a paper by Claude Samson
[1], where the author considers path following for wheeled
mobile robots. Omitting a dynamic model, the treatment
is of a purely kinematic nature, making it comparable to
the results of this paper. However, due to Samson’s choice
of the path particle as the exact projection of the actual
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particle onto the desired geometric path, the results in [1]
are only local. Also, Barbalat’s lemma has to be applied in
the stability analysis due to the way in which the guidance
laws are chosen, entailing that only a convergence result can
be concluded. However, the paper has served as an invaluable
reference and guideline for most of the following work on
the subject.
The initial inspiration for the work reported here can be

traced back to three papers; namely those of Rysdyk [2],
Pettersen and Lefeber [3], and Lapierre et al. [4]. They all es-
sentially treat the problem of guidance-based path following,
although the approaches could seem somewhat different at
first sight. All consider the control of specific actual systems
with distinctive dynamics, and as such intermix the core
concepts of the guidance-based path following scheme with
the control design. While [2] treats unmanned aerial vehicles
(UAVs), [3] treats marine surface vessels (MSVs), and [4]
treats autonomous underwater vehicles (AUVs). Relevant
applications can also be found in Do and Pan [5], Encarnação
and Pascoal [6], and del Río et al. [7].

B. Main Contribution

The main contribution of this paper is to develop a
theoretical framework for the concept of guidance-based path
following, which renders all regularly parametrized paths
feasible. By extracting and extending the core concepts of
application-specific cases, the essence is lifted out of any
particular dynamic setting and onto an ideal level, to be
able to state and analyse it properly. Hence, the resulting
theory becomes generally valid. For the sake of intuition and
page limitation, the paper only considers the planar 2D case
and the spatial 3D case. The concept is nevertheless readily
extendable to n-dimensional systems, and will be followed up
with a more in-depth consideration in a separate publication.

II. PROBLEM STATEMENT
The primary objective in guidance-based path following is

to ensure that the actual particle converges to and follows the
desired geometric path, without any temporal requirements.
The secondary objective is to ensure that the actual particle
complies with a desired dynamic behaviour. By then using
the convenient task classification scheme of Skjetne [8], the
guidance-based path following problem can be expressed by
the following two task objectives:
Geometric Task: Make the position of the actual particle
converge to and follow a desired geometric path.
Dynamic Task: Make the speed of the actual particle
converge to and track a desired speed assignment.
The geometric task implies that the actual particle must

move at non-zero speed towards the path particle associated
with the desired geometric path, and that the path particle
in some sense also must move towards the actual particle
despite being restricted to its path. The dynamic task then
states that the dynamic (speed) assignment is associated with
the actual particle, inherently implying that its motion must

be guided by guidance laws if the geometric task is to
be fulfilled. Also, note that when both task objectives for
some reason cannot be met simultaneously, the geometric
one should have precedence over the dynamic one.

III. PRINCIPLES OF GUIDANCE IN 2D AND 3D
Here, the guidance laws required for solving the guidance-

based path following problem are developed. We will con-
sistently employ the notion of an ideal particle, which is to
be interpreted as an actual particle without dynamics (i.e. it
can instantly attain any assigned motion behaviour) free to
move anywhere. By disregarding the dynamics, the guidance
laws can be developed and stated in their purest form. This
makes the theory as general as possible, which enables an
extension to any desirable dynamics case at a later stage.

A. Assumptions

The following assumptions are made throughout the paper:
A.1 The desired geometric path is regularly parametrized.
A.2 The speed of the ideal particle is lower-bounded. Note

that it is non-negative by definition.
A.3 The guidance variables are positive and upper-

bounded, i.e.4i( ) h0 4i max] 0, I, where
I is an index set with appropriate dimension.

B. Principles of Guidance in 2D

This section develops the guidance laws required to solve
the planar 2D case of the guidance-based path following
problem.
Denote the inertial position and velocity vectors of the

ideal particle by p = [ ]
> R2 and ṗ = [ ˙ ˙]

> R2,
respectively. The velocity vector has two characteristics; size
and orientation. Denote the size by = |ṗ|2 = (ṗ>ṗ)

1
2 (the

speed), and let the orientation be characterized by the angular
variable:

= arctan

µ
˙

˙

¶
, (1)

which is denoted the azimuth angle. These are the variables
that must be manipulated in order to solve the problem at
hand as far as the ideal particle is concerned. Since it is
assumed that both and can attain any desirable value
instantaneously, rewrite them as d and d.
Then consider a geometric path continuously parametrized

by a scalar variable R, and denote the position of its
path particle as pp( ) R2. Consequently, the geometric
path can be expressed by the set:

P = ©p R2 | p = pp( ) R
ª
, (2)

where P R2.
For a given , define a local reference frame at pp( )

and name it the PATH frame (P). To arrive at P, we need to
positively rotate the INERTIAL frame (I) an angle:

p( ) = arctan

µ 0
p( )
0
p( )

¶
(3)
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about its -axis, where the notation 0
p( ) =

dxp
d ( ) has

been utilized. This rotation can be represented by the rotation
matrix:

Rp z( p) =
cos p sin p

sin p cos p

¸
, (4)

where Rp z (2). Consequently, the error vector be-
tween p and pp( ) expressed in P is given by:

= R>
p (p pp( )), (5)

where = [ ]> R2 consists of the along-track error
and the cross-track error ; see Figure 1. The along-track
error represents the (longitudinal) distance from pp( ) to p
along the -axis of the PATH frame, while the cross-track
error represents the (lateral) distance along the -axis. Also,
recognize the notion of the off-track error | |2 = 2 + 2.
It is clear that the geometric task is solved by driving the
off-track error to zero.
Consequently, by differentiating with respect to time,

we obtain:

˙ = Ṙ>
p (p pp) +R

>
p (ṗ ṗp), (6)

where:
Ṙp = RpSp (7)

with:
Sp =

0 ˙ p
˙ p 0

¸
, (8)

which is skew-symmetric; Sp = S>p . We also have that:

ṗ = ṗdv = Rdvvdv, (9)

where:

Rdv = Rdv z( d) (10)

=
cos d sin d

sin d cos d

¸
(11)

with Rdv (2) represents a rotation matrix from the
INERTIAL frame to a frame attached to the ideal particle
with its -axis along the velocity vector of the particle.
Let this frame be called the DESIRED VELOCITY frame
(DV). Hence, the vector vdv = [ d 0]

> R2 represents the
ideal particle velocity with respect to I, represented in DV.
Additionally, we have that:

ṗp = Rpvp, (12)

where vp = [ p 0]
> R2 represents the path particle

velocity with respect to I, represented in P.
By then expanding (6) in light of the recent discussion,

we get:

˙ = (RpSp)
>(p pp) +R

>
p (Rdvvdv Rpvp)

= S>p +R>
pRdvvdv vp. (13)

χ

χ
χ

(ϖ) ∆

Fig. 1. The geometric principle of the proposed guidance-based path
following scheme in 2D.

Now define the positive definite and radially unbounded
Control Lyapunov Function (CLF):

=
1

2
> =

1

2
( 2 + 2), (14)

and differentiate it with respect to time along the trajectories
of to obtain:

˙ = > ˙
= > ¡S>p +R>

pRdvvdv vp
¢

= > ¡R>
pRdvvdv vp

¢
(15)

since the skew-symmetry of Sp leads to >S>p = 0. By
further expansion, we get:
˙ = ( d cos( d p) p) + d sin( d p). (16)

At this point, it seems natural to consider the path particle
speed p as a virtual input for stabilizing . Consequently,
by choosing p as:

p = d cos( d p) + , (17)

where 0 becomes a constant gain parameter in the
guidance law, we achieve:

˙ = 2 + d sin( d p), (18)

which shows that the task of the path particle is to ensure that
the along-track error converges to zero. This means that
the path particle will continuously track the ideal particle.
What remains is thus to ensure that the cross-track error
also converges to zero. This is the responsibility of the

ideal particle, and beyond anything that the path particle
can achieve. Equation (18) shows that ( d p) can be
considered a virtual input for stabilizing . Denote this
angular difference by r = d p. Intuitively, it should
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depend on the cross-track error itself, such that r = r( ).
An attractive choice for r( ) could then be the physically
motivated:

r( ) = arctan

µ
4e

¶
, (19)

where 4e becomes a time-varying guidance variable satisfy-
ing A.3, utilized to shape the convergence behaviour towards
the longitudinal axis of P. Such a variable is often referred
to as a lookahead distance in literature dealing with planar
path following along straight lines [9], and the physical
interpretation can be derived from Figure 1. Note that other
sigmoidal shaping functions are also possible candidates for
r( ), for instance the tanh function. Consequently, the
desired azimuth angle is given by:

d( ) = p( ) + r( ), (20)

with p( ) as in (3) and r( ) as in (19).
Since is the actual path parametrization variable that

we control for guidance purposes, we need to obtain a
relationship between and p to be able to implement (17).
By using the kinematic relationship given by (12), we get
that:

˙ =
pq

02
p +

02
p

=
d cos r +q

02
p +

02
p

, (21)

which is non-singular for all paths satisfying assumption A.1.
This also shows that P is not a so-called Serret-Frenet frame,
which is defined at the exact projection point of the ideal
particle onto the geometric path.
Consequently, by utilizing trigonometric relationships

from Figure 1, the derivative of the CLF finally becomes:

˙ = 2
d

2p
2 +42

e

, (22)

which is negative definite under assumptions A.2 and A.3.
Elaborating on these results, we find that the total dynamic

system, which consists of the ideal particle and the path
particle, can be represented by the states and . More-
over, the dynamics are non-autonomous since d and 4e

can be time-varying. However, by reformulating the time
dependence through the introduction of an extra state, the
augmented system can be made autonomous:

˙= 1 0 = 0 0, (23)

see e.g. Teel et al. [10]. Hence, the augmented system can be
represented by the state vector x =

£ > ¤> R2×R×
R 0, and with dynamics represented by the time-invariant
ordinary differential equation:

ẋ = f(x). (24)

The time variable for the augmented system is denoted
with initial time = 0, such that ( ) = + 0. The

motivation for this reformulation is that it allows us to
utilize set stability analysis for time-invariant systems when
concluding on whether the task objectives in the problem
statement have been met or not. Hence, define the closed,
but unbounded set:

E = ©x R2 ×R× R 0 | = 0
ª
, (25)

which represents the dynamics of the augmented system
when the ideal particle has converged to the path particle,
i.e. converged to the desired geometric path. Also, let:

|x|E = inf {x y | y E} (26)
= ( > )

1
2 (27)

represent a function measuring the distance from x to E ,
i.e. the off-track error. Making |x|E converge to zero is
equivalent to solving the geometric task of the guidance-
based path following problem, and the following proposition
can now be stated:
Proposition 1: The error set E is rendered uniformly

globally asymptotically and locally exponentially stable
(UGAS/ULES) under assumptions A.1-A.3 if is updated
by (21), and r is equal to (19).

Proof: Since the set E is closed, but not bounded,
we initially have to make sure that the dynamic system
(24) is forward complete [10], i.e. that for each x0 the
solution x( x0) is defined on [0 i. This entails that the
solution cannot escape to infinity in finite time. By definition,
cannot escape in finite time. Also, (14) and (22) shows

that neither can . Consequently, (21) shows that cannot
escape in finite time under assumptions A.1 and A.2. The
system is therefore forward complete. We also know that
x0 E the solution x( x0) E 0 because
0 = 0 ˙ = 0. This renders E forward invariant for (24)
since the system is already shown to be forward complete.
Now, having established that (24) is forward complete and
that E is forward invariant, and considering the fact that
= 1

2
> = 1

2(|x|E)2, we can derive our stability results
by considering the properties of , see e.g. [8]. Hence, we
conclude by standard Lyapunov arguments that the error set
E is rendered UGAS. Furthermore, ˙ = 2 d

4e

2

2 d min

4e max

2 for the error dynamics at = 0, which
proves ULES.
By stabilizing the error set E , we have achieved the

geometric task. The dynamic task is fulfilled by assigning a
desired speed d which satisfies assumption A.2. In total, we
have now solved the planar guidance-based path following
problem.
Note that by choosing the speed of the ideal particle equal

to:
d =

p
2 +42

e , (28)

where 0 is a constant gain parameter, we obtain:

˙ = 2 2, (29)
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which results in the following proposition:
Proposition 2: The error set E is rendered uniformly

globally exponentially stable (UGES) under assumptions A.1
and A.3 if is updated by (21), r is equal to (19), and d

satisfies (28).
Proof: The first part of the proof is identical to that

of Proposition 1. Hence, we conclude by standard Lyapunov
arguments that the error set E is rendered UGES.
Although very powerful, this result is clearly not achiev-

able by physical systems since these exhibit natural limi-
tations on their maximum attainable speed. In this regard,
Proposition 1 states the best possible stability property a
planar physical system like a watercraft can hold.

C. Principles of Guidance in 3D

This section treats the spatial 3D case of the guidance-
based path following problem, and the procedure for obtain-
ing the guidance laws is essentially the same as for the planar
2D case.
Denote the inertial position and velocity vectors of the

ideal particle by p = [ ]
> R3 and ṗ = [ ˙ ˙ ˙]>

R3, respectively. Denote the size of the velocity vector by
= |ṗ|2 = (ṗ>ṗ)

1
2 (the speed), and let the orientation be

characterized by the two angular variables:

= arctan

µ
˙

˙

¶
, (30)

which is denoted the azimuth angle, and:

= arctan

Ã
˙p

˙2 + ˙2

!
, (31)

denoted the elevation angle. Since it is assumed that for
an ideal particle , and can attain any desirable value
instantaneously, rewrite them as d, d and d.
Consider a geometric path continuously parametrized by

a scalar variable R, and denote the position of its path
particle as pp( ) R3. Consequently, the geometric path
can be expressed by the set:

P = ©p R3 | p = pp( ) R
ª
, (32)

where P R3.
For a given , define a local reference frame at pp( )

and name it the PATH frame (P). To arrive at P, we need to
perform two consecutive elementary rotations (when using
the concept of Euler angles). The first is to positively rotate
the INERTIAL frame (I) an angle:

p( ) = arctan

µ 0
p( )
0
p( )

¶
(33)

about its -axis. This rotation can be represented by the
rotation matrix:

Rp z( p) =
cos p sin p 0
sin p cos p 0
0 0 1

, (34)

∆
∆

(ϖ)

χ
υ

Fig. 2. The geometric relationship between all the relevant parameters and
variables utilized in the proposed guidance-based path following scheme in
3D, = 1.

where Rp z (3). The second rotation is performed by
positively rotating the resulting intermediate frame an angle:

p( ) = arctan
0
p( )q

0
p( )2 + 0

p( )2
(35)

about its -axis. This rotation can be represented by the
rotation matrix:

Rp y( p) =
cos p 0 sin p

0 1 0
sin p 0 cos p

, (36)

where Rp y (3). Hence, the full rotation can be
represented by the rotation matrix:

Rp = Rp z( p)Rp y( p), (37)

where Rp (3). Consequently, the error vector between
p and pp( ) expressed in P is given by:

= R>
p (p pp( )), (38)

where = [ ]
> R3 consists of the along-track error

, the cross-track error , and the vertical-track error ; see
Figure 2. The along-track error represents the distance from
pp( ) to p along the -axis of the PATH frame, the cross-
track error represents the distance along the -axis, while
the vertical-track error represents the distance along the -
axis. Also, recognize the notions of the horizontal-track error

2 + 2, the generalized cross-track error 2 + 2, and
the off-track error 2 + 2 + 2.
The error set in question is now given by:

E = ©x R3 ×R× R 0 | = 0
ª
, (39)
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with the associated distance function:

|x|E = inf {x y | y E} (40)
= ( > )

1
2 , (41)

i.e. the off-track error. As in the 2D case, making |x|E
converge to zero is equivalent to solving the geometric task
of the guidance-based path following problem.
By differentiating with respect to time, we obtain:

˙ = Ṙ>
p (p pp) +R

>
p (ṗ ṗp), (42)

where:
Ṙp = RpSp (43)

with:

Sp =
0 ˙ p cos p ˙ p

˙ p cos p 0 ˙ p sin p

˙ p ˙ p sin p 0
, (44)

which is skew-symmetric; Sp = S>p . We also have that:

ṗ = ṗdv = Rdvvdv, (45)

where Rdv (3) represents a rotation matrix from the
INERTIAL frame to a frame attached to the ideal particle
with its -axis along the velocity vector of the particle. Let
this frame be called the DESIRED VELOCITY frame (DV).
Hence, the vector vdv = [ d 0 0]

> R3 represents the
ideal particle velocity with respect to I, represented in DV.
Then inspired by the approach in the 2D case, the rotation
matrix Rdv is directly selected to be defined by:

Rdv = RpRr, (46)

where:
Rr = Rr z( r)Rr y( r) (47)

with Rr, Rr z, and Rr y all elements of (3). This way of
defining Rdv entails that the DV frame is obtained by first
performing an initial rotation represented by Rp, resulting
in an intermediate frame parallel to the P frame, before a
relative rotation represented by Rr is performed to arrive in
DV. Consequently, Rr (i.e. the angular variables r and r)
must be designed to ensure that the generalized cross-track
error approaches zero (while Rr approaches I).
Continuing to elaborate on (42), we also have that:

ṗp = Rpvp, (48)

where vp = [ p 0 0]
> R3 represents the path particle

velocity with respect to I, represented in P.
By then expanding (42) in light of the recent discussion,

we get:

˙ = (RpSp)
>(p pp) +R

>
p (Rdvvdv Rpvp)

= S>p +Rrvdv vp. (49)

Now define the positive definite and radially unbounded
Control Lyapunov Function (CLF):

=
1

2
> =

1

2
( 2 + 2 + 2), (50)

and differentiate it with respect to time along the trajectories
of to obtain:

˙ = > ˙
= > ¡S>p +Rrvdv vp

¢
= > (Rrvdv vp) (51)

since the skew-symmetry of Sp leads to >S>p = 0. By
further expansion, we get:

˙ = ( d cos r cos r p)+ d sin r cos r d sin r,
(52)

from where we choose p as:

p = d cos r cos r + , (53)

where 0 becomes a constant gain parameter in the
guidance law. Since is the actual path parametrization
variable that we control for guidance purposes, we need
to obtain a relationship between and p to be able to
implement (53). By using the kinematic relationship given
by (48), we get that:

˙ =
d cos r cos r +q

02
p +

02
p +

02
p

, (54)

which is non-singular for all paths satisfying assumption A.1.
By choosing p this way, we achieve:

˙ = 2 + d sin r cos r d sin r. (55)

As in the 2D case, an attractive choice for r could be the
physically motivated:

r( ) = arctan

µ
4e

¶
, (56)

where 4e becomes a time-varying guidance variable satisfy-
ing A.3, utilized to shape the convergence behaviour towards
the -plane of P.
The choice for r could then be:

r( ) = arctan

µ
4h

¶
, (57)

where 4h becomes an additional time-varying guidance
variable satisfying A.3. It is utilized to shape the convergence
behaviour towards the -plane of P. Consequently, by using
trigonometric relationships from Figure 2, the derivative of
the CLF finally becomes:

˙ = 2
d

"
cos r

2p
2 +42

e

+
2p

2 +42
h

#
, (58)

which is negative definite under assumptions A.2 and A.3.
The following proposition can now be stated:
Proposition 3: The error set E is rendered uniformly

globally asymptotically and locally exponentially stable
(UGAS/ULES) under assumptions A.1-A.3 if is updated
by (54), r is equal to (56), and r is equal to (57).
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Proof: The first part of the proof is identical to
that of Proposition 1. Hence, we conclude by standard
Lyapunov arguments that the error set E is rendered UGAS.
Furthermore, ˙ = 2

d

h
2

4e
+

2

4h

i
2

d min

h
2

4e max
+

2

4h max

i
for the error dynamics at = 0,

which proves ULES.
By stabilizing the error set E , we have achieved the

geometric task. The dynamic task is fulfilled by assigning a
desired speed d which satisfies assumption A.2. In total, we
have now solved the spatial guidance-based path following
problem.
Since 4h can be expressed as:

4h =
p

2 +42
e , (59)

where 0, we can rewrite (58) as:

˙ = 2
d

"
2 + 2p

2( 2 +42
e) +

2

#
(60)

because:

cos r =

p
2 +42

ep
2( 2 +42

e) +
2

(61)

when expressing 4h as in (59). By choosing the desired
speed of the ideal particle as:

d =
p

2( 2 +42
e) +

2, (62)

where 0 is a constant gain parameter, we obtain:

˙ = 2 2 2, (63)

which results in the following proposition:
Proposition 4: The error set E is rendered uniformly

globally exponentially stable (UGES) under assumptions A.1
and A.3 if is updated by (54), r is equal to (56), r is
equal to (57), and d satisfies (62).

Proof: The first part of the proof is identical to that
of Proposition 1. Hence, we conclude by standard Lyapunov
arguments that the error set E is rendered UGES.
As mentioned in the 2D case, the prerequisite for this re-

sult is not practically achievable by physical systems. Hence,
Proposition 3 states the best possible stability property a
spatial physical system like a spacecraft can hold.
After having obtained the guidance laws of this section

by defining and elaborating on an Rdv which is constructed
by four elementary rotations, and partially defined by Rp,
we would now like to define an Rdv which is constructed
by only two elementary rotations. This is interesting from a
control perspective, especially if we choose not to operate
directly in the configuration space. Hence, consider an Rdv

defined by a positive rotation about the -axis of I by a
desired azimuth angle d, followed by a positive rotation
about the -axis of the resulting intermediate frame by a
desired elevation angle d:

Rdv = Rdv z( d)Rdv y( d), (64)

Fig. 3. Examples of mechanical systems operating in 2D or 3D, ranging
from watercraft and landcraft to aircraft and spacecraft.

where Rdv z and Rdv y both are elements of (3). Ob-
viously, the rotations represented by (46) and (64) are not
equivalent, i.e. the - and -axes of the two resulting frames
are not aligned. However, the rotations map the velocity
vector vdv equivalently to the INERTIAL frame, which is
what matters here. Therefore, by equating the first column
(which represents a rotation of the -axis) of (46) with that
of (64), we obtain:

d = arctan

cos p sin r cos r+

sin p sin r cos r+
sin p sin r sin p+

sin p sin r cos p+
sin p cos r cos p cos r

cos p cos r cos p cos r

, (65)

and

d = arcsin(sin p cos r cos r + cos p sin r), (66)

which are the angular variables that the velocity vector
orientation of the ideal particle must adhere to in order to
ensure geometric path convergence. Note that through the use
of trigonometric addition formulas, it can be shown that (65)
is equivalent to (20) in the 2D case, i.e. when p = r = 0.

IV. POSSIBLE APPLICATIONS AND EXTENSIONS TO THE
GUIDANCE-BASED PATH FOLLOWING CONCEPT

The concept of guidance-based path following could cer-
tainly be directly applied to achieve natural motion behaviour
of moving objects in fields like computer animation and
computer games in an easy and intuitive way. But more
importantly, it could also be applied to the motion control of
mechanical systems operating in a 2D plane or a 3D space
like for instance watercraft or spacecraft, see e.g. Figure
3. The extension to such physical target systems could be
achieved by tailoring the guidance concepts on a case-by-
case basis, considering carefully the specifics pertaining to
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each case, like for instance whether the system is fully
actuated or underactuated. The resulting system could then
be analysed by e.g. dynamic systems theory pertaining
to cascades, see e.g. Loria [11]. In this regard, Figure 4
illustrates how the error dynamics of a closed loop dynamic
system (e.g. like a controlled aircraft) would affect the guided
ideal system considered in this paper through a cascaded
interconnection.
An interesting application of the guidance-based path

following concept can already be found in [12]. The paper
addresses the problem of creating a controller structure for
the automatic control of a marine surface vessel through
its entire speed regime without resorting to heuristics and
switching between structurally different controllers, as is
usually the case. Hence, a single controller structure is
proposed for the purpose. Its core is a nonlinear, model-
based velocity and heading controller which relies on the
guidance-based path following concept to ensure geometric
path convergence. All regular paths are rendered feasible,
and the scheme ensures that a vessel which is fully actuated
at low speeds, but becomes underactuated at high speeds,
is able to converge to and follow a desired geometric path
independent of the actual vessel speed.
It is expected that the guidance-base path following ap-

proach will render possible a more natural and energy
efficient motion behaviour of mechanical vehicle systems
than what is currently the case when applying for instance
a traditional trajectory tracking approach. This relates to the
fact that the alteration of the employed guidance parameters
and variables directly and intuitively affects the transient
path convergence behaviour, and consequently can be applied
to shape it as desired. Such a feature is also desirable for
more abstract n-dimensional systems, to which the concept
is readily extendable.
The main purpose of any guidance system is to compute

all the reference signals that are necessary to render a given
physical system autonomous under feedback control. In this
context, the guidance laws proposed in this paper represent
only what lies at the core of a guidance system, which
fully equipped consists of a plethora of algorithms providing
advanced features like obstacle avoidance, formation control
and synchronization capabilities. Consequently, it is of great
interest to extend the present guidance framework towards
such advanced guidance concepts.

V. CONCLUSIONS

This paper has treated the subject of fundamental guidance
principles related to motion behaviour in a 2D plane and
a 3D space. The concept of guidance-based path following
has been defined and elaborated upon, and its specifics con-
trasted towards the already established concept of trajectory
tracking. Guidance laws have been developed at an ideal,
dynamics-independent level to prevent any obfuscation by
particularities stemming from any specific dynamics case.
The result is generally valid laws which can be tailored to

Guided Ideal System
Error Dynamics
 of Closed Loop
Dynamic System

Fig. 4. The cascaded interconnection between the guided ideal system and
the error dynamics of a closed loop dynamic system.

specific target systems like e.g. watercraft or spacecraft, for
instance in a cascaded setting. The scheme renders all regular
paths feasible. Furthermore, it is possible that the approach
can lead to a more natural convergence behaviour of certain
mechanical vehicle systems towards desired geometric paths
than what is currently achieved by applying a traditional
trajectory tracking approach. Finally, possible applications
and extensions to the guidance-based path following scheme
have been briefly suggested.
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