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MicroRNAs (miRNAs) are endogenous B22-nucleotide RNAs, which suppress gene expression by
selectively binding to the 30-noncoding region of specific messenger RNAs through base-pairing.
Given the diversity and abundance of miRNA targets, miRNAs appear to functionally interact with
various components of many cellular networks. By analyzing the interactions between miRNAs and
a human cellular signaling network, we found that miRNAs predominantly target positive
regulatory motifs, highly connected scaffolds and most downstream network components such as
signaling transcription factors, but less frequently target negative regulatory motifs, common
components of basic cellular machines and most upstream network components such as ligands.
In addition, when an adaptor has potential to recruit more downstream components, these
components are more frequently targeted by miRNAs. This work uncovers the principles of miRNA
regulation of signal transduction networks and implies a potential function of miRNAs for
facilitating robust transitions of cellular response to extracellular signals and maintaining cellular
homeostasis.
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Introduction

Recently, a large group of small molecules, called microRNAs
(miRNAs), have been found to regulate gene expression by
base-paring with target message RNAs (mRNAs), leading to
mRNA cleavage or translational repression. As a result,
miRNAs control protein concentration at post-transcriptional
and translational levels, but do not affect mRNA transcription
and protein stability. An accumulating body of evidence
reveals that miRNAs have critical functions in various
biological processes (Ambros, 2004). It is currently estimated
that miRNAs account for B1% of predicted genes in higher
eukaryotic genomes and that up to 10–30% of genes might be
regulated by miRNAs. Furthermore, miRNA targets include
signaling proteins, enzymes and transcription factors (TFs)
and so on. The diversity and abundance of miRNA targets offer
an enormous level of combinatorial possibilities and suggest
that miRNAs and their targets appear to form a complex
regulatory network intertwined with other cellular networks
such as signal transduction networks. However, it is unclear if
and how miRNAs might orchestrate their regulation of cellular
signaling networks and how regulation of these networks
might contribute to the biological functions of miRNAs. Here

we address these questions by analyzing the interactions
between miRNAs and a human signaling network.

Eukaryotic cells use complex signaling networks to make
decisions about whether to grow, differentiate, move or die
(Ferrell, 2002; Han et al, 2004; Luscombe et al, 2004). The
components of cellular signaling networks, mainly composed
of proteins, are activated or inhibited in response to specific
input stimuli and in turn serve as stimuli for further
downstream proteins. Currently, signaling networks are
presented as directed graphs in which nodes represent proteins
and links describe qualitative relationships (activation,
inhibition or neutral interaction) between proteins. However,
the strength of the links or the abundance (concentration) of
individual nodes (proteins) in a network also plays an
important role in determining signaling strength and specifi-
city. As the mechanism by which the concentration of
signaling proteins is controlled in a living cell is very
complicated and poorly understood, a directed and weighted
cellular signaling network indicating both direction and
strength of links is currently not available. As miRNAs can
directly and specifically knock down protein expression, we
hypothesize that miRNAs might play an important role in the
regulation of the strength and specificity of cellular signaling
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networks through directly controlling the concentration of
network components (proteins) at post-transcriptional and
translational levels.

Results and discussion

MiRNAs more frequently target network
downstream signaling components than ligands
and cell surface receptors

To systematically analyze the interactions between miRNAs
and signaling networks, we took a literature-mined signaling
network, which represents signal transduction processes from
multiple cell surface receptors to various cellular machines in a
mammalian hippocampal CA1 neuron (Ma’ayan et al, 2005).
The network contains 540 nodes and 1258 links, including 689
activating (positive) links, 306 inhibitory (negative) links and
263 neutral (protein interactions) links (Supplementary Figure
1). Most of the signaling pathways in the network represent
commonly used pathways in many cell types (Ma’ayan et al,
2005). Hence, we expect the conclusions in this study could
be transferable to other cell types.

To uncover which signaling proteins are potentially regu-
lated by miRNAs in the network, we took genome-wide
computationally predicted miRNA target genes from two
recent studies (Krek et al, 2005; Lewis et al, 2005). These
targets were predicted based on the principle of miRNA–target
interactions. Over 70% (4431) of the miRNA targets predicted
in the two studies are overlapped. The accuracy of the
prediction methods has been confirmed by experimental
validation of randomly selected targets (Stark et al, 2005)
and by large-scale gene expression profiling studies (Lim et al,
2005). Up to 88% of randomly selected predicted miRNA
targets were proved to be real targets (Stark et al, 2005). We
mapped all the overlapped miRNA targets onto the 540
network proteins. We found that 159 (29.4%) of the network
proteins are miRNA targets, whereas the miRNA targets
represent only B17% of total genes in human genome
(Po2�10�4). This result indicates that miRNAs more
frequently target signaling proteins than others and implies
that miRNAs may play a relatively more important role in
regulating signaling networks than in other cellular processes.

To discover which stages of the signal information flow
are predominantly regulated by miRNAs, we first sorted the
network components into several groups, for example,
ligands, cell surface receptors, intracellular signaling proteins
and nuclear proteins, based on their positions in the signaling
information flow, and mapped miRNA targets onto each
group. We found that the fraction of miRNA targets in a group
(the ratio of the number of the miRNA targets to total number
of proteins in the group) increases with the signal information
flow from the upstream to the downstream (Figure 1). For
example, only 9.1% of the ligands are miRNA targets, whereas
half of the nuclear proteins, most of which are TFs, are miRNA
targets. In other words, the miRNA targets are enriched more
than five times in the most downstream group compared to the
most upstream group. A similar result was obtained when we
extended this analysis to the signaling proteins in a genome
scale (see Supplementary information).

MiRNAs preferentially target the downstream
components of the adaptors, which have potential
to recruit more downstream components

Many intracellular signaling activities such as recruiting
downstream signaling components to the vicinity of receptors
are performed by adaptor proteins. Adaptors do not have
enzyme activity, but physically interact with upstream and
downstream signaling proteins. They activate, inhibit or
relocalize downstream components through direct protein–
protein interactions. One adaptor is able to recruit distinct
downstream components in different cellular conditions (Wu
et al, 2006). Accordingly, if an adaptor can recruit more
downstream components, these components should have a
higher dynamic gene expression behavior. Because miRNAs
are known to have a high spatio-temporal expression behavior,
we asked if miRNAs preferably regulate the downstream
components of the adaptors, which have potential to recruit
more downstream components. To answer this question, we
first extracted downstream components binding to the net-
work adaptors. We then counted the number of downstream
components for each adaptor and divided the adaptors into
two groups. One group contains adaptors linking to four or less
downstream components (low-link group), whereas the other
group contains adaptors linking to more than four downstream
components (high-link group). Each group contains a similar
number of downstream adaptor-binding components (91 and
108, respectively). We found that the fraction of miRNA targets
in the high-link group (36.1%, 39/108) is obviously higher
than that in the low-link group (24.2%, 22/91, Po0.015). This
result suggests that miRNAs preferentially target the down-
stream components of the adaptors, which have potential to
recruit more downstream components. For example, the
adaptor Grb2 directly interacts with 14 downstream signaling
proteins, half of which are miRNA targets (Figure 2). These
downstream components are functionally involved in different
signaling pathways that lead to different cellular outputs. For
example, SHC regulates cell growth and apoptosis through
activation of small GTPases of the Ras family, whereas NWASP
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Figure 1 Distribution of miRNA targets in the signal network at different
signaling stages. Signaling proteins are divided into four groups, for example,
ligands, cell surface receptors, intracellular central signaling proteins and nuclear
proteins, based on their cellular locations in the signaling pathways. The
P-values were obtained by comparing the fractions of miRNA targets between
each group and the whole network using randomization tests.
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is involved in the regulation of actin-based cytoskeleton
through activation of small GTPases of the Rho family. These
two components are targeted by different miRNAs. To
accurately respond to extracellular stimuli, adaptors need to
selectively recruit downstream components. As miRNA targets
are enriched in the downstream components of high-linked
adaptors, miRNAs may play an important role in the precise
selection of cellular responses to stimuli by controlling the
concentration of adaptors’ downstream components. In
contrast, there was no correlation between the abundance
of miRNA targets in the upstream components and the link
number of the adaptors to the upstream components
(Supplementary Table I). In addition, we found no correlation
between the abundance of miRNA targets of adaptors and their
link numbers.

MiRNAs more frequently target positively linked
network motifs

A complex signaling network can be broken down into distinct
regulatory patterns, or network motifs, typically comprised
of three to four interacting components capable of signal
processing (Babu et al, 2004; Barabasi and Oltvai, 2004).
Network motifs, which represent the simplest building blocks,

are statistically over-represented subgraphs in a network (Lee
et al, 2002; Shen-Orr et al, 2002; Wuchty et al, 2003;
Teichmann and Babu, 2004; Kharchenko et al, 2005). Each of
them bears a distinct regulatory function in cellular networks.
The function of a motif also depends on whether the links are
positive or negative. For example, positive feedback loops lean
to emergent network properties such as ultrasensitivity,
bistability and switch-like behavior, whereas negative feed-
back loops perform adaptation, desensitization and preserva-
tion of homeostasis (Ferrell, 2002; Luscombe et al, 2004;
Balazsi et al, 2005; Dekel et al, 2005). In our previous work, we
showed that mRNA decay plays an important role in motif
regulatory behavior (Wang and Purisima, 2005). Thus,
analyzing how miRNAs interact with network motifs may
shed some insights into understanding miRNA regulation
principles in signaling networks. We identified 11 types of
motifs in the network (Table I and Supplementary Figure 2).
We mapped miRNA targets onto the network motif nodes, and
classified each type of motif into several subgroups based on
the number of nodes that are miRNA targets. For example, the
three-node network motif may have none of their nodes as an
miRNA target (category 0), or may have just one of their nodes
as an miRNA target (category 1), or two (category 2) or all
three as miRNA targets (category 3). For each motif, we
calculated the ratio of positive links to the total directional
(positive and negative) links (termed as Ra) in each subgroup
and compared it with the average Ra in all the motifs, which is
shown as a horizontal line in Figure 3. For most motifs except
Motifs id46, id204 and id904, the Ra in the subgroup in which
none of the nodes are miRNA targets is less than the average Ra
of all the motifs (Figure 3; Po4�10�3, Wilcoxon rank-sum
test). This result suggests that miRNAs less frequently target
negative regulatory motifs. In contrast, for most motifs except
Motifs id46 and id4546, which show very low abundance in
the network (Table I), the preponderance of positive links in
the subgroups increased as the number of miRNA-targeted
components rose (Figure 3 and Table I). These motifs,
especially the three most abundant motif types, bifan motif
(Motif id204), four-node feed-forward motif (Motif id904) and
Motif id460, show a clear positive correlation between positive
link ratio and miRNA target number in the motif. More
significantly, when all nodes are miRNA targets in a motif, all
the links in the motif are positive links (Po0.01, Wilcoxon
rank-sum test; Table I). These results suggest that miRNAs
have high potential to target positively linked motifs. For
example, AP1 (activator protein 1), CREB (cAMP-responsive
element-binding protein) and CBP (CREB-binding protein)
form a three-node positive feedback loop. All of the three
proteins are miRNA targets.

We then turned to a special three-node regulatory motif built
up by one scaffold protein neutrally linked to other two
proteins that are either positively or negatively connected
(Motif id110). Scaffold proteins exert their functions through
protein–protein interactions. Unlike adaptors, scaffold pro-
teins do not directly activate or inhibit other proteins but
provide regional organization for activation or inhibition
between other proteins. We found 32 such motifs built up by
23 scaffold proteins, six of which are miRNA targets. These six
miRNA-targeted scaffold proteins, for example, CRK, PSD95,
SAM68, SHC, SNAP25 and YOTIAO, form 11 scaffold motifs.
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Figure 2 MiRNAs preferentially target the downstream components of high-link
adaptors. (A) and (B) illustrate high- and low-link adaptors and their downstream
components, respectively. MiRNA targets are in red.
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On average, each miRNA-targeted scaffold protein forms
almost two motifs (11/6), a level much higher than that
(21/17 or 1.24) formed by the scaffold proteins that are not
miRNA targets (Po0.05). In contrast, we found no correlation
between the abundance of miRNA targets and the link
numbers of the whole network nodes. These results suggest
that highly linked scaffold proteins have higher probability to
be targeted by miRNAs.

Scaffold proteins are able to recruit distinct sets of proteins
to different pathways and thus maintain the specificity of
signal information flows. Higher linked scaffold proteins can
recruit more protein sets and have a higher degree of spatio-
temporal expression behavior. As the expression of miRNAs is

highly specific for tissues and developmental stages, it might
be expected that higher linked scaffold proteins would be
regulated by more miRNAs. To test this hypothesis, we
checked the miRNAs that target the highly linked scaffold
proteins. Indeed, we found that each of these scaffold proteins
is targeted by several different miRNAs (Po0.01; Supplemen-
tary Table II). For example, CRK and SNAP25 are targeted
by six miRNAs (miR-1, miR-10a, miR-126, miR-133a, miR-20
and miR-93) and five miRNAs (miR-1, miR-128a, miR-130a,
miR-153 and miR-27b), respectively.

Motifs do not exist in isolation but are embedded into larger
subgraphs. Network themes are examples of such larger
subgraphs which are enriched topological patterns containing
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Figure 3 Relations between the fractions of positive links and the fractions of miRNA targets in network motifs. Each type of motif was classified into several subgroups
based on the number of nodes that are miRNA targets. For example, the three-node network motif may have none of their nodes as an miRNA target (category 0), or may
have just one of their nodes as an miRNA target (category 1), or two (category 2) or all three as miRNA targets (category 3). The ratio of positive links to total positive and
negative links in each subgroup was plotted as a function of miRNA target numbers per motif. The horizontal lines indicate the ratio of positive links to the total positive
and negative links in all of the respective network motifs. The network motif ID numbering system is from Alon’s motif dictionary (http://www.weizmann.ac.il/mcb/UriAlon/
NetworkMotifsSW/mfinder/motifDictionary.pdf).
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clusters of overlapping motifs, represent a higher order of
regulatory relationships between signaling proteins and tie
to particular biological functions (Zhang et al, 2005). To get
insights into the higher order regulatory relationships between
signaling proteins that are regulated by each miRNA, we
explored the network themes. Interestingly, for most of
miRNAs, the network motifs containing the targets of a single
miRNA form one or two network themes with a size of more
than 20 nodes. Furthermore, most of the themes are associated
with one or more of the five cellular machines: transcription
machinery, translation machinery, secretion apparatus, moti-
lity machinery and electrical response (see Supplementary
information).

MiRNAs avoid targeting common components
of cellular machines in the network

The signaling network could lead to activation of five distinct
cellular machines that include transcription machinery,
translation machinery, secretion apparatus, motility machin-
ery and electrical response. Networks contain many functional
modules that may carry out specific functions. In cellular
signaling networks, functional modules represent a set of
proteins that are always present in various cellular conditions.
The shortest path from an input node to an output node
allowed us to identify such functional modules. To obtain the
proteins for a functional module, we extracted the shortest
path proteins from each receptor (input node) to all output
nodes of each cellular machine. We then examined the
fractions of miRNA targets in each cellular machine. We found

that the fractions of miRNA targets in almost all functional
modules are significantly lower than that (159/540¼0.294) in
the network (Supplementary Table III). This result indicates
that the shortest path proteins have less chance to be miRNA
targets.

We then asked if miRNAs preferentially interact with the
common components shared by the shortest paths leading to
these cellular machines. To answer this question, we extracted
proteins found in the shortest path from each cell surface
receptor to each output signal protein in each cellular machine.
We identified 70 proteins that are shared by all of the five
cellular machines in the shortest paths. We found that only
14.3% of them are miRNA targets (Table II), a significant
under-representation compared to the fraction of miRNA
targets (29.4%) in the network (Po2�10�4). This result
suggests that miRNAs avoid disturbing basic cellular pro-
cesses, because these common proteins are highly shared by
basic cellular machines and should be frequently used in
various cellular conditions.

Sensitivity analysis

Although the accuracy of the miRNA target prediction methods
has been well demonstrated by experimental validation of
randomly selected targets, 12% of them could not be proved
as real targets. To test the potential effects of the errors, we
performed the sensitivity analysis as described previously
(Wuchty et al, 2003). We mimicked false positives by
randomly adding extra 10 and 20% of network proteins,
which are not predicted miRNA targets, to the target list,
performed the same analysis and recalculated the P-values.
In addition, we also removed 10 and 20% of miRNA targets to
determine the effect of false negatives. As shown in
Supplementary Tables IV, V, VI and VII, the results and
P-values indicate that the trend remains unchanged by the
addition of the false positives or false negatives (see more
details in Supplementary Text). Therefore, the results we
obtained are robust against substantial errors.

Conclusion remarks

In this study, we analyzed the distribution of miRNA targets in
the cellular signaling network at different levels, ranging from
local structures (network motifs) to the network in a global
scale (information flow, proteins with distinct biochemical
features and common proteins of basic cellular machines). We
found that miRNAs preferentially regulate positive regulatory
motifs, highly connected scaffolds and downstream network

Table II Abundance of miRNA targets in the common nodes that locate in the shortest paths of all five cellular machines

Cellular machines Transcription Translation Secretion apparatus Motility Electrical response

Number of nodes 142 94 115 161 130
Number of overlapped nodes 70
Number of miRNA targets 10
P-value o2�10�4

Note: The input nodes (receptors) and output nodes of cellular machines were not counted. The P-value was given by comparing the abundance of miRNA targets of the
common nodes to that of miRNA targets (0.294) in the network using a randomization test.

Table I Relations between the abundance of positive links and the abundance of
miRNA targets in each network motif

Motif ID Ratio of positive links to total positive and negative
links in each subgroup

0 target 1 target 2 targets 3 targets 4 targets

46 10/10 11/20 2/2 — —
98 28/48 13/24 1/3 3/3 —
108 12/30 11/28 9/14 — —
110 9/15 10/11 5/5 1/1 —
204 1624/2180 987/1436 226/372 85/108 12/12
460 148/258 79/135 29/42 10/12 18/18
904 403/552 265/380 163/220 55/68 4/4
972 6/12 40/76 21/30 2/2 —
4546 42/65 29/40 5/10 — —
4556 39/62 56/204 18/32 11/12 —
5068 2/7 9/18 9/19 4/4 1/1
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components such as TFs. In addition, when an adaptor has the
potential to recruit more downstream components, these
components are more frequently regulated by miRNAs. These
results revealed that miRNAs regulate signaling networks
in multiple ways. By selectively regulating positive regulatory
motifs, highly connected scaffolds and the most network
downstream components, miRNAs may provide a mechanism
to terminate the pre-existing messages and facilitate quick
and robust transitions for responses to new signals. These
functions fit the spatio-temporal behavior of miRNA expres-
sion. On the other hand, miRNAs less frequently target
negative regulatory motifs, common proteins of basic cellular
machines and upstream network components such as ligands.
Further discussion of the results is presented in Supplementary
information. Our analysis provides system-level insights into
the interactions between miRNAs and signaling regulatory
networks and generates a set of testable hypotheses that are
helpful for understanding the principles of the regulation of
signaling networks by miRNAs.

Materials and methods

Data sets used in this study

We took a literature-mined signaling network, which represents signal
transductions from multiple cell surface receptors to various intracel-
lular machines in a mammalian hippocampal CA1 neuron (Ma’ayan
et al, 2005). After carefully examining the data set, we noted that five
duplicated components were mistakenly included in the network. We
confirmed this finding by communicating with Avi Ma’ayan, the first
author of the original paper. We merged these duplicated components
and finally got a network containing 540 nodes and 1258 links, in
which there are 689 activating links, 306 inhibitory links and 263
neutral links (Supplementary Text files 1 and 2).

We took genome-wide computationally predicted miRNA target
genes from two recent studies (Krek et al, 2005; Lewis et al, 2005). We
found that over 70% (4431) of the miRNA targets predicted by Lewis
overlap with those predicted by Krek et al. The overlapped miRNA
targets were saved in Supplementary Text file 3 and used in this study.

Mapping miRNA targets onto the network

We mapped miRNA targets onto the network proteins by writing a Java
program (Supplementary Java code file 1). The miRNA-targeting
proteins and non-miRNA-targeting proteins are saved in Supplemen-
tary Text files 4 and 5, respectively. To get a global view of miRNA
target distribution, we created a Pajek format file (Supplementary Text
file 6) and generated a network (Supplementary Figure 1).

Sorting the network nodes (proteins) along the
signal information flow

We sorted the network nodes into four subgroups: ligands, cell surface
receptors, cytosolic and organelle (such as mitochondria, ribosomes
and vesicles) proteins and nuclear proteins based on their locations in
the signaling flow, and then mapped miRNA targets onto each
subgroup. The components of each subgroup are listed in Supple-
mentary Text file 7. We then calculated the fractions of miRNA targets
in each subgroup.

Extracting adaptors and the up- and downstream
components of the adaptors

We extracted adaptors and their directly linked up- and downstream
components from the network (Supplementary Text file 8). Based on

the link numbers of the adaptors to the downstream components, we
divided the adaptors into two groups. One group contains adaptors
linking to four or less downstream components (low-link group), and
the other contains adaptors linking to more than four downstream
components (high-link group). The downstream components of both
groups are listed in Supplementary Text file 9. We mapped miRNA
targets to each group and calculated the fractions of miRNA targets.

Analyzing miRNA target abundance in network
motifs

We used Mfinder program (Kashtan et al, 2004) to extract network
motifs. The input data for finding network motifs are in Supplementary
Text file 10. We list all three- and four-size network motifs in
Supplementary Text files 11, 12, 13 and 14, respectively. For further
analysis of these motifs, we extracted all the members of each type of
motif from the network and saved them in compressed Zip files
(Supplementary Zip files 1 and 2).

We then counted the number of miRNA targets in each motif and
classified each type of motif into several subgroups based on the
number of nodes that are miRNA targets. We used the Java source code
file (Supplementary Java file 2) to perform subgrouping. The results
are saved in Supplementary Zip files 3 and 4 for three- and four-size
motifs, respectively. We then calculated the ratio (Ra) of the activation
links (þ ) to the total activation and inhibitory links (þ and�) in each
subgroup.

Sorting different cellular machines of the network

At the most downstream of the network, the network flow reaches
to the output nodes of five cellular machines, such as transcription
machinery, motility machinery and so on. The network output nodes
in each cellular machine were sorted by Avi Ma’ayan et al and
presented in Supplementary Information of the original publication
(Ma’ayan et al, 2005). We extracted the subsets of the output proteins
(nodes) of each cellular machine from the network (Supplementary
Zip file 5). We then extracted the shortest path proteins from each input
node (receptor) to all output nodes of each cellular machine using
Supplementary Java file 3, which implemented Dijkstra’s algorithm.
Proteins in each functional module (a collection of distinct shortest
path proteins from receptors to the machinery output nodes in a
cellular machinery) were saved in Supplementary Zip file 6. After
removing input and output nodes of each cellular machine from
the shortest path proteins (Supplementary Zip file 7), we extracted the
common proteins that are present in every function module
(Supplementary Text file 15). We then mapped miRNA targets to each
functional module and the common proteins (Supplementary Text file
16), and calculated the fractions of miRNA targets.

Randomization tests

To test the statistical significance of observations, we performed
randomization tests. A more detailed explanation of randomization
tests was previously described by Wang and Purisima (2005).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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