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The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia
inhibitory factor), OSM (oncostatin M), ciliary neurotrophic
factor, cardiotrophin-1 and cardiotrophin-like cytokine are an
important family of mediators involved in the regulation of the
acute-phase response to injury and infection. Besides their func-
tions in inflammation and the immune response, these cytokines
play also a crucial role in haematopoiesis, liver and neuronal
regeneration, embryonal development and fertility. Dysregulation
of IL-6-type cytokine signalling contributes to the onset and
maintenance of several diseases, such as rheumatoid arthritis,
inflammatory bowel disease, osteoporosis, multiple sclerosis and
various types of cancer (e.g. multiple myeloma and prostate
cancer). IL-6-type cytokines exert their action via the signal
transducers gp (glycoprotein) 130, LIF receptor and OSM receptor
leading to the activation of the JAK/STAT (Janus kinase/signal

transducer and activator of transcription) and MAPK (mitogen-
activated protein kinase) cascades. This review focuses on recent
progress in the understanding of the molecular mechanisms of
IL-6-type cytokine signal transduction. Emphasis is put on the
termination and modulation of the JAK/STAT signalling pathway
mediated by tyrosine phosphatases, the SOCS (suppressor of cyto-
kine signalling) feedback inhibitors and PIAS (protein inhibitor
of activated STAT) proteins. Also the cross-talk between the
JAK/STAT pathway with other signalling cascades is discussed.
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INTRODUCTION

The family of IL (interleukin)-6-type cytokines comprises IL-6,
IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M),
CNTF (ciliary neurotrophic factor), CT-1 (cardiotrophin-1) and
CLC (cardiotrophin-like cytokine). They activate target genes
involved in differentiation, survival, apoptosis and proliferation.
The members of this cytokine family have pro- as well as anti-
inflammatory properties and are major players in haematopoiesis,
as well as in acute-phase and immune responses of the organism.
IL-6-type cytokines bind to plasma membrane receptor complexes
containing the common signal transducing receptor chain gp 130
(glycoprotein 130). Signal transduction involves the activation of
JAK (Janus kinase) tyrosine kinase family members, leading to the
activation of transcription factors of the STAT (signal transducers
and activators of transcription) family. Another major signalling
pathway for IL-6-type cytokines is the MAPK (mitogen-activated
protein kinase) cascade (Figure 1).

Recent reviews on the subject of signal transduction via the
JAK/STAT pathway have been published [1–3]. The present
review focuses on advances made during the last 5 years in
structural/functional aspects of IL-6-type cytokine receptor activ-
ation, JAK–receptor interactions, STAT activation, signal modul-
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ation and, in particular, on mechanisms of the negative regulation
in the field of IL-6-type cytokine signalling. In contrast with our
previous review [4], we do not refer to the numerous studies
applying gene targeting in mice. Instead, we put emphasis on
mechanistic aspects of IL-6-type cytokine signalling.

GENERAL MECHANISMS

Receptor complexes formed by IL-6-type cytokines: gp130 is the
central player

Receptors involved in recognition of the IL-6-type cytokines can
be subdivided in the non-signalling α-receptors (IL-6Rα, IL-
11Rα, and CNTFRα, where R refers to receptor) and the signal
transducing receptors (gp130, LIFR, and OSMR). The latter
associate with JAKs and become tyrosine phosphorylated in
response to cytokine stimulation. Each of the IL-6-type cytokines
is characterized by a certain profile of receptor recruitment that in
all cases involves at least one molecule of gp130.

IL-6, IL-11 and CNTF first bind specifically to their respective
α-receptor subunits. Here, only the complex of cytokine and α-
receptor efficiently recruits the signalling receptor subunits. Also,
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Figure 1 IL-6 activates the JAK/STAT pathway and the MAPK cascade

Representation of the two major pathways activated by IL-6-type cytokines. TF, transcription factor.

Figure 2 Receptor complexes of IL-6-type cytokines

IL-6-type cytokine receptor complexes signal through different combinations of the signalling receptor subunits gp130, LIFR and OSMR, with gp130 being used by all the family members.

an α-receptor subunit has been postulated for CT-1 [5], but
since this putative receptor protein has not been cloned yet its
existence is questionable. IL-6 and IL-11 are the only IL-6-type
cytokines that signal via gp130 homodimers. The remaining IL-6
type cytokines signal via heterodimers of either gp130 and the
LIFR (LIF, CNTF, CT-1 and CLC) or gp130 and the OSMR
(OSM). Human OSM has the exceptional capability to recruit
two different receptor complexes. It forms both LIFR–gp130 and
OSMR–gp130 heterodimers. LIF and OSM directly engage their
signalling receptor subunits without requirement for additional
α-receptor subunits (Figure 2) [4,6].

Although gp130 is ubiquitously expressed, the number of cells
that respond to a certain IL-6-type cytokine is limited, since
the expression of the other receptor subunits, especially of the
α-receptors, is more restricted and tightly regulated. The function
of the α-receptors to render cells sensitive to the respective cyto-

kine, however, can also be taken over by the soluble form of the
α-receptors lacking the transmembrane and cytoplasmic parts.
This is one of the rare situations in which a complex of cyto-
kine and soluble receptor can act agonistically instead of antagon-
istically. Soluble forms of cytokine receptors in vivo are formed
either by limited proteolysis (shedding) of membrane-bound
receptors or by translation from an alternatively spliced mRNA
[4]. In the case of IL-6, the scenario is more complex, since
soluble forms for IL-6Rα (sIL-6Rα) and gp130 (sgp130) are both
present in human serum. It has been demonstrated that sIL-6Rα
potentiates the antagonistic activity of sgp130. Thus the naturally
occuring combination of sIL-6Rα and sgp130 might act as a kind
of buffer to modulate systemic responses to circulating IL-6 [7].

Although the cytoplasmic part of the IL-6Rα is dispensable for
receptor complex formation and signal transduction, a function
has recently been assigned to this part of the protein [8]: it contains
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Figure 3 Structures of IL-6 and OSM

The four long helices A, B, C and D are highlighted in different colours. Receptor-binding sites
I, II, and III of IL-6 are indicated by circles (Brookhaven Databank accession numbers for IL-6
and OSM are 1IL6 and 1EVS respectively).

a tyrosine-based and a dileucine-type motif which direct sorting of
IL-6Rα to the basolateral membrane of polarized cells. Similarly,
also targeting of gp130 to the basolateral membrane is dependent
on a sorting motif within its cytoplasmic part. In certain cell types,
a localization of gp130 in plasma membrane microdomains, such
as lipid rafts and caveolae, has been observed [9–11]. This might
be a prerequisite for special signalling functions of the receptor.

For CLC, the most recently discovered IL-6-type cytokine [6],
a very special mechanism of secretion and receptor recruitment
has been described [12,13]. To become secreted, CLC must be co-
expressed with either CLF-1 (cytokine-like factor-1) or CNTFRα.
CLF-1 resembles a soluble cytokine receptor and specifically
binds CLC. After secretion of the CLC–CLF-1 or CLC–CNTFRα
complexes, signalling is dependent on CNTFRα and occurs via
gp130–LIFR heterodimers.

KSHV-IL-6 (Kaposi’s sarcoma-associated herpes virus IL-6)
[14] and Rhesus macaque rhadinovirus IL-6 [15] are viral variants
of the IL-6-type cytokines that exhibit low similarity to IL-6 and
signal by recruitment of gp130. Interestingly, KSHV-IL-6 binds
the gp130 homodimer in the absence of any α-receptor [16], but
with lower affinity as compared with IL-6–IL-6Rα–gp130 ternary
complexes.

Structure and function of IL-6-type cytokines and their receptors:
α-helices meet β-sheets

IL-6-type cytokines form a subfamily of the helix bundle cyto-
kines. All IL-6-type cytokines comprise four long α-helices
termed A, B, C and D, which are arranged in a way that leads to
an up-up-down-down topology (Figure 3). In contrast with IL-6,
and presumably also IL-11, where all the helices are straight, the
A helix of LIF, OSM and CNTF is kinked [17,18]. This structural
divergence might reflect differences in the mechanisms of recep-
tor recruitment, since the straight cytokines signal via gp130
homodimers, whereas the kinked cytokines signal via LIFR–
gp130 or OSMR–gp130 heterodimers.

The ectodomains of the receptors involved in IL-6-type cyto-
kine signalling comprise an array of FNIII (fibronectin type III)-
like and Ig-like domains (Figure 4). Each receptor contains at
least one cytokine-binding module (CBM) that comprises two
FNIII-domains. A CBM is characterized by conserved structural

Figure 4 Structural organization of various IL-6-type cytokine signalling
components

Relevant tyrosine (Y) and serine (S) residues of gp130, JAK and STAT proteins that become
phosphorylated are indicated. For gp130 the box1 and box2 regions, as well as the dileucine
motif (LL, Leu786-Leu787), are highlighted. JH, JAK homology domain.

features, such as a distinct pattern of cysteine residues in the N-
terminal domain and a WSXWS motif in the C-terminal domain.
In each receptor an Ig-like domain is located N-terminally to the
membrane-proximal CBM. In contrast with the α-receptors,
the receptors that initiate signal transduction have three additional
membrane-proximal FNIII domains [4].

How the different IL-6-type cytokines bind specifically to their
receptors has been intensely investigated during recent years.
Mutagenesis studies have identified distinct areas on the surface
of the cytokines (termed ‘sites’) which specifically interact with
the respective receptors. Common to all IL-6-type cytokines is site
II that interacts with the CBM of gp130. The second signalling
receptor, either a second gp130 or LIFR or OSMR, is recruited to
site III [4]. A surprise was the discovery that site III is recognized
by the Ig-like domain of gp130, LIFR or OSMR [19–22]. Thus
in the homodimer two different binding epitopes of gp130 are
involved in ligand recognition [23]. When a non-signalling α-
receptor is involved in the receptor complex, it binds with its
CBM to site I [4]. The interaction sites predicted by mutagenesis
studies have recently been confirmed by the X-ray structure of
KSHV-IL-6 bound to a soluble gp130 fragment comprising the
CBM and the Ig-like domain [24]. When the recently solved
structure of the IL-6Rα ectodomain [25] is accommodated into
this structure, a reliable model of the membrane-distal part of
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Figure 5 Structural model of the signalling IL-6 receptor complex

Solved structures for vIL-6/gp130, gp80, STAT3 and SHP2 (Brookhaven Databank accession numbers 1I1R, 1N26, 1BG1 and 2SHP respectively), as well as molecular models of a JAK2 kinase
domain and SOCS1 (amino acids 65–212), are represented. In the extracellular part, IL-6 is shown in red, IL-6Rα in green and the two gp130 molecules of the homodimer in cyan and blue.
The domains D4–D6 of gp130, as well as the FERM, SH2 and kinase-like domains of the JAKs, are depicted as coloured ovals with the sizes corresponding to the tenascin FNIII, moesin FERM, SH2
and insulin receptor kinase domains. Arrangement of D4–D6 of gp130 was proposed by Kurth et al. [36]. The cytoplasmic parts of gp130 and gp80, as well as the non-structured extracellular ‘stalk’
region of gp80 [25], are represented as blue and green lines with lengths corresponding to non-structured polypeptides. The positions of the six tyrosine residues of gp130 are indicated and the
box1 and box2 regions are drawn as black lines. The cytoplasmatically associated proteins are depicted in the colour code corresponding to Figure 3. Note that in the case of STATs, the N-terminal
domain, as well as the C-terminal transactivation domain, are not represented. Re-orientation of the transmembrane region in response to ligand binding is indicated by circular arrows.

the hexameric IL-6–sIL-6Rα–sgp130(D1–D3) complex can be
constructed (Figure 5).

The binding of IL-6-type cytokines to their receptors leads to
a rapid internalization of the ligand. So far, no internalization

signals have been identified in the α-receptors. Thus internal-
ization is mediated by the signal transducing receptor subunits
[4]. Indeed, in gp130 [26] and the LIFR [27] dileucine-like
motifs have been identified that are required for receptor-mediated
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ligand internalization. Internalization of gp130 seems to be
independent from ligand binding [28], and is modulated by
phosphorylation at Ser782 [29] which is located adjacent to the
dileucine motif. Some evidence has been provided that under
certain circumstances gp130 and LIFR are degraded after internal-
ization [30–32].

There are several reports showing that unrelated receptors
are involved in signal transduction of IL-6-type cytokines:
stimulation of fibrosarcoma cells with OSM leads to a pronounced
phosphorylation of the IFN (interferon) receptor chain 1 [33],
and in murine embryonic fibroblasts lacking the IFNα–IFNβ
signalling complex IL-6 signals are significantly reduced [34].
Moreover, it was reported that ErbB2 forms a complex with gp130
in an IL-6-dependent manner in prostate carcinoma cells [35].

Receptors at work: let’s do the twist

Why do the signalling receptors of the IL-6-type cytokines
contain additional membrane-proximal FNIII domains that are not
involved in ligand binding? It has been shown that these domains
are necessary for coupling ligand binding and signal transduction,
since deletion of these domains leads to signalling incompetent
receptors [36,37]. A domain model of the IL-6 receptor complex
[36], as well as the recent X-ray data [24], show that the C-termini
of the two CBMs in the gp130 homodimer are separated by a
distance of about 9 nm. The membrane-proximal FNIII domains
might bridge this distance so that the cytoplasmic parts are in
close enough proximity to become activated by the associated
JAKs (Figure 5). This assumption is supported by a recent study
on the role of the gp130 FNIII domains for heterodimerization
with the LIFR [38].

What are the prerequisites for cytokine receptor activation? Is it
sufficient to bring two receptors into close proximity or has a well
defined conformation to be adjusted for signalling to occur? For
the gp130 homodimer, studies using agonistic monoclonal anti-
bodies have contributed to clarify this issue. Unlike many other
receptors, efficient gp130 activation could not be achieved by a
single antibody, but requires the action of two distinct monoclonal
antibodies [39,40]. The minimal requirement for receptor activ-
ation is one intact antibody and the Fab (fragment antigen binding)
of the second antibody. This finding has been interpreted in a
way that the bivalent intact antibody enforces receptor dimer-
ization and the monovalent Fab adjusts the conformation re-
quired for JAK activation and downstream signalling [40].

For some receptors, including cytokine receptors, pre-dimer-
ization or pre-oligomerization is discussed [41–44]. In these
cases, the ligand does not actively induce receptor dimerization,
but stabilizes a preformed receptor complex and initiates receptor
activation by additionally inducing a conformational change. In
the case of gp130, this concept bears some intrinsic problems since
gp130 interacts with several different receptors. Therefore, the
requirement for pre-dimerization with another signal transducing
receptor or an α-receptor would predetermine gp130 to interact
with certain, but not all, IL-6-type cytokines.

In order to transfer the information of a ligand-adjusted con-
formation from the outside to the inside of the cell, it seems
conceivable that the transmembrane domain of cytokine receptors
adopts a rigid structure. Indeed, recent studies have suggested that
the transmembrane and membrane-proximal intracellular regions
of cytokine receptors adopt an α-helical conformation. Inter-
estingly, insertion of one to four alanine residues into the
membrane-proximal intracellular region of gp130 demonstrated
that full activation of the receptor (i.e. induction of target genes)
was only obtained with the wild-type and the + 3A-mutant [45].
An independent study on the EpoR (erythropoietin receptor)

juxtamembrane intracellular region also described an α-helical
dependency of Epo-induced signal transduction [46]. These
results were explained by the hypothesis that insertion of one
alanine residue twists the receptor by approx. 110◦, resulting in
a position very different from the wild-type receptor state which
might prevent efficient signal transduction. In contrast, insertion
of three extra alanine residues into an α-helix should lead to a
rotation of approx. 330◦, twisting the receptor back, close to its
native position. Interestingly, within the cascade of signalling
events cytokine receptors seem to differ in the step that is sensitive
towards orientation. While for gp130, the STATs were found
to depend on a specific conformation in order to become phos-
phorylated, for the EpoR the receptor phosphorylation seems to
be sensitive to changes in orientation. Constantinescu et al. [46]
identified a hydrophobic motif in the EpoR membrane-proximal
domain (Leu253, Ile257 and Trp258) which is conserved in many
cytokine receptors and needs to be precisely orientated in order
to promote signalling.

Receptor–JAK interaction: more than just a rendez-vous

As found for many other cytokines, IL-6-type cytokines also
rapidly induce the activation of tyrosine kinases of the JAK family.
The signal transducing chains gp130, LIFR and OSMR bind to
JAK1, JAK2 and TYK2 [47–50]. Of these, JAK1 plays an essential
role, because in cells lacking JAK1 IL-6 signal transduction is
greatly impaired [51,52,134].

The interaction between gp130 and JAK1 is very tight and
long-lasting: a recent FRAP (fluorescence recovery after photo-
bleaching) analysis with fluorescent fusion proteins revealed
that JAK1 does not diffuse like a typical cytoplasmic protein.
Instead, its mobility is approx. 100-fold lower and similar to the
one of the transmembrane protein gp130. Interestingly, immo-
bilization of gp130 by antibodies leads to a concomitant im-
mobilization of JAK1, indicating that there is no rapid exchange
of JAK1 between different receptors (B. Giese and G. Müller-
Newen, unpublished work).

JAKs bind to the membrane-proximal region of cytokine
receptors, which contains conserved so-called box1 and box2
motifs. Deletion of the proline-rich box1 or mutation of two
critical proline residues within box1 abrogates receptor binding
of JAKs to gp130, OSMR or LIFR [49,53,54]. Box2 of gp130,
a sequence dominated by hydrophobic amino acids followed
by charged ones, contributes to JAK binding, presumably by
increasing the affinity; a gp130 construct lacking box2 co-
precipitates with JAK1 only when the kinase is over-expressed
[55]. This demonstrates the sensitivity of the experimental read-
out to variations in expression levels of the interaction partners
and helps to explain previous somewhat conflicting results on
the importance of the gp130 box2 region [56–58]. Finally, also the
interbox1–2 region of gp130 is critical, e.g. mutation of a single
amino acid (Trp666) abrogates JAK binding and thereby leads to
inactivation of the receptor complex [54]. Thus the interaction
surface with JAKs may involve multiple contact sites within the
receptor.

In contrast with the modular character of STAT recruitment
motifs, the JAK-recruiting region loses its functionality upon
transfer within the cytokine receptor chain; addition of the box1–2
region to the C-terminal part of a gp130 mutant, which was unable
to associate with JAKs in the membrane-proximal region, did not
restore JAK association [45]. This may point at the possibility
that membrane proximity is crucial for receptor–JAK interaction
to occur. However, it cannot be excluded that the structural
integrity of the JAK interaction interface within the receptor
depends on N-terminally adjacent sequences, i.e. the helix
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spanning the membrane which probably extends into the cyto-
plasmic region [45,46]. It would be a great achievement to
determine the three-dimensional structure of the membrane-
proximal region of a cytokine receptor, possibly in conjunction
with a JAK or a fragment thereof.

The receptor not only serves as a docking site for JAKs. In
addition, certain residues within gp130 have been identified to
be crucial for JAK activation, e.g. substitution of Trp652 with
alanine (W652A) within the box1 region has no effect on JAK1
association but abrogates JAK1 activation. Signal transduction
is even drastically impaired if only one chain within a gp130
dimer carries the W652A mutation [55]. Mutations with similar
consequences (no JAK activation in spite of JAK association)
have been described for the EpoR [59], indicating that cytokine
receptors in general contribute to the JAK-activation process.

The general structure of JAKs is shown in Figure 4. The C-
terminal tyrosine kinase domain is preceded by a pseudokinase
domain, which itself is devoid of catalytic activity, but regulates
the activity of the kinase domain [3]. JAKs also contain a predicted
SH2 (Src homology 2) domain. It will be interesting to find out
the significance of this domain for JAK function and to identify
potential interaction partners.

The N-terminal region of JAKs comprises a FERM (four-
point-one, ezrin, radixin and moesin) domain which is crucial for
receptor association. FERM domains comprise three subdomains:
subdomain F1 with a ubiquitin-like β-grasp fold, F2 with an
acyl-CoA-binding-protein-like fold, and F3 which shares the
fold of phosphotyrosine binding or PH (pleckstrin homology)
domains. F1, F2 and F3 together form a compact clover-shaped
structure [60–62]. A recent mutagenesis study has highlighted the
importance of the F1 subdomain of JAK1 for the interaction with
gp130 [63].

Although the catalytic activity of JAKs is dispensible for
receptor recruitment, it was described that alteration of the kinase
domain structure of JAK3 by the kinase inhibitor staurosporine
decreased the ability to bind to the common γ chain [64]. This
indicates a potential interaction between the kinase domain and
the FERM domain.

There are several reports describing other protein kinases (such
as Src and Tec family kinases) that are associated with signal
transduction of IL-6-type cytokines (for older references see
[4]). The Src family kinase Hck has recently been shown to
associate with an acidic region (amino acids 771–811) of gp130
[65]. Deletion of these amino acids reduces IL-6-induced Hck
kinase activity, ERK (extracellular-regulated kinase) activation,
dephosphorylation of Pyk2 and proliferation of transfected pro-
B Ba/F3 cells [65]. Cdk9 (cyclin-dependent kinase 9) was also
found to bind to gp130, and the association increased upon IL-6
stimulation of HEK 293 cells over-expressing gp130 and Cdk9
[66]. PKCδ (protein kinase Cδ), a kinase implicated in serine
phosphorylation of STAT3 (see below), has been found in a
complex with gp130 upon IL-6 stimulation. PKCδ enhances the
association of STAT3 with the receptor, which possibly involves
the phosphorylation of Thr890 of gp130 [67]. It will be interesting
to define the respective contribution of these ‘non-JAK’ kinases to
IL-6 signal transduction.

Another face of JAKs: determination of the receptor’s fate

Apart from their role in signal transduction JAKs are important
for the regulation of surface expression of at least some cytokine
receptors.

Co-expression of JAK1, JAK2 and TYK2 substantially en-
hances the surface expression of the human OSMR. While kinase
activity is dispensible for this effect, association of the JAKs to

the box1/box2 region leads to the masking of a negative regulatory
signal, potentially a previously uncharacterized endoplasmic reti-
culum retention/retrieval signal, that prevents efficient surface ex-
pression. This effect is also observed in cells with endogenous
expression levels of the OSMR and JAKs: human fibrosarcoma
cells lacking JAK1 express less OSMR at their surface compared
with the parental cells, but transient transfection of JAK1 can
again increase the amount of surface-expressed receptors [49].

Similarly, JAK2 is crucial for EpoR surface expression. In this
case it has been hypothesized that JAK2 supports the proper fold-
ing of the receptor [59].

TYK2 is important for surface expression of the IFNα receptor
1 chain [68]. Recently, it has been found that TYK2 prevents
receptor internalization [69]. Thus, the mechanisms how JAKs
are involved in the regulation of surface expression seem to vary
between receptor systems.

The STAT transcription factors: more nuts to crack?

Extensive studies have established the central role of STATs in
IL-6-type cytokine signalling. The STAT family of transcription
factors encompasses seven mammalian members, designated
STAT1, -2, -3, -4, -5a, -5b and -6. The domain structure of STAT
proteins comprises from N- to C-terminus an oligomerization
domain, the so-called coiled-coil domain, the DNA-binding do-
main, the linker domain, the SH2 domain and the trans-
activation domain (Figure 4). An alternative denomination for
the coiled-coil domain, the DNA-binding domain and the linker
domain is 4-helix bundle, β-barrel and connector domain respect-
ively. This knowledge is derived from the solved partial crystal
structures of STAT4, as well as STAT1 and STAT3 [70–72].

Activation of the STAT family members requires the transient
association of the STATs with cytokine receptors [73,74]. The
classical view favours the recruitment of monomeric STAT
proteins to the activated receptors, but there is evidence that pre-
associated STAT factors exist in higher molecular mass complexes
prior to stimulation [75–78]. Although the exact nature and role
of the higher molecular mass complexes is not yet established and
their presence does not exclude the recruitment of STAT factors
in a monomeric state, their mere existence, however, suggests
that STAT activation may be more complex than previously
assumed. Recently, non-phosphorylated, as well as IL-6 activated
phosphorylated, STAT3 and STAT1 pools were found to be present
in plasma membrane rafts [11]. In addition, STAT3 was reported
to be associated with both caveolin-1 and heat-shock protein-90
in these rafts, as well as in the cytosol [79].

All IL-6-type cytokines potently activate STAT3, and to a
minor extent STAT1 through their common receptor subunit
gp130 [4]. In the cases of LIFR and OSMR, STAT3 and STAT1,
as well as STAT5, activation has been observed, with OSMR being
the most potent activator of STAT5 [56]. This activation may
not require receptor tyrosine phosphorylation, but result from
a direct interaction of STAT5 with JAKs [80]. For OSMR-
mediated STAT5 activation both mechanisms have been observed
(C. Evers and H. M. Hermanns, unpublished work). The recruit-
ment of STATs to the activated receptors has been shown
to be mediated by their SH2 domain and requires the phospho-
rylation of receptor tyrosine motifs [74,81–83]. Whereas
STAT3 binds to phospho (p)YXXQ motifs (Y767RHQ, Y814FKQ,
Y905LPQ and Y915MPQ in gp130; Y981QPQ, Y1001KPQ and
Y1028RPQ in LIFR) [81,84–86], STAT1 is recruited to the more
restricted consensus sequence pYXPQ (Y905LPQ and Y915MPQ
in gp130) [84]. Although several gp130 motifs mediate STAT3
activation, they are not equivalent with respect to their potential
to activate STAT factors and acute-phase protein gene promoters
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[87]. Subsequent to receptor binding, the STAT factors are
phosphorylated on a single tyrosine residue (Tyr701 in STAT1 and
Tyr705 in STAT3) [88,89]. This leads to the formation of active
STAT dimers, also shown to be mediated by their SH2 domains
[90]. Interestingly, the STAT1 and STAT3 phosphotyrosine motifs
(STAT1, pY701IKT; STAT3, pY705LKT) do not agree with the
STAT3 consensus sequences deduced from the gp130 and LIFR
recruitment sites [81,84–86]. A conformational change in the SH2
domain may account for this dual specificity [91].

An additional STAT3 tyrosine phosphorylation site (Tyr657)
was reported by Pfeffer et al. [92] as a binding site for PI3K
(phosphoinositide 3-kinase). However, the location of Tyr657 in the
solved structure of STAT3β bound to DNA questions that Tyr657

is able to recruit the SH2 domain of PI3K. Although Tyr657 is
partially exposed at the surface of the SH2 domain of STAT3, it
builds up hydrophobic contacts with a number of hydrophobic
amino acid side chains and is part of the hydrophobic core of
the STAT3 SH2 domain. Phosphorylation of this Tyr657 would
severely impair the function of the SH2 domain, as it is located
in the centre of the binding pocket responsible for specific re-
cognition of phosphotyrosine motifs. In addition, the partially
buried side chain of Tyr657 would not be able to bind into the phos-
photyrosine binding pocket of PI3K. This, together with the lack
of reports by other groups confirming the phosphorylation of
Tyr657, questions the relevance of this tyrosine phosphorylation
site for STAT3 function.

Serine phosphorylation and methylation of STATs: making
the nutshell even harder

In addition to tyrosine phosphorylation, other post-translational
modifications were reported to affect STAT function.

Serine phosphorylation

Serine phosphorylation has been described for STAT1, -3, -5a and
-5b. Although the site of serine phosphorylation in STAT1
and STAT3 has been identified as Ser727, there is presently no
clear picture on the nature of the involved serine kinase(s).

In most studies small molecular mass inhibitors, as well as
dominant negative kinases, have been used to identify the serine/
threonine kinases. Depending on the experimental system, i.e. the
cell type and the cytokine/growth factor investigated, evidence
for the involvement of PKCδ [93–96], p38 MAPK [93], MEKK1
(MAPK/ERK kinase kinase 1) [97], ERK [98], JNK (c-Jun
N-terminal kinase) and, most recently, the Ca2+/calmodulin-
dependent kinase II [99] has been obtained.

Most investigators have found an increase in transcription
of target genes upon cytokine-induced serine phosphorylation of
STAT1, -3 and -5 [93,98–102]. In prolactin-stimulated mammary
epithelial cells serine phosphorylation has an impact on signal
duration [101].

In the case of STAT3 activation after IL-6 stimulation of
HepG2 cells, two distinct pathways for the serine phosphorylation
have been identified: one sensitive and the other insensitive to
the serine/threonine kinase inhibitor H7 [98]. Earlier studies
[103,104] had already shown: (i) Ser727 phosphorylation of STAT3
to occur slower than the phosphorylation of Tyr705; (ii) dominant-
negative Ras to have no effect on STAT3 Ser727 phosphorylation;
and (iii) the existence of an H7-sensitive serine/threonine kinase
indicating that the MAPK pathway is not involved. These results
were confirmed by Chung et al. [105], who also observed that IL-
6-induced STAT3 activation is MAPK independent, but sensitive
to H7.

For several cell lines it has been reported that PKCδ associates
IL-6 dependently with STAT3 and phosphorylates it on Ser727,
leading to an inhibition of STAT3 DNA binding and transcript-
ional activity [94]. A sequential activation of Vav, Rac-1, MKK-4
(MAP kinase kinase 4) and PKCδ is necessary for the IL-6-
mediated STAT3 Ser727 phosphorylation and transactivation in
HepG2 cells. Moreover, there is evidence that the PKCδ-mediated
STAT3 Ser727 phosphorylation occurs in the nucleus [95]. It is
presently not clear how PKCδ is activated upon IL-6 stimulation.

Methylation of STATs

Another post-translational modification has only recently been
recognized to play an important role in STAT function; Arg31

of STAT1 was found to be specifically methylated by PRMT-1
(protein arginine methyltransferase-1). There was earlier evidence
for a link between PRMT and the JAK/STAT pathway: PRMT-1
was found to associate with the IFNα/β receptor 1 [105a]; and
also a JAK-associated protein was identified as PRMT-5 [105b].

STAT1 methylation is observed in the absence of cytokine
stimulation, independent of tyrosine or serine phosphorylation,
but requires the intact STAT1 SH2 domain. Compared with the
unmethylated protein, methylated STAT1 has a higher tendency
to associate with DNA, since its interaction with PIAS (protein
inhibitor of activated STATs) 1 (see the subsection below entitled
‘PIAS – more than inhibitors of activated STATs?’) seems to be
weaker [106]. Arg31 is conserved among the STATs and it will
be interesting to find out whether other STATs are also subject to
methylation.

STAT nuclear translocation: not a one way ticket

In response to IL-6 stimulation, cytoplasmic STAT3 rapidly
accumulates in the nucleus. Because of their size of 90 kDa that is
far beyond the exclusion limit of the nuclear pore, STATs need to
be actively translocated into the nucleus. Indeed, extracellular-
signal-dependent translocation of STAT1 in response to IFN
requires the nuclear import receptor NPI-1/importin-α5, which
mediates translocation via a Ran-dependent mechanism [107].
Sensitivity to leptomycin suggests that nuclear export of STAT1
involves the nuclear export receptor CRM-1 that also acts in a Ran-
dependent manner [108,109]. Nuclear accumulation is triggered
by STAT dimerization in response to tyrosine phosphorylation.
Tyrosine phosphorylation itself is not necessarily required for
STAT nuclear translocation. Artificially dimerized STAT proteins
that are not phosphorylated also accumulate in the nucleus
[110,111].

A recent study [112] on STAT3 activation in response to
EGF (epidermal growth factor) suggests that receptor-mediated
endocytosis is required for shuttling of STAT3 from the plasma
membrane to the perinuclear region. According to this study,
STAT3 is associated with endocytotic vesicles during directed
transport through the cytosol [112]. However, from an earlier
study [113], it was concluded that nuclear translocation of STAT1
in response to IFNγ does not require cytoskeletal structures,
such as actin filaments or microtubules. There, a non-directional
random-walk model was proposed for the cytoplasmic passage
of STAT1. Furthermore, nuclear accumulation of constitutively
active STAT proteins is independent from endocytosis, because in
these cases the STATs are not recruited to any plasma membrane
receptor [110,114]. Also microinjected phosphorylated STAT1
protein readily concentrates in the nucleus without obvious invol-
vement of endocytotic vesicles (U. Vinkemeier, personal com-
munication). Thus there seems to exist no strict requirement for
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Figure 6 Activation of the MAPK cascade via the OSM receptor

OSMR-mediated activation of the MAPK pathways via the adaptor molecule Shc. TF, transcription factor.

the targeted movement of endocytotic vesicles for STAT nuclear
translocation to occur.

Most studies aimed at the identification of putative nuclear
import signals [NLSs (nuclear localization signals)] or export
signals [NESs (nuclear export signals)] were performed with
STAT1. Nevertheless, mutagenesis studies on STAT5 provided the
first evidence for a functional role of the DNA-binding domain
in nuclear translocation [115]. In the DNA-binding domain of
STAT1, initially an NES was postulated that comprises residues
399–410 [108]. Later it turned out that residues located within this
short sequence stretch are important for the interaction of STAT1
with the import receptor importin-α5 and therefore for nuclear
import of STAT1 [116,117]. Adjacent to this sequence, basic
residues (Lys410 and Arg413) were identified that also contribute
to the NLS of dimeric STAT1 [117–119]. Two other NESs were
characterized in the coiled-coil region of STAT1 (residues 302–
314), both containing several leucine residues that are critical for
their function [109,120]. The functional overlap of DNA-binding,
NLS and NES sequences points to a role for DNA binding in the
regulation of nucleocytoplasmic shuttling of STAT proteins.

Previous studies suggested that tyrosine phosphorylation of
STATs results in dimerization and nuclear translocation. De-
phosphorylation of STAT within the nucleus leads to export
from the nucleus [121]. Our recent investigations and work of
others [117,122,123] led to the establishment of continous nucleo-
cytoplasmic shuttling of STAT proteins that is independent from

extracellular stimulation and phosphorylation. The finding of
unphosphorylated STAT proteins within the nucleus [122] is
consistent with the well-established role of unphosphorylated
STATs as transcriptional coactivators [124,125]. NLSs for this
phosphorylation-independent shuttling are different from those
for phosphorylation-induced nuclear accumulation, but are not
yet identified [117]. Further evidence suggests that continuous
nucleocytoplasmic shuttling of STAT proteins even occurs after
stimulation and nuclear accumulation [126].

Activation of MAPK cascades: one tyrosine to make
things more complicated

Dimerization of IL-6-type cytokine receptors does not only lead
to activation of the JAK/STAT-signalling pathway, but also to the
induction of the MAPK cascade. Initial analyses concerning
gp130- and LIFR-mediated activation of MAPKs identified the
SHP2 (SH2-domain-containing tyrosine phosphatase)-binding
site Tyr759 of gp130 [81] and Tyr974 of LIFR to be crucial for the
activation of the MAPK cascade [127]. In contrast with gp130 and
LIFR, the OSMR does not recruit SHP2. Nevertheless, the OSMR
is also able to induce activation of the Ras–Raf–MAPK pathway.
It has been demonstrated that the adaptor protein Shc (SH2-
and collagen-homology-domain-containing protein) (Figure 4) is
recruited to the receptor via Tyr861 in the cytoplasmic region of
the OSMR [128] (Figure 6).
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According to the current view of the SHP2-dependent activation
of MAPKs adopted from EGF and PDGF (platelet-derived growth
factor) signal transduction, SHP2 links the Grb2–SOS (growth-
factor-receptor-bound protein/Son of Sevenless) complex and/or
Gab1 (Grb2-associated binder-1) to gp130 [127,129,130]. SHP2
is rapidly recruited to tyrosine-phosphorylated gp130 and be-
comes also phosphorylated in a JAK1-dependent manner [131].
Subsequently, tyrosine-phosphorylated SHP2 interacts with Grb2
[132]. Two C-terminal tyrosine residues within SHP2 (Tyr542 and
Tyr580) are believed to interact with the Grb2–SOS complex.
The alternative Shc-mediated pathway mediated by OSM also
involves the adaptor protein Grb2 which is recruited to Tyr317-
phosphorylated Shc. Finally, recruitment of SOS to the receptor
complex at the membrane allows Ras activation, which in turn
leads to the activation of the Ras–Raf–MAPK cascade. Thus the
OSMR, unlike gp130 or the LIFR, uses the Shc–Grb2–SOS route
for activation of MAPKs [128].

Another degree of complexity is added by the fact that Gab1
is also involved in the activation of the Ras–Raf–MAPK cascade.
Gab1 is a scaffolding adaptor protein which is targeted via a PH
domain to the plasma membrane. Furthermore, it contains binding
sites for Grb2, SHP2, PI3K, Crk, phospholipase Cγ and the c-Met
receptor [129,133,134]. In response to IL-6, Gab1 is tyrosine
phosphorylated and interacts subsequently with SHP2 and PI3K.
Interestingly, no direct interaction of Gab1 and gp130 is required
for its tyrosine phosphorylation. Nevertheless, mutation of Tyr759,
the SHP2 recruitment site within gp130, impairs the interaction
of Gab1 with SHP2 and PI3K, suggesting that binding of SHP2 to
gp130 and its subsequent phosphorylation is a prerequisite for the
interaction with Gab1. Finally, IL-6-induced association of Gab1
with SHP2 leads to activation of ERK2 [135]. As expected, Gab1-
deficient fibroblasts show a markedly reduced MAPK activity in
response to IL-6 [136].

Although Gab1 integrates several signal transduction pathways,
translocation of SHP2 to the membrane, in proximity to membrane
anchored Ras, seems to be sufficient to mediate ERK activation,
since expression of a fusion protein comprising the PH domain of
Gab1 and active SHP2 induces constitutive MEK1 (MAPK/ERK
kinase) and ERK2 activation [137].

After EGF stimulation, SHP2 associated with Gab1 also regu-
lates and counteracts PI3K binding to Gab1 [138]. Analogous
mechanisms in respect to IL-6-type cytokine signalling should not
automatically be expected, since even PDGF- and insulin-like
growth factor 1-dependent PI3K activation is not affected by
SHP2 [138], suggesting that SHP2 acts in a strictly receptor
specific manner.

Recently, a further mechanism for the regulation of the MAPK
cascade by cytokines has been found by Cacalano et al. [139]. In
response to IL-2, Epo, EGF, and PDGF, SOCS3 (suppressor
of cytokine signalling 3) becomes tyrosine phosphorylated, and
subsequently binds and inactivates Ras/GTPase-activating pro-
tein. This results in the inhibition of the GTPase activity of Ras,
leading to a sustained Ras/GTP and MAPK activity [139]. Anal-
ogous observations for IL-6-type cytokines have not been
reported.

The family of IL-6-type cytokines not only activates ERK1/2,
a MAPK known for cellular processes that maintain cell survival,
but also the stress-activated members of the MAPK family: p38
and JNK [140–142] (Figure 6). The signal transduction pathways
resulting in their activation, however, remain poorly understood. A
recent study by Schuringa et al. [95] postulated that the activation
of JNK is involved in the serine phosphorylation of STAT3 after
stimulation of hepatoma cells with IL-6. Using constitutive-active
and dominant-negative variants of the signalling components, they
delineated the signalling pathway leading to JNK activation and

suggest the involvement of the GTP-exchange factor Vav, the
small G-protein Rac and the MAPK kinase, MKK6. Their study is
in contrast with the finding of Zauberman et al. [142], which dem-
onstrated an activation of p38 MAPK, but not JNK, in hepatoma
cells and found an involvement of p38 MAPK in STAT3-mediated
transcriptional activation of the acute-phase protein haptoglobin.

Activation of the PI3K cascade: the lipid connection

IL-6-type cytokines can lead to the activation of yet an additional
signalling cascade involving PI3K. This enzyme modifies
certain phosphatidylinositides, so that the serine/threonine kinase
protein kinase B/Akt is recruited to the plasma membrane,
where it becomes activated through phosphorylation by PDK1
(phosphoinositide-dependent kinase-1). Substrates of Akt include
the forkhead transcription factor FKHR and the pro-apoptotic
factor Bad (Bcl-2/Bcl-XL-antagonist, causing cell death), whose
phosphorylation is associated with increased survival or cell
growth. In cardiac myocytes gp130 conveys signals through
this pathway which lead to prevention of doxorubicin-induced
apoptosis [143]. Also, in basal cell carcinoma cells the PI3K
pathway is crucially involved in the IL-6-mediated prevention
of apoptosis which coincides with the up-regulation of the anti-
apoptotic protein Mcl-1 [144]. IL-6-induced activation of the
PI3K/Akt pathway is involved in protection against apoptosis,
as well as in enhanced proliferation of multiple myeloma cells
[145–147]. Moreover, in human Hep3B hepatoma cells IL-6
leads to activation of the PI3K/Akt pathway necessary for the
anti-apoptotic effect of IL-6 during transforming growth factor β
treatment [148]. It should be noted, however, that PI3K activation
upon IL-6 treatment is observed in a cell-type specific manner;
e.g. no significant Akt activation could be observed in IL-6-
treated HepG2 hepatoma cells [149]. The molecular mechanism
linking gp130 engagement to the activation of the PI3K/Akt
pathway is not well understood. After IL-6 stimulation the adaptor
protein Gab1 (see the subsection above entitled ‘Activation of
MAPK cascades: one tyrosine to make things more complicated’)
interacts with PI3K [135]. Similarly, PI3K associates with the
IRS-1 (insulin receptor substrate-1) adaptor in response to OSM
[150], suggesting that both IRS-1 and Gab1 may couple gp130 to
PI3K activation.

MECHANISMS OF SIGNAL TERMINATION

To prevent overstimulation, Nature has invented sophisticated
mechanisms to turn off cytokine-mediated signal transduction
(see Figure 8).

Protein tyrosine phosphatases (PTPs): what goes up
must come down

A key event in signal transduction of IL-6-type cytokines is
the phosphorylation of components of the signal transduction
cascade. Thus it is obvious that, besides kinases, phosphatases
also have to be involved in proper signal transmission. First
evidence for the contribution of a phosphatase in IL-6 signalling
was obtained by the finding that the PTP SHP2 is recruited to the
cytoplasmic Tyr759 of activated gp130 [81,151].

SHP2 is a ubiquitously expressed cytoplasmic PTP containing
two N-terminal SH2 domains and a catalytic phosphatase domain
in the C-terminal half of the protein (Figure 4). The crystal
structure of SHP2 suggests that, in the absence of a tyrosine-
phosphorylated binding partner, the N-terminal SH2 domain
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Figure 7 Regulation of SHP2

In the inactive state, the N-terminal SH2 domain of SHP2 sterically hinders access of phos-
photyrosine substrates to the PTP domain and thus blocks PTPase activity. Binding of the N- or
C-terminal SH2 domain by specific phosphotyrosine-containing motifs releases the block. These
phosphotyrosine residues may be part of an activated receptor or the tyrosine-phosphorylated
C-terminal tail of SHP2 (from [156]). Reprinted from Molecular Cell, vol. 8, W. Lu, D. Gong, D.
Bar-Sagi and P. A. Cole, Site-specific incorporation of a phosphotyrosine mimetic reveals a role
for tyrosine phosphorylation of SHP-2 in cell signaling, pp. 759–769, Copyright 2001, with
permission from Elsevier.

Figure 8 Negative regulatory mechanisms in IL-6-type cytokine signalling

Representation of the negative regulators and their sites of action (red arrows).

covers the active site and thereby inhibits the enzymic activity
[152]. Binding of the SH2 domains to phosphotyrosine motifs
of receptors or adapters unfolds the protein, leading to enzymic
activity [153–155]. SHP2 also becomes activated by the phos-
phorylation of tyrosine residues 542 or 580 within the C-terminal
part of the enzyme. Subsequently, these phosphotyrosines interact
with the N- and C-terminal SH2-domains respectively, relieving
the PTP domain from the N-terminal SH2-domain-mediated
inhibition [156] (Figure 7).

Tyr759 of gp130 appears to have multivalent functions for
signalling; substitution with phenylalanine impairs SHP2 recruit-
ment and phosphorylation [81] and leads to enhanced IL-6
[131,157,158], as well as LIF and OSM, signal transduction
[159]. In addition to SHP2, the feedback inhibitor SOCS3 also
contributes to pTyr759-mediated inhibition (see the subsection
below entitled ‘The SOCS family of feedback inhibitors: natural
born terminators’, and Figure 8). On the other hand, the IL-6-
induced activation of the MAPK cascade is impaired by mutation
of Tyr759 within gp130, indicating that SHP2, as an adaptor, has a
positive function on the activation of the MAPK cascade (as shown
in Figure 1). However, SHP2 also plays a negative regulatory role
as a tyrosine phosphatase in the Jak/STAT pathway [160] (as
indicated in Figure 8). Experiments in vivo underscore the in vitro
findings in demonstrating that mice expressing gp130 lacking
Tyr759 display splenomegaly, lymphadenopathy and an enhanced
acute-phase reaction [161].
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All tyrosine-phosphorylated signalling components are poten-
tial substrates for the SHP2 phosphatase. Overexpression of
dominant-negative SHP2 mutants leads to enhanced receptor,
JAK, STAT and SHP2 phosphorylation [160]. Since in-
creased JAK activity also enhances activation of signalling
molecules downstream of JAK, it is difficult to establish which
proteins are direct substrates for SHP2 in vivo. Interaction of
SHP2 with JAK1, JAK2 and TYK2, and phosphorylation
of SHP2 by JAK1 and JAK2, have at least been shown to occur
in vitro [131,162]. Further evidence for STAT3 as a direct sub-
strate of SHP2 comes from the detection of STAT3–SHP2
complexes [163]. In the case of STAT1, SHP2 has been described
as a dual-specificity phosphatase that dephosphorylates pTyr701

and pSer727 [164]. Furthermore, the highly conserved N-terminal
part of STAT1 and STAT3 appears to mediate sensitivity towards
phosphatases, since STAT proteins lacking this domain are found
to be hyperphosphorylated [165–167].

Besides SHP2, further phosphatases are suggested to affect IL-6
signalling. The cytoplasmic variant of PTPε, PTPεC, is expressed
in haematopoietic cells and has been shown to selectively inhibit
IL-6-induced gp130, JAK and STAT activation [168]. Whereas
SHP2 modulates the amount and amplitude of STAT3 activity
[131,158], PTPεC affects the kinetics of the onset of STAT3
activation [169].

Several other PTPs, such as PTP1B, CD45 and SHP1, have also
been reported to be involved in JAK/STAT signalling [170–172].
The function of these phosphatases in the signal transduction of
IL-6-type cytokines remains to be analysed in detail.

Early results suggested the presence of a nuclear phosphatase
which counteracts IFNγ -activated STAT1 and contributes to
its nuclear export [121,173]. Meanwhile, this phosphatase has
been identified as the nuclear isoform of the T-cell PTP TC45
[174,175]. Interestingly, STAT1 methylated at Arg31 is a better
substrate for T-cell PTP than non-methylated STAT1. Since
both T-cell PTP and PIAS1 associate with the N-terminus of
STAT1 (see below), PIAS1 may prevent dephosphorylation by
preferentially masking the T-cell PTP binding region of non-
methylated STAT1 [176]. Thus methylation not only supports
STAT activity (by preventing PIAS association), but also promotes
its inactivation by dephosphorylation.

PIAS – more than inhibitors of activated STATs?

The family of PIAS comprises five mammalian members:
PIAS1, PIAS3, PIASxα, PIASxβ, and PIASy. Initially identified
as Gu/RNA helicase II-binding protein (PIAS1) [177], it
rapidly became clear that PIAS proteins are important tran-
scriptional co-regulators of the JAK/STAT pathway [178,179].
PIAS1 inhibits STAT1 signalling [179], but conversely enhances
the transcriptional activity of nuclear hormone receptors [180].
Whereas PIAS1 specifically inhibits DNA binding of activated
STAT1 and thus STAT1-mediated gene induction (after IFN
stimulation) [179], PIAS3 was found to be specific for the in-
hibition of STAT3-mediated gene expression (after IL-6 stimu-
lation) [178]. The interaction of PIAS proteins with STAT
factors seems to require tyrosine phosphorylation of the STAT pro-
teins. As mentioned above, PIAS1 preferentially associates with
unmethylated STAT1 [106]. However, the exact molecular
mechanism of how PIAS negatively regulates STAT tran-
scriptional activity needs to be elucidated. Recently, PIASy was
found to also inhibit STAT1-mediated gene activation [181]. In
contrast with PIAS1, however, it did not affect STAT1 DNA-
binding activity. PIASy rather appears to act as a transcriptional
co-repressor of STAT1.

While earlier studies suggested that PIAS proteins might act in
the cytoplasm, the picture that emerges from recently published
work is that at least some members of this family display their
activity in the nucleus. Here, they are located in specific nuclear
bodies [182,183] attached to the nuclear scaffold [184]. With
respect to this finding, it is of interest that PIAS proteins exhibit
E3-SUMO (small ubiquitin-related modifier)-ligase activity [185,
186]. Sumoylation may play a critical role in targeting tran-
scription factors to nuclear bodies, where they bind to other
sumoylated proteins, such as PML (promyelocytic leukaemia)
or the co-repressor Sp100, and thereby become transcriptionally
active or inactive [186,187].

The SOCS family of feedback inhibitors: natural born terminators

With the discovery of the SOCS proteins several years ago, a
new mechanism of inhibition emerged [188–192]. These
inhibitors have also been designated CISs (cytokine-inducible
SH2 proteins) or SSIs (STAT-induced STAT inhibitors). The eight
members of this family (CIS and SOCS1–SOCS7) contain a
central SH2 domain, as well as a C-terminal domain called
a SOCS box (Figure 4). Expression of SOCS proteins was found
to be rapidly up-regulated by IL-6 (CIS, SOCS1, SOCS2
and SOCS3), LIF (CIS, SOCS1, SOCS2 and SOCS3), IL-11
(SOCS3) and OSM (CIS, SOCS1 and SOCS3) [32,190,192,193].
As SOCS proteins are induced via the JAK/STAT pathway and
subsequently inhibit STAT-mediated signal transduction, they are
acting as classical feedback inhibitors. The detailed mechanism
of inhibition, however, seems to differ between the various family
members. CIS, which was the first member to be identified,
was shown to compete with STAT5 for recruitment sites within
the EpoR and to thereby modulate the JAK2/STAT5 pathway
[189,194]. SOCS1 and SOCS3 are functionally most related and
potently inhibit IL-6-type cytokine signalling. Both have been
shown to act on the JAKs, and thereby inhibit the phosphorylation
of gp130, STATs and the JAKs themselves [190,192]. As SOCS1
and SOCS3 act at the level of the JAKs they can affect the activ-
ation of different STAT factors depending on the receptor system.

SOCS1 inhibits signal transduction by binding to the activation
loop of the JAKs via its SH2 domain. The so-called extended SH2
subdomain and the KIR (kinase inhibitory region) of SOCS1,
located N-terminally to the SH2 domain (Figure 4), also take part
in the inhibition of JAKs. The KIR region is thought to bind to the
substrate binding site of the kinase domain and thereby to inhibit
its catalytic activity [195]. In contrast with SOCS1, despite the
fact that it can also bind to JAKs and that it contains a KIR region
[196], SOCS3 associates with specific phosphotyrosine motifs
within activated cytokine receptors, such as gp130, EpoR, leptin
receptor and the granulocyte colony-stimulating factor receptor
[197–203].

For gp130, SOCS3 has been found to bind to the phospho-
tyrosine motif 759 [197,198], which is also the binding site for
SHP2. In fact, the affinity of SOCS3 to bind to gp130 peptides is
even slightly higher than that of SHP2 [204]. Thus the involvement
of SHP2 and SOCS3 in pTyr759-mediated attenuation has been
re-analysed to determine the individual contributions of both
proteins. Although both SOCS3 and SHP2 are recruited to the
same site within the native gp130, it is suggested that there are two
largely distinct modes of negative regulation of gp130 activity:
through the feedback inhibition by SOCS3 and/or the dephospho-
rylation of phosphorylated JAKs, receptors and STATs [160].

The exact mechanism by which SOCS3 functions is not entirely
clear, as it was also reported to bind to the activation loop of
JAK2 via its SH2 domain [196,199]. One possible explanation is
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that receptor recruitment of SOCS3 is a prerequisite for sub-
sequent JAK binding. Binding studies with phosphopeptides
suggest that SOCS3 binds pTyr759 of gp130 with much higher
affinity than pTyr1007 within the activation loop of JAK2 [198].
However, the affinity for the double phosphorylated activation
loop peptide (pTyr1007–pTyr1008) of JAK2 is comparable with the
affinities determined for SOCS3 recruiting receptor motifs like
pTyr401 of the EpoR (M. Hörtner, S. Haan and P. C.
Heinrich, unpublished work). The phosphorylation status of the
JAKs (single tyrosine phosphorylation of the activation loop
versus double tyrosine phosphorylation) may thus influence the
mode of inhibition by which SOCS3 acts. This difference in
the inhibitory mechanisms of SOCS1 and SOCS3 is also reflected
in the fact that SOCS1 blocks JAK activity more efficiently than
SOCS3 [205].

Another degree of complexity is added to the inhibitory mech-
anism of SOCS proteins by reports that they are also involved
in the degradation of some of their binding partners. Recent
work suggests that SOCS proteins may be part of E3-ubiquitin
ligases in complex with elongins B and C, as well as Rbx1
(RING box protein 1) and Cul5 (cullin 5) [206,207]. In this
complex, the SOCS proteins interact with elongin C via the
SOCS box. Consistent with the postulated E3-ligase function are
new findings that SOCS1 targets JAK2, Tel-JAK2 and IRS1/2, as
well as Vav, to degradation [208–212]. However, the implications
of this interaction for the SOCS proteins themselves are not
clear at present. Mutations within the box region of SOCS1,
as well as serine phosphorylation, which disrupt elongin C
binding, have been shown to stabilize SOCS1 [213,214]. Other
reports, however, suggest that elongin C binding can stabilize
SOCS1 and that the disruption of the interaction leads to
proteasomal degradation of SOCS1 [206,215]. In the case of
SOCS3, tyrosine phosphorylation in response to IL-2, Epo, EGF
and PDGF was reported [139,216]. Phosphorylation occurs at
two tyrosine residues (Tyr204 and Tyr221) within the SOCS box
and phosphorylation of Tyr221 recruits p120 RasGAP leading to
sustained ERK activation [139]. As elongin C binds to the SOCS
box, it is conceivable that tyrosine phosphorylation of SOCS3
also affects elongin C binding and SOCS3 stability.

MODULATION OF SIGNAL TRANSDUCTION

The topics covered in the previous section on signal termination
represent rather linear types of regulation. However, a more
complex network of regulatory mechanisms for the modulation
of cytokine signalling exists.

Regulation of cytokine availability: life and death of the party

An important way to modulate the availability of cytokines is
by regulating the half-life of their corresponding mRNAs, which
are generally short-lived due to AU-rich sequences in their 3′-
untranslated regions. The stress-activated p38 MAPK has been
shown to play an important role in stabilizing the mRNA of many
cytokines, including IL-6, by activation of MK2 (MAPKAPK2,
MAPK-activated protein kinase 2) [217]. More recently this
finding was further corroborated. It was shown in MK2-deficient
macrophages that the half-life of IL-6 mRNA was reduced by
more than 10-fold. Deletion of the AU-rich element of the TNFα
(tumour necrosis factor-α) mRNA abrogates the effect of MK-2
[218]. Other signalling pathways have been shown to induce
stabilization of cytokine mRNAs as well: the JNK pathway
induces stabilization of the short-lived IL-2 mRNA [219], and
PI3K activation induces stabilization of IL-3 mRNA [220]. The

Table 1 Half-lives of IL-6-type cytokine signalling components [222]

Protein Half-life (h)

SOCS1 1.5
SOCS2 1
SOCS3 1.6
IL-6Rα 2–3
gp130 2.5
JAK1 3.2
JAK2 1.9
TYK2 2
STAT3α 8.5
STAT3β 4.5
STAT1 16
SHP-2 18–20

exact mechanism by which signalling influences the stability of
cytokine mRNAs still needs to be elucidated, but several reports
implicate a function of AU-rich-element-binding regulators,
such as tristetraproline and its homologue butyrate-response
factor-1, Hu antigen R, heterogeneous nuclear ribonucleoprotein-
D0/AUF1 and others.

IL-6 protein availability might also be regulated by cytokine
proteolysis. At sites of inflammation IL-6 induces the release of
the serine proteases elastase, proteinase 3 and cathepsin G from
neutrophils, which in turn degrade IL-6 [221].

Half-lives of signalling components: party as long as you live

Of course, signal transduction by different players involved in a
pathway depends on the availability of these proteins. A critical
balance of protein synthesis and degradation also affects IL-6-
type cytokine signal transduction. It has been reported that the
half-lives of the various players involved in IL-6 signalling differ
substantially (Table 1) [222,223]. Whereas the feedback inhibitors
SOCS1, SOCS2 and SOCS3 are very short-lived, STAT1, STAT3α
and SHP2 have slow turnover rates. Interestingly, the half-life of
STAT3β, a splice variant of STAT3α, is reduced by almost 50%
compared with the half-life of STAT3α. The Janus kinases JAK1,
JAK2, TYK2 and gp130 show intermediate half-lives. These dif-
ferences suggest that signalling components requiring post-
translational modifications for their activation are long-lived,
whereas the activity of short-lived proteins is regulated mainly at
the transcriptional level. It makes sense that very potent inhibitors
like the SOCS proteins undergo a rapid turnover. New data suggest
that post-translational modifications of these inhibitors may be a
means to further regulate their activity by prolonging or shortening
their half-lives (see earlier section entitled The SOCS family of
feedback inhibitors: natural born terminators).

The difference in half-lives between STAT3α and STAT3β is
possibly one feature contributing to the functional differences
between the two transcription factors. For STAT3β both positive
and negative regulatory functions have been reported [224–228].
Further studies are required to clarify these conflicting results.

Cross-talk of inflammatory cytokines: how MAPKs and NF-κB
(nuclear factor κB) talk to STATs

The inflammatory cascade underlying the acute-phase response
is largely controlled by the action of different mediators released
under inflammatory conditions. Upon activation, blood mono-
cytes and tissue macrophages release a set of primary inflam-
matory mediators such as IL-1β and TNFα.
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There is strong evidence indicating that IL-6-induced signalling
and transcriptional activation are modulated at levels of signal
transduction upstream from gene transcription. For example, LPS
(lipopolysaccharide) and the pro-inflammatory cytokine TNFα
have been shown to inhibit IL-6-mediated STAT3 activation in
macrophages. This inhibition is most likely due to induction
of the de novo synthesis of the JAK-inhibitor SOCS3 [229]. A
similar mechanism has been discovered for IFNγ signalling,
where LPS inhibits IFNγ -dependent STAT1 activation also
via the induction of SOCS3 [230]. Additional mechanisms
for inhibiting IL-6 signalling by pro-inflammatory cytokines
may exist, since other data show that IL-1, TNF-α and LPS
inhibit IL-6-dependent STAT activation in macrophages through
mechanisms which do not depend on de novo protein synthesis
[231,232]. Interestingly, both SOCS3-dependent and SOCS3-in-
dependent inhibitory mechanisms of pro-inflammatory stimuli
depend on the p38 stress kinase [229,231,233]. Similarly other
MAPKs down-regulate IL-6-induced STAT3 activation. For
example, the inhibitory effect of ionomycin or the phorbol ester
PMA on IL-6-mediated STAT activation occurs rapidly and does
not require de novo protein synthesis. Instead ERK1/2 MAPK
were found to play a crucial role [234].

IL-1β is also known to inhibit IL-6-induced acute-phase protein
synthesis in hepatocytes [235]. However, no SOCS3 induction
is observed upon IL-1β stimulation of human hepatoma cells.
Instead, NF-κB was identified as a mediator for IL-1β-dependent
suppression of IL-6-induced α2M (α2- macroglobulin) expression
in liver cells [236].

STAT-binding sites are often in close proximity to binding
sites for other transcription factors, such as nuclear factor-
IL6 [237], NF-κB [238], activator protein-1 [224,239–241] and
glucocorticoid receptor [242], making a co-operative action
of these factors with STATs in gene regulation most likely.
Moreover, in the promoters of the rat α2M and the human α1-
antichymotrypsin genes, STAT3-binding sites are arranged as a
tandem [243,244], suggesting that formation of multimers on
clustered binding sites also represents a regulatory step in STAT-
dependent gene activation. This tandem organization of
STAT-binding sites has also been emphasized to be essential for
binding of tetrameric STAT3 to the α2M promoter [245].

The first evidence for a competition of STAT3 and NF-κB for
the α2M promoter binding was provided by Zhang and Fuller
[246] on an isolated binding site within the α2M promoter.
Interestingly, although NF-κB acts as a competitive inhibitor
for STAT3 DNA-binding, at least one intact NF-κB and one
intact STAT3 consensus site is crucial for the STAT3-dependent
activation of the α2M gene promoter [236], suggesting that a
balanced ratio of NF-κB and STAT3 is essential for activating the
α2M promoter. This indicates a dual, negative as well as positive,
regulatory function of NF-κB in acute-phase protein gene
induction.

A similar contribution of NF-κB to the regulation of other
acute-phase proteins, such as α1-antichymotrypsin [236] and
fibrinogen [247], may indicate the general relevance of this new
mechanism for controlling acute-phase protein gene expression.
A recent report [248] describing a CBP [CREB (cAMP response
element binding factor)-binding protein]-mediated synergistic
transcriptional activation of STAT1 and NF-κB of the CXC9 gene
further supports this idea.

STAT action within the transcriptosome: where transcription
factors gather

Most eukaryotic transcription factors interact with histone acetyl-
transferases and transcriptional co-activators such as CBP/p300,

although the composition of the individual co-activator com-
plexes may vary [249]. The C-terminal transactivation domains of
STAT1, STAT3 and STAT5 are known to interact with CBP/p300
[239,250–252]. This interaction is further modulated by Nmi
(N-Myc interactor) which augments CBP recruitment to STAT1
and STAT5, and potentiates IL-2 and IFNγ signalling [253].
Interestingly, Nmi itself is induced by IL-2 and IFNγ , indicating
a positive feedback loop within this signal transduction. Whether
Nmi also influences IL-6-type cytokine signalling remains
speculation.

CBP/STAT interactions also contribute to negative regulation
of gene expression by competition of transcription factors for a
limited amount of CBP. Such a regulatory function has been shown
for STAT1 which abolishes activator protein-1/ets transcriptional
activity by competing for CBP binding [239]. By a similar
mechanism STAT5B limits NF-κB-mediated signalling [254].

Not only the lack of histone actetyltransferase activity may
counteract STAT-mediated gene induction. Also, a contribution
of histone deacetylases to the inhibition of STAT5-dependent
promoter activation has been suggested. The nuclear receptor
co-repressor SMRT (silencing mediator of retinoic and thyroid
hormone receptors) is a potential binding partner for STAT5
and represses STAT5-dependent transcription [255]. Since both
Nmi and SMRT interact with the coiled-coil domain of STAT5,
the balance between bound co-activators and co-repressors may
determine the activity of the transcription factor.

STAT3 transcriptional activity can also be enhanced by inter-
action with other transcription factors. Interesting examples are
the forkhead transcription factor FKHR and EZI (endothelial
cell-derived zinc-finger protein). FKHR specifically enhanced
the activity of STAT3-dependent promoters, such as the α2M
promoter, but not that of a STAT5-responsive promoter. Further-
more, FKHR and STAT3 can be co-immunoprecipitated and
co-localize in the nucleus of IL-6-treated HepG2 cells [149].
These results indicate that FKHR can modulate the IL-6-induced
transcriptional activity by enhancing STAT3 action. FKHR is
inactivated by Akt/protein kinase B-mediated serine/threonine
phosphorylation. This may explain previous findings describing
an attenuation of the IL-6-mediated stimulation of acute-phase-
protein synthesis by insulin and other growth factors which
activate the PI3K/Akt pathway [256,257].

The nuclear zinc-finger protein EZI was first recognized as
an OSM-inducible gene product, but is expressed rather ubiqui-
tously [258]. STAT3 and EZI physically interact as demon-
strated by co-immunoprecipitation. Interestingly, an EZI mutant
predominantly localized in the cytoplasm inhibited nuclear lo-
calization of STAT3, as well as STAT3-mediated transactivation.
Thus, EZI may augment STAT3 activity by keeping it in the
nucleus.

PERSPECTIVES

With more and more structural data on signalling components
becoming available and allowing a better evaluation (or re-
evaluation) of previously performed mutagenesis studies, it is
tempting to believe that signalling pathways will soon be com-
pletely understood. However, for some key components such data
are still missing. For example, no data on the structure and con-
formational states of the cytoplasmic parts of cytokine receptors
are available. Are they without structure at all or is there some
kind of tight or loose structure that is induced or modified by the
recruitment of signalling components (see Figure 5)? In addition,
insight into the three-dimensional structures of JAKs and SOCS
proteins would be extremely valuable.
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Even if all interactions between the components of the Jak/
STAT cascade were known, the signalling pathway would be
still far from being fully understood. Additional complexity
arises from newly discovered functions for the players involved
and from the existence of a multitude of cross-talk mechanisms.
Yet again, the cross-talk between the signalling pathways depends
on the cell type. Furthermore, the biological outcome of a cyto-
kine signal varies between different cells and their states of
differentiation.

There are rare attempts to represent this emerging complexity
in mathematical models. In most cases the quality of the models
suffers from the lack of sufficient quantitative experimental data.
Thus many ambitious efforts still have to be made to fill these
gaps.
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12 Elson, G. C. A., Lelièvre, E., Guillet, C., Chevalier, S., Plun-Favreau, H., Froger, J.,
Suard, I., Benoit de Coignac, A., Delneste, Y., Bonnefoy, J.-F. et al. (2000) CLF
associates with CLC to form a functional heteromeric ligand for the CNTF receptor
complex. Nat. Neurosci. 3, 867–872

13 Plun-Favreau, H., Elson, G., Chabbert, M., Froger, J., deLapeyriere, O., Lelievre, E.,
Guillet, C., Hermann, J., Gauchat, J. F., Gascan, H. and Chevalier, S. (2001) The ciliary
neurotrophic factor receptor α component induces the secretion of and is required for
functional responses to cardiotrophin-like cytokine. EMBO J. 20, 1692–1703

14 Moore, P. S., Boshoff, C., Weiss, R. A. and Chang, Y. (1996) Molecular mimicry of
human cytokine and cytokine response pathway genes by KSHV. Science (Washington,
D.C.) 274, 1739–1744

15 Kaleeba, J. A., Bergquam, E. P. and Wong, S. W. (1999) A rhesus macaque
rhadinovirus related to Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8
encodes a functional homologue of interleukin-6. J. Virol. 73, 6177–6181

16 Hoischen, S. H., Vollmer, P., Marz, P., Ozbek, S., Gotze, K. S., Peschel, C., Jostock, T.,
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